drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / crypto / cryptd.c
1 /*
2 * Software async crypto daemon.
3 *
4 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * Added AEAD support to cryptd.
7 * Authors: Tadeusz Struk (tadeusz.struk@intel.com)
8 * Adrian Hoban <adrian.hoban@intel.com>
9 * Gabriele Paoloni <gabriele.paoloni@intel.com>
10 * Aidan O'Mahony (aidan.o.mahony@intel.com)
11 * Copyright (c) 2010, Intel Corporation.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
16 * any later version.
17 *
18 */
19
20 #include <crypto/algapi.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/internal/aead.h>
23 #include <crypto/cryptd.h>
24 #include <crypto/crypto_wq.h>
25 #include <linux/err.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/list.h>
29 #include <linux/module.h>
30 #include <linux/scatterlist.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33
34 #define CRYPTD_MAX_CPU_QLEN 100
35
36 struct cryptd_cpu_queue {
37 struct crypto_queue queue;
38 struct work_struct work;
39 };
40
41 struct cryptd_queue {
42 struct cryptd_cpu_queue __percpu *cpu_queue;
43 };
44
45 struct cryptd_instance_ctx {
46 struct crypto_spawn spawn;
47 struct cryptd_queue *queue;
48 };
49
50 struct hashd_instance_ctx {
51 struct crypto_shash_spawn spawn;
52 struct cryptd_queue *queue;
53 };
54
55 struct aead_instance_ctx {
56 struct crypto_aead_spawn aead_spawn;
57 struct cryptd_queue *queue;
58 };
59
60 struct cryptd_blkcipher_ctx {
61 struct crypto_blkcipher *child;
62 };
63
64 struct cryptd_blkcipher_request_ctx {
65 crypto_completion_t complete;
66 };
67
68 struct cryptd_hash_ctx {
69 struct crypto_shash *child;
70 };
71
72 struct cryptd_hash_request_ctx {
73 crypto_completion_t complete;
74 struct shash_desc desc;
75 };
76
77 struct cryptd_aead_ctx {
78 struct crypto_aead *child;
79 };
80
81 struct cryptd_aead_request_ctx {
82 crypto_completion_t complete;
83 };
84
85 static void cryptd_queue_worker(struct work_struct *work);
86
87 static int cryptd_init_queue(struct cryptd_queue *queue,
88 unsigned int max_cpu_qlen)
89 {
90 int cpu;
91 struct cryptd_cpu_queue *cpu_queue;
92
93 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
94 if (!queue->cpu_queue)
95 return -ENOMEM;
96 for_each_possible_cpu(cpu) {
97 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
98 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
99 INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
100 }
101 return 0;
102 }
103
104 static void cryptd_fini_queue(struct cryptd_queue *queue)
105 {
106 int cpu;
107 struct cryptd_cpu_queue *cpu_queue;
108
109 for_each_possible_cpu(cpu) {
110 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
111 BUG_ON(cpu_queue->queue.qlen);
112 }
113 free_percpu(queue->cpu_queue);
114 }
115
116 static int cryptd_enqueue_request(struct cryptd_queue *queue,
117 struct crypto_async_request *request)
118 {
119 int cpu, err;
120 struct cryptd_cpu_queue *cpu_queue;
121
122 cpu = get_cpu();
123 cpu_queue = this_cpu_ptr(queue->cpu_queue);
124 err = crypto_enqueue_request(&cpu_queue->queue, request);
125 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
126 put_cpu();
127
128 return err;
129 }
130
131 /* Called in workqueue context, do one real cryption work (via
132 * req->complete) and reschedule itself if there are more work to
133 * do. */
134 static void cryptd_queue_worker(struct work_struct *work)
135 {
136 struct cryptd_cpu_queue *cpu_queue;
137 struct crypto_async_request *req, *backlog;
138
139 cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
140 /*
141 * Only handle one request at a time to avoid hogging crypto workqueue.
142 * preempt_disable/enable is used to prevent being preempted by
143 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
144 * cryptd_enqueue_request() being accessed from software interrupts.
145 */
146 local_bh_disable();
147 preempt_disable();
148 backlog = crypto_get_backlog(&cpu_queue->queue);
149 req = crypto_dequeue_request(&cpu_queue->queue);
150 preempt_enable();
151 local_bh_enable();
152
153 if (!req)
154 return;
155
156 if (backlog)
157 backlog->complete(backlog, -EINPROGRESS);
158 req->complete(req, 0);
159
160 if (cpu_queue->queue.qlen)
161 queue_work(kcrypto_wq, &cpu_queue->work);
162 }
163
164 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
165 {
166 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
167 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
168 return ictx->queue;
169 }
170
171 static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
172 const u8 *key, unsigned int keylen)
173 {
174 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
175 struct crypto_blkcipher *child = ctx->child;
176 int err;
177
178 crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
179 crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
180 CRYPTO_TFM_REQ_MASK);
181 err = crypto_blkcipher_setkey(child, key, keylen);
182 crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
183 CRYPTO_TFM_RES_MASK);
184 return err;
185 }
186
187 static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
188 struct crypto_blkcipher *child,
189 int err,
190 int (*crypt)(struct blkcipher_desc *desc,
191 struct scatterlist *dst,
192 struct scatterlist *src,
193 unsigned int len))
194 {
195 struct cryptd_blkcipher_request_ctx *rctx;
196 struct blkcipher_desc desc;
197
198 rctx = ablkcipher_request_ctx(req);
199
200 if (unlikely(err == -EINPROGRESS))
201 goto out;
202
203 desc.tfm = child;
204 desc.info = req->info;
205 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
206
207 err = crypt(&desc, req->dst, req->src, req->nbytes);
208
209 req->base.complete = rctx->complete;
210
211 out:
212 local_bh_disable();
213 rctx->complete(&req->base, err);
214 local_bh_enable();
215 }
216
217 static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
218 {
219 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
220 struct crypto_blkcipher *child = ctx->child;
221
222 cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
223 crypto_blkcipher_crt(child)->encrypt);
224 }
225
226 static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
227 {
228 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
229 struct crypto_blkcipher *child = ctx->child;
230
231 cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
232 crypto_blkcipher_crt(child)->decrypt);
233 }
234
235 static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
236 crypto_completion_t complete)
237 {
238 struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
239 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
240 struct cryptd_queue *queue;
241
242 queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
243 rctx->complete = req->base.complete;
244 req->base.complete = complete;
245
246 return cryptd_enqueue_request(queue, &req->base);
247 }
248
249 static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
250 {
251 return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
252 }
253
254 static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
255 {
256 return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
257 }
258
259 static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
260 {
261 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
262 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
263 struct crypto_spawn *spawn = &ictx->spawn;
264 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
265 struct crypto_blkcipher *cipher;
266
267 cipher = crypto_spawn_blkcipher(spawn);
268 if (IS_ERR(cipher))
269 return PTR_ERR(cipher);
270
271 ctx->child = cipher;
272 tfm->crt_ablkcipher.reqsize =
273 sizeof(struct cryptd_blkcipher_request_ctx);
274 return 0;
275 }
276
277 static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
278 {
279 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
280
281 crypto_free_blkcipher(ctx->child);
282 }
283
284 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
285 unsigned int tail)
286 {
287 char *p;
288 struct crypto_instance *inst;
289 int err;
290
291 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
292 if (!p)
293 return ERR_PTR(-ENOMEM);
294
295 inst = (void *)(p + head);
296
297 err = -ENAMETOOLONG;
298 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
299 "cryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
300 goto out_free_inst;
301
302 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
303
304 inst->alg.cra_priority = alg->cra_priority + 50;
305 inst->alg.cra_blocksize = alg->cra_blocksize;
306 inst->alg.cra_alignmask = alg->cra_alignmask;
307
308 out:
309 return p;
310
311 out_free_inst:
312 kfree(p);
313 p = ERR_PTR(err);
314 goto out;
315 }
316
317 static int cryptd_create_blkcipher(struct crypto_template *tmpl,
318 struct rtattr **tb,
319 struct cryptd_queue *queue)
320 {
321 struct cryptd_instance_ctx *ctx;
322 struct crypto_instance *inst;
323 struct crypto_alg *alg;
324 int err;
325
326 alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_BLKCIPHER,
327 CRYPTO_ALG_TYPE_MASK);
328 if (IS_ERR(alg))
329 return PTR_ERR(alg);
330
331 inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
332 err = PTR_ERR(inst);
333 if (IS_ERR(inst))
334 goto out_put_alg;
335
336 ctx = crypto_instance_ctx(inst);
337 ctx->queue = queue;
338
339 err = crypto_init_spawn(&ctx->spawn, alg, inst,
340 CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
341 if (err)
342 goto out_free_inst;
343
344 inst->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
345 inst->alg.cra_type = &crypto_ablkcipher_type;
346
347 inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
348 inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
349 inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;
350
351 inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;
352
353 inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);
354
355 inst->alg.cra_init = cryptd_blkcipher_init_tfm;
356 inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;
357
358 inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
359 inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
360 inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;
361
362 err = crypto_register_instance(tmpl, inst);
363 if (err) {
364 crypto_drop_spawn(&ctx->spawn);
365 out_free_inst:
366 kfree(inst);
367 }
368
369 out_put_alg:
370 crypto_mod_put(alg);
371 return err;
372 }
373
374 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
375 {
376 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
377 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
378 struct crypto_shash_spawn *spawn = &ictx->spawn;
379 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
380 struct crypto_shash *hash;
381
382 hash = crypto_spawn_shash(spawn);
383 if (IS_ERR(hash))
384 return PTR_ERR(hash);
385
386 ctx->child = hash;
387 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
388 sizeof(struct cryptd_hash_request_ctx) +
389 crypto_shash_descsize(hash));
390 return 0;
391 }
392
393 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
394 {
395 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
396
397 crypto_free_shash(ctx->child);
398 }
399
400 static int cryptd_hash_setkey(struct crypto_ahash *parent,
401 const u8 *key, unsigned int keylen)
402 {
403 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
404 struct crypto_shash *child = ctx->child;
405 int err;
406
407 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
408 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
409 CRYPTO_TFM_REQ_MASK);
410 err = crypto_shash_setkey(child, key, keylen);
411 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
412 CRYPTO_TFM_RES_MASK);
413 return err;
414 }
415
416 static int cryptd_hash_enqueue(struct ahash_request *req,
417 crypto_completion_t complete)
418 {
419 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
420 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
421 struct cryptd_queue *queue =
422 cryptd_get_queue(crypto_ahash_tfm(tfm));
423
424 rctx->complete = req->base.complete;
425 req->base.complete = complete;
426
427 return cryptd_enqueue_request(queue, &req->base);
428 }
429
430 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
431 {
432 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
433 struct crypto_shash *child = ctx->child;
434 struct ahash_request *req = ahash_request_cast(req_async);
435 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
436 struct shash_desc *desc = &rctx->desc;
437
438 if (unlikely(err == -EINPROGRESS))
439 goto out;
440
441 desc->tfm = child;
442 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
443
444 err = crypto_shash_init(desc);
445
446 req->base.complete = rctx->complete;
447
448 out:
449 local_bh_disable();
450 rctx->complete(&req->base, err);
451 local_bh_enable();
452 }
453
454 static int cryptd_hash_init_enqueue(struct ahash_request *req)
455 {
456 return cryptd_hash_enqueue(req, cryptd_hash_init);
457 }
458
459 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
460 {
461 struct ahash_request *req = ahash_request_cast(req_async);
462 struct cryptd_hash_request_ctx *rctx;
463
464 rctx = ahash_request_ctx(req);
465
466 if (unlikely(err == -EINPROGRESS))
467 goto out;
468
469 err = shash_ahash_update(req, &rctx->desc);
470
471 req->base.complete = rctx->complete;
472
473 out:
474 local_bh_disable();
475 rctx->complete(&req->base, err);
476 local_bh_enable();
477 }
478
479 static int cryptd_hash_update_enqueue(struct ahash_request *req)
480 {
481 return cryptd_hash_enqueue(req, cryptd_hash_update);
482 }
483
484 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
485 {
486 struct ahash_request *req = ahash_request_cast(req_async);
487 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
488
489 if (unlikely(err == -EINPROGRESS))
490 goto out;
491
492 err = crypto_shash_final(&rctx->desc, req->result);
493
494 req->base.complete = rctx->complete;
495
496 out:
497 local_bh_disable();
498 rctx->complete(&req->base, err);
499 local_bh_enable();
500 }
501
502 static int cryptd_hash_final_enqueue(struct ahash_request *req)
503 {
504 return cryptd_hash_enqueue(req, cryptd_hash_final);
505 }
506
507 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
508 {
509 struct ahash_request *req = ahash_request_cast(req_async);
510 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
511
512 if (unlikely(err == -EINPROGRESS))
513 goto out;
514
515 err = shash_ahash_finup(req, &rctx->desc);
516
517 req->base.complete = rctx->complete;
518
519 out:
520 local_bh_disable();
521 rctx->complete(&req->base, err);
522 local_bh_enable();
523 }
524
525 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
526 {
527 return cryptd_hash_enqueue(req, cryptd_hash_finup);
528 }
529
530 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
531 {
532 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
533 struct crypto_shash *child = ctx->child;
534 struct ahash_request *req = ahash_request_cast(req_async);
535 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
536 struct shash_desc *desc = &rctx->desc;
537
538 if (unlikely(err == -EINPROGRESS))
539 goto out;
540
541 desc->tfm = child;
542 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
543
544 err = shash_ahash_digest(req, desc);
545
546 req->base.complete = rctx->complete;
547
548 out:
549 local_bh_disable();
550 rctx->complete(&req->base, err);
551 local_bh_enable();
552 }
553
554 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
555 {
556 return cryptd_hash_enqueue(req, cryptd_hash_digest);
557 }
558
559 static int cryptd_hash_export(struct ahash_request *req, void *out)
560 {
561 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
562
563 return crypto_shash_export(&rctx->desc, out);
564 }
565
566 static int cryptd_hash_import(struct ahash_request *req, const void *in)
567 {
568 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
569 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
570 struct shash_desc *desc = cryptd_shash_desc(req);
571
572 desc->tfm = ctx->child;
573 desc->flags = req->base.flags;
574
575 return crypto_shash_import(desc, in);
576 }
577
578 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
579 struct cryptd_queue *queue)
580 {
581 struct hashd_instance_ctx *ctx;
582 struct ahash_instance *inst;
583 struct shash_alg *salg;
584 struct crypto_alg *alg;
585 int err;
586
587 salg = shash_attr_alg(tb[1], 0, 0);
588 if (IS_ERR(salg))
589 return PTR_ERR(salg);
590
591 alg = &salg->base;
592 inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
593 sizeof(*ctx));
594 err = PTR_ERR(inst);
595 if (IS_ERR(inst))
596 goto out_put_alg;
597
598 ctx = ahash_instance_ctx(inst);
599 ctx->queue = queue;
600
601 err = crypto_init_shash_spawn(&ctx->spawn, salg,
602 ahash_crypto_instance(inst));
603 if (err)
604 goto out_free_inst;
605
606 inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC;
607
608 inst->alg.halg.digestsize = salg->digestsize;
609 inst->alg.halg.statesize = salg->statesize;
610 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
611
612 inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
613 inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
614
615 inst->alg.init = cryptd_hash_init_enqueue;
616 inst->alg.update = cryptd_hash_update_enqueue;
617 inst->alg.final = cryptd_hash_final_enqueue;
618 inst->alg.finup = cryptd_hash_finup_enqueue;
619 inst->alg.export = cryptd_hash_export;
620 inst->alg.import = cryptd_hash_import;
621 inst->alg.setkey = cryptd_hash_setkey;
622 inst->alg.digest = cryptd_hash_digest_enqueue;
623
624 err = ahash_register_instance(tmpl, inst);
625 if (err) {
626 crypto_drop_shash(&ctx->spawn);
627 out_free_inst:
628 kfree(inst);
629 }
630
631 out_put_alg:
632 crypto_mod_put(alg);
633 return err;
634 }
635
636 static void cryptd_aead_crypt(struct aead_request *req,
637 struct crypto_aead *child,
638 int err,
639 int (*crypt)(struct aead_request *req))
640 {
641 struct cryptd_aead_request_ctx *rctx;
642 rctx = aead_request_ctx(req);
643
644 if (unlikely(err == -EINPROGRESS))
645 goto out;
646 aead_request_set_tfm(req, child);
647 err = crypt( req );
648 req->base.complete = rctx->complete;
649 out:
650 local_bh_disable();
651 rctx->complete(&req->base, err);
652 local_bh_enable();
653 }
654
655 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
656 {
657 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
658 struct crypto_aead *child = ctx->child;
659 struct aead_request *req;
660
661 req = container_of(areq, struct aead_request, base);
662 cryptd_aead_crypt(req, child, err, crypto_aead_crt(child)->encrypt);
663 }
664
665 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
666 {
667 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
668 struct crypto_aead *child = ctx->child;
669 struct aead_request *req;
670
671 req = container_of(areq, struct aead_request, base);
672 cryptd_aead_crypt(req, child, err, crypto_aead_crt(child)->decrypt);
673 }
674
675 static int cryptd_aead_enqueue(struct aead_request *req,
676 crypto_completion_t complete)
677 {
678 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
679 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
680 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
681
682 rctx->complete = req->base.complete;
683 req->base.complete = complete;
684 return cryptd_enqueue_request(queue, &req->base);
685 }
686
687 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
688 {
689 return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
690 }
691
692 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
693 {
694 return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
695 }
696
697 static int cryptd_aead_init_tfm(struct crypto_tfm *tfm)
698 {
699 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
700 struct aead_instance_ctx *ictx = crypto_instance_ctx(inst);
701 struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
702 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(tfm);
703 struct crypto_aead *cipher;
704
705 cipher = crypto_spawn_aead(spawn);
706 if (IS_ERR(cipher))
707 return PTR_ERR(cipher);
708
709 crypto_aead_set_flags(cipher, CRYPTO_TFM_REQ_MAY_SLEEP);
710 ctx->child = cipher;
711 tfm->crt_aead.reqsize = sizeof(struct cryptd_aead_request_ctx);
712 return 0;
713 }
714
715 static void cryptd_aead_exit_tfm(struct crypto_tfm *tfm)
716 {
717 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(tfm);
718 crypto_free_aead(ctx->child);
719 }
720
721 static int cryptd_create_aead(struct crypto_template *tmpl,
722 struct rtattr **tb,
723 struct cryptd_queue *queue)
724 {
725 struct aead_instance_ctx *ctx;
726 struct crypto_instance *inst;
727 struct crypto_alg *alg;
728 int err;
729
730 alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_AEAD,
731 CRYPTO_ALG_TYPE_MASK);
732 if (IS_ERR(alg))
733 return PTR_ERR(alg);
734
735 inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
736 err = PTR_ERR(inst);
737 if (IS_ERR(inst))
738 goto out_put_alg;
739
740 ctx = crypto_instance_ctx(inst);
741 ctx->queue = queue;
742
743 err = crypto_init_spawn(&ctx->aead_spawn.base, alg, inst,
744 CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
745 if (err)
746 goto out_free_inst;
747
748 inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
749 inst->alg.cra_type = alg->cra_type;
750 inst->alg.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
751 inst->alg.cra_init = cryptd_aead_init_tfm;
752 inst->alg.cra_exit = cryptd_aead_exit_tfm;
753 inst->alg.cra_aead.setkey = alg->cra_aead.setkey;
754 inst->alg.cra_aead.setauthsize = alg->cra_aead.setauthsize;
755 inst->alg.cra_aead.geniv = alg->cra_aead.geniv;
756 inst->alg.cra_aead.ivsize = alg->cra_aead.ivsize;
757 inst->alg.cra_aead.maxauthsize = alg->cra_aead.maxauthsize;
758 inst->alg.cra_aead.encrypt = cryptd_aead_encrypt_enqueue;
759 inst->alg.cra_aead.decrypt = cryptd_aead_decrypt_enqueue;
760 inst->alg.cra_aead.givencrypt = alg->cra_aead.givencrypt;
761 inst->alg.cra_aead.givdecrypt = alg->cra_aead.givdecrypt;
762
763 err = crypto_register_instance(tmpl, inst);
764 if (err) {
765 crypto_drop_spawn(&ctx->aead_spawn.base);
766 out_free_inst:
767 kfree(inst);
768 }
769 out_put_alg:
770 crypto_mod_put(alg);
771 return err;
772 }
773
774 static struct cryptd_queue queue;
775
776 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
777 {
778 struct crypto_attr_type *algt;
779
780 algt = crypto_get_attr_type(tb);
781 if (IS_ERR(algt))
782 return PTR_ERR(algt);
783
784 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
785 case CRYPTO_ALG_TYPE_BLKCIPHER:
786 return cryptd_create_blkcipher(tmpl, tb, &queue);
787 case CRYPTO_ALG_TYPE_DIGEST:
788 return cryptd_create_hash(tmpl, tb, &queue);
789 case CRYPTO_ALG_TYPE_AEAD:
790 return cryptd_create_aead(tmpl, tb, &queue);
791 }
792
793 return -EINVAL;
794 }
795
796 static void cryptd_free(struct crypto_instance *inst)
797 {
798 struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
799 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
800 struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
801
802 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
803 case CRYPTO_ALG_TYPE_AHASH:
804 crypto_drop_shash(&hctx->spawn);
805 kfree(ahash_instance(inst));
806 return;
807 case CRYPTO_ALG_TYPE_AEAD:
808 crypto_drop_spawn(&aead_ctx->aead_spawn.base);
809 kfree(inst);
810 return;
811 default:
812 crypto_drop_spawn(&ctx->spawn);
813 kfree(inst);
814 }
815 }
816
817 static struct crypto_template cryptd_tmpl = {
818 .name = "cryptd",
819 .create = cryptd_create,
820 .free = cryptd_free,
821 .module = THIS_MODULE,
822 };
823
824 struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
825 u32 type, u32 mask)
826 {
827 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
828 struct crypto_tfm *tfm;
829
830 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
831 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
832 return ERR_PTR(-EINVAL);
833 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
834 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
835 mask &= ~CRYPTO_ALG_TYPE_MASK;
836 mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
837 tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
838 if (IS_ERR(tfm))
839 return ERR_CAST(tfm);
840 if (tfm->__crt_alg->cra_module != THIS_MODULE) {
841 crypto_free_tfm(tfm);
842 return ERR_PTR(-EINVAL);
843 }
844
845 return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
846 }
847 EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);
848
849 struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
850 {
851 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
852 return ctx->child;
853 }
854 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);
855
856 void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
857 {
858 crypto_free_ablkcipher(&tfm->base);
859 }
860 EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);
861
862 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
863 u32 type, u32 mask)
864 {
865 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
866 struct crypto_ahash *tfm;
867
868 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
869 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
870 return ERR_PTR(-EINVAL);
871 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
872 if (IS_ERR(tfm))
873 return ERR_CAST(tfm);
874 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
875 crypto_free_ahash(tfm);
876 return ERR_PTR(-EINVAL);
877 }
878
879 return __cryptd_ahash_cast(tfm);
880 }
881 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
882
883 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
884 {
885 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
886
887 return ctx->child;
888 }
889 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
890
891 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
892 {
893 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
894 return &rctx->desc;
895 }
896 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
897
898 void cryptd_free_ahash(struct cryptd_ahash *tfm)
899 {
900 crypto_free_ahash(&tfm->base);
901 }
902 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
903
904 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
905 u32 type, u32 mask)
906 {
907 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
908 struct crypto_aead *tfm;
909
910 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
911 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
912 return ERR_PTR(-EINVAL);
913 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
914 if (IS_ERR(tfm))
915 return ERR_CAST(tfm);
916 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
917 crypto_free_aead(tfm);
918 return ERR_PTR(-EINVAL);
919 }
920 return __cryptd_aead_cast(tfm);
921 }
922 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
923
924 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
925 {
926 struct cryptd_aead_ctx *ctx;
927 ctx = crypto_aead_ctx(&tfm->base);
928 return ctx->child;
929 }
930 EXPORT_SYMBOL_GPL(cryptd_aead_child);
931
932 void cryptd_free_aead(struct cryptd_aead *tfm)
933 {
934 crypto_free_aead(&tfm->base);
935 }
936 EXPORT_SYMBOL_GPL(cryptd_free_aead);
937
938 static int __init cryptd_init(void)
939 {
940 int err;
941
942 err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
943 if (err)
944 return err;
945
946 err = crypto_register_template(&cryptd_tmpl);
947 if (err)
948 cryptd_fini_queue(&queue);
949
950 return err;
951 }
952
953 static void __exit cryptd_exit(void)
954 {
955 cryptd_fini_queue(&queue);
956 crypto_unregister_template(&cryptd_tmpl);
957 }
958
959 subsys_initcall(cryptd_init);
960 module_exit(cryptd_exit);
961
962 MODULE_LICENSE("GPL");
963 MODULE_DESCRIPTION("Software async crypto daemon");
964 MODULE_ALIAS_CRYPTO("cryptd");