Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 /*
59 * Increment the given counter and return its updated value.
60 * If the counter is already 0 it will not be incremented.
61 * If the counter is already at its maximum value returns
62 * -EINVAL without updating it.
63 */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 unsigned int counter;
67
68 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 if (counter <= (unsigned int)INT_MAX)
70 return (int)counter;
71
72 atomic_dec(v);
73
74 return -EINVAL;
75 }
76
77 /* Decrement the counter. Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 int counter;
81
82 counter = atomic_dec_return(v);
83 if (counter >= 0)
84 return counter;
85
86 atomic_inc(v);
87
88 return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN \
98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME "-"
103
104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX 64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX 64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING (1<<0)
115 #define RBD_FEATURE_STRIPINGV2 (1<<1)
116 #define RBD_FEATURES_ALL \
117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
122
123 /*
124 * An RBD device name will be "rbd#", where the "rbd" comes from
125 * RBD_DRV_NAME above, and # is a unique integer identifier.
126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127 * enough to hold all possible device names.
128 */
129 #define DEV_NAME_LEN 32
130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133 * block device image metadata (in-memory version)
134 */
135 struct rbd_image_header {
136 /* These six fields never change for a given rbd image */
137 char *object_prefix;
138 __u8 obj_order;
139 __u8 crypt_type;
140 __u8 comp_type;
141 u64 stripe_unit;
142 u64 stripe_count;
143 u64 features; /* Might be changeable someday? */
144
145 /* The remaining fields need to be updated occasionally */
146 u64 image_size;
147 struct ceph_snap_context *snapc;
148 char *snap_names; /* format 1 only */
149 u64 *snap_sizes; /* format 1 only */
150 };
151
152 /*
153 * An rbd image specification.
154 *
155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156 * identify an image. Each rbd_dev structure includes a pointer to
157 * an rbd_spec structure that encapsulates this identity.
158 *
159 * Each of the id's in an rbd_spec has an associated name. For a
160 * user-mapped image, the names are supplied and the id's associated
161 * with them are looked up. For a layered image, a parent image is
162 * defined by the tuple, and the names are looked up.
163 *
164 * An rbd_dev structure contains a parent_spec pointer which is
165 * non-null if the image it represents is a child in a layered
166 * image. This pointer will refer to the rbd_spec structure used
167 * by the parent rbd_dev for its own identity (i.e., the structure
168 * is shared between the parent and child).
169 *
170 * Since these structures are populated once, during the discovery
171 * phase of image construction, they are effectively immutable so
172 * we make no effort to synchronize access to them.
173 *
174 * Note that code herein does not assume the image name is known (it
175 * could be a null pointer).
176 */
177 struct rbd_spec {
178 u64 pool_id;
179 const char *pool_name;
180
181 const char *image_id;
182 const char *image_name;
183
184 u64 snap_id;
185 const char *snap_name;
186
187 struct kref kref;
188 };
189
190 /*
191 * an instance of the client. multiple devices may share an rbd client.
192 */
193 struct rbd_client {
194 struct ceph_client *client;
195 struct kref kref;
196 struct list_head node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219 const char *object_name;
220 u64 offset; /* object start byte */
221 u64 length; /* bytes from offset */
222 unsigned long flags;
223
224 /*
225 * An object request associated with an image will have its
226 * img_data flag set; a standalone object request will not.
227 *
228 * A standalone object request will have which == BAD_WHICH
229 * and a null obj_request pointer.
230 *
231 * An object request initiated in support of a layered image
232 * object (to check for its existence before a write) will
233 * have which == BAD_WHICH and a non-null obj_request pointer.
234 *
235 * Finally, an object request for rbd image data will have
236 * which != BAD_WHICH, and will have a non-null img_request
237 * pointer. The value of which will be in the range
238 * 0..(img_request->obj_request_count-1).
239 */
240 union {
241 struct rbd_obj_request *obj_request; /* STAT op */
242 struct {
243 struct rbd_img_request *img_request;
244 u64 img_offset;
245 /* links for img_request->obj_requests list */
246 struct list_head links;
247 };
248 };
249 u32 which; /* posn image request list */
250
251 enum obj_request_type type;
252 union {
253 struct bio *bio_list;
254 struct {
255 struct page **pages;
256 u32 page_count;
257 };
258 };
259 struct page **copyup_pages;
260 u32 copyup_page_count;
261
262 struct ceph_osd_request *osd_req;
263
264 u64 xferred; /* bytes transferred */
265 int result;
266
267 rbd_obj_callback_t callback;
268 struct completion completion;
269
270 struct kref kref;
271 };
272
273 enum img_req_flags {
274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280 struct rbd_device *rbd_dev;
281 u64 offset; /* starting image byte offset */
282 u64 length; /* byte count from offset */
283 unsigned long flags;
284 union {
285 u64 snap_id; /* for reads */
286 struct ceph_snap_context *snapc; /* for writes */
287 };
288 union {
289 struct request *rq; /* block request */
290 struct rbd_obj_request *obj_request; /* obj req initiator */
291 };
292 struct page **copyup_pages;
293 u32 copyup_page_count;
294 spinlock_t completion_lock;/* protects next_completion */
295 u32 next_completion;
296 rbd_img_callback_t callback;
297 u64 xferred;/* aggregate bytes transferred */
298 int result; /* first nonzero obj_request result */
299
300 u32 obj_request_count;
301 struct list_head obj_requests; /* rbd_obj_request structs */
302
303 struct kref kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314 u64 size;
315 u64 features;
316 bool read_only;
317 };
318
319 /*
320 * a single device
321 */
322 struct rbd_device {
323 int dev_id; /* blkdev unique id */
324
325 int major; /* blkdev assigned major */
326 struct gendisk *disk; /* blkdev's gendisk and rq */
327
328 u32 image_format; /* Either 1 or 2 */
329 struct rbd_client *rbd_client;
330
331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333 spinlock_t lock; /* queue, flags, open_count */
334
335 struct rbd_image_header header;
336 unsigned long flags; /* possibly lock protected */
337 struct rbd_spec *spec;
338
339 char *header_name;
340
341 struct ceph_file_layout layout;
342
343 struct ceph_osd_event *watch_event;
344 struct rbd_obj_request *watch_request;
345
346 struct rbd_spec *parent_spec;
347 u64 parent_overlap;
348 atomic_t parent_ref;
349 struct rbd_device *parent;
350
351 /* protects updating the header */
352 struct rw_semaphore header_rwsem;
353
354 struct rbd_mapping mapping;
355
356 struct list_head node;
357
358 /* sysfs related */
359 struct device dev;
360 unsigned long open_count; /* protected by lock */
361 };
362
363 /*
364 * Flag bits for rbd_dev->flags. If atomicity is required,
365 * rbd_dev->lock is used to protect access.
366 *
367 * Currently, only the "removing" flag (which is coupled with the
368 * "open_count" field) requires atomic access.
369 */
370 enum rbd_dev_flags {
371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list); /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list); /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache *rbd_img_request_cache;
386 static struct kmem_cache *rbd_obj_request_cache;
387 static struct kmem_cache *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401 __ATTR(add, S_IWUSR, NULL, rbd_add),
402 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403 __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407 .name = "rbd",
408 .bus_attrs = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416 .init_name = "rbd",
417 .release = rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423 struct va_format vaf;
424 va_list args;
425
426 va_start(args, fmt);
427 vaf.fmt = fmt;
428 vaf.va = &args;
429
430 if (!rbd_dev)
431 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432 else if (rbd_dev->disk)
433 printk(KERN_WARNING "%s: %s: %pV\n",
434 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435 else if (rbd_dev->spec && rbd_dev->spec->image_name)
436 printk(KERN_WARNING "%s: image %s: %pV\n",
437 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438 else if (rbd_dev->spec && rbd_dev->spec->image_id)
439 printk(KERN_WARNING "%s: id %s: %pV\n",
440 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441 else /* punt */
442 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443 RBD_DRV_NAME, rbd_dev, &vaf);
444 va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr) \
449 if (unlikely(!(expr))) { \
450 printk(KERN_ERR "\nAssertion failure in %s() " \
451 "at line %d:\n\n" \
452 "\trbd_assert(%s);\n\n", \
453 __func__, __LINE__, #expr); \
454 BUG(); \
455 }
456 #else /* !RBD_DEBUG */
457 # define rbd_assert(expr) ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468 u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478 bool removing = false;
479
480 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481 return -EROFS;
482
483 spin_lock_irq(&rbd_dev->lock);
484 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485 removing = true;
486 else
487 rbd_dev->open_count++;
488 spin_unlock_irq(&rbd_dev->lock);
489 if (removing)
490 return -ENOENT;
491
492 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493 (void) get_device(&rbd_dev->dev);
494 set_device_ro(bdev, rbd_dev->mapping.read_only);
495 mutex_unlock(&ctl_mutex);
496
497 return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502 struct rbd_device *rbd_dev = disk->private_data;
503 unsigned long open_count_before;
504
505 spin_lock_irq(&rbd_dev->lock);
506 open_count_before = rbd_dev->open_count--;
507 spin_unlock_irq(&rbd_dev->lock);
508 rbd_assert(open_count_before > 0);
509
510 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511 put_device(&rbd_dev->dev);
512 mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516 .owner = THIS_MODULE,
517 .open = rbd_open,
518 .release = rbd_release,
519 };
520
521 /*
522 * Initialize an rbd client instance. Success or not, this function
523 * consumes ceph_opts.
524 */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 struct rbd_client *rbdc;
528 int ret = -ENOMEM;
529
530 dout("%s:\n", __func__);
531 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 if (!rbdc)
533 goto out_opt;
534
535 kref_init(&rbdc->kref);
536 INIT_LIST_HEAD(&rbdc->node);
537
538 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541 if (IS_ERR(rbdc->client))
542 goto out_mutex;
543 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545 ret = ceph_open_session(rbdc->client);
546 if (ret < 0)
547 goto out_err;
548
549 spin_lock(&rbd_client_list_lock);
550 list_add_tail(&rbdc->node, &rbd_client_list);
551 spin_unlock(&rbd_client_list_lock);
552
553 mutex_unlock(&ctl_mutex);
554 dout("%s: rbdc %p\n", __func__, rbdc);
555
556 return rbdc;
557
558 out_err:
559 ceph_destroy_client(rbdc->client);
560 out_mutex:
561 mutex_unlock(&ctl_mutex);
562 kfree(rbdc);
563 out_opt:
564 if (ceph_opts)
565 ceph_destroy_options(ceph_opts);
566 dout("%s: error %d\n", __func__, ret);
567
568 return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573 kref_get(&rbdc->kref);
574
575 return rbdc;
576 }
577
578 /*
579 * Find a ceph client with specific addr and configuration. If
580 * found, bump its reference count.
581 */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584 struct rbd_client *client_node;
585 bool found = false;
586
587 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588 return NULL;
589
590 spin_lock(&rbd_client_list_lock);
591 list_for_each_entry(client_node, &rbd_client_list, node) {
592 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593 __rbd_get_client(client_node);
594
595 found = true;
596 break;
597 }
598 }
599 spin_unlock(&rbd_client_list_lock);
600
601 return found ? client_node : NULL;
602 }
603
604 /*
605 * mount options
606 */
607 enum {
608 Opt_last_int,
609 /* int args above */
610 Opt_last_string,
611 /* string args above */
612 Opt_read_only,
613 Opt_read_write,
614 /* Boolean args above */
615 Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619 /* int args above */
620 /* string args above */
621 {Opt_read_only, "read_only"},
622 {Opt_read_only, "ro"}, /* Alternate spelling */
623 {Opt_read_write, "read_write"},
624 {Opt_read_write, "rw"}, /* Alternate spelling */
625 /* Boolean args above */
626 {-1, NULL}
627 };
628
629 struct rbd_options {
630 bool read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637 struct rbd_options *rbd_opts = private;
638 substring_t argstr[MAX_OPT_ARGS];
639 int token, intval, ret;
640
641 token = match_token(c, rbd_opts_tokens, argstr);
642 if (token < 0)
643 return -EINVAL;
644
645 if (token < Opt_last_int) {
646 ret = match_int(&argstr[0], &intval);
647 if (ret < 0) {
648 pr_err("bad mount option arg (not int) "
649 "at '%s'\n", c);
650 return ret;
651 }
652 dout("got int token %d val %d\n", token, intval);
653 } else if (token > Opt_last_int && token < Opt_last_string) {
654 dout("got string token %d val %s\n", token,
655 argstr[0].from);
656 } else if (token > Opt_last_string && token < Opt_last_bool) {
657 dout("got Boolean token %d\n", token);
658 } else {
659 dout("got token %d\n", token);
660 }
661
662 switch (token) {
663 case Opt_read_only:
664 rbd_opts->read_only = true;
665 break;
666 case Opt_read_write:
667 rbd_opts->read_only = false;
668 break;
669 default:
670 rbd_assert(false);
671 break;
672 }
673 return 0;
674 }
675
676 /*
677 * Get a ceph client with specific addr and configuration, if one does
678 * not exist create it. Either way, ceph_opts is consumed by this
679 * function.
680 */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683 struct rbd_client *rbdc;
684
685 rbdc = rbd_client_find(ceph_opts);
686 if (rbdc) /* using an existing client */
687 ceph_destroy_options(ceph_opts);
688 else
689 rbdc = rbd_client_create(ceph_opts);
690
691 return rbdc;
692 }
693
694 /*
695 * Destroy ceph client
696 *
697 * Caller must hold rbd_client_list_lock.
698 */
699 static void rbd_client_release(struct kref *kref)
700 {
701 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703 dout("%s: rbdc %p\n", __func__, rbdc);
704 spin_lock(&rbd_client_list_lock);
705 list_del(&rbdc->node);
706 spin_unlock(&rbd_client_list_lock);
707
708 ceph_destroy_client(rbdc->client);
709 kfree(rbdc);
710 }
711
712 /*
713 * Drop reference to ceph client node. If it's not referenced anymore, release
714 * it.
715 */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718 if (rbdc)
719 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724 return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729 size_t size;
730 u32 snap_count;
731
732 /* The header has to start with the magic rbd header text */
733 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734 return false;
735
736 /* The bio layer requires at least sector-sized I/O */
737
738 if (ondisk->options.order < SECTOR_SHIFT)
739 return false;
740
741 /* If we use u64 in a few spots we may be able to loosen this */
742
743 if (ondisk->options.order > 8 * sizeof (int) - 1)
744 return false;
745
746 /*
747 * The size of a snapshot header has to fit in a size_t, and
748 * that limits the number of snapshots.
749 */
750 snap_count = le32_to_cpu(ondisk->snap_count);
751 size = SIZE_MAX - sizeof (struct ceph_snap_context);
752 if (snap_count > size / sizeof (__le64))
753 return false;
754
755 /*
756 * Not only that, but the size of the entire the snapshot
757 * header must also be representable in a size_t.
758 */
759 size -= snap_count * sizeof (__le64);
760 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761 return false;
762
763 return true;
764 }
765
766 /*
767 * Fill an rbd image header with information from the given format 1
768 * on-disk header.
769 */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771 struct rbd_image_header_ondisk *ondisk)
772 {
773 struct rbd_image_header *header = &rbd_dev->header;
774 bool first_time = header->object_prefix == NULL;
775 struct ceph_snap_context *snapc;
776 char *object_prefix = NULL;
777 char *snap_names = NULL;
778 u64 *snap_sizes = NULL;
779 u32 snap_count;
780 size_t size;
781 int ret = -ENOMEM;
782 u32 i;
783
784 /* Allocate this now to avoid having to handle failure below */
785
786 if (first_time) {
787 size_t len;
788
789 len = strnlen(ondisk->object_prefix,
790 sizeof (ondisk->object_prefix));
791 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792 if (!object_prefix)
793 return -ENOMEM;
794 memcpy(object_prefix, ondisk->object_prefix, len);
795 object_prefix[len] = '\0';
796 }
797
798 /* Allocate the snapshot context and fill it in */
799
800 snap_count = le32_to_cpu(ondisk->snap_count);
801 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802 if (!snapc)
803 goto out_err;
804 snapc->seq = le64_to_cpu(ondisk->snap_seq);
805 if (snap_count) {
806 struct rbd_image_snap_ondisk *snaps;
807 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809 /* We'll keep a copy of the snapshot names... */
810
811 if (snap_names_len > (u64)SIZE_MAX)
812 goto out_2big;
813 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814 if (!snap_names)
815 goto out_err;
816
817 /* ...as well as the array of their sizes. */
818
819 size = snap_count * sizeof (*header->snap_sizes);
820 snap_sizes = kmalloc(size, GFP_KERNEL);
821 if (!snap_sizes)
822 goto out_err;
823
824 /*
825 * Copy the names, and fill in each snapshot's id
826 * and size.
827 *
828 * Note that rbd_dev_v1_header_info() guarantees the
829 * ondisk buffer we're working with has
830 * snap_names_len bytes beyond the end of the
831 * snapshot id array, this memcpy() is safe.
832 */
833 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834 snaps = ondisk->snaps;
835 for (i = 0; i < snap_count; i++) {
836 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838 }
839 }
840
841 /* We won't fail any more, fill in the header */
842
843 down_write(&rbd_dev->header_rwsem);
844 if (first_time) {
845 header->object_prefix = object_prefix;
846 header->obj_order = ondisk->options.order;
847 header->crypt_type = ondisk->options.crypt_type;
848 header->comp_type = ondisk->options.comp_type;
849 /* The rest aren't used for format 1 images */
850 header->stripe_unit = 0;
851 header->stripe_count = 0;
852 header->features = 0;
853 } else {
854 ceph_put_snap_context(header->snapc);
855 kfree(header->snap_names);
856 kfree(header->snap_sizes);
857 }
858
859 /* The remaining fields always get updated (when we refresh) */
860
861 header->image_size = le64_to_cpu(ondisk->image_size);
862 header->snapc = snapc;
863 header->snap_names = snap_names;
864 header->snap_sizes = snap_sizes;
865
866 /* Make sure mapping size is consistent with header info */
867
868 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869 if (rbd_dev->mapping.size != header->image_size)
870 rbd_dev->mapping.size = header->image_size;
871
872 up_write(&rbd_dev->header_rwsem);
873
874 return 0;
875 out_2big:
876 ret = -EIO;
877 out_err:
878 kfree(snap_sizes);
879 kfree(snap_names);
880 ceph_put_snap_context(snapc);
881 kfree(object_prefix);
882
883 return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888 const char *snap_name;
889
890 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892 /* Skip over names until we find the one we are looking for */
893
894 snap_name = rbd_dev->header.snap_names;
895 while (which--)
896 snap_name += strlen(snap_name) + 1;
897
898 return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902 * Snapshot id comparison function for use with qsort()/bsearch().
903 * Note that result is for snapshots in *descending* order.
904 */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907 u64 snap_id1 = *(u64 *)s1;
908 u64 snap_id2 = *(u64 *)s2;
909
910 if (snap_id1 < snap_id2)
911 return 1;
912 return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916 * Search a snapshot context to see if the given snapshot id is
917 * present.
918 *
919 * Returns the position of the snapshot id in the array if it's found,
920 * or BAD_SNAP_INDEX otherwise.
921 *
922 * Note: The snapshot array is in kept sorted (by the osd) in
923 * reverse order, highest snapshot id first.
924 */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928 u64 *found;
929
930 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931 sizeof (snap_id), snapid_compare_reverse);
932
933 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937 u64 snap_id)
938 {
939 u32 which;
940
941 which = rbd_dev_snap_index(rbd_dev, snap_id);
942 if (which == BAD_SNAP_INDEX)
943 return NULL;
944
945 return _rbd_dev_v1_snap_name(rbd_dev, which);
946 }
947
948 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
949 {
950 if (snap_id == CEPH_NOSNAP)
951 return RBD_SNAP_HEAD_NAME;
952
953 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
954 if (rbd_dev->image_format == 1)
955 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
956
957 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
958 }
959
960 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
961 u64 *snap_size)
962 {
963 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
964 if (snap_id == CEPH_NOSNAP) {
965 *snap_size = rbd_dev->header.image_size;
966 } else if (rbd_dev->image_format == 1) {
967 u32 which;
968
969 which = rbd_dev_snap_index(rbd_dev, snap_id);
970 if (which == BAD_SNAP_INDEX)
971 return -ENOENT;
972
973 *snap_size = rbd_dev->header.snap_sizes[which];
974 } else {
975 u64 size = 0;
976 int ret;
977
978 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
979 if (ret)
980 return ret;
981
982 *snap_size = size;
983 }
984 return 0;
985 }
986
987 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
988 u64 *snap_features)
989 {
990 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
991 if (snap_id == CEPH_NOSNAP) {
992 *snap_features = rbd_dev->header.features;
993 } else if (rbd_dev->image_format == 1) {
994 *snap_features = 0; /* No features for format 1 */
995 } else {
996 u64 features = 0;
997 int ret;
998
999 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1000 if (ret)
1001 return ret;
1002
1003 *snap_features = features;
1004 }
1005 return 0;
1006 }
1007
1008 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1009 {
1010 u64 snap_id = rbd_dev->spec->snap_id;
1011 u64 size = 0;
1012 u64 features = 0;
1013 int ret;
1014
1015 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1016 if (ret)
1017 return ret;
1018 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1019 if (ret)
1020 return ret;
1021
1022 rbd_dev->mapping.size = size;
1023 rbd_dev->mapping.features = features;
1024
1025 return 0;
1026 }
1027
1028 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1029 {
1030 rbd_dev->mapping.size = 0;
1031 rbd_dev->mapping.features = 0;
1032 }
1033
1034 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1035 {
1036 char *name;
1037 u64 segment;
1038 int ret;
1039 char *name_format;
1040
1041 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1042 if (!name)
1043 return NULL;
1044 segment = offset >> rbd_dev->header.obj_order;
1045 name_format = "%s.%012llx";
1046 if (rbd_dev->image_format == 2)
1047 name_format = "%s.%016llx";
1048 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1049 rbd_dev->header.object_prefix, segment);
1050 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1051 pr_err("error formatting segment name for #%llu (%d)\n",
1052 segment, ret);
1053 kfree(name);
1054 name = NULL;
1055 }
1056
1057 return name;
1058 }
1059
1060 static void rbd_segment_name_free(const char *name)
1061 {
1062 /* The explicit cast here is needed to drop the const qualifier */
1063
1064 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1065 }
1066
1067 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1068 {
1069 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1070
1071 return offset & (segment_size - 1);
1072 }
1073
1074 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1075 u64 offset, u64 length)
1076 {
1077 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1078
1079 offset &= segment_size - 1;
1080
1081 rbd_assert(length <= U64_MAX - offset);
1082 if (offset + length > segment_size)
1083 length = segment_size - offset;
1084
1085 return length;
1086 }
1087
1088 /*
1089 * returns the size of an object in the image
1090 */
1091 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1092 {
1093 return 1 << header->obj_order;
1094 }
1095
1096 /*
1097 * bio helpers
1098 */
1099
1100 static void bio_chain_put(struct bio *chain)
1101 {
1102 struct bio *tmp;
1103
1104 while (chain) {
1105 tmp = chain;
1106 chain = chain->bi_next;
1107 bio_put(tmp);
1108 }
1109 }
1110
1111 /*
1112 * zeros a bio chain, starting at specific offset
1113 */
1114 static void zero_bio_chain(struct bio *chain, int start_ofs)
1115 {
1116 struct bio_vec *bv;
1117 unsigned long flags;
1118 void *buf;
1119 int i;
1120 int pos = 0;
1121
1122 while (chain) {
1123 bio_for_each_segment(bv, chain, i) {
1124 if (pos + bv->bv_len > start_ofs) {
1125 int remainder = max(start_ofs - pos, 0);
1126 buf = bvec_kmap_irq(bv, &flags);
1127 memset(buf + remainder, 0,
1128 bv->bv_len - remainder);
1129 bvec_kunmap_irq(buf, &flags);
1130 }
1131 pos += bv->bv_len;
1132 }
1133
1134 chain = chain->bi_next;
1135 }
1136 }
1137
1138 /*
1139 * similar to zero_bio_chain(), zeros data defined by a page array,
1140 * starting at the given byte offset from the start of the array and
1141 * continuing up to the given end offset. The pages array is
1142 * assumed to be big enough to hold all bytes up to the end.
1143 */
1144 static void zero_pages(struct page **pages, u64 offset, u64 end)
1145 {
1146 struct page **page = &pages[offset >> PAGE_SHIFT];
1147
1148 rbd_assert(end > offset);
1149 rbd_assert(end - offset <= (u64)SIZE_MAX);
1150 while (offset < end) {
1151 size_t page_offset;
1152 size_t length;
1153 unsigned long flags;
1154 void *kaddr;
1155
1156 page_offset = (size_t)(offset & ~PAGE_MASK);
1157 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1158 local_irq_save(flags);
1159 kaddr = kmap_atomic(*page);
1160 memset(kaddr + page_offset, 0, length);
1161 kunmap_atomic(kaddr);
1162 local_irq_restore(flags);
1163
1164 offset += length;
1165 page++;
1166 }
1167 }
1168
1169 /*
1170 * Clone a portion of a bio, starting at the given byte offset
1171 * and continuing for the number of bytes indicated.
1172 */
1173 static struct bio *bio_clone_range(struct bio *bio_src,
1174 unsigned int offset,
1175 unsigned int len,
1176 gfp_t gfpmask)
1177 {
1178 struct bio_vec *bv;
1179 unsigned int resid;
1180 unsigned short idx;
1181 unsigned int voff;
1182 unsigned short end_idx;
1183 unsigned short vcnt;
1184 struct bio *bio;
1185
1186 /* Handle the easy case for the caller */
1187
1188 if (!offset && len == bio_src->bi_size)
1189 return bio_clone(bio_src, gfpmask);
1190
1191 if (WARN_ON_ONCE(!len))
1192 return NULL;
1193 if (WARN_ON_ONCE(len > bio_src->bi_size))
1194 return NULL;
1195 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1196 return NULL;
1197
1198 /* Find first affected segment... */
1199
1200 resid = offset;
1201 bio_for_each_segment(bv, bio_src, idx) {
1202 if (resid < bv->bv_len)
1203 break;
1204 resid -= bv->bv_len;
1205 }
1206 voff = resid;
1207
1208 /* ...and the last affected segment */
1209
1210 resid += len;
1211 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1212 if (resid <= bv->bv_len)
1213 break;
1214 resid -= bv->bv_len;
1215 }
1216 vcnt = end_idx - idx + 1;
1217
1218 /* Build the clone */
1219
1220 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1221 if (!bio)
1222 return NULL; /* ENOMEM */
1223
1224 bio->bi_bdev = bio_src->bi_bdev;
1225 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1226 bio->bi_rw = bio_src->bi_rw;
1227 bio->bi_flags |= 1 << BIO_CLONED;
1228
1229 /*
1230 * Copy over our part of the bio_vec, then update the first
1231 * and last (or only) entries.
1232 */
1233 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1234 vcnt * sizeof (struct bio_vec));
1235 bio->bi_io_vec[0].bv_offset += voff;
1236 if (vcnt > 1) {
1237 bio->bi_io_vec[0].bv_len -= voff;
1238 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1239 } else {
1240 bio->bi_io_vec[0].bv_len = len;
1241 }
1242
1243 bio->bi_vcnt = vcnt;
1244 bio->bi_size = len;
1245 bio->bi_idx = 0;
1246
1247 return bio;
1248 }
1249
1250 /*
1251 * Clone a portion of a bio chain, starting at the given byte offset
1252 * into the first bio in the source chain and continuing for the
1253 * number of bytes indicated. The result is another bio chain of
1254 * exactly the given length, or a null pointer on error.
1255 *
1256 * The bio_src and offset parameters are both in-out. On entry they
1257 * refer to the first source bio and the offset into that bio where
1258 * the start of data to be cloned is located.
1259 *
1260 * On return, bio_src is updated to refer to the bio in the source
1261 * chain that contains first un-cloned byte, and *offset will
1262 * contain the offset of that byte within that bio.
1263 */
1264 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1265 unsigned int *offset,
1266 unsigned int len,
1267 gfp_t gfpmask)
1268 {
1269 struct bio *bi = *bio_src;
1270 unsigned int off = *offset;
1271 struct bio *chain = NULL;
1272 struct bio **end;
1273
1274 /* Build up a chain of clone bios up to the limit */
1275
1276 if (!bi || off >= bi->bi_size || !len)
1277 return NULL; /* Nothing to clone */
1278
1279 end = &chain;
1280 while (len) {
1281 unsigned int bi_size;
1282 struct bio *bio;
1283
1284 if (!bi) {
1285 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1286 goto out_err; /* EINVAL; ran out of bio's */
1287 }
1288 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1289 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1290 if (!bio)
1291 goto out_err; /* ENOMEM */
1292
1293 *end = bio;
1294 end = &bio->bi_next;
1295
1296 off += bi_size;
1297 if (off == bi->bi_size) {
1298 bi = bi->bi_next;
1299 off = 0;
1300 }
1301 len -= bi_size;
1302 }
1303 *bio_src = bi;
1304 *offset = off;
1305
1306 return chain;
1307 out_err:
1308 bio_chain_put(chain);
1309
1310 return NULL;
1311 }
1312
1313 /*
1314 * The default/initial value for all object request flags is 0. For
1315 * each flag, once its value is set to 1 it is never reset to 0
1316 * again.
1317 */
1318 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1319 {
1320 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1321 struct rbd_device *rbd_dev;
1322
1323 rbd_dev = obj_request->img_request->rbd_dev;
1324 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1325 obj_request);
1326 }
1327 }
1328
1329 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1330 {
1331 smp_mb();
1332 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1333 }
1334
1335 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1336 {
1337 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1338 struct rbd_device *rbd_dev = NULL;
1339
1340 if (obj_request_img_data_test(obj_request))
1341 rbd_dev = obj_request->img_request->rbd_dev;
1342 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1343 obj_request);
1344 }
1345 }
1346
1347 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1348 {
1349 smp_mb();
1350 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1351 }
1352
1353 /*
1354 * This sets the KNOWN flag after (possibly) setting the EXISTS
1355 * flag. The latter is set based on the "exists" value provided.
1356 *
1357 * Note that for our purposes once an object exists it never goes
1358 * away again. It's possible that the response from two existence
1359 * checks are separated by the creation of the target object, and
1360 * the first ("doesn't exist") response arrives *after* the second
1361 * ("does exist"). In that case we ignore the second one.
1362 */
1363 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1364 bool exists)
1365 {
1366 if (exists)
1367 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1368 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1369 smp_mb();
1370 }
1371
1372 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1373 {
1374 smp_mb();
1375 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1376 }
1377
1378 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1379 {
1380 smp_mb();
1381 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1382 }
1383
1384 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1385 {
1386 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1387 atomic_read(&obj_request->kref.refcount));
1388 kref_get(&obj_request->kref);
1389 }
1390
1391 static void rbd_obj_request_destroy(struct kref *kref);
1392 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1393 {
1394 rbd_assert(obj_request != NULL);
1395 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1396 atomic_read(&obj_request->kref.refcount));
1397 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1398 }
1399
1400 static bool img_request_child_test(struct rbd_img_request *img_request);
1401 static void rbd_parent_request_destroy(struct kref *kref);
1402 static void rbd_img_request_destroy(struct kref *kref);
1403 static void rbd_img_request_put(struct rbd_img_request *img_request)
1404 {
1405 rbd_assert(img_request != NULL);
1406 dout("%s: img %p (was %d)\n", __func__, img_request,
1407 atomic_read(&img_request->kref.refcount));
1408 if (img_request_child_test(img_request))
1409 kref_put(&img_request->kref, rbd_parent_request_destroy);
1410 else
1411 kref_put(&img_request->kref, rbd_img_request_destroy);
1412 }
1413
1414 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1415 struct rbd_obj_request *obj_request)
1416 {
1417 rbd_assert(obj_request->img_request == NULL);
1418
1419 /* Image request now owns object's original reference */
1420 obj_request->img_request = img_request;
1421 obj_request->which = img_request->obj_request_count;
1422 rbd_assert(!obj_request_img_data_test(obj_request));
1423 obj_request_img_data_set(obj_request);
1424 rbd_assert(obj_request->which != BAD_WHICH);
1425 img_request->obj_request_count++;
1426 list_add_tail(&obj_request->links, &img_request->obj_requests);
1427 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1428 obj_request->which);
1429 }
1430
1431 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1432 struct rbd_obj_request *obj_request)
1433 {
1434 rbd_assert(obj_request->which != BAD_WHICH);
1435
1436 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1437 obj_request->which);
1438 list_del(&obj_request->links);
1439 rbd_assert(img_request->obj_request_count > 0);
1440 img_request->obj_request_count--;
1441 rbd_assert(obj_request->which == img_request->obj_request_count);
1442 obj_request->which = BAD_WHICH;
1443 rbd_assert(obj_request_img_data_test(obj_request));
1444 rbd_assert(obj_request->img_request == img_request);
1445 obj_request->img_request = NULL;
1446 obj_request->callback = NULL;
1447 rbd_obj_request_put(obj_request);
1448 }
1449
1450 static bool obj_request_type_valid(enum obj_request_type type)
1451 {
1452 switch (type) {
1453 case OBJ_REQUEST_NODATA:
1454 case OBJ_REQUEST_BIO:
1455 case OBJ_REQUEST_PAGES:
1456 return true;
1457 default:
1458 return false;
1459 }
1460 }
1461
1462 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1463 struct rbd_obj_request *obj_request)
1464 {
1465 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1466
1467 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1468 }
1469
1470 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1471 {
1472
1473 dout("%s: img %p\n", __func__, img_request);
1474
1475 /*
1476 * If no error occurred, compute the aggregate transfer
1477 * count for the image request. We could instead use
1478 * atomic64_cmpxchg() to update it as each object request
1479 * completes; not clear which way is better off hand.
1480 */
1481 if (!img_request->result) {
1482 struct rbd_obj_request *obj_request;
1483 u64 xferred = 0;
1484
1485 for_each_obj_request(img_request, obj_request)
1486 xferred += obj_request->xferred;
1487 img_request->xferred = xferred;
1488 }
1489
1490 if (img_request->callback)
1491 img_request->callback(img_request);
1492 else
1493 rbd_img_request_put(img_request);
1494 }
1495
1496 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1497
1498 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1499 {
1500 dout("%s: obj %p\n", __func__, obj_request);
1501
1502 return wait_for_completion_interruptible(&obj_request->completion);
1503 }
1504
1505 /*
1506 * The default/initial value for all image request flags is 0. Each
1507 * is conditionally set to 1 at image request initialization time
1508 * and currently never change thereafter.
1509 */
1510 static void img_request_write_set(struct rbd_img_request *img_request)
1511 {
1512 set_bit(IMG_REQ_WRITE, &img_request->flags);
1513 smp_mb();
1514 }
1515
1516 static bool img_request_write_test(struct rbd_img_request *img_request)
1517 {
1518 smp_mb();
1519 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1520 }
1521
1522 static void img_request_child_set(struct rbd_img_request *img_request)
1523 {
1524 set_bit(IMG_REQ_CHILD, &img_request->flags);
1525 smp_mb();
1526 }
1527
1528 static void img_request_child_clear(struct rbd_img_request *img_request)
1529 {
1530 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1531 smp_mb();
1532 }
1533
1534 static bool img_request_child_test(struct rbd_img_request *img_request)
1535 {
1536 smp_mb();
1537 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1538 }
1539
1540 static void img_request_layered_set(struct rbd_img_request *img_request)
1541 {
1542 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1543 smp_mb();
1544 }
1545
1546 static void img_request_layered_clear(struct rbd_img_request *img_request)
1547 {
1548 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1549 smp_mb();
1550 }
1551
1552 static bool img_request_layered_test(struct rbd_img_request *img_request)
1553 {
1554 smp_mb();
1555 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1556 }
1557
1558 static void
1559 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1560 {
1561 u64 xferred = obj_request->xferred;
1562 u64 length = obj_request->length;
1563
1564 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1565 obj_request, obj_request->img_request, obj_request->result,
1566 xferred, length);
1567 /*
1568 * ENOENT means a hole in the image. We zero-fill the
1569 * entire length of the request. A short read also implies
1570 * zero-fill to the end of the request. Either way we
1571 * update the xferred count to indicate the whole request
1572 * was satisfied.
1573 */
1574 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1575 if (obj_request->result == -ENOENT) {
1576 if (obj_request->type == OBJ_REQUEST_BIO)
1577 zero_bio_chain(obj_request->bio_list, 0);
1578 else
1579 zero_pages(obj_request->pages, 0, length);
1580 obj_request->result = 0;
1581 obj_request->xferred = length;
1582 } else if (xferred < length && !obj_request->result) {
1583 if (obj_request->type == OBJ_REQUEST_BIO)
1584 zero_bio_chain(obj_request->bio_list, xferred);
1585 else
1586 zero_pages(obj_request->pages, xferred, length);
1587 obj_request->xferred = length;
1588 }
1589 obj_request_done_set(obj_request);
1590 }
1591
1592 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1593 {
1594 dout("%s: obj %p cb %p\n", __func__, obj_request,
1595 obj_request->callback);
1596 if (obj_request->callback)
1597 obj_request->callback(obj_request);
1598 else
1599 complete_all(&obj_request->completion);
1600 }
1601
1602 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1603 {
1604 dout("%s: obj %p\n", __func__, obj_request);
1605 obj_request_done_set(obj_request);
1606 }
1607
1608 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1609 {
1610 struct rbd_img_request *img_request = NULL;
1611 struct rbd_device *rbd_dev = NULL;
1612 bool layered = false;
1613
1614 if (obj_request_img_data_test(obj_request)) {
1615 img_request = obj_request->img_request;
1616 layered = img_request && img_request_layered_test(img_request);
1617 rbd_dev = img_request->rbd_dev;
1618 }
1619
1620 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1621 obj_request, img_request, obj_request->result,
1622 obj_request->xferred, obj_request->length);
1623 if (layered && obj_request->result == -ENOENT &&
1624 obj_request->img_offset < rbd_dev->parent_overlap)
1625 rbd_img_parent_read(obj_request);
1626 else if (img_request)
1627 rbd_img_obj_request_read_callback(obj_request);
1628 else
1629 obj_request_done_set(obj_request);
1630 }
1631
1632 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1633 {
1634 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1635 obj_request->result, obj_request->length);
1636 /*
1637 * There is no such thing as a successful short write. Set
1638 * it to our originally-requested length.
1639 */
1640 obj_request->xferred = obj_request->length;
1641 obj_request_done_set(obj_request);
1642 }
1643
1644 /*
1645 * For a simple stat call there's nothing to do. We'll do more if
1646 * this is part of a write sequence for a layered image.
1647 */
1648 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1649 {
1650 dout("%s: obj %p\n", __func__, obj_request);
1651 obj_request_done_set(obj_request);
1652 }
1653
1654 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1655 struct ceph_msg *msg)
1656 {
1657 struct rbd_obj_request *obj_request = osd_req->r_priv;
1658 u16 opcode;
1659
1660 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1661 rbd_assert(osd_req == obj_request->osd_req);
1662 if (obj_request_img_data_test(obj_request)) {
1663 rbd_assert(obj_request->img_request);
1664 rbd_assert(obj_request->which != BAD_WHICH);
1665 } else {
1666 rbd_assert(obj_request->which == BAD_WHICH);
1667 }
1668
1669 if (osd_req->r_result < 0)
1670 obj_request->result = osd_req->r_result;
1671
1672 BUG_ON(osd_req->r_num_ops > 2);
1673
1674 /*
1675 * We support a 64-bit length, but ultimately it has to be
1676 * passed to blk_end_request(), which takes an unsigned int.
1677 */
1678 obj_request->xferred = osd_req->r_reply_op_len[0];
1679 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1680 opcode = osd_req->r_ops[0].op;
1681 switch (opcode) {
1682 case CEPH_OSD_OP_READ:
1683 rbd_osd_read_callback(obj_request);
1684 break;
1685 case CEPH_OSD_OP_WRITE:
1686 rbd_osd_write_callback(obj_request);
1687 break;
1688 case CEPH_OSD_OP_STAT:
1689 rbd_osd_stat_callback(obj_request);
1690 break;
1691 case CEPH_OSD_OP_CALL:
1692 case CEPH_OSD_OP_NOTIFY_ACK:
1693 case CEPH_OSD_OP_WATCH:
1694 rbd_osd_trivial_callback(obj_request);
1695 break;
1696 default:
1697 rbd_warn(NULL, "%s: unsupported op %hu\n",
1698 obj_request->object_name, (unsigned short) opcode);
1699 break;
1700 }
1701
1702 if (obj_request_done_test(obj_request))
1703 rbd_obj_request_complete(obj_request);
1704 }
1705
1706 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1707 {
1708 struct rbd_img_request *img_request = obj_request->img_request;
1709 struct ceph_osd_request *osd_req = obj_request->osd_req;
1710 u64 snap_id;
1711
1712 rbd_assert(osd_req != NULL);
1713
1714 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1715 ceph_osdc_build_request(osd_req, obj_request->offset,
1716 NULL, snap_id, NULL);
1717 }
1718
1719 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1720 {
1721 struct rbd_img_request *img_request = obj_request->img_request;
1722 struct ceph_osd_request *osd_req = obj_request->osd_req;
1723 struct ceph_snap_context *snapc;
1724 struct timespec mtime = CURRENT_TIME;
1725
1726 rbd_assert(osd_req != NULL);
1727
1728 snapc = img_request ? img_request->snapc : NULL;
1729 ceph_osdc_build_request(osd_req, obj_request->offset,
1730 snapc, CEPH_NOSNAP, &mtime);
1731 }
1732
1733 static struct ceph_osd_request *rbd_osd_req_create(
1734 struct rbd_device *rbd_dev,
1735 bool write_request,
1736 struct rbd_obj_request *obj_request)
1737 {
1738 struct ceph_snap_context *snapc = NULL;
1739 struct ceph_osd_client *osdc;
1740 struct ceph_osd_request *osd_req;
1741
1742 if (obj_request_img_data_test(obj_request)) {
1743 struct rbd_img_request *img_request = obj_request->img_request;
1744
1745 rbd_assert(write_request ==
1746 img_request_write_test(img_request));
1747 if (write_request)
1748 snapc = img_request->snapc;
1749 }
1750
1751 /* Allocate and initialize the request, for the single op */
1752
1753 osdc = &rbd_dev->rbd_client->client->osdc;
1754 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1755 if (!osd_req)
1756 return NULL; /* ENOMEM */
1757
1758 if (write_request)
1759 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1760 else
1761 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1762
1763 osd_req->r_callback = rbd_osd_req_callback;
1764 osd_req->r_priv = obj_request;
1765
1766 osd_req->r_oid_len = strlen(obj_request->object_name);
1767 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1768 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1769
1770 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1771
1772 return osd_req;
1773 }
1774
1775 /*
1776 * Create a copyup osd request based on the information in the
1777 * object request supplied. A copyup request has two osd ops,
1778 * a copyup method call, and a "normal" write request.
1779 */
1780 static struct ceph_osd_request *
1781 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1782 {
1783 struct rbd_img_request *img_request;
1784 struct ceph_snap_context *snapc;
1785 struct rbd_device *rbd_dev;
1786 struct ceph_osd_client *osdc;
1787 struct ceph_osd_request *osd_req;
1788
1789 rbd_assert(obj_request_img_data_test(obj_request));
1790 img_request = obj_request->img_request;
1791 rbd_assert(img_request);
1792 rbd_assert(img_request_write_test(img_request));
1793
1794 /* Allocate and initialize the request, for the two ops */
1795
1796 snapc = img_request->snapc;
1797 rbd_dev = img_request->rbd_dev;
1798 osdc = &rbd_dev->rbd_client->client->osdc;
1799 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1800 if (!osd_req)
1801 return NULL; /* ENOMEM */
1802
1803 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1804 osd_req->r_callback = rbd_osd_req_callback;
1805 osd_req->r_priv = obj_request;
1806
1807 osd_req->r_oid_len = strlen(obj_request->object_name);
1808 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1809 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1810
1811 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1812
1813 return osd_req;
1814 }
1815
1816
1817 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1818 {
1819 ceph_osdc_put_request(osd_req);
1820 }
1821
1822 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1823
1824 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1825 u64 offset, u64 length,
1826 enum obj_request_type type)
1827 {
1828 struct rbd_obj_request *obj_request;
1829 size_t size;
1830 char *name;
1831
1832 rbd_assert(obj_request_type_valid(type));
1833
1834 size = strlen(object_name) + 1;
1835 name = kmalloc(size, GFP_KERNEL);
1836 if (!name)
1837 return NULL;
1838
1839 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1840 if (!obj_request) {
1841 kfree(name);
1842 return NULL;
1843 }
1844
1845 obj_request->object_name = memcpy(name, object_name, size);
1846 obj_request->offset = offset;
1847 obj_request->length = length;
1848 obj_request->flags = 0;
1849 obj_request->which = BAD_WHICH;
1850 obj_request->type = type;
1851 INIT_LIST_HEAD(&obj_request->links);
1852 init_completion(&obj_request->completion);
1853 kref_init(&obj_request->kref);
1854
1855 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1856 offset, length, (int)type, obj_request);
1857
1858 return obj_request;
1859 }
1860
1861 static void rbd_obj_request_destroy(struct kref *kref)
1862 {
1863 struct rbd_obj_request *obj_request;
1864
1865 obj_request = container_of(kref, struct rbd_obj_request, kref);
1866
1867 dout("%s: obj %p\n", __func__, obj_request);
1868
1869 rbd_assert(obj_request->img_request == NULL);
1870 rbd_assert(obj_request->which == BAD_WHICH);
1871
1872 if (obj_request->osd_req)
1873 rbd_osd_req_destroy(obj_request->osd_req);
1874
1875 rbd_assert(obj_request_type_valid(obj_request->type));
1876 switch (obj_request->type) {
1877 case OBJ_REQUEST_NODATA:
1878 break; /* Nothing to do */
1879 case OBJ_REQUEST_BIO:
1880 if (obj_request->bio_list)
1881 bio_chain_put(obj_request->bio_list);
1882 break;
1883 case OBJ_REQUEST_PAGES:
1884 if (obj_request->pages)
1885 ceph_release_page_vector(obj_request->pages,
1886 obj_request->page_count);
1887 break;
1888 }
1889
1890 kfree(obj_request->object_name);
1891 obj_request->object_name = NULL;
1892 kmem_cache_free(rbd_obj_request_cache, obj_request);
1893 }
1894
1895 /* It's OK to call this for a device with no parent */
1896
1897 static void rbd_spec_put(struct rbd_spec *spec);
1898 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1899 {
1900 rbd_dev_remove_parent(rbd_dev);
1901 rbd_spec_put(rbd_dev->parent_spec);
1902 rbd_dev->parent_spec = NULL;
1903 rbd_dev->parent_overlap = 0;
1904 }
1905
1906 /*
1907 * Parent image reference counting is used to determine when an
1908 * image's parent fields can be safely torn down--after there are no
1909 * more in-flight requests to the parent image. When the last
1910 * reference is dropped, cleaning them up is safe.
1911 */
1912 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1913 {
1914 int counter;
1915
1916 if (!rbd_dev->parent_spec)
1917 return;
1918
1919 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1920 if (counter > 0)
1921 return;
1922
1923 /* Last reference; clean up parent data structures */
1924
1925 if (!counter)
1926 rbd_dev_unparent(rbd_dev);
1927 else
1928 rbd_warn(rbd_dev, "parent reference underflow\n");
1929 }
1930
1931 /*
1932 * If an image has a non-zero parent overlap, get a reference to its
1933 * parent.
1934 *
1935 * We must get the reference before checking for the overlap to
1936 * coordinate properly with zeroing the parent overlap in
1937 * rbd_dev_v2_parent_info() when an image gets flattened. We
1938 * drop it again if there is no overlap.
1939 *
1940 * Returns true if the rbd device has a parent with a non-zero
1941 * overlap and a reference for it was successfully taken, or
1942 * false otherwise.
1943 */
1944 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1945 {
1946 int counter;
1947
1948 if (!rbd_dev->parent_spec)
1949 return false;
1950
1951 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1952 if (counter > 0 && rbd_dev->parent_overlap)
1953 return true;
1954
1955 /* Image was flattened, but parent is not yet torn down */
1956
1957 if (counter < 0)
1958 rbd_warn(rbd_dev, "parent reference overflow\n");
1959
1960 return false;
1961 }
1962
1963 /*
1964 * Caller is responsible for filling in the list of object requests
1965 * that comprises the image request, and the Linux request pointer
1966 * (if there is one).
1967 */
1968 static struct rbd_img_request *rbd_img_request_create(
1969 struct rbd_device *rbd_dev,
1970 u64 offset, u64 length,
1971 bool write_request)
1972 {
1973 struct rbd_img_request *img_request;
1974
1975 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1976 if (!img_request)
1977 return NULL;
1978
1979 if (write_request) {
1980 down_read(&rbd_dev->header_rwsem);
1981 ceph_get_snap_context(rbd_dev->header.snapc);
1982 up_read(&rbd_dev->header_rwsem);
1983 }
1984
1985 img_request->rq = NULL;
1986 img_request->rbd_dev = rbd_dev;
1987 img_request->offset = offset;
1988 img_request->length = length;
1989 img_request->flags = 0;
1990 if (write_request) {
1991 img_request_write_set(img_request);
1992 img_request->snapc = rbd_dev->header.snapc;
1993 } else {
1994 img_request->snap_id = rbd_dev->spec->snap_id;
1995 }
1996 if (rbd_dev_parent_get(rbd_dev))
1997 img_request_layered_set(img_request);
1998 spin_lock_init(&img_request->completion_lock);
1999 img_request->next_completion = 0;
2000 img_request->callback = NULL;
2001 img_request->result = 0;
2002 img_request->obj_request_count = 0;
2003 INIT_LIST_HEAD(&img_request->obj_requests);
2004 kref_init(&img_request->kref);
2005
2006 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2007 write_request ? "write" : "read", offset, length,
2008 img_request);
2009
2010 return img_request;
2011 }
2012
2013 static void rbd_img_request_destroy(struct kref *kref)
2014 {
2015 struct rbd_img_request *img_request;
2016 struct rbd_obj_request *obj_request;
2017 struct rbd_obj_request *next_obj_request;
2018
2019 img_request = container_of(kref, struct rbd_img_request, kref);
2020
2021 dout("%s: img %p\n", __func__, img_request);
2022
2023 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2024 rbd_img_obj_request_del(img_request, obj_request);
2025 rbd_assert(img_request->obj_request_count == 0);
2026
2027 if (img_request_layered_test(img_request)) {
2028 img_request_layered_clear(img_request);
2029 rbd_dev_parent_put(img_request->rbd_dev);
2030 }
2031
2032 if (img_request_write_test(img_request))
2033 ceph_put_snap_context(img_request->snapc);
2034
2035 kmem_cache_free(rbd_img_request_cache, img_request);
2036 }
2037
2038 static struct rbd_img_request *rbd_parent_request_create(
2039 struct rbd_obj_request *obj_request,
2040 u64 img_offset, u64 length)
2041 {
2042 struct rbd_img_request *parent_request;
2043 struct rbd_device *rbd_dev;
2044
2045 rbd_assert(obj_request->img_request);
2046 rbd_dev = obj_request->img_request->rbd_dev;
2047
2048 parent_request = rbd_img_request_create(rbd_dev->parent,
2049 img_offset, length, false);
2050 if (!parent_request)
2051 return NULL;
2052
2053 img_request_child_set(parent_request);
2054 rbd_obj_request_get(obj_request);
2055 parent_request->obj_request = obj_request;
2056
2057 return parent_request;
2058 }
2059
2060 static void rbd_parent_request_destroy(struct kref *kref)
2061 {
2062 struct rbd_img_request *parent_request;
2063 struct rbd_obj_request *orig_request;
2064
2065 parent_request = container_of(kref, struct rbd_img_request, kref);
2066 orig_request = parent_request->obj_request;
2067
2068 parent_request->obj_request = NULL;
2069 rbd_obj_request_put(orig_request);
2070 img_request_child_clear(parent_request);
2071
2072 rbd_img_request_destroy(kref);
2073 }
2074
2075 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2076 {
2077 struct rbd_img_request *img_request;
2078 unsigned int xferred;
2079 int result;
2080 bool more;
2081
2082 rbd_assert(obj_request_img_data_test(obj_request));
2083 img_request = obj_request->img_request;
2084
2085 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2086 xferred = (unsigned int)obj_request->xferred;
2087 result = obj_request->result;
2088 if (result) {
2089 struct rbd_device *rbd_dev = img_request->rbd_dev;
2090
2091 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2092 img_request_write_test(img_request) ? "write" : "read",
2093 obj_request->length, obj_request->img_offset,
2094 obj_request->offset);
2095 rbd_warn(rbd_dev, " result %d xferred %x\n",
2096 result, xferred);
2097 if (!img_request->result)
2098 img_request->result = result;
2099 }
2100
2101 /* Image object requests don't own their page array */
2102
2103 if (obj_request->type == OBJ_REQUEST_PAGES) {
2104 obj_request->pages = NULL;
2105 obj_request->page_count = 0;
2106 }
2107
2108 if (img_request_child_test(img_request)) {
2109 rbd_assert(img_request->obj_request != NULL);
2110 more = obj_request->which < img_request->obj_request_count - 1;
2111 } else {
2112 rbd_assert(img_request->rq != NULL);
2113 more = blk_end_request(img_request->rq, result, xferred);
2114 }
2115
2116 return more;
2117 }
2118
2119 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2120 {
2121 struct rbd_img_request *img_request;
2122 u32 which = obj_request->which;
2123 bool more = true;
2124
2125 rbd_assert(obj_request_img_data_test(obj_request));
2126 img_request = obj_request->img_request;
2127
2128 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2129 rbd_assert(img_request != NULL);
2130 rbd_assert(img_request->obj_request_count > 0);
2131 rbd_assert(which != BAD_WHICH);
2132 rbd_assert(which < img_request->obj_request_count);
2133 rbd_assert(which >= img_request->next_completion);
2134
2135 spin_lock_irq(&img_request->completion_lock);
2136 if (which != img_request->next_completion)
2137 goto out;
2138
2139 for_each_obj_request_from(img_request, obj_request) {
2140 rbd_assert(more);
2141 rbd_assert(which < img_request->obj_request_count);
2142
2143 if (!obj_request_done_test(obj_request))
2144 break;
2145 more = rbd_img_obj_end_request(obj_request);
2146 which++;
2147 }
2148
2149 rbd_assert(more ^ (which == img_request->obj_request_count));
2150 img_request->next_completion = which;
2151 out:
2152 spin_unlock_irq(&img_request->completion_lock);
2153
2154 if (!more)
2155 rbd_img_request_complete(img_request);
2156 }
2157
2158 /*
2159 * Split up an image request into one or more object requests, each
2160 * to a different object. The "type" parameter indicates whether
2161 * "data_desc" is the pointer to the head of a list of bio
2162 * structures, or the base of a page array. In either case this
2163 * function assumes data_desc describes memory sufficient to hold
2164 * all data described by the image request.
2165 */
2166 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2167 enum obj_request_type type,
2168 void *data_desc)
2169 {
2170 struct rbd_device *rbd_dev = img_request->rbd_dev;
2171 struct rbd_obj_request *obj_request = NULL;
2172 struct rbd_obj_request *next_obj_request;
2173 bool write_request = img_request_write_test(img_request);
2174 struct bio *bio_list;
2175 unsigned int bio_offset = 0;
2176 struct page **pages;
2177 u64 img_offset;
2178 u64 resid;
2179 u16 opcode;
2180
2181 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2182 (int)type, data_desc);
2183
2184 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2185 img_offset = img_request->offset;
2186 resid = img_request->length;
2187 rbd_assert(resid > 0);
2188
2189 if (type == OBJ_REQUEST_BIO) {
2190 bio_list = data_desc;
2191 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2192 } else {
2193 rbd_assert(type == OBJ_REQUEST_PAGES);
2194 pages = data_desc;
2195 }
2196
2197 while (resid) {
2198 struct ceph_osd_request *osd_req;
2199 const char *object_name;
2200 u64 offset;
2201 u64 length;
2202
2203 object_name = rbd_segment_name(rbd_dev, img_offset);
2204 if (!object_name)
2205 goto out_unwind;
2206 offset = rbd_segment_offset(rbd_dev, img_offset);
2207 length = rbd_segment_length(rbd_dev, img_offset, resid);
2208 obj_request = rbd_obj_request_create(object_name,
2209 offset, length, type);
2210 /* object request has its own copy of the object name */
2211 rbd_segment_name_free(object_name);
2212 if (!obj_request)
2213 goto out_unwind;
2214
2215 if (type == OBJ_REQUEST_BIO) {
2216 unsigned int clone_size;
2217
2218 rbd_assert(length <= (u64)UINT_MAX);
2219 clone_size = (unsigned int)length;
2220 obj_request->bio_list =
2221 bio_chain_clone_range(&bio_list,
2222 &bio_offset,
2223 clone_size,
2224 GFP_ATOMIC);
2225 if (!obj_request->bio_list)
2226 goto out_partial;
2227 } else {
2228 unsigned int page_count;
2229
2230 obj_request->pages = pages;
2231 page_count = (u32)calc_pages_for(offset, length);
2232 obj_request->page_count = page_count;
2233 if ((offset + length) & ~PAGE_MASK)
2234 page_count--; /* more on last page */
2235 pages += page_count;
2236 }
2237
2238 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239 obj_request);
2240 if (!osd_req)
2241 goto out_partial;
2242 obj_request->osd_req = osd_req;
2243 obj_request->callback = rbd_img_obj_callback;
2244
2245 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2246 0, 0);
2247 if (type == OBJ_REQUEST_BIO)
2248 osd_req_op_extent_osd_data_bio(osd_req, 0,
2249 obj_request->bio_list, length);
2250 else
2251 osd_req_op_extent_osd_data_pages(osd_req, 0,
2252 obj_request->pages, length,
2253 offset & ~PAGE_MASK, false, false);
2254
2255 /*
2256 * set obj_request->img_request before formatting
2257 * the osd_request so that it gets the right snapc
2258 */
2259 rbd_img_obj_request_add(img_request, obj_request);
2260 if (write_request)
2261 rbd_osd_req_format_write(obj_request);
2262 else
2263 rbd_osd_req_format_read(obj_request);
2264
2265 obj_request->img_offset = img_offset;
2266
2267 img_offset += length;
2268 resid -= length;
2269 }
2270
2271 return 0;
2272
2273 out_partial:
2274 rbd_obj_request_put(obj_request);
2275 out_unwind:
2276 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2277 rbd_obj_request_put(obj_request);
2278
2279 return -ENOMEM;
2280 }
2281
2282 static void
2283 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2284 {
2285 struct rbd_img_request *img_request;
2286 struct rbd_device *rbd_dev;
2287 struct page **pages;
2288 u32 page_count;
2289
2290 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2291 rbd_assert(obj_request_img_data_test(obj_request));
2292 img_request = obj_request->img_request;
2293 rbd_assert(img_request);
2294
2295 rbd_dev = img_request->rbd_dev;
2296 rbd_assert(rbd_dev);
2297
2298 pages = obj_request->copyup_pages;
2299 rbd_assert(pages != NULL);
2300 obj_request->copyup_pages = NULL;
2301 page_count = obj_request->copyup_page_count;
2302 rbd_assert(page_count);
2303 obj_request->copyup_page_count = 0;
2304 ceph_release_page_vector(pages, page_count);
2305
2306 /*
2307 * We want the transfer count to reflect the size of the
2308 * original write request. There is no such thing as a
2309 * successful short write, so if the request was successful
2310 * we can just set it to the originally-requested length.
2311 */
2312 if (!obj_request->result)
2313 obj_request->xferred = obj_request->length;
2314
2315 /* Finish up with the normal image object callback */
2316
2317 rbd_img_obj_callback(obj_request);
2318 }
2319
2320 static void
2321 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2322 {
2323 struct rbd_obj_request *orig_request;
2324 struct ceph_osd_request *osd_req;
2325 struct ceph_osd_client *osdc;
2326 struct rbd_device *rbd_dev;
2327 struct page **pages;
2328 u32 page_count;
2329 int img_result;
2330 u64 parent_length;
2331 u64 offset;
2332 u64 length;
2333
2334 rbd_assert(img_request_child_test(img_request));
2335
2336 /* First get what we need from the image request */
2337
2338 pages = img_request->copyup_pages;
2339 rbd_assert(pages != NULL);
2340 img_request->copyup_pages = NULL;
2341 page_count = img_request->copyup_page_count;
2342 rbd_assert(page_count);
2343 img_request->copyup_page_count = 0;
2344
2345 orig_request = img_request->obj_request;
2346 rbd_assert(orig_request != NULL);
2347 rbd_assert(obj_request_type_valid(orig_request->type));
2348 img_result = img_request->result;
2349 parent_length = img_request->length;
2350 rbd_assert(parent_length == img_request->xferred);
2351 rbd_img_request_put(img_request);
2352
2353 rbd_assert(orig_request->img_request);
2354 rbd_dev = orig_request->img_request->rbd_dev;
2355 rbd_assert(rbd_dev);
2356
2357 /*
2358 * If the overlap has become 0 (most likely because the
2359 * image has been flattened) we need to free the pages
2360 * and re-submit the original write request.
2361 */
2362 if (!rbd_dev->parent_overlap) {
2363 struct ceph_osd_client *osdc;
2364
2365 ceph_release_page_vector(pages, page_count);
2366 osdc = &rbd_dev->rbd_client->client->osdc;
2367 img_result = rbd_obj_request_submit(osdc, orig_request);
2368 if (!img_result)
2369 return;
2370 }
2371
2372 if (img_result)
2373 goto out_err;
2374
2375 /*
2376 * The original osd request is of no use to use any more.
2377 * We need a new one that can hold the two ops in a copyup
2378 * request. Allocate the new copyup osd request for the
2379 * original request, and release the old one.
2380 */
2381 img_result = -ENOMEM;
2382 osd_req = rbd_osd_req_create_copyup(orig_request);
2383 if (!osd_req)
2384 goto out_err;
2385 rbd_osd_req_destroy(orig_request->osd_req);
2386 orig_request->osd_req = osd_req;
2387 orig_request->copyup_pages = pages;
2388 orig_request->copyup_page_count = page_count;
2389
2390 /* Initialize the copyup op */
2391
2392 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2393 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2394 false, false);
2395
2396 /* Then the original write request op */
2397
2398 offset = orig_request->offset;
2399 length = orig_request->length;
2400 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2401 offset, length, 0, 0);
2402 if (orig_request->type == OBJ_REQUEST_BIO)
2403 osd_req_op_extent_osd_data_bio(osd_req, 1,
2404 orig_request->bio_list, length);
2405 else
2406 osd_req_op_extent_osd_data_pages(osd_req, 1,
2407 orig_request->pages, length,
2408 offset & ~PAGE_MASK, false, false);
2409
2410 rbd_osd_req_format_write(orig_request);
2411
2412 /* All set, send it off. */
2413
2414 orig_request->callback = rbd_img_obj_copyup_callback;
2415 osdc = &rbd_dev->rbd_client->client->osdc;
2416 img_result = rbd_obj_request_submit(osdc, orig_request);
2417 if (!img_result)
2418 return;
2419 out_err:
2420 /* Record the error code and complete the request */
2421
2422 orig_request->result = img_result;
2423 orig_request->xferred = 0;
2424 obj_request_done_set(orig_request);
2425 rbd_obj_request_complete(orig_request);
2426 }
2427
2428 /*
2429 * Read from the parent image the range of data that covers the
2430 * entire target of the given object request. This is used for
2431 * satisfying a layered image write request when the target of an
2432 * object request from the image request does not exist.
2433 *
2434 * A page array big enough to hold the returned data is allocated
2435 * and supplied to rbd_img_request_fill() as the "data descriptor."
2436 * When the read completes, this page array will be transferred to
2437 * the original object request for the copyup operation.
2438 *
2439 * If an error occurs, record it as the result of the original
2440 * object request and mark it done so it gets completed.
2441 */
2442 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2443 {
2444 struct rbd_img_request *img_request = NULL;
2445 struct rbd_img_request *parent_request = NULL;
2446 struct rbd_device *rbd_dev;
2447 u64 img_offset;
2448 u64 length;
2449 struct page **pages = NULL;
2450 u32 page_count;
2451 int result;
2452
2453 rbd_assert(obj_request_img_data_test(obj_request));
2454 rbd_assert(obj_request_type_valid(obj_request->type));
2455
2456 img_request = obj_request->img_request;
2457 rbd_assert(img_request != NULL);
2458 rbd_dev = img_request->rbd_dev;
2459 rbd_assert(rbd_dev->parent != NULL);
2460
2461 /*
2462 * Determine the byte range covered by the object in the
2463 * child image to which the original request was to be sent.
2464 */
2465 img_offset = obj_request->img_offset - obj_request->offset;
2466 length = (u64)1 << rbd_dev->header.obj_order;
2467
2468 /*
2469 * There is no defined parent data beyond the parent
2470 * overlap, so limit what we read at that boundary if
2471 * necessary.
2472 */
2473 if (img_offset + length > rbd_dev->parent_overlap) {
2474 rbd_assert(img_offset < rbd_dev->parent_overlap);
2475 length = rbd_dev->parent_overlap - img_offset;
2476 }
2477
2478 /*
2479 * Allocate a page array big enough to receive the data read
2480 * from the parent.
2481 */
2482 page_count = (u32)calc_pages_for(0, length);
2483 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2484 if (IS_ERR(pages)) {
2485 result = PTR_ERR(pages);
2486 pages = NULL;
2487 goto out_err;
2488 }
2489
2490 result = -ENOMEM;
2491 parent_request = rbd_parent_request_create(obj_request,
2492 img_offset, length);
2493 if (!parent_request)
2494 goto out_err;
2495
2496 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2497 if (result)
2498 goto out_err;
2499 parent_request->copyup_pages = pages;
2500 parent_request->copyup_page_count = page_count;
2501
2502 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2503 result = rbd_img_request_submit(parent_request);
2504 if (!result)
2505 return 0;
2506
2507 parent_request->copyup_pages = NULL;
2508 parent_request->copyup_page_count = 0;
2509 parent_request->obj_request = NULL;
2510 rbd_obj_request_put(obj_request);
2511 out_err:
2512 if (pages)
2513 ceph_release_page_vector(pages, page_count);
2514 if (parent_request)
2515 rbd_img_request_put(parent_request);
2516 obj_request->result = result;
2517 obj_request->xferred = 0;
2518 obj_request_done_set(obj_request);
2519
2520 return result;
2521 }
2522
2523 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2524 {
2525 struct rbd_obj_request *orig_request;
2526 struct rbd_device *rbd_dev;
2527 int result;
2528
2529 rbd_assert(!obj_request_img_data_test(obj_request));
2530
2531 /*
2532 * All we need from the object request is the original
2533 * request and the result of the STAT op. Grab those, then
2534 * we're done with the request.
2535 */
2536 orig_request = obj_request->obj_request;
2537 obj_request->obj_request = NULL;
2538 rbd_assert(orig_request);
2539 rbd_assert(orig_request->img_request);
2540
2541 result = obj_request->result;
2542 obj_request->result = 0;
2543
2544 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2545 obj_request, orig_request, result,
2546 obj_request->xferred, obj_request->length);
2547 rbd_obj_request_put(obj_request);
2548
2549 /*
2550 * If the overlap has become 0 (most likely because the
2551 * image has been flattened) we need to free the pages
2552 * and re-submit the original write request.
2553 */
2554 rbd_dev = orig_request->img_request->rbd_dev;
2555 if (!rbd_dev->parent_overlap) {
2556 struct ceph_osd_client *osdc;
2557
2558 rbd_obj_request_put(orig_request);
2559 osdc = &rbd_dev->rbd_client->client->osdc;
2560 result = rbd_obj_request_submit(osdc, orig_request);
2561 if (!result)
2562 return;
2563 }
2564
2565 /*
2566 * Our only purpose here is to determine whether the object
2567 * exists, and we don't want to treat the non-existence as
2568 * an error. If something else comes back, transfer the
2569 * error to the original request and complete it now.
2570 */
2571 if (!result) {
2572 obj_request_existence_set(orig_request, true);
2573 } else if (result == -ENOENT) {
2574 obj_request_existence_set(orig_request, false);
2575 } else if (result) {
2576 orig_request->result = result;
2577 goto out;
2578 }
2579
2580 /*
2581 * Resubmit the original request now that we have recorded
2582 * whether the target object exists.
2583 */
2584 orig_request->result = rbd_img_obj_request_submit(orig_request);
2585 out:
2586 if (orig_request->result)
2587 rbd_obj_request_complete(orig_request);
2588 rbd_obj_request_put(orig_request);
2589 }
2590
2591 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2592 {
2593 struct rbd_obj_request *stat_request;
2594 struct rbd_device *rbd_dev;
2595 struct ceph_osd_client *osdc;
2596 struct page **pages = NULL;
2597 u32 page_count;
2598 size_t size;
2599 int ret;
2600
2601 /*
2602 * The response data for a STAT call consists of:
2603 * le64 length;
2604 * struct {
2605 * le32 tv_sec;
2606 * le32 tv_nsec;
2607 * } mtime;
2608 */
2609 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2610 page_count = (u32)calc_pages_for(0, size);
2611 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2612 if (IS_ERR(pages))
2613 return PTR_ERR(pages);
2614
2615 ret = -ENOMEM;
2616 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2617 OBJ_REQUEST_PAGES);
2618 if (!stat_request)
2619 goto out;
2620
2621 rbd_obj_request_get(obj_request);
2622 stat_request->obj_request = obj_request;
2623 stat_request->pages = pages;
2624 stat_request->page_count = page_count;
2625
2626 rbd_assert(obj_request->img_request);
2627 rbd_dev = obj_request->img_request->rbd_dev;
2628 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2629 stat_request);
2630 if (!stat_request->osd_req)
2631 goto out;
2632 stat_request->callback = rbd_img_obj_exists_callback;
2633
2634 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2635 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2636 false, false);
2637 rbd_osd_req_format_read(stat_request);
2638
2639 osdc = &rbd_dev->rbd_client->client->osdc;
2640 ret = rbd_obj_request_submit(osdc, stat_request);
2641 out:
2642 if (ret)
2643 rbd_obj_request_put(obj_request);
2644
2645 return ret;
2646 }
2647
2648 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2649 {
2650 struct rbd_img_request *img_request;
2651 struct rbd_device *rbd_dev;
2652 bool known;
2653
2654 rbd_assert(obj_request_img_data_test(obj_request));
2655
2656 img_request = obj_request->img_request;
2657 rbd_assert(img_request);
2658 rbd_dev = img_request->rbd_dev;
2659
2660 /*
2661 * Only writes to layered images need special handling.
2662 * Reads and non-layered writes are simple object requests.
2663 * Layered writes that start beyond the end of the overlap
2664 * with the parent have no parent data, so they too are
2665 * simple object requests. Finally, if the target object is
2666 * known to already exist, its parent data has already been
2667 * copied, so a write to the object can also be handled as a
2668 * simple object request.
2669 */
2670 if (!img_request_write_test(img_request) ||
2671 !img_request_layered_test(img_request) ||
2672 rbd_dev->parent_overlap <= obj_request->img_offset ||
2673 ((known = obj_request_known_test(obj_request)) &&
2674 obj_request_exists_test(obj_request))) {
2675
2676 struct rbd_device *rbd_dev;
2677 struct ceph_osd_client *osdc;
2678
2679 rbd_dev = obj_request->img_request->rbd_dev;
2680 osdc = &rbd_dev->rbd_client->client->osdc;
2681
2682 return rbd_obj_request_submit(osdc, obj_request);
2683 }
2684
2685 /*
2686 * It's a layered write. The target object might exist but
2687 * we may not know that yet. If we know it doesn't exist,
2688 * start by reading the data for the full target object from
2689 * the parent so we can use it for a copyup to the target.
2690 */
2691 if (known)
2692 return rbd_img_obj_parent_read_full(obj_request);
2693
2694 /* We don't know whether the target exists. Go find out. */
2695
2696 return rbd_img_obj_exists_submit(obj_request);
2697 }
2698
2699 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2700 {
2701 struct rbd_obj_request *obj_request;
2702 struct rbd_obj_request *next_obj_request;
2703
2704 dout("%s: img %p\n", __func__, img_request);
2705 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2706 int ret;
2707
2708 ret = rbd_img_obj_request_submit(obj_request);
2709 if (ret)
2710 return ret;
2711 }
2712
2713 return 0;
2714 }
2715
2716 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2717 {
2718 struct rbd_obj_request *obj_request;
2719 struct rbd_device *rbd_dev;
2720 u64 obj_end;
2721 u64 img_xferred;
2722 int img_result;
2723
2724 rbd_assert(img_request_child_test(img_request));
2725
2726 /* First get what we need from the image request and release it */
2727
2728 obj_request = img_request->obj_request;
2729 img_xferred = img_request->xferred;
2730 img_result = img_request->result;
2731 rbd_img_request_put(img_request);
2732
2733 /*
2734 * If the overlap has become 0 (most likely because the
2735 * image has been flattened) we need to re-submit the
2736 * original request.
2737 */
2738 rbd_assert(obj_request);
2739 rbd_assert(obj_request->img_request);
2740 rbd_dev = obj_request->img_request->rbd_dev;
2741 if (!rbd_dev->parent_overlap) {
2742 struct ceph_osd_client *osdc;
2743
2744 osdc = &rbd_dev->rbd_client->client->osdc;
2745 img_result = rbd_obj_request_submit(osdc, obj_request);
2746 if (!img_result)
2747 return;
2748 }
2749
2750 obj_request->result = img_result;
2751 if (obj_request->result)
2752 goto out;
2753
2754 /*
2755 * We need to zero anything beyond the parent overlap
2756 * boundary. Since rbd_img_obj_request_read_callback()
2757 * will zero anything beyond the end of a short read, an
2758 * easy way to do this is to pretend the data from the
2759 * parent came up short--ending at the overlap boundary.
2760 */
2761 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2762 obj_end = obj_request->img_offset + obj_request->length;
2763 if (obj_end > rbd_dev->parent_overlap) {
2764 u64 xferred = 0;
2765
2766 if (obj_request->img_offset < rbd_dev->parent_overlap)
2767 xferred = rbd_dev->parent_overlap -
2768 obj_request->img_offset;
2769
2770 obj_request->xferred = min(img_xferred, xferred);
2771 } else {
2772 obj_request->xferred = img_xferred;
2773 }
2774 out:
2775 rbd_img_obj_request_read_callback(obj_request);
2776 rbd_obj_request_complete(obj_request);
2777 }
2778
2779 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2780 {
2781 struct rbd_img_request *img_request;
2782 int result;
2783
2784 rbd_assert(obj_request_img_data_test(obj_request));
2785 rbd_assert(obj_request->img_request != NULL);
2786 rbd_assert(obj_request->result == (s32) -ENOENT);
2787 rbd_assert(obj_request_type_valid(obj_request->type));
2788
2789 /* rbd_read_finish(obj_request, obj_request->length); */
2790 img_request = rbd_parent_request_create(obj_request,
2791 obj_request->img_offset,
2792 obj_request->length);
2793 result = -ENOMEM;
2794 if (!img_request)
2795 goto out_err;
2796
2797 if (obj_request->type == OBJ_REQUEST_BIO)
2798 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2799 obj_request->bio_list);
2800 else
2801 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2802 obj_request->pages);
2803 if (result)
2804 goto out_err;
2805
2806 img_request->callback = rbd_img_parent_read_callback;
2807 result = rbd_img_request_submit(img_request);
2808 if (result)
2809 goto out_err;
2810
2811 return;
2812 out_err:
2813 if (img_request)
2814 rbd_img_request_put(img_request);
2815 obj_request->result = result;
2816 obj_request->xferred = 0;
2817 obj_request_done_set(obj_request);
2818 }
2819
2820 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2821 {
2822 struct rbd_obj_request *obj_request;
2823 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2824 int ret;
2825
2826 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2827 OBJ_REQUEST_NODATA);
2828 if (!obj_request)
2829 return -ENOMEM;
2830
2831 ret = -ENOMEM;
2832 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2833 if (!obj_request->osd_req)
2834 goto out;
2835 obj_request->callback = rbd_obj_request_put;
2836
2837 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2838 notify_id, 0, 0);
2839 rbd_osd_req_format_read(obj_request);
2840
2841 ret = rbd_obj_request_submit(osdc, obj_request);
2842 out:
2843 if (ret)
2844 rbd_obj_request_put(obj_request);
2845
2846 return ret;
2847 }
2848
2849 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2850 {
2851 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2852 int ret;
2853
2854 if (!rbd_dev)
2855 return;
2856
2857 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2858 rbd_dev->header_name, (unsigned long long)notify_id,
2859 (unsigned int)opcode);
2860 ret = rbd_dev_refresh(rbd_dev);
2861 if (ret)
2862 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2863
2864 rbd_obj_notify_ack(rbd_dev, notify_id);
2865 }
2866
2867 /*
2868 * Request sync osd watch/unwatch. The value of "start" determines
2869 * whether a watch request is being initiated or torn down.
2870 */
2871 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2872 {
2873 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2874 struct rbd_obj_request *obj_request;
2875 int ret;
2876
2877 rbd_assert(start ^ !!rbd_dev->watch_event);
2878 rbd_assert(start ^ !!rbd_dev->watch_request);
2879
2880 if (start) {
2881 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2882 &rbd_dev->watch_event);
2883 if (ret < 0)
2884 return ret;
2885 rbd_assert(rbd_dev->watch_event != NULL);
2886 }
2887
2888 ret = -ENOMEM;
2889 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2890 OBJ_REQUEST_NODATA);
2891 if (!obj_request)
2892 goto out_cancel;
2893
2894 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2895 if (!obj_request->osd_req)
2896 goto out_cancel;
2897
2898 if (start)
2899 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2900 else
2901 ceph_osdc_unregister_linger_request(osdc,
2902 rbd_dev->watch_request->osd_req);
2903
2904 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2905 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2906 rbd_osd_req_format_write(obj_request);
2907
2908 ret = rbd_obj_request_submit(osdc, obj_request);
2909 if (ret)
2910 goto out_cancel;
2911 ret = rbd_obj_request_wait(obj_request);
2912 if (ret)
2913 goto out_cancel;
2914 ret = obj_request->result;
2915 if (ret)
2916 goto out_cancel;
2917
2918 /*
2919 * A watch request is set to linger, so the underlying osd
2920 * request won't go away until we unregister it. We retain
2921 * a pointer to the object request during that time (in
2922 * rbd_dev->watch_request), so we'll keep a reference to
2923 * it. We'll drop that reference (below) after we've
2924 * unregistered it.
2925 */
2926 if (start) {
2927 rbd_dev->watch_request = obj_request;
2928
2929 return 0;
2930 }
2931
2932 /* We have successfully torn down the watch request */
2933
2934 rbd_obj_request_put(rbd_dev->watch_request);
2935 rbd_dev->watch_request = NULL;
2936 out_cancel:
2937 /* Cancel the event if we're tearing down, or on error */
2938 ceph_osdc_cancel_event(rbd_dev->watch_event);
2939 rbd_dev->watch_event = NULL;
2940 if (obj_request)
2941 rbd_obj_request_put(obj_request);
2942
2943 return ret;
2944 }
2945
2946 /*
2947 * Synchronous osd object method call. Returns the number of bytes
2948 * returned in the outbound buffer, or a negative error code.
2949 */
2950 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2951 const char *object_name,
2952 const char *class_name,
2953 const char *method_name,
2954 const void *outbound,
2955 size_t outbound_size,
2956 void *inbound,
2957 size_t inbound_size)
2958 {
2959 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2960 struct rbd_obj_request *obj_request;
2961 struct page **pages;
2962 u32 page_count;
2963 int ret;
2964
2965 /*
2966 * Method calls are ultimately read operations. The result
2967 * should placed into the inbound buffer provided. They
2968 * also supply outbound data--parameters for the object
2969 * method. Currently if this is present it will be a
2970 * snapshot id.
2971 */
2972 page_count = (u32)calc_pages_for(0, inbound_size);
2973 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2974 if (IS_ERR(pages))
2975 return PTR_ERR(pages);
2976
2977 ret = -ENOMEM;
2978 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2979 OBJ_REQUEST_PAGES);
2980 if (!obj_request)
2981 goto out;
2982
2983 obj_request->pages = pages;
2984 obj_request->page_count = page_count;
2985
2986 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2987 if (!obj_request->osd_req)
2988 goto out;
2989
2990 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2991 class_name, method_name);
2992 if (outbound_size) {
2993 struct ceph_pagelist *pagelist;
2994
2995 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2996 if (!pagelist)
2997 goto out;
2998
2999 ceph_pagelist_init(pagelist);
3000 ceph_pagelist_append(pagelist, outbound, outbound_size);
3001 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3002 pagelist);
3003 }
3004 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3005 obj_request->pages, inbound_size,
3006 0, false, false);
3007 rbd_osd_req_format_read(obj_request);
3008
3009 ret = rbd_obj_request_submit(osdc, obj_request);
3010 if (ret)
3011 goto out;
3012 ret = rbd_obj_request_wait(obj_request);
3013 if (ret)
3014 goto out;
3015
3016 ret = obj_request->result;
3017 if (ret < 0)
3018 goto out;
3019
3020 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3021 ret = (int)obj_request->xferred;
3022 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3023 out:
3024 if (obj_request)
3025 rbd_obj_request_put(obj_request);
3026 else
3027 ceph_release_page_vector(pages, page_count);
3028
3029 return ret;
3030 }
3031
3032 static void rbd_request_fn(struct request_queue *q)
3033 __releases(q->queue_lock) __acquires(q->queue_lock)
3034 {
3035 struct rbd_device *rbd_dev = q->queuedata;
3036 bool read_only = rbd_dev->mapping.read_only;
3037 struct request *rq;
3038 int result;
3039
3040 while ((rq = blk_fetch_request(q))) {
3041 bool write_request = rq_data_dir(rq) == WRITE;
3042 struct rbd_img_request *img_request;
3043 u64 offset;
3044 u64 length;
3045
3046 /* Ignore any non-FS requests that filter through. */
3047
3048 if (rq->cmd_type != REQ_TYPE_FS) {
3049 dout("%s: non-fs request type %d\n", __func__,
3050 (int) rq->cmd_type);
3051 __blk_end_request_all(rq, 0);
3052 continue;
3053 }
3054
3055 /* Ignore/skip any zero-length requests */
3056
3057 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3058 length = (u64) blk_rq_bytes(rq);
3059
3060 if (!length) {
3061 dout("%s: zero-length request\n", __func__);
3062 __blk_end_request_all(rq, 0);
3063 continue;
3064 }
3065
3066 spin_unlock_irq(q->queue_lock);
3067
3068 /* Disallow writes to a read-only device */
3069
3070 if (write_request) {
3071 result = -EROFS;
3072 if (read_only)
3073 goto end_request;
3074 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3075 }
3076
3077 /*
3078 * Quit early if the mapped snapshot no longer
3079 * exists. It's still possible the snapshot will
3080 * have disappeared by the time our request arrives
3081 * at the osd, but there's no sense in sending it if
3082 * we already know.
3083 */
3084 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3085 dout("request for non-existent snapshot");
3086 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3087 result = -ENXIO;
3088 goto end_request;
3089 }
3090
3091 result = -EINVAL;
3092 if (offset && length > U64_MAX - offset + 1) {
3093 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3094 offset, length);
3095 goto end_request; /* Shouldn't happen */
3096 }
3097
3098 result = -EIO;
3099 if (offset + length > rbd_dev->mapping.size) {
3100 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3101 offset, length, rbd_dev->mapping.size);
3102 goto end_request;
3103 }
3104
3105 result = -ENOMEM;
3106 img_request = rbd_img_request_create(rbd_dev, offset, length,
3107 write_request);
3108 if (!img_request)
3109 goto end_request;
3110
3111 img_request->rq = rq;
3112
3113 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3114 rq->bio);
3115 if (!result)
3116 result = rbd_img_request_submit(img_request);
3117 if (result)
3118 rbd_img_request_put(img_request);
3119 end_request:
3120 spin_lock_irq(q->queue_lock);
3121 if (result < 0) {
3122 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3123 write_request ? "write" : "read",
3124 length, offset, result);
3125
3126 __blk_end_request_all(rq, result);
3127 }
3128 }
3129 }
3130
3131 /*
3132 * a queue callback. Makes sure that we don't create a bio that spans across
3133 * multiple osd objects. One exception would be with a single page bios,
3134 * which we handle later at bio_chain_clone_range()
3135 */
3136 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3137 struct bio_vec *bvec)
3138 {
3139 struct rbd_device *rbd_dev = q->queuedata;
3140 sector_t sector_offset;
3141 sector_t sectors_per_obj;
3142 sector_t obj_sector_offset;
3143 int ret;
3144
3145 /*
3146 * Find how far into its rbd object the partition-relative
3147 * bio start sector is to offset relative to the enclosing
3148 * device.
3149 */
3150 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3151 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3152 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3153
3154 /*
3155 * Compute the number of bytes from that offset to the end
3156 * of the object. Account for what's already used by the bio.
3157 */
3158 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3159 if (ret > bmd->bi_size)
3160 ret -= bmd->bi_size;
3161 else
3162 ret = 0;
3163
3164 /*
3165 * Don't send back more than was asked for. And if the bio
3166 * was empty, let the whole thing through because: "Note
3167 * that a block device *must* allow a single page to be
3168 * added to an empty bio."
3169 */
3170 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3171 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3172 ret = (int) bvec->bv_len;
3173
3174 return ret;
3175 }
3176
3177 static void rbd_free_disk(struct rbd_device *rbd_dev)
3178 {
3179 struct gendisk *disk = rbd_dev->disk;
3180
3181 if (!disk)
3182 return;
3183
3184 rbd_dev->disk = NULL;
3185 if (disk->flags & GENHD_FL_UP) {
3186 del_gendisk(disk);
3187 if (disk->queue)
3188 blk_cleanup_queue(disk->queue);
3189 }
3190 put_disk(disk);
3191 }
3192
3193 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3194 const char *object_name,
3195 u64 offset, u64 length, void *buf)
3196
3197 {
3198 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3199 struct rbd_obj_request *obj_request;
3200 struct page **pages = NULL;
3201 u32 page_count;
3202 size_t size;
3203 int ret;
3204
3205 page_count = (u32) calc_pages_for(offset, length);
3206 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3207 if (IS_ERR(pages))
3208 ret = PTR_ERR(pages);
3209
3210 ret = -ENOMEM;
3211 obj_request = rbd_obj_request_create(object_name, offset, length,
3212 OBJ_REQUEST_PAGES);
3213 if (!obj_request)
3214 goto out;
3215
3216 obj_request->pages = pages;
3217 obj_request->page_count = page_count;
3218
3219 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3220 if (!obj_request->osd_req)
3221 goto out;
3222
3223 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3224 offset, length, 0, 0);
3225 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3226 obj_request->pages,
3227 obj_request->length,
3228 obj_request->offset & ~PAGE_MASK,
3229 false, false);
3230 rbd_osd_req_format_read(obj_request);
3231
3232 ret = rbd_obj_request_submit(osdc, obj_request);
3233 if (ret)
3234 goto out;
3235 ret = rbd_obj_request_wait(obj_request);
3236 if (ret)
3237 goto out;
3238
3239 ret = obj_request->result;
3240 if (ret < 0)
3241 goto out;
3242
3243 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3244 size = (size_t) obj_request->xferred;
3245 ceph_copy_from_page_vector(pages, buf, 0, size);
3246 rbd_assert(size <= (size_t)INT_MAX);
3247 ret = (int)size;
3248 out:
3249 if (obj_request)
3250 rbd_obj_request_put(obj_request);
3251 else
3252 ceph_release_page_vector(pages, page_count);
3253
3254 return ret;
3255 }
3256
3257 /*
3258 * Read the complete header for the given rbd device. On successful
3259 * return, the rbd_dev->header field will contain up-to-date
3260 * information about the image.
3261 */
3262 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3263 {
3264 struct rbd_image_header_ondisk *ondisk = NULL;
3265 u32 snap_count = 0;
3266 u64 names_size = 0;
3267 u32 want_count;
3268 int ret;
3269
3270 /*
3271 * The complete header will include an array of its 64-bit
3272 * snapshot ids, followed by the names of those snapshots as
3273 * a contiguous block of NUL-terminated strings. Note that
3274 * the number of snapshots could change by the time we read
3275 * it in, in which case we re-read it.
3276 */
3277 do {
3278 size_t size;
3279
3280 kfree(ondisk);
3281
3282 size = sizeof (*ondisk);
3283 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3284 size += names_size;
3285 ondisk = kmalloc(size, GFP_KERNEL);
3286 if (!ondisk)
3287 return -ENOMEM;
3288
3289 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3290 0, size, ondisk);
3291 if (ret < 0)
3292 goto out;
3293 if ((size_t)ret < size) {
3294 ret = -ENXIO;
3295 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3296 size, ret);
3297 goto out;
3298 }
3299 if (!rbd_dev_ondisk_valid(ondisk)) {
3300 ret = -ENXIO;
3301 rbd_warn(rbd_dev, "invalid header");
3302 goto out;
3303 }
3304
3305 names_size = le64_to_cpu(ondisk->snap_names_len);
3306 want_count = snap_count;
3307 snap_count = le32_to_cpu(ondisk->snap_count);
3308 } while (snap_count != want_count);
3309
3310 ret = rbd_header_from_disk(rbd_dev, ondisk);
3311 out:
3312 kfree(ondisk);
3313
3314 return ret;
3315 }
3316
3317 /*
3318 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3319 * has disappeared from the (just updated) snapshot context.
3320 */
3321 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3322 {
3323 u64 snap_id;
3324
3325 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3326 return;
3327
3328 snap_id = rbd_dev->spec->snap_id;
3329 if (snap_id == CEPH_NOSNAP)
3330 return;
3331
3332 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3333 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3334 }
3335
3336 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3337 {
3338 u64 mapping_size;
3339 int ret;
3340
3341 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3342 mapping_size = rbd_dev->mapping.size;
3343 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3344 if (rbd_dev->image_format == 1)
3345 ret = rbd_dev_v1_header_info(rbd_dev);
3346 else
3347 ret = rbd_dev_v2_header_info(rbd_dev);
3348
3349 /* If it's a mapped snapshot, validate its EXISTS flag */
3350
3351 rbd_exists_validate(rbd_dev);
3352 mutex_unlock(&ctl_mutex);
3353 if (mapping_size != rbd_dev->mapping.size) {
3354 sector_t size;
3355
3356 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3357 dout("setting size to %llu sectors", (unsigned long long)size);
3358 set_capacity(rbd_dev->disk, size);
3359 revalidate_disk(rbd_dev->disk);
3360 }
3361
3362 return ret;
3363 }
3364
3365 static int rbd_init_disk(struct rbd_device *rbd_dev)
3366 {
3367 struct gendisk *disk;
3368 struct request_queue *q;
3369 u64 segment_size;
3370
3371 /* create gendisk info */
3372 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3373 if (!disk)
3374 return -ENOMEM;
3375
3376 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3377 rbd_dev->dev_id);
3378 disk->major = rbd_dev->major;
3379 disk->first_minor = 0;
3380 disk->fops = &rbd_bd_ops;
3381 disk->private_data = rbd_dev;
3382
3383 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3384 if (!q)
3385 goto out_disk;
3386
3387 /* We use the default size, but let's be explicit about it. */
3388 blk_queue_physical_block_size(q, SECTOR_SIZE);
3389
3390 /* set io sizes to object size */
3391 segment_size = rbd_obj_bytes(&rbd_dev->header);
3392 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3393 blk_queue_max_segment_size(q, segment_size);
3394 blk_queue_io_min(q, segment_size);
3395 blk_queue_io_opt(q, segment_size);
3396
3397 blk_queue_merge_bvec(q, rbd_merge_bvec);
3398 disk->queue = q;
3399
3400 q->queuedata = rbd_dev;
3401
3402 rbd_dev->disk = disk;
3403
3404 return 0;
3405 out_disk:
3406 put_disk(disk);
3407
3408 return -ENOMEM;
3409 }
3410
3411 /*
3412 sysfs
3413 */
3414
3415 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3416 {
3417 return container_of(dev, struct rbd_device, dev);
3418 }
3419
3420 static ssize_t rbd_size_show(struct device *dev,
3421 struct device_attribute *attr, char *buf)
3422 {
3423 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3424
3425 return sprintf(buf, "%llu\n",
3426 (unsigned long long)rbd_dev->mapping.size);
3427 }
3428
3429 /*
3430 * Note this shows the features for whatever's mapped, which is not
3431 * necessarily the base image.
3432 */
3433 static ssize_t rbd_features_show(struct device *dev,
3434 struct device_attribute *attr, char *buf)
3435 {
3436 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3437
3438 return sprintf(buf, "0x%016llx\n",
3439 (unsigned long long)rbd_dev->mapping.features);
3440 }
3441
3442 static ssize_t rbd_major_show(struct device *dev,
3443 struct device_attribute *attr, char *buf)
3444 {
3445 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3446
3447 if (rbd_dev->major)
3448 return sprintf(buf, "%d\n", rbd_dev->major);
3449
3450 return sprintf(buf, "(none)\n");
3451
3452 }
3453
3454 static ssize_t rbd_client_id_show(struct device *dev,
3455 struct device_attribute *attr, char *buf)
3456 {
3457 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3458
3459 return sprintf(buf, "client%lld\n",
3460 ceph_client_id(rbd_dev->rbd_client->client));
3461 }
3462
3463 static ssize_t rbd_pool_show(struct device *dev,
3464 struct device_attribute *attr, char *buf)
3465 {
3466 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3467
3468 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3469 }
3470
3471 static ssize_t rbd_pool_id_show(struct device *dev,
3472 struct device_attribute *attr, char *buf)
3473 {
3474 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3475
3476 return sprintf(buf, "%llu\n",
3477 (unsigned long long) rbd_dev->spec->pool_id);
3478 }
3479
3480 static ssize_t rbd_name_show(struct device *dev,
3481 struct device_attribute *attr, char *buf)
3482 {
3483 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3484
3485 if (rbd_dev->spec->image_name)
3486 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3487
3488 return sprintf(buf, "(unknown)\n");
3489 }
3490
3491 static ssize_t rbd_image_id_show(struct device *dev,
3492 struct device_attribute *attr, char *buf)
3493 {
3494 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3495
3496 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3497 }
3498
3499 /*
3500 * Shows the name of the currently-mapped snapshot (or
3501 * RBD_SNAP_HEAD_NAME for the base image).
3502 */
3503 static ssize_t rbd_snap_show(struct device *dev,
3504 struct device_attribute *attr,
3505 char *buf)
3506 {
3507 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3508
3509 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3510 }
3511
3512 /*
3513 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3514 * for the parent image. If there is no parent, simply shows
3515 * "(no parent image)".
3516 */
3517 static ssize_t rbd_parent_show(struct device *dev,
3518 struct device_attribute *attr,
3519 char *buf)
3520 {
3521 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3522 struct rbd_spec *spec = rbd_dev->parent_spec;
3523 int count;
3524 char *bufp = buf;
3525
3526 if (!spec)
3527 return sprintf(buf, "(no parent image)\n");
3528
3529 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3530 (unsigned long long) spec->pool_id, spec->pool_name);
3531 if (count < 0)
3532 return count;
3533 bufp += count;
3534
3535 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3536 spec->image_name ? spec->image_name : "(unknown)");
3537 if (count < 0)
3538 return count;
3539 bufp += count;
3540
3541 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3542 (unsigned long long) spec->snap_id, spec->snap_name);
3543 if (count < 0)
3544 return count;
3545 bufp += count;
3546
3547 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3548 if (count < 0)
3549 return count;
3550 bufp += count;
3551
3552 return (ssize_t) (bufp - buf);
3553 }
3554
3555 static ssize_t rbd_image_refresh(struct device *dev,
3556 struct device_attribute *attr,
3557 const char *buf,
3558 size_t size)
3559 {
3560 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3561 int ret;
3562
3563 ret = rbd_dev_refresh(rbd_dev);
3564 if (ret)
3565 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3566
3567 return ret < 0 ? ret : size;
3568 }
3569
3570 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3571 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3572 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3573 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3574 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3575 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3576 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3577 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3578 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3579 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3580 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3581
3582 static struct attribute *rbd_attrs[] = {
3583 &dev_attr_size.attr,
3584 &dev_attr_features.attr,
3585 &dev_attr_major.attr,
3586 &dev_attr_client_id.attr,
3587 &dev_attr_pool.attr,
3588 &dev_attr_pool_id.attr,
3589 &dev_attr_name.attr,
3590 &dev_attr_image_id.attr,
3591 &dev_attr_current_snap.attr,
3592 &dev_attr_parent.attr,
3593 &dev_attr_refresh.attr,
3594 NULL
3595 };
3596
3597 static struct attribute_group rbd_attr_group = {
3598 .attrs = rbd_attrs,
3599 };
3600
3601 static const struct attribute_group *rbd_attr_groups[] = {
3602 &rbd_attr_group,
3603 NULL
3604 };
3605
3606 static void rbd_sysfs_dev_release(struct device *dev)
3607 {
3608 }
3609
3610 static struct device_type rbd_device_type = {
3611 .name = "rbd",
3612 .groups = rbd_attr_groups,
3613 .release = rbd_sysfs_dev_release,
3614 };
3615
3616 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3617 {
3618 kref_get(&spec->kref);
3619
3620 return spec;
3621 }
3622
3623 static void rbd_spec_free(struct kref *kref);
3624 static void rbd_spec_put(struct rbd_spec *spec)
3625 {
3626 if (spec)
3627 kref_put(&spec->kref, rbd_spec_free);
3628 }
3629
3630 static struct rbd_spec *rbd_spec_alloc(void)
3631 {
3632 struct rbd_spec *spec;
3633
3634 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3635 if (!spec)
3636 return NULL;
3637 kref_init(&spec->kref);
3638
3639 return spec;
3640 }
3641
3642 static void rbd_spec_free(struct kref *kref)
3643 {
3644 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3645
3646 kfree(spec->pool_name);
3647 kfree(spec->image_id);
3648 kfree(spec->image_name);
3649 kfree(spec->snap_name);
3650 kfree(spec);
3651 }
3652
3653 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3654 struct rbd_spec *spec)
3655 {
3656 struct rbd_device *rbd_dev;
3657
3658 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3659 if (!rbd_dev)
3660 return NULL;
3661
3662 spin_lock_init(&rbd_dev->lock);
3663 rbd_dev->flags = 0;
3664 atomic_set(&rbd_dev->parent_ref, 0);
3665 INIT_LIST_HEAD(&rbd_dev->node);
3666 init_rwsem(&rbd_dev->header_rwsem);
3667
3668 rbd_dev->spec = spec;
3669 rbd_dev->rbd_client = rbdc;
3670
3671 /* Initialize the layout used for all rbd requests */
3672
3673 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3674 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3675 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3676 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3677
3678 return rbd_dev;
3679 }
3680
3681 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3682 {
3683 rbd_put_client(rbd_dev->rbd_client);
3684 rbd_spec_put(rbd_dev->spec);
3685 kfree(rbd_dev);
3686 }
3687
3688 /*
3689 * Get the size and object order for an image snapshot, or if
3690 * snap_id is CEPH_NOSNAP, gets this information for the base
3691 * image.
3692 */
3693 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3694 u8 *order, u64 *snap_size)
3695 {
3696 __le64 snapid = cpu_to_le64(snap_id);
3697 int ret;
3698 struct {
3699 u8 order;
3700 __le64 size;
3701 } __attribute__ ((packed)) size_buf = { 0 };
3702
3703 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3704 "rbd", "get_size",
3705 &snapid, sizeof (snapid),
3706 &size_buf, sizeof (size_buf));
3707 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3708 if (ret < 0)
3709 return ret;
3710 if (ret < sizeof (size_buf))
3711 return -ERANGE;
3712
3713 if (order)
3714 *order = size_buf.order;
3715 *snap_size = le64_to_cpu(size_buf.size);
3716
3717 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3718 (unsigned long long)snap_id, (unsigned int)*order,
3719 (unsigned long long)*snap_size);
3720
3721 return 0;
3722 }
3723
3724 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3725 {
3726 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3727 &rbd_dev->header.obj_order,
3728 &rbd_dev->header.image_size);
3729 }
3730
3731 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3732 {
3733 void *reply_buf;
3734 int ret;
3735 void *p;
3736
3737 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3738 if (!reply_buf)
3739 return -ENOMEM;
3740
3741 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3742 "rbd", "get_object_prefix", NULL, 0,
3743 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3744 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3745 if (ret < 0)
3746 goto out;
3747
3748 p = reply_buf;
3749 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3750 p + ret, NULL, GFP_NOIO);
3751 ret = 0;
3752
3753 if (IS_ERR(rbd_dev->header.object_prefix)) {
3754 ret = PTR_ERR(rbd_dev->header.object_prefix);
3755 rbd_dev->header.object_prefix = NULL;
3756 } else {
3757 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3758 }
3759 out:
3760 kfree(reply_buf);
3761
3762 return ret;
3763 }
3764
3765 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3766 u64 *snap_features)
3767 {
3768 __le64 snapid = cpu_to_le64(snap_id);
3769 struct {
3770 __le64 features;
3771 __le64 incompat;
3772 } __attribute__ ((packed)) features_buf = { 0 };
3773 u64 incompat;
3774 int ret;
3775
3776 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3777 "rbd", "get_features",
3778 &snapid, sizeof (snapid),
3779 &features_buf, sizeof (features_buf));
3780 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3781 if (ret < 0)
3782 return ret;
3783 if (ret < sizeof (features_buf))
3784 return -ERANGE;
3785
3786 incompat = le64_to_cpu(features_buf.incompat);
3787 if (incompat & ~RBD_FEATURES_SUPPORTED)
3788 return -ENXIO;
3789
3790 *snap_features = le64_to_cpu(features_buf.features);
3791
3792 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3793 (unsigned long long)snap_id,
3794 (unsigned long long)*snap_features,
3795 (unsigned long long)le64_to_cpu(features_buf.incompat));
3796
3797 return 0;
3798 }
3799
3800 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3801 {
3802 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3803 &rbd_dev->header.features);
3804 }
3805
3806 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3807 {
3808 struct rbd_spec *parent_spec;
3809 size_t size;
3810 void *reply_buf = NULL;
3811 __le64 snapid;
3812 void *p;
3813 void *end;
3814 u64 pool_id;
3815 char *image_id;
3816 u64 overlap;
3817 int ret;
3818
3819 parent_spec = rbd_spec_alloc();
3820 if (!parent_spec)
3821 return -ENOMEM;
3822
3823 size = sizeof (__le64) + /* pool_id */
3824 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3825 sizeof (__le64) + /* snap_id */
3826 sizeof (__le64); /* overlap */
3827 reply_buf = kmalloc(size, GFP_KERNEL);
3828 if (!reply_buf) {
3829 ret = -ENOMEM;
3830 goto out_err;
3831 }
3832
3833 snapid = cpu_to_le64(CEPH_NOSNAP);
3834 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3835 "rbd", "get_parent",
3836 &snapid, sizeof (snapid),
3837 reply_buf, size);
3838 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3839 if (ret < 0)
3840 goto out_err;
3841
3842 p = reply_buf;
3843 end = reply_buf + ret;
3844 ret = -ERANGE;
3845 ceph_decode_64_safe(&p, end, pool_id, out_err);
3846 if (pool_id == CEPH_NOPOOL) {
3847 /*
3848 * Either the parent never existed, or we have
3849 * record of it but the image got flattened so it no
3850 * longer has a parent. When the parent of a
3851 * layered image disappears we immediately set the
3852 * overlap to 0. The effect of this is that all new
3853 * requests will be treated as if the image had no
3854 * parent.
3855 */
3856 if (rbd_dev->parent_overlap) {
3857 rbd_dev->parent_overlap = 0;
3858 smp_mb();
3859 rbd_dev_parent_put(rbd_dev);
3860 pr_info("%s: clone image has been flattened\n",
3861 rbd_dev->disk->disk_name);
3862 }
3863
3864 goto out; /* No parent? No problem. */
3865 }
3866
3867 /* The ceph file layout needs to fit pool id in 32 bits */
3868
3869 ret = -EIO;
3870 if (pool_id > (u64)U32_MAX) {
3871 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3872 (unsigned long long)pool_id, U32_MAX);
3873 goto out_err;
3874 }
3875 parent_spec->pool_id = pool_id;
3876
3877 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3878 if (IS_ERR(image_id)) {
3879 ret = PTR_ERR(image_id);
3880 goto out_err;
3881 }
3882 parent_spec->image_id = image_id;
3883 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3884 ceph_decode_64_safe(&p, end, overlap, out_err);
3885
3886 if (overlap) {
3887 rbd_spec_put(rbd_dev->parent_spec);
3888 rbd_dev->parent_spec = parent_spec;
3889 parent_spec = NULL; /* rbd_dev now owns this */
3890 rbd_dev->parent_overlap = overlap;
3891 } else {
3892 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3893 }
3894 out:
3895 ret = 0;
3896 out_err:
3897 kfree(reply_buf);
3898 rbd_spec_put(parent_spec);
3899
3900 return ret;
3901 }
3902
3903 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3904 {
3905 struct {
3906 __le64 stripe_unit;
3907 __le64 stripe_count;
3908 } __attribute__ ((packed)) striping_info_buf = { 0 };
3909 size_t size = sizeof (striping_info_buf);
3910 void *p;
3911 u64 obj_size;
3912 u64 stripe_unit;
3913 u64 stripe_count;
3914 int ret;
3915
3916 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3917 "rbd", "get_stripe_unit_count", NULL, 0,
3918 (char *)&striping_info_buf, size);
3919 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3920 if (ret < 0)
3921 return ret;
3922 if (ret < size)
3923 return -ERANGE;
3924
3925 /*
3926 * We don't actually support the "fancy striping" feature
3927 * (STRIPINGV2) yet, but if the striping sizes are the
3928 * defaults the behavior is the same as before. So find
3929 * out, and only fail if the image has non-default values.
3930 */
3931 ret = -EINVAL;
3932 obj_size = (u64)1 << rbd_dev->header.obj_order;
3933 p = &striping_info_buf;
3934 stripe_unit = ceph_decode_64(&p);
3935 if (stripe_unit != obj_size) {
3936 rbd_warn(rbd_dev, "unsupported stripe unit "
3937 "(got %llu want %llu)",
3938 stripe_unit, obj_size);
3939 return -EINVAL;
3940 }
3941 stripe_count = ceph_decode_64(&p);
3942 if (stripe_count != 1) {
3943 rbd_warn(rbd_dev, "unsupported stripe count "
3944 "(got %llu want 1)", stripe_count);
3945 return -EINVAL;
3946 }
3947 rbd_dev->header.stripe_unit = stripe_unit;
3948 rbd_dev->header.stripe_count = stripe_count;
3949
3950 return 0;
3951 }
3952
3953 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3954 {
3955 size_t image_id_size;
3956 char *image_id;
3957 void *p;
3958 void *end;
3959 size_t size;
3960 void *reply_buf = NULL;
3961 size_t len = 0;
3962 char *image_name = NULL;
3963 int ret;
3964
3965 rbd_assert(!rbd_dev->spec->image_name);
3966
3967 len = strlen(rbd_dev->spec->image_id);
3968 image_id_size = sizeof (__le32) + len;
3969 image_id = kmalloc(image_id_size, GFP_KERNEL);
3970 if (!image_id)
3971 return NULL;
3972
3973 p = image_id;
3974 end = image_id + image_id_size;
3975 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3976
3977 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3978 reply_buf = kmalloc(size, GFP_KERNEL);
3979 if (!reply_buf)
3980 goto out;
3981
3982 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3983 "rbd", "dir_get_name",
3984 image_id, image_id_size,
3985 reply_buf, size);
3986 if (ret < 0)
3987 goto out;
3988 p = reply_buf;
3989 end = reply_buf + ret;
3990
3991 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3992 if (IS_ERR(image_name))
3993 image_name = NULL;
3994 else
3995 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3996 out:
3997 kfree(reply_buf);
3998 kfree(image_id);
3999
4000 return image_name;
4001 }
4002
4003 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4004 {
4005 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4006 const char *snap_name;
4007 u32 which = 0;
4008
4009 /* Skip over names until we find the one we are looking for */
4010
4011 snap_name = rbd_dev->header.snap_names;
4012 while (which < snapc->num_snaps) {
4013 if (!strcmp(name, snap_name))
4014 return snapc->snaps[which];
4015 snap_name += strlen(snap_name) + 1;
4016 which++;
4017 }
4018 return CEPH_NOSNAP;
4019 }
4020
4021 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4022 {
4023 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4024 u32 which;
4025 bool found = false;
4026 u64 snap_id;
4027
4028 for (which = 0; !found && which < snapc->num_snaps; which++) {
4029 const char *snap_name;
4030
4031 snap_id = snapc->snaps[which];
4032 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4033 if (IS_ERR(snap_name))
4034 break;
4035 found = !strcmp(name, snap_name);
4036 kfree(snap_name);
4037 }
4038 return found ? snap_id : CEPH_NOSNAP;
4039 }
4040
4041 /*
4042 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4043 * no snapshot by that name is found, or if an error occurs.
4044 */
4045 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4046 {
4047 if (rbd_dev->image_format == 1)
4048 return rbd_v1_snap_id_by_name(rbd_dev, name);
4049
4050 return rbd_v2_snap_id_by_name(rbd_dev, name);
4051 }
4052
4053 /*
4054 * When an rbd image has a parent image, it is identified by the
4055 * pool, image, and snapshot ids (not names). This function fills
4056 * in the names for those ids. (It's OK if we can't figure out the
4057 * name for an image id, but the pool and snapshot ids should always
4058 * exist and have names.) All names in an rbd spec are dynamically
4059 * allocated.
4060 *
4061 * When an image being mapped (not a parent) is probed, we have the
4062 * pool name and pool id, image name and image id, and the snapshot
4063 * name. The only thing we're missing is the snapshot id.
4064 */
4065 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4066 {
4067 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4068 struct rbd_spec *spec = rbd_dev->spec;
4069 const char *pool_name;
4070 const char *image_name;
4071 const char *snap_name;
4072 int ret;
4073
4074 /*
4075 * An image being mapped will have the pool name (etc.), but
4076 * we need to look up the snapshot id.
4077 */
4078 if (spec->pool_name) {
4079 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4080 u64 snap_id;
4081
4082 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4083 if (snap_id == CEPH_NOSNAP)
4084 return -ENOENT;
4085 spec->snap_id = snap_id;
4086 } else {
4087 spec->snap_id = CEPH_NOSNAP;
4088 }
4089
4090 return 0;
4091 }
4092
4093 /* Get the pool name; we have to make our own copy of this */
4094
4095 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4096 if (!pool_name) {
4097 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4098 return -EIO;
4099 }
4100 pool_name = kstrdup(pool_name, GFP_KERNEL);
4101 if (!pool_name)
4102 return -ENOMEM;
4103
4104 /* Fetch the image name; tolerate failure here */
4105
4106 image_name = rbd_dev_image_name(rbd_dev);
4107 if (!image_name)
4108 rbd_warn(rbd_dev, "unable to get image name");
4109
4110 /* Look up the snapshot name, and make a copy */
4111
4112 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4113 if (!snap_name) {
4114 ret = -ENOMEM;
4115 goto out_err;
4116 }
4117
4118 spec->pool_name = pool_name;
4119 spec->image_name = image_name;
4120 spec->snap_name = snap_name;
4121
4122 return 0;
4123 out_err:
4124 kfree(image_name);
4125 kfree(pool_name);
4126
4127 return ret;
4128 }
4129
4130 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4131 {
4132 size_t size;
4133 int ret;
4134 void *reply_buf;
4135 void *p;
4136 void *end;
4137 u64 seq;
4138 u32 snap_count;
4139 struct ceph_snap_context *snapc;
4140 u32 i;
4141
4142 /*
4143 * We'll need room for the seq value (maximum snapshot id),
4144 * snapshot count, and array of that many snapshot ids.
4145 * For now we have a fixed upper limit on the number we're
4146 * prepared to receive.
4147 */
4148 size = sizeof (__le64) + sizeof (__le32) +
4149 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4150 reply_buf = kzalloc(size, GFP_KERNEL);
4151 if (!reply_buf)
4152 return -ENOMEM;
4153
4154 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4155 "rbd", "get_snapcontext", NULL, 0,
4156 reply_buf, size);
4157 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4158 if (ret < 0)
4159 goto out;
4160
4161 p = reply_buf;
4162 end = reply_buf + ret;
4163 ret = -ERANGE;
4164 ceph_decode_64_safe(&p, end, seq, out);
4165 ceph_decode_32_safe(&p, end, snap_count, out);
4166
4167 /*
4168 * Make sure the reported number of snapshot ids wouldn't go
4169 * beyond the end of our buffer. But before checking that,
4170 * make sure the computed size of the snapshot context we
4171 * allocate is representable in a size_t.
4172 */
4173 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4174 / sizeof (u64)) {
4175 ret = -EINVAL;
4176 goto out;
4177 }
4178 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4179 goto out;
4180 ret = 0;
4181
4182 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4183 if (!snapc) {
4184 ret = -ENOMEM;
4185 goto out;
4186 }
4187 snapc->seq = seq;
4188 for (i = 0; i < snap_count; i++)
4189 snapc->snaps[i] = ceph_decode_64(&p);
4190
4191 ceph_put_snap_context(rbd_dev->header.snapc);
4192 rbd_dev->header.snapc = snapc;
4193
4194 dout(" snap context seq = %llu, snap_count = %u\n",
4195 (unsigned long long)seq, (unsigned int)snap_count);
4196 out:
4197 kfree(reply_buf);
4198
4199 return ret;
4200 }
4201
4202 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4203 u64 snap_id)
4204 {
4205 size_t size;
4206 void *reply_buf;
4207 __le64 snapid;
4208 int ret;
4209 void *p;
4210 void *end;
4211 char *snap_name;
4212
4213 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4214 reply_buf = kmalloc(size, GFP_KERNEL);
4215 if (!reply_buf)
4216 return ERR_PTR(-ENOMEM);
4217
4218 snapid = cpu_to_le64(snap_id);
4219 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4220 "rbd", "get_snapshot_name",
4221 &snapid, sizeof (snapid),
4222 reply_buf, size);
4223 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4224 if (ret < 0) {
4225 snap_name = ERR_PTR(ret);
4226 goto out;
4227 }
4228
4229 p = reply_buf;
4230 end = reply_buf + ret;
4231 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4232 if (IS_ERR(snap_name))
4233 goto out;
4234
4235 dout(" snap_id 0x%016llx snap_name = %s\n",
4236 (unsigned long long)snap_id, snap_name);
4237 out:
4238 kfree(reply_buf);
4239
4240 return snap_name;
4241 }
4242
4243 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4244 {
4245 bool first_time = rbd_dev->header.object_prefix == NULL;
4246 int ret;
4247
4248 down_write(&rbd_dev->header_rwsem);
4249
4250 ret = rbd_dev_v2_image_size(rbd_dev);
4251 if (ret)
4252 goto out;
4253
4254 if (first_time) {
4255 ret = rbd_dev_v2_header_onetime(rbd_dev);
4256 if (ret)
4257 goto out;
4258 }
4259
4260 /*
4261 * If the image supports layering, get the parent info. We
4262 * need to probe the first time regardless. Thereafter we
4263 * only need to if there's a parent, to see if it has
4264 * disappeared due to the mapped image getting flattened.
4265 */
4266 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4267 (first_time || rbd_dev->parent_spec)) {
4268 bool warn;
4269
4270 ret = rbd_dev_v2_parent_info(rbd_dev);
4271 if (ret)
4272 goto out;
4273
4274 /*
4275 * Print a warning if this is the initial probe and
4276 * the image has a parent. Don't print it if the
4277 * image now being probed is itself a parent. We
4278 * can tell at this point because we won't know its
4279 * pool name yet (just its pool id).
4280 */
4281 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4282 if (first_time && warn)
4283 rbd_warn(rbd_dev, "WARNING: kernel layering "
4284 "is EXPERIMENTAL!");
4285 }
4286
4287 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4288 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4289 rbd_dev->mapping.size = rbd_dev->header.image_size;
4290
4291 ret = rbd_dev_v2_snap_context(rbd_dev);
4292 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4293 out:
4294 up_write(&rbd_dev->header_rwsem);
4295
4296 return ret;
4297 }
4298
4299 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4300 {
4301 struct device *dev;
4302 int ret;
4303
4304 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4305
4306 dev = &rbd_dev->dev;
4307 dev->bus = &rbd_bus_type;
4308 dev->type = &rbd_device_type;
4309 dev->parent = &rbd_root_dev;
4310 dev->release = rbd_dev_device_release;
4311 dev_set_name(dev, "%d", rbd_dev->dev_id);
4312 ret = device_register(dev);
4313
4314 mutex_unlock(&ctl_mutex);
4315
4316 return ret;
4317 }
4318
4319 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4320 {
4321 device_unregister(&rbd_dev->dev);
4322 }
4323
4324 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4325
4326 /*
4327 * Get a unique rbd identifier for the given new rbd_dev, and add
4328 * the rbd_dev to the global list. The minimum rbd id is 1.
4329 */
4330 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4331 {
4332 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4333
4334 spin_lock(&rbd_dev_list_lock);
4335 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4336 spin_unlock(&rbd_dev_list_lock);
4337 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4338 (unsigned long long) rbd_dev->dev_id);
4339 }
4340
4341 /*
4342 * Remove an rbd_dev from the global list, and record that its
4343 * identifier is no longer in use.
4344 */
4345 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4346 {
4347 struct list_head *tmp;
4348 int rbd_id = rbd_dev->dev_id;
4349 int max_id;
4350
4351 rbd_assert(rbd_id > 0);
4352
4353 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4354 (unsigned long long) rbd_dev->dev_id);
4355 spin_lock(&rbd_dev_list_lock);
4356 list_del_init(&rbd_dev->node);
4357
4358 /*
4359 * If the id being "put" is not the current maximum, there
4360 * is nothing special we need to do.
4361 */
4362 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4363 spin_unlock(&rbd_dev_list_lock);
4364 return;
4365 }
4366
4367 /*
4368 * We need to update the current maximum id. Search the
4369 * list to find out what it is. We're more likely to find
4370 * the maximum at the end, so search the list backward.
4371 */
4372 max_id = 0;
4373 list_for_each_prev(tmp, &rbd_dev_list) {
4374 struct rbd_device *rbd_dev;
4375
4376 rbd_dev = list_entry(tmp, struct rbd_device, node);
4377 if (rbd_dev->dev_id > max_id)
4378 max_id = rbd_dev->dev_id;
4379 }
4380 spin_unlock(&rbd_dev_list_lock);
4381
4382 /*
4383 * The max id could have been updated by rbd_dev_id_get(), in
4384 * which case it now accurately reflects the new maximum.
4385 * Be careful not to overwrite the maximum value in that
4386 * case.
4387 */
4388 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4389 dout(" max dev id has been reset\n");
4390 }
4391
4392 /*
4393 * Skips over white space at *buf, and updates *buf to point to the
4394 * first found non-space character (if any). Returns the length of
4395 * the token (string of non-white space characters) found. Note
4396 * that *buf must be terminated with '\0'.
4397 */
4398 static inline size_t next_token(const char **buf)
4399 {
4400 /*
4401 * These are the characters that produce nonzero for
4402 * isspace() in the "C" and "POSIX" locales.
4403 */
4404 const char *spaces = " \f\n\r\t\v";
4405
4406 *buf += strspn(*buf, spaces); /* Find start of token */
4407
4408 return strcspn(*buf, spaces); /* Return token length */
4409 }
4410
4411 /*
4412 * Finds the next token in *buf, and if the provided token buffer is
4413 * big enough, copies the found token into it. The result, if
4414 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4415 * must be terminated with '\0' on entry.
4416 *
4417 * Returns the length of the token found (not including the '\0').
4418 * Return value will be 0 if no token is found, and it will be >=
4419 * token_size if the token would not fit.
4420 *
4421 * The *buf pointer will be updated to point beyond the end of the
4422 * found token. Note that this occurs even if the token buffer is
4423 * too small to hold it.
4424 */
4425 static inline size_t copy_token(const char **buf,
4426 char *token,
4427 size_t token_size)
4428 {
4429 size_t len;
4430
4431 len = next_token(buf);
4432 if (len < token_size) {
4433 memcpy(token, *buf, len);
4434 *(token + len) = '\0';
4435 }
4436 *buf += len;
4437
4438 return len;
4439 }
4440
4441 /*
4442 * Finds the next token in *buf, dynamically allocates a buffer big
4443 * enough to hold a copy of it, and copies the token into the new
4444 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4445 * that a duplicate buffer is created even for a zero-length token.
4446 *
4447 * Returns a pointer to the newly-allocated duplicate, or a null
4448 * pointer if memory for the duplicate was not available. If
4449 * the lenp argument is a non-null pointer, the length of the token
4450 * (not including the '\0') is returned in *lenp.
4451 *
4452 * If successful, the *buf pointer will be updated to point beyond
4453 * the end of the found token.
4454 *
4455 * Note: uses GFP_KERNEL for allocation.
4456 */
4457 static inline char *dup_token(const char **buf, size_t *lenp)
4458 {
4459 char *dup;
4460 size_t len;
4461
4462 len = next_token(buf);
4463 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4464 if (!dup)
4465 return NULL;
4466 *(dup + len) = '\0';
4467 *buf += len;
4468
4469 if (lenp)
4470 *lenp = len;
4471
4472 return dup;
4473 }
4474
4475 /*
4476 * Parse the options provided for an "rbd add" (i.e., rbd image
4477 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4478 * and the data written is passed here via a NUL-terminated buffer.
4479 * Returns 0 if successful or an error code otherwise.
4480 *
4481 * The information extracted from these options is recorded in
4482 * the other parameters which return dynamically-allocated
4483 * structures:
4484 * ceph_opts
4485 * The address of a pointer that will refer to a ceph options
4486 * structure. Caller must release the returned pointer using
4487 * ceph_destroy_options() when it is no longer needed.
4488 * rbd_opts
4489 * Address of an rbd options pointer. Fully initialized by
4490 * this function; caller must release with kfree().
4491 * spec
4492 * Address of an rbd image specification pointer. Fully
4493 * initialized by this function based on parsed options.
4494 * Caller must release with rbd_spec_put().
4495 *
4496 * The options passed take this form:
4497 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4498 * where:
4499 * <mon_addrs>
4500 * A comma-separated list of one or more monitor addresses.
4501 * A monitor address is an ip address, optionally followed
4502 * by a port number (separated by a colon).
4503 * I.e.: ip1[:port1][,ip2[:port2]...]
4504 * <options>
4505 * A comma-separated list of ceph and/or rbd options.
4506 * <pool_name>
4507 * The name of the rados pool containing the rbd image.
4508 * <image_name>
4509 * The name of the image in that pool to map.
4510 * <snap_id>
4511 * An optional snapshot id. If provided, the mapping will
4512 * present data from the image at the time that snapshot was
4513 * created. The image head is used if no snapshot id is
4514 * provided. Snapshot mappings are always read-only.
4515 */
4516 static int rbd_add_parse_args(const char *buf,
4517 struct ceph_options **ceph_opts,
4518 struct rbd_options **opts,
4519 struct rbd_spec **rbd_spec)
4520 {
4521 size_t len;
4522 char *options;
4523 const char *mon_addrs;
4524 char *snap_name;
4525 size_t mon_addrs_size;
4526 struct rbd_spec *spec = NULL;
4527 struct rbd_options *rbd_opts = NULL;
4528 struct ceph_options *copts;
4529 int ret;
4530
4531 /* The first four tokens are required */
4532
4533 len = next_token(&buf);
4534 if (!len) {
4535 rbd_warn(NULL, "no monitor address(es) provided");
4536 return -EINVAL;
4537 }
4538 mon_addrs = buf;
4539 mon_addrs_size = len + 1;
4540 buf += len;
4541
4542 ret = -EINVAL;
4543 options = dup_token(&buf, NULL);
4544 if (!options)
4545 return -ENOMEM;
4546 if (!*options) {
4547 rbd_warn(NULL, "no options provided");
4548 goto out_err;
4549 }
4550
4551 spec = rbd_spec_alloc();
4552 if (!spec)
4553 goto out_mem;
4554
4555 spec->pool_name = dup_token(&buf, NULL);
4556 if (!spec->pool_name)
4557 goto out_mem;
4558 if (!*spec->pool_name) {
4559 rbd_warn(NULL, "no pool name provided");
4560 goto out_err;
4561 }
4562
4563 spec->image_name = dup_token(&buf, NULL);
4564 if (!spec->image_name)
4565 goto out_mem;
4566 if (!*spec->image_name) {
4567 rbd_warn(NULL, "no image name provided");
4568 goto out_err;
4569 }
4570
4571 /*
4572 * Snapshot name is optional; default is to use "-"
4573 * (indicating the head/no snapshot).
4574 */
4575 len = next_token(&buf);
4576 if (!len) {
4577 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4578 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4579 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4580 ret = -ENAMETOOLONG;
4581 goto out_err;
4582 }
4583 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4584 if (!snap_name)
4585 goto out_mem;
4586 *(snap_name + len) = '\0';
4587 spec->snap_name = snap_name;
4588
4589 /* Initialize all rbd options to the defaults */
4590
4591 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4592 if (!rbd_opts)
4593 goto out_mem;
4594
4595 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4596
4597 copts = ceph_parse_options(options, mon_addrs,
4598 mon_addrs + mon_addrs_size - 1,
4599 parse_rbd_opts_token, rbd_opts);
4600 if (IS_ERR(copts)) {
4601 ret = PTR_ERR(copts);
4602 goto out_err;
4603 }
4604 kfree(options);
4605
4606 *ceph_opts = copts;
4607 *opts = rbd_opts;
4608 *rbd_spec = spec;
4609
4610 return 0;
4611 out_mem:
4612 ret = -ENOMEM;
4613 out_err:
4614 kfree(rbd_opts);
4615 rbd_spec_put(spec);
4616 kfree(options);
4617
4618 return ret;
4619 }
4620
4621 /*
4622 * An rbd format 2 image has a unique identifier, distinct from the
4623 * name given to it by the user. Internally, that identifier is
4624 * what's used to specify the names of objects related to the image.
4625 *
4626 * A special "rbd id" object is used to map an rbd image name to its
4627 * id. If that object doesn't exist, then there is no v2 rbd image
4628 * with the supplied name.
4629 *
4630 * This function will record the given rbd_dev's image_id field if
4631 * it can be determined, and in that case will return 0. If any
4632 * errors occur a negative errno will be returned and the rbd_dev's
4633 * image_id field will be unchanged (and should be NULL).
4634 */
4635 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4636 {
4637 int ret;
4638 size_t size;
4639 char *object_name;
4640 void *response;
4641 char *image_id;
4642
4643 /*
4644 * When probing a parent image, the image id is already
4645 * known (and the image name likely is not). There's no
4646 * need to fetch the image id again in this case. We
4647 * do still need to set the image format though.
4648 */
4649 if (rbd_dev->spec->image_id) {
4650 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4651
4652 return 0;
4653 }
4654
4655 /*
4656 * First, see if the format 2 image id file exists, and if
4657 * so, get the image's persistent id from it.
4658 */
4659 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4660 object_name = kmalloc(size, GFP_NOIO);
4661 if (!object_name)
4662 return -ENOMEM;
4663 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4664 dout("rbd id object name is %s\n", object_name);
4665
4666 /* Response will be an encoded string, which includes a length */
4667
4668 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4669 response = kzalloc(size, GFP_NOIO);
4670 if (!response) {
4671 ret = -ENOMEM;
4672 goto out;
4673 }
4674
4675 /* If it doesn't exist we'll assume it's a format 1 image */
4676
4677 ret = rbd_obj_method_sync(rbd_dev, object_name,
4678 "rbd", "get_id", NULL, 0,
4679 response, RBD_IMAGE_ID_LEN_MAX);
4680 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4681 if (ret == -ENOENT) {
4682 image_id = kstrdup("", GFP_KERNEL);
4683 ret = image_id ? 0 : -ENOMEM;
4684 if (!ret)
4685 rbd_dev->image_format = 1;
4686 } else if (ret > sizeof (__le32)) {
4687 void *p = response;
4688
4689 image_id = ceph_extract_encoded_string(&p, p + ret,
4690 NULL, GFP_NOIO);
4691 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4692 if (!ret)
4693 rbd_dev->image_format = 2;
4694 } else {
4695 ret = -EINVAL;
4696 }
4697
4698 if (!ret) {
4699 rbd_dev->spec->image_id = image_id;
4700 dout("image_id is %s\n", image_id);
4701 }
4702 out:
4703 kfree(response);
4704 kfree(object_name);
4705
4706 return ret;
4707 }
4708
4709 /*
4710 * Undo whatever state changes are made by v1 or v2 header info
4711 * call.
4712 */
4713 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4714 {
4715 struct rbd_image_header *header;
4716
4717 /* Drop parent reference unless it's already been done (or none) */
4718
4719 if (rbd_dev->parent_overlap)
4720 rbd_dev_parent_put(rbd_dev);
4721
4722 /* Free dynamic fields from the header, then zero it out */
4723
4724 header = &rbd_dev->header;
4725 ceph_put_snap_context(header->snapc);
4726 kfree(header->snap_sizes);
4727 kfree(header->snap_names);
4728 kfree(header->object_prefix);
4729 memset(header, 0, sizeof (*header));
4730 }
4731
4732 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4733 {
4734 int ret;
4735
4736 ret = rbd_dev_v2_object_prefix(rbd_dev);
4737 if (ret)
4738 goto out_err;
4739
4740 /*
4741 * Get the and check features for the image. Currently the
4742 * features are assumed to never change.
4743 */
4744 ret = rbd_dev_v2_features(rbd_dev);
4745 if (ret)
4746 goto out_err;
4747
4748 /* If the image supports fancy striping, get its parameters */
4749
4750 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4751 ret = rbd_dev_v2_striping_info(rbd_dev);
4752 if (ret < 0)
4753 goto out_err;
4754 }
4755 /* No support for crypto and compression type format 2 images */
4756
4757 return 0;
4758 out_err:
4759 rbd_dev->header.features = 0;
4760 kfree(rbd_dev->header.object_prefix);
4761 rbd_dev->header.object_prefix = NULL;
4762
4763 return ret;
4764 }
4765
4766 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4767 {
4768 struct rbd_device *parent = NULL;
4769 struct rbd_spec *parent_spec;
4770 struct rbd_client *rbdc;
4771 int ret;
4772
4773 if (!rbd_dev->parent_spec)
4774 return 0;
4775 /*
4776 * We need to pass a reference to the client and the parent
4777 * spec when creating the parent rbd_dev. Images related by
4778 * parent/child relationships always share both.
4779 */
4780 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4781 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4782
4783 ret = -ENOMEM;
4784 parent = rbd_dev_create(rbdc, parent_spec);
4785 if (!parent)
4786 goto out_err;
4787
4788 ret = rbd_dev_image_probe(parent, false);
4789 if (ret < 0)
4790 goto out_err;
4791 rbd_dev->parent = parent;
4792 atomic_set(&rbd_dev->parent_ref, 1);
4793
4794 return 0;
4795 out_err:
4796 if (parent) {
4797 rbd_dev_unparent(rbd_dev);
4798 kfree(rbd_dev->header_name);
4799 rbd_dev_destroy(parent);
4800 } else {
4801 rbd_put_client(rbdc);
4802 rbd_spec_put(parent_spec);
4803 }
4804
4805 return ret;
4806 }
4807
4808 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4809 {
4810 int ret;
4811
4812 /* generate unique id: find highest unique id, add one */
4813 rbd_dev_id_get(rbd_dev);
4814
4815 /* Fill in the device name, now that we have its id. */
4816 BUILD_BUG_ON(DEV_NAME_LEN
4817 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4818 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4819
4820 /* Get our block major device number. */
4821
4822 ret = register_blkdev(0, rbd_dev->name);
4823 if (ret < 0)
4824 goto err_out_id;
4825 rbd_dev->major = ret;
4826
4827 /* Set up the blkdev mapping. */
4828
4829 ret = rbd_init_disk(rbd_dev);
4830 if (ret)
4831 goto err_out_blkdev;
4832
4833 ret = rbd_dev_mapping_set(rbd_dev);
4834 if (ret)
4835 goto err_out_disk;
4836 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4837
4838 ret = rbd_bus_add_dev(rbd_dev);
4839 if (ret)
4840 goto err_out_mapping;
4841
4842 /* Everything's ready. Announce the disk to the world. */
4843
4844 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4845 add_disk(rbd_dev->disk);
4846
4847 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4848 (unsigned long long) rbd_dev->mapping.size);
4849
4850 return ret;
4851
4852 err_out_mapping:
4853 rbd_dev_mapping_clear(rbd_dev);
4854 err_out_disk:
4855 rbd_free_disk(rbd_dev);
4856 err_out_blkdev:
4857 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4858 err_out_id:
4859 rbd_dev_id_put(rbd_dev);
4860 rbd_dev_mapping_clear(rbd_dev);
4861
4862 return ret;
4863 }
4864
4865 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4866 {
4867 struct rbd_spec *spec = rbd_dev->spec;
4868 size_t size;
4869
4870 /* Record the header object name for this rbd image. */
4871
4872 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4873
4874 if (rbd_dev->image_format == 1)
4875 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4876 else
4877 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4878
4879 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4880 if (!rbd_dev->header_name)
4881 return -ENOMEM;
4882
4883 if (rbd_dev->image_format == 1)
4884 sprintf(rbd_dev->header_name, "%s%s",
4885 spec->image_name, RBD_SUFFIX);
4886 else
4887 sprintf(rbd_dev->header_name, "%s%s",
4888 RBD_HEADER_PREFIX, spec->image_id);
4889 return 0;
4890 }
4891
4892 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4893 {
4894 rbd_dev_unprobe(rbd_dev);
4895 kfree(rbd_dev->header_name);
4896 rbd_dev->header_name = NULL;
4897 rbd_dev->image_format = 0;
4898 kfree(rbd_dev->spec->image_id);
4899 rbd_dev->spec->image_id = NULL;
4900
4901 rbd_dev_destroy(rbd_dev);
4902 }
4903
4904 /*
4905 * Probe for the existence of the header object for the given rbd
4906 * device. If this image is the one being mapped (i.e., not a
4907 * parent), initiate a watch on its header object before using that
4908 * object to get detailed information about the rbd image.
4909 */
4910 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4911 {
4912 int ret;
4913 int tmp;
4914
4915 /*
4916 * Get the id from the image id object. Unless there's an
4917 * error, rbd_dev->spec->image_id will be filled in with
4918 * a dynamically-allocated string, and rbd_dev->image_format
4919 * will be set to either 1 or 2.
4920 */
4921 ret = rbd_dev_image_id(rbd_dev);
4922 if (ret)
4923 return ret;
4924 rbd_assert(rbd_dev->spec->image_id);
4925 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4926
4927 ret = rbd_dev_header_name(rbd_dev);
4928 if (ret)
4929 goto err_out_format;
4930
4931 if (mapping) {
4932 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4933 if (ret)
4934 goto out_header_name;
4935 }
4936
4937 if (rbd_dev->image_format == 1)
4938 ret = rbd_dev_v1_header_info(rbd_dev);
4939 else
4940 ret = rbd_dev_v2_header_info(rbd_dev);
4941 if (ret)
4942 goto err_out_watch;
4943
4944 ret = rbd_dev_spec_update(rbd_dev);
4945 if (ret)
4946 goto err_out_probe;
4947
4948 ret = rbd_dev_probe_parent(rbd_dev);
4949 if (ret)
4950 goto err_out_probe;
4951
4952 dout("discovered format %u image, header name is %s\n",
4953 rbd_dev->image_format, rbd_dev->header_name);
4954
4955 return 0;
4956 err_out_probe:
4957 rbd_dev_unprobe(rbd_dev);
4958 err_out_watch:
4959 if (mapping) {
4960 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4961 if (tmp)
4962 rbd_warn(rbd_dev, "unable to tear down "
4963 "watch request (%d)\n", tmp);
4964 }
4965 out_header_name:
4966 kfree(rbd_dev->header_name);
4967 rbd_dev->header_name = NULL;
4968 err_out_format:
4969 rbd_dev->image_format = 0;
4970 kfree(rbd_dev->spec->image_id);
4971 rbd_dev->spec->image_id = NULL;
4972
4973 dout("probe failed, returning %d\n", ret);
4974
4975 return ret;
4976 }
4977
4978 static ssize_t rbd_add(struct bus_type *bus,
4979 const char *buf,
4980 size_t count)
4981 {
4982 struct rbd_device *rbd_dev = NULL;
4983 struct ceph_options *ceph_opts = NULL;
4984 struct rbd_options *rbd_opts = NULL;
4985 struct rbd_spec *spec = NULL;
4986 struct rbd_client *rbdc;
4987 struct ceph_osd_client *osdc;
4988 bool read_only;
4989 int rc = -ENOMEM;
4990
4991 if (!try_module_get(THIS_MODULE))
4992 return -ENODEV;
4993
4994 /* parse add command */
4995 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4996 if (rc < 0)
4997 goto err_out_module;
4998 read_only = rbd_opts->read_only;
4999 kfree(rbd_opts);
5000 rbd_opts = NULL; /* done with this */
5001
5002 rbdc = rbd_get_client(ceph_opts);
5003 if (IS_ERR(rbdc)) {
5004 rc = PTR_ERR(rbdc);
5005 goto err_out_args;
5006 }
5007
5008 /* pick the pool */
5009 osdc = &rbdc->client->osdc;
5010 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5011 if (rc < 0)
5012 goto err_out_client;
5013 spec->pool_id = (u64)rc;
5014
5015 /* The ceph file layout needs to fit pool id in 32 bits */
5016
5017 if (spec->pool_id > (u64)U32_MAX) {
5018 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5019 (unsigned long long)spec->pool_id, U32_MAX);
5020 rc = -EIO;
5021 goto err_out_client;
5022 }
5023
5024 rbd_dev = rbd_dev_create(rbdc, spec);
5025 if (!rbd_dev)
5026 goto err_out_client;
5027 rbdc = NULL; /* rbd_dev now owns this */
5028 spec = NULL; /* rbd_dev now owns this */
5029
5030 rc = rbd_dev_image_probe(rbd_dev, true);
5031 if (rc < 0)
5032 goto err_out_rbd_dev;
5033
5034 /* If we are mapping a snapshot it must be marked read-only */
5035
5036 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5037 read_only = true;
5038 rbd_dev->mapping.read_only = read_only;
5039
5040 rc = rbd_dev_device_setup(rbd_dev);
5041 if (rc) {
5042 rbd_dev_image_release(rbd_dev);
5043 goto err_out_module;
5044 }
5045
5046 return count;
5047
5048 err_out_rbd_dev:
5049 rbd_dev_destroy(rbd_dev);
5050 err_out_client:
5051 rbd_put_client(rbdc);
5052 err_out_args:
5053 rbd_spec_put(spec);
5054 err_out_module:
5055 module_put(THIS_MODULE);
5056
5057 dout("Error adding device %s\n", buf);
5058
5059 return (ssize_t)rc;
5060 }
5061
5062 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5063 {
5064 struct list_head *tmp;
5065 struct rbd_device *rbd_dev;
5066
5067 spin_lock(&rbd_dev_list_lock);
5068 list_for_each(tmp, &rbd_dev_list) {
5069 rbd_dev = list_entry(tmp, struct rbd_device, node);
5070 if (rbd_dev->dev_id == dev_id) {
5071 spin_unlock(&rbd_dev_list_lock);
5072 return rbd_dev;
5073 }
5074 }
5075 spin_unlock(&rbd_dev_list_lock);
5076 return NULL;
5077 }
5078
5079 static void rbd_dev_device_release(struct device *dev)
5080 {
5081 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5082
5083 rbd_free_disk(rbd_dev);
5084 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5085 rbd_dev_mapping_clear(rbd_dev);
5086 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5087 rbd_dev->major = 0;
5088 rbd_dev_id_put(rbd_dev);
5089 rbd_dev_mapping_clear(rbd_dev);
5090 }
5091
5092 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5093 {
5094 while (rbd_dev->parent) {
5095 struct rbd_device *first = rbd_dev;
5096 struct rbd_device *second = first->parent;
5097 struct rbd_device *third;
5098
5099 /*
5100 * Follow to the parent with no grandparent and
5101 * remove it.
5102 */
5103 while (second && (third = second->parent)) {
5104 first = second;
5105 second = third;
5106 }
5107 rbd_assert(second);
5108 rbd_dev_image_release(second);
5109 first->parent = NULL;
5110 first->parent_overlap = 0;
5111
5112 rbd_assert(first->parent_spec);
5113 rbd_spec_put(first->parent_spec);
5114 first->parent_spec = NULL;
5115 }
5116 }
5117
5118 static ssize_t rbd_remove(struct bus_type *bus,
5119 const char *buf,
5120 size_t count)
5121 {
5122 struct rbd_device *rbd_dev = NULL;
5123 int target_id;
5124 unsigned long ul;
5125 int ret;
5126
5127 ret = strict_strtoul(buf, 10, &ul);
5128 if (ret)
5129 return ret;
5130
5131 /* convert to int; abort if we lost anything in the conversion */
5132 target_id = (int) ul;
5133 if (target_id != ul)
5134 return -EINVAL;
5135
5136 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5137
5138 rbd_dev = __rbd_get_dev(target_id);
5139 if (!rbd_dev) {
5140 ret = -ENOENT;
5141 goto done;
5142 }
5143
5144 spin_lock_irq(&rbd_dev->lock);
5145 if (rbd_dev->open_count)
5146 ret = -EBUSY;
5147 else
5148 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5149 spin_unlock_irq(&rbd_dev->lock);
5150 if (ret < 0)
5151 goto done;
5152 rbd_bus_del_dev(rbd_dev);
5153 ret = rbd_dev_header_watch_sync(rbd_dev, false);
5154 if (ret)
5155 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5156 rbd_dev_image_release(rbd_dev);
5157 module_put(THIS_MODULE);
5158 ret = count;
5159 done:
5160 mutex_unlock(&ctl_mutex);
5161
5162 return ret;
5163 }
5164
5165 /*
5166 * create control files in sysfs
5167 * /sys/bus/rbd/...
5168 */
5169 static int rbd_sysfs_init(void)
5170 {
5171 int ret;
5172
5173 ret = device_register(&rbd_root_dev);
5174 if (ret < 0)
5175 return ret;
5176
5177 ret = bus_register(&rbd_bus_type);
5178 if (ret < 0)
5179 device_unregister(&rbd_root_dev);
5180
5181 return ret;
5182 }
5183
5184 static void rbd_sysfs_cleanup(void)
5185 {
5186 bus_unregister(&rbd_bus_type);
5187 device_unregister(&rbd_root_dev);
5188 }
5189
5190 static int rbd_slab_init(void)
5191 {
5192 rbd_assert(!rbd_img_request_cache);
5193 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5194 sizeof (struct rbd_img_request),
5195 __alignof__(struct rbd_img_request),
5196 0, NULL);
5197 if (!rbd_img_request_cache)
5198 return -ENOMEM;
5199
5200 rbd_assert(!rbd_obj_request_cache);
5201 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5202 sizeof (struct rbd_obj_request),
5203 __alignof__(struct rbd_obj_request),
5204 0, NULL);
5205 if (!rbd_obj_request_cache)
5206 goto out_err;
5207
5208 rbd_assert(!rbd_segment_name_cache);
5209 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5210 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5211 if (rbd_segment_name_cache)
5212 return 0;
5213 out_err:
5214 if (rbd_obj_request_cache) {
5215 kmem_cache_destroy(rbd_obj_request_cache);
5216 rbd_obj_request_cache = NULL;
5217 }
5218
5219 kmem_cache_destroy(rbd_img_request_cache);
5220 rbd_img_request_cache = NULL;
5221
5222 return -ENOMEM;
5223 }
5224
5225 static void rbd_slab_exit(void)
5226 {
5227 rbd_assert(rbd_segment_name_cache);
5228 kmem_cache_destroy(rbd_segment_name_cache);
5229 rbd_segment_name_cache = NULL;
5230
5231 rbd_assert(rbd_obj_request_cache);
5232 kmem_cache_destroy(rbd_obj_request_cache);
5233 rbd_obj_request_cache = NULL;
5234
5235 rbd_assert(rbd_img_request_cache);
5236 kmem_cache_destroy(rbd_img_request_cache);
5237 rbd_img_request_cache = NULL;
5238 }
5239
5240 static int __init rbd_init(void)
5241 {
5242 int rc;
5243
5244 if (!libceph_compatible(NULL)) {
5245 rbd_warn(NULL, "libceph incompatibility (quitting)");
5246
5247 return -EINVAL;
5248 }
5249 rc = rbd_slab_init();
5250 if (rc)
5251 return rc;
5252 rc = rbd_sysfs_init();
5253 if (rc)
5254 rbd_slab_exit();
5255 else
5256 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5257
5258 return rc;
5259 }
5260
5261 static void __exit rbd_exit(void)
5262 {
5263 rbd_sysfs_cleanup();
5264 rbd_slab_exit();
5265 }
5266
5267 module_init(rbd_init);
5268 module_exit(rbd_exit);
5269
5270 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5271 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5272 MODULE_DESCRIPTION("rados block device");
5273
5274 /* following authorship retained from original osdblk.c */
5275 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5276
5277 MODULE_LICENSE("GPL");