Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / mm / numa.c
1 /*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <linux/stop_machine.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/uaccess.h>
29 #include <linux/slab.h>
30 #include <asm/cputhreads.h>
31 #include <asm/sparsemem.h>
32 #include <asm/prom.h>
33 #include <asm/smp.h>
34 #include <asm/cputhreads.h>
35 #include <asm/topology.h>
36 #include <asm/firmware.h>
37 #include <asm/paca.h>
38 #include <asm/hvcall.h>
39 #include <asm/setup.h>
40 #include <asm/vdso.h>
41
42 static int numa_enabled = 1;
43
44 static char *cmdline __initdata;
45
46 static int numa_debug;
47 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
48
49 int numa_cpu_lookup_table[NR_CPUS];
50 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
51 struct pglist_data *node_data[MAX_NUMNODES];
52
53 EXPORT_SYMBOL(numa_cpu_lookup_table);
54 EXPORT_SYMBOL(node_to_cpumask_map);
55 EXPORT_SYMBOL(node_data);
56
57 static int min_common_depth;
58 static int n_mem_addr_cells, n_mem_size_cells;
59 static int form1_affinity;
60
61 #define MAX_DISTANCE_REF_POINTS 4
62 static int distance_ref_points_depth;
63 static const unsigned int *distance_ref_points;
64 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
65
66 /*
67 * Allocate node_to_cpumask_map based on number of available nodes
68 * Requires node_possible_map to be valid.
69 *
70 * Note: cpumask_of_node() is not valid until after this is done.
71 */
72 static void __init setup_node_to_cpumask_map(void)
73 {
74 unsigned int node;
75
76 /* setup nr_node_ids if not done yet */
77 if (nr_node_ids == MAX_NUMNODES)
78 setup_nr_node_ids();
79
80 /* allocate the map */
81 for (node = 0; node < nr_node_ids; node++)
82 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
83
84 /* cpumask_of_node() will now work */
85 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
86 }
87
88 static int __init fake_numa_create_new_node(unsigned long end_pfn,
89 unsigned int *nid)
90 {
91 unsigned long long mem;
92 char *p = cmdline;
93 static unsigned int fake_nid;
94 static unsigned long long curr_boundary;
95
96 /*
97 * Modify node id, iff we started creating NUMA nodes
98 * We want to continue from where we left of the last time
99 */
100 if (fake_nid)
101 *nid = fake_nid;
102 /*
103 * In case there are no more arguments to parse, the
104 * node_id should be the same as the last fake node id
105 * (we've handled this above).
106 */
107 if (!p)
108 return 0;
109
110 mem = memparse(p, &p);
111 if (!mem)
112 return 0;
113
114 if (mem < curr_boundary)
115 return 0;
116
117 curr_boundary = mem;
118
119 if ((end_pfn << PAGE_SHIFT) > mem) {
120 /*
121 * Skip commas and spaces
122 */
123 while (*p == ',' || *p == ' ' || *p == '\t')
124 p++;
125
126 cmdline = p;
127 fake_nid++;
128 *nid = fake_nid;
129 dbg("created new fake_node with id %d\n", fake_nid);
130 return 1;
131 }
132 return 0;
133 }
134
135 /*
136 * get_node_active_region - Return active region containing pfn
137 * Active range returned is empty if none found.
138 * @pfn: The page to return the region for
139 * @node_ar: Returned set to the active region containing @pfn
140 */
141 static void __init get_node_active_region(unsigned long pfn,
142 struct node_active_region *node_ar)
143 {
144 unsigned long start_pfn, end_pfn;
145 int i, nid;
146
147 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
148 if (pfn >= start_pfn && pfn < end_pfn) {
149 node_ar->nid = nid;
150 node_ar->start_pfn = start_pfn;
151 node_ar->end_pfn = end_pfn;
152 break;
153 }
154 }
155 }
156
157 static void reset_numa_cpu_lookup_table(void)
158 {
159 unsigned int cpu;
160
161 for_each_possible_cpu(cpu)
162 numa_cpu_lookup_table[cpu] = -1;
163 }
164
165 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
166 {
167 numa_cpu_lookup_table[cpu] = node;
168 }
169
170 static void map_cpu_to_node(int cpu, int node)
171 {
172 update_numa_cpu_lookup_table(cpu, node);
173
174 dbg("adding cpu %d to node %d\n", cpu, node);
175
176 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
177 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
178 }
179
180 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
181 static void unmap_cpu_from_node(unsigned long cpu)
182 {
183 int node = numa_cpu_lookup_table[cpu];
184
185 dbg("removing cpu %lu from node %d\n", cpu, node);
186
187 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
188 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
189 } else {
190 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
191 cpu, node);
192 }
193 }
194 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
195
196 /* must hold reference to node during call */
197 static const int *of_get_associativity(struct device_node *dev)
198 {
199 return of_get_property(dev, "ibm,associativity", NULL);
200 }
201
202 /*
203 * Returns the property linux,drconf-usable-memory if
204 * it exists (the property exists only in kexec/kdump kernels,
205 * added by kexec-tools)
206 */
207 static const u32 *of_get_usable_memory(struct device_node *memory)
208 {
209 const u32 *prop;
210 u32 len;
211 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
212 if (!prop || len < sizeof(unsigned int))
213 return 0;
214 return prop;
215 }
216
217 int __node_distance(int a, int b)
218 {
219 int i;
220 int distance = LOCAL_DISTANCE;
221
222 if (!form1_affinity)
223 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
227 break;
228
229 /* Double the distance for each NUMA level */
230 distance *= 2;
231 }
232
233 return distance;
234 }
235
236 static void initialize_distance_lookup_table(int nid,
237 const unsigned int *associativity)
238 {
239 int i;
240
241 if (!form1_affinity)
242 return;
243
244 for (i = 0; i < distance_ref_points_depth; i++) {
245 distance_lookup_table[nid][i] =
246 associativity[distance_ref_points[i]];
247 }
248 }
249
250 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
251 * info is found.
252 */
253 static int associativity_to_nid(const unsigned int *associativity)
254 {
255 int nid = -1;
256
257 if (min_common_depth == -1)
258 goto out;
259
260 if (associativity[0] >= min_common_depth)
261 nid = associativity[min_common_depth];
262
263 /* POWER4 LPAR uses 0xffff as invalid node */
264 if (nid == 0xffff || nid >= MAX_NUMNODES)
265 nid = -1;
266
267 if (nid > 0 && associativity[0] >= distance_ref_points_depth)
268 initialize_distance_lookup_table(nid, associativity);
269
270 out:
271 return nid;
272 }
273
274 /* Returns the nid associated with the given device tree node,
275 * or -1 if not found.
276 */
277 static int of_node_to_nid_single(struct device_node *device)
278 {
279 int nid = -1;
280 const unsigned int *tmp;
281
282 tmp = of_get_associativity(device);
283 if (tmp)
284 nid = associativity_to_nid(tmp);
285 return nid;
286 }
287
288 /* Walk the device tree upwards, looking for an associativity id */
289 int of_node_to_nid(struct device_node *device)
290 {
291 struct device_node *tmp;
292 int nid = -1;
293
294 of_node_get(device);
295 while (device) {
296 nid = of_node_to_nid_single(device);
297 if (nid != -1)
298 break;
299
300 tmp = device;
301 device = of_get_parent(tmp);
302 of_node_put(tmp);
303 }
304 of_node_put(device);
305
306 return nid;
307 }
308 EXPORT_SYMBOL_GPL(of_node_to_nid);
309
310 static int __init find_min_common_depth(void)
311 {
312 int depth;
313 struct device_node *root;
314
315 if (firmware_has_feature(FW_FEATURE_OPAL))
316 root = of_find_node_by_path("/ibm,opal");
317 else
318 root = of_find_node_by_path("/rtas");
319 if (!root)
320 root = of_find_node_by_path("/");
321
322 /*
323 * This property is a set of 32-bit integers, each representing
324 * an index into the ibm,associativity nodes.
325 *
326 * With form 0 affinity the first integer is for an SMP configuration
327 * (should be all 0's) and the second is for a normal NUMA
328 * configuration. We have only one level of NUMA.
329 *
330 * With form 1 affinity the first integer is the most significant
331 * NUMA boundary and the following are progressively less significant
332 * boundaries. There can be more than one level of NUMA.
333 */
334 distance_ref_points = of_get_property(root,
335 "ibm,associativity-reference-points",
336 &distance_ref_points_depth);
337
338 if (!distance_ref_points) {
339 dbg("NUMA: ibm,associativity-reference-points not found.\n");
340 goto err;
341 }
342
343 distance_ref_points_depth /= sizeof(int);
344
345 if (firmware_has_feature(FW_FEATURE_OPAL) ||
346 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
347 dbg("Using form 1 affinity\n");
348 form1_affinity = 1;
349 }
350
351 if (form1_affinity) {
352 depth = distance_ref_points[0];
353 } else {
354 if (distance_ref_points_depth < 2) {
355 printk(KERN_WARNING "NUMA: "
356 "short ibm,associativity-reference-points\n");
357 goto err;
358 }
359
360 depth = distance_ref_points[1];
361 }
362
363 /*
364 * Warn and cap if the hardware supports more than
365 * MAX_DISTANCE_REF_POINTS domains.
366 */
367 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
368 printk(KERN_WARNING "NUMA: distance array capped at "
369 "%d entries\n", MAX_DISTANCE_REF_POINTS);
370 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
371 }
372
373 of_node_put(root);
374 return depth;
375
376 err:
377 of_node_put(root);
378 return -1;
379 }
380
381 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
382 {
383 struct device_node *memory = NULL;
384
385 memory = of_find_node_by_type(memory, "memory");
386 if (!memory)
387 panic("numa.c: No memory nodes found!");
388
389 *n_addr_cells = of_n_addr_cells(memory);
390 *n_size_cells = of_n_size_cells(memory);
391 of_node_put(memory);
392 }
393
394 static unsigned long read_n_cells(int n, const unsigned int **buf)
395 {
396 unsigned long result = 0;
397
398 while (n--) {
399 result = (result << 32) | **buf;
400 (*buf)++;
401 }
402 return result;
403 }
404
405 /*
406 * Read the next memblock list entry from the ibm,dynamic-memory property
407 * and return the information in the provided of_drconf_cell structure.
408 */
409 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
410 {
411 const u32 *cp;
412
413 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
414
415 cp = *cellp;
416 drmem->drc_index = cp[0];
417 drmem->reserved = cp[1];
418 drmem->aa_index = cp[2];
419 drmem->flags = cp[3];
420
421 *cellp = cp + 4;
422 }
423
424 /*
425 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
426 *
427 * The layout of the ibm,dynamic-memory property is a number N of memblock
428 * list entries followed by N memblock list entries. Each memblock list entry
429 * contains information as laid out in the of_drconf_cell struct above.
430 */
431 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
432 {
433 const u32 *prop;
434 u32 len, entries;
435
436 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
437 if (!prop || len < sizeof(unsigned int))
438 return 0;
439
440 entries = *prop++;
441
442 /* Now that we know the number of entries, revalidate the size
443 * of the property read in to ensure we have everything
444 */
445 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
446 return 0;
447
448 *dm = prop;
449 return entries;
450 }
451
452 /*
453 * Retrieve and validate the ibm,lmb-size property for drconf memory
454 * from the device tree.
455 */
456 static u64 of_get_lmb_size(struct device_node *memory)
457 {
458 const u32 *prop;
459 u32 len;
460
461 prop = of_get_property(memory, "ibm,lmb-size", &len);
462 if (!prop || len < sizeof(unsigned int))
463 return 0;
464
465 return read_n_cells(n_mem_size_cells, &prop);
466 }
467
468 struct assoc_arrays {
469 u32 n_arrays;
470 u32 array_sz;
471 const u32 *arrays;
472 };
473
474 /*
475 * Retrieve and validate the list of associativity arrays for drconf
476 * memory from the ibm,associativity-lookup-arrays property of the
477 * device tree..
478 *
479 * The layout of the ibm,associativity-lookup-arrays property is a number N
480 * indicating the number of associativity arrays, followed by a number M
481 * indicating the size of each associativity array, followed by a list
482 * of N associativity arrays.
483 */
484 static int of_get_assoc_arrays(struct device_node *memory,
485 struct assoc_arrays *aa)
486 {
487 const u32 *prop;
488 u32 len;
489
490 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
491 if (!prop || len < 2 * sizeof(unsigned int))
492 return -1;
493
494 aa->n_arrays = *prop++;
495 aa->array_sz = *prop++;
496
497 /* Now that we know the number of arrays and size of each array,
498 * revalidate the size of the property read in.
499 */
500 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
501 return -1;
502
503 aa->arrays = prop;
504 return 0;
505 }
506
507 /*
508 * This is like of_node_to_nid_single() for memory represented in the
509 * ibm,dynamic-reconfiguration-memory node.
510 */
511 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
512 struct assoc_arrays *aa)
513 {
514 int default_nid = 0;
515 int nid = default_nid;
516 int index;
517
518 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
519 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
520 drmem->aa_index < aa->n_arrays) {
521 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
522 nid = aa->arrays[index];
523
524 if (nid == 0xffff || nid >= MAX_NUMNODES)
525 nid = default_nid;
526 }
527
528 return nid;
529 }
530
531 /*
532 * Figure out to which domain a cpu belongs and stick it there.
533 * Return the id of the domain used.
534 */
535 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
536 {
537 int nid;
538 struct device_node *cpu;
539
540 /*
541 * If a valid cpu-to-node mapping is already available, use it
542 * directly instead of querying the firmware, since it represents
543 * the most recent mapping notified to us by the platform (eg: VPHN).
544 */
545 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
546 map_cpu_to_node(lcpu, nid);
547 return nid;
548 }
549
550 cpu = of_get_cpu_node(lcpu, NULL);
551
552 if (!cpu) {
553 WARN_ON(1);
554 nid = 0;
555 goto out;
556 }
557
558 nid = of_node_to_nid_single(cpu);
559
560 if (nid < 0 || !node_online(nid))
561 nid = first_online_node;
562 out:
563 map_cpu_to_node(lcpu, nid);
564
565 of_node_put(cpu);
566
567 return nid;
568 }
569
570 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
571 unsigned long action,
572 void *hcpu)
573 {
574 unsigned long lcpu = (unsigned long)hcpu;
575 int ret = NOTIFY_DONE;
576
577 switch (action) {
578 case CPU_UP_PREPARE:
579 case CPU_UP_PREPARE_FROZEN:
580 numa_setup_cpu(lcpu);
581 ret = NOTIFY_OK;
582 break;
583 #ifdef CONFIG_HOTPLUG_CPU
584 case CPU_DEAD:
585 case CPU_DEAD_FROZEN:
586 case CPU_UP_CANCELED:
587 case CPU_UP_CANCELED_FROZEN:
588 unmap_cpu_from_node(lcpu);
589 ret = NOTIFY_OK;
590 break;
591 #endif
592 }
593 return ret;
594 }
595
596 /*
597 * Check and possibly modify a memory region to enforce the memory limit.
598 *
599 * Returns the size the region should have to enforce the memory limit.
600 * This will either be the original value of size, a truncated value,
601 * or zero. If the returned value of size is 0 the region should be
602 * discarded as it lies wholly above the memory limit.
603 */
604 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
605 unsigned long size)
606 {
607 /*
608 * We use memblock_end_of_DRAM() in here instead of memory_limit because
609 * we've already adjusted it for the limit and it takes care of
610 * having memory holes below the limit. Also, in the case of
611 * iommu_is_off, memory_limit is not set but is implicitly enforced.
612 */
613
614 if (start + size <= memblock_end_of_DRAM())
615 return size;
616
617 if (start >= memblock_end_of_DRAM())
618 return 0;
619
620 return memblock_end_of_DRAM() - start;
621 }
622
623 /*
624 * Reads the counter for a given entry in
625 * linux,drconf-usable-memory property
626 */
627 static inline int __init read_usm_ranges(const u32 **usm)
628 {
629 /*
630 * For each lmb in ibm,dynamic-memory a corresponding
631 * entry in linux,drconf-usable-memory property contains
632 * a counter followed by that many (base, size) duple.
633 * read the counter from linux,drconf-usable-memory
634 */
635 return read_n_cells(n_mem_size_cells, usm);
636 }
637
638 /*
639 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
640 * node. This assumes n_mem_{addr,size}_cells have been set.
641 */
642 static void __init parse_drconf_memory(struct device_node *memory)
643 {
644 const u32 *uninitialized_var(dm), *usm;
645 unsigned int n, rc, ranges, is_kexec_kdump = 0;
646 unsigned long lmb_size, base, size, sz;
647 int nid;
648 struct assoc_arrays aa = { .arrays = NULL };
649
650 n = of_get_drconf_memory(memory, &dm);
651 if (!n)
652 return;
653
654 lmb_size = of_get_lmb_size(memory);
655 if (!lmb_size)
656 return;
657
658 rc = of_get_assoc_arrays(memory, &aa);
659 if (rc)
660 return;
661
662 /* check if this is a kexec/kdump kernel */
663 usm = of_get_usable_memory(memory);
664 if (usm != NULL)
665 is_kexec_kdump = 1;
666
667 for (; n != 0; --n) {
668 struct of_drconf_cell drmem;
669
670 read_drconf_cell(&drmem, &dm);
671
672 /* skip this block if the reserved bit is set in flags (0x80)
673 or if the block is not assigned to this partition (0x8) */
674 if ((drmem.flags & DRCONF_MEM_RESERVED)
675 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
676 continue;
677
678 base = drmem.base_addr;
679 size = lmb_size;
680 ranges = 1;
681
682 if (is_kexec_kdump) {
683 ranges = read_usm_ranges(&usm);
684 if (!ranges) /* there are no (base, size) duple */
685 continue;
686 }
687 do {
688 if (is_kexec_kdump) {
689 base = read_n_cells(n_mem_addr_cells, &usm);
690 size = read_n_cells(n_mem_size_cells, &usm);
691 }
692 nid = of_drconf_to_nid_single(&drmem, &aa);
693 fake_numa_create_new_node(
694 ((base + size) >> PAGE_SHIFT),
695 &nid);
696 node_set_online(nid);
697 sz = numa_enforce_memory_limit(base, size);
698 if (sz)
699 memblock_set_node(base, sz, nid);
700 } while (--ranges);
701 }
702 }
703
704 static int __init parse_numa_properties(void)
705 {
706 struct device_node *memory;
707 int default_nid = 0;
708 unsigned long i;
709
710 if (numa_enabled == 0) {
711 printk(KERN_WARNING "NUMA disabled by user\n");
712 return -1;
713 }
714
715 min_common_depth = find_min_common_depth();
716
717 if (min_common_depth < 0)
718 return min_common_depth;
719
720 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
721
722 /*
723 * Even though we connect cpus to numa domains later in SMP
724 * init, we need to know the node ids now. This is because
725 * each node to be onlined must have NODE_DATA etc backing it.
726 */
727 for_each_present_cpu(i) {
728 struct device_node *cpu;
729 int nid;
730
731 cpu = of_get_cpu_node(i, NULL);
732 BUG_ON(!cpu);
733 nid = of_node_to_nid_single(cpu);
734 of_node_put(cpu);
735
736 /*
737 * Don't fall back to default_nid yet -- we will plug
738 * cpus into nodes once the memory scan has discovered
739 * the topology.
740 */
741 if (nid < 0)
742 continue;
743 node_set_online(nid);
744 }
745
746 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
747
748 for_each_node_by_type(memory, "memory") {
749 unsigned long start;
750 unsigned long size;
751 int nid;
752 int ranges;
753 const unsigned int *memcell_buf;
754 unsigned int len;
755
756 memcell_buf = of_get_property(memory,
757 "linux,usable-memory", &len);
758 if (!memcell_buf || len <= 0)
759 memcell_buf = of_get_property(memory, "reg", &len);
760 if (!memcell_buf || len <= 0)
761 continue;
762
763 /* ranges in cell */
764 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
765 new_range:
766 /* these are order-sensitive, and modify the buffer pointer */
767 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
768 size = read_n_cells(n_mem_size_cells, &memcell_buf);
769
770 /*
771 * Assumption: either all memory nodes or none will
772 * have associativity properties. If none, then
773 * everything goes to default_nid.
774 */
775 nid = of_node_to_nid_single(memory);
776 if (nid < 0)
777 nid = default_nid;
778
779 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
780 node_set_online(nid);
781
782 if (!(size = numa_enforce_memory_limit(start, size))) {
783 if (--ranges)
784 goto new_range;
785 else
786 continue;
787 }
788
789 memblock_set_node(start, size, nid);
790
791 if (--ranges)
792 goto new_range;
793 }
794
795 /*
796 * Now do the same thing for each MEMBLOCK listed in the
797 * ibm,dynamic-memory property in the
798 * ibm,dynamic-reconfiguration-memory node.
799 */
800 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
801 if (memory)
802 parse_drconf_memory(memory);
803
804 return 0;
805 }
806
807 static void __init setup_nonnuma(void)
808 {
809 unsigned long top_of_ram = memblock_end_of_DRAM();
810 unsigned long total_ram = memblock_phys_mem_size();
811 unsigned long start_pfn, end_pfn;
812 unsigned int nid = 0;
813 struct memblock_region *reg;
814
815 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
816 top_of_ram, total_ram);
817 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
818 (top_of_ram - total_ram) >> 20);
819
820 for_each_memblock(memory, reg) {
821 start_pfn = memblock_region_memory_base_pfn(reg);
822 end_pfn = memblock_region_memory_end_pfn(reg);
823
824 fake_numa_create_new_node(end_pfn, &nid);
825 memblock_set_node(PFN_PHYS(start_pfn),
826 PFN_PHYS(end_pfn - start_pfn), nid);
827 node_set_online(nid);
828 }
829 }
830
831 void __init dump_numa_cpu_topology(void)
832 {
833 unsigned int node;
834 unsigned int cpu, count;
835
836 if (min_common_depth == -1 || !numa_enabled)
837 return;
838
839 for_each_online_node(node) {
840 printk(KERN_DEBUG "Node %d CPUs:", node);
841
842 count = 0;
843 /*
844 * If we used a CPU iterator here we would miss printing
845 * the holes in the cpumap.
846 */
847 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
848 if (cpumask_test_cpu(cpu,
849 node_to_cpumask_map[node])) {
850 if (count == 0)
851 printk(" %u", cpu);
852 ++count;
853 } else {
854 if (count > 1)
855 printk("-%u", cpu - 1);
856 count = 0;
857 }
858 }
859
860 if (count > 1)
861 printk("-%u", nr_cpu_ids - 1);
862 printk("\n");
863 }
864 }
865
866 static void __init dump_numa_memory_topology(void)
867 {
868 unsigned int node;
869 unsigned int count;
870
871 if (min_common_depth == -1 || !numa_enabled)
872 return;
873
874 for_each_online_node(node) {
875 unsigned long i;
876
877 printk(KERN_DEBUG "Node %d Memory:", node);
878
879 count = 0;
880
881 for (i = 0; i < memblock_end_of_DRAM();
882 i += (1 << SECTION_SIZE_BITS)) {
883 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
884 if (count == 0)
885 printk(" 0x%lx", i);
886 ++count;
887 } else {
888 if (count > 0)
889 printk("-0x%lx", i);
890 count = 0;
891 }
892 }
893
894 if (count > 0)
895 printk("-0x%lx", i);
896 printk("\n");
897 }
898 }
899
900 /*
901 * Allocate some memory, satisfying the memblock or bootmem allocator where
902 * required. nid is the preferred node and end is the physical address of
903 * the highest address in the node.
904 *
905 * Returns the virtual address of the memory.
906 */
907 static void __init *careful_zallocation(int nid, unsigned long size,
908 unsigned long align,
909 unsigned long end_pfn)
910 {
911 void *ret;
912 int new_nid;
913 unsigned long ret_paddr;
914
915 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
916
917 /* retry over all memory */
918 if (!ret_paddr)
919 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
920
921 if (!ret_paddr)
922 panic("numa.c: cannot allocate %lu bytes for node %d",
923 size, nid);
924
925 ret = __va(ret_paddr);
926
927 /*
928 * We initialize the nodes in numeric order: 0, 1, 2...
929 * and hand over control from the MEMBLOCK allocator to the
930 * bootmem allocator. If this function is called for
931 * node 5, then we know that all nodes <5 are using the
932 * bootmem allocator instead of the MEMBLOCK allocator.
933 *
934 * So, check the nid from which this allocation came
935 * and double check to see if we need to use bootmem
936 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
937 * since it would be useless.
938 */
939 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
940 if (new_nid < nid) {
941 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
942 size, align, 0);
943
944 dbg("alloc_bootmem %p %lx\n", ret, size);
945 }
946
947 memset(ret, 0, size);
948 return ret;
949 }
950
951 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
952 .notifier_call = cpu_numa_callback,
953 .priority = 1 /* Must run before sched domains notifier. */
954 };
955
956 static void __init mark_reserved_regions_for_nid(int nid)
957 {
958 struct pglist_data *node = NODE_DATA(nid);
959 struct memblock_region *reg;
960
961 for_each_memblock(reserved, reg) {
962 unsigned long physbase = reg->base;
963 unsigned long size = reg->size;
964 unsigned long start_pfn = physbase >> PAGE_SHIFT;
965 unsigned long end_pfn = PFN_UP(physbase + size);
966 struct node_active_region node_ar;
967 unsigned long node_end_pfn = node->node_start_pfn +
968 node->node_spanned_pages;
969
970 /*
971 * Check to make sure that this memblock.reserved area is
972 * within the bounds of the node that we care about.
973 * Checking the nid of the start and end points is not
974 * sufficient because the reserved area could span the
975 * entire node.
976 */
977 if (end_pfn <= node->node_start_pfn ||
978 start_pfn >= node_end_pfn)
979 continue;
980
981 get_node_active_region(start_pfn, &node_ar);
982 while (start_pfn < end_pfn &&
983 node_ar.start_pfn < node_ar.end_pfn) {
984 unsigned long reserve_size = size;
985 /*
986 * if reserved region extends past active region
987 * then trim size to active region
988 */
989 if (end_pfn > node_ar.end_pfn)
990 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
991 - physbase;
992 /*
993 * Only worry about *this* node, others may not
994 * yet have valid NODE_DATA().
995 */
996 if (node_ar.nid == nid) {
997 dbg("reserve_bootmem %lx %lx nid=%d\n",
998 physbase, reserve_size, node_ar.nid);
999 reserve_bootmem_node(NODE_DATA(node_ar.nid),
1000 physbase, reserve_size,
1001 BOOTMEM_DEFAULT);
1002 }
1003 /*
1004 * if reserved region is contained in the active region
1005 * then done.
1006 */
1007 if (end_pfn <= node_ar.end_pfn)
1008 break;
1009
1010 /*
1011 * reserved region extends past the active region
1012 * get next active region that contains this
1013 * reserved region
1014 */
1015 start_pfn = node_ar.end_pfn;
1016 physbase = start_pfn << PAGE_SHIFT;
1017 size = size - reserve_size;
1018 get_node_active_region(start_pfn, &node_ar);
1019 }
1020 }
1021 }
1022
1023
1024 void __init do_init_bootmem(void)
1025 {
1026 int nid;
1027
1028 min_low_pfn = 0;
1029 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1030 max_pfn = max_low_pfn;
1031
1032 if (parse_numa_properties())
1033 setup_nonnuma();
1034 else
1035 dump_numa_memory_topology();
1036
1037 for_each_online_node(nid) {
1038 unsigned long start_pfn, end_pfn;
1039 void *bootmem_vaddr;
1040 unsigned long bootmap_pages;
1041
1042 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1043
1044 /*
1045 * Allocate the node structure node local if possible
1046 *
1047 * Be careful moving this around, as it relies on all
1048 * previous nodes' bootmem to be initialized and have
1049 * all reserved areas marked.
1050 */
1051 NODE_DATA(nid) = careful_zallocation(nid,
1052 sizeof(struct pglist_data),
1053 SMP_CACHE_BYTES, end_pfn);
1054
1055 dbg("node %d\n", nid);
1056 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1057
1058 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1059 NODE_DATA(nid)->node_start_pfn = start_pfn;
1060 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1061
1062 if (NODE_DATA(nid)->node_spanned_pages == 0)
1063 continue;
1064
1065 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1066 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1067
1068 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1069 bootmem_vaddr = careful_zallocation(nid,
1070 bootmap_pages << PAGE_SHIFT,
1071 PAGE_SIZE, end_pfn);
1072
1073 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1074
1075 init_bootmem_node(NODE_DATA(nid),
1076 __pa(bootmem_vaddr) >> PAGE_SHIFT,
1077 start_pfn, end_pfn);
1078
1079 free_bootmem_with_active_regions(nid, end_pfn);
1080 /*
1081 * Be very careful about moving this around. Future
1082 * calls to careful_zallocation() depend on this getting
1083 * done correctly.
1084 */
1085 mark_reserved_regions_for_nid(nid);
1086 sparse_memory_present_with_active_regions(nid);
1087 }
1088
1089 init_bootmem_done = 1;
1090
1091 /*
1092 * Now bootmem is initialised we can create the node to cpumask
1093 * lookup tables and setup the cpu callback to populate them.
1094 */
1095 setup_node_to_cpumask_map();
1096
1097 reset_numa_cpu_lookup_table();
1098 register_cpu_notifier(&ppc64_numa_nb);
1099 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1100 (void *)(unsigned long)boot_cpuid);
1101 }
1102
1103 void __init paging_init(void)
1104 {
1105 unsigned long max_zone_pfns[MAX_NR_ZONES];
1106 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1107 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1108 free_area_init_nodes(max_zone_pfns);
1109 }
1110
1111 static int __init early_numa(char *p)
1112 {
1113 if (!p)
1114 return 0;
1115
1116 if (strstr(p, "off"))
1117 numa_enabled = 0;
1118
1119 if (strstr(p, "debug"))
1120 numa_debug = 1;
1121
1122 p = strstr(p, "fake=");
1123 if (p)
1124 cmdline = p + strlen("fake=");
1125
1126 return 0;
1127 }
1128 early_param("numa", early_numa);
1129
1130 #ifdef CONFIG_MEMORY_HOTPLUG
1131 /*
1132 * Find the node associated with a hot added memory section for
1133 * memory represented in the device tree by the property
1134 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1135 */
1136 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1137 unsigned long scn_addr)
1138 {
1139 const u32 *dm;
1140 unsigned int drconf_cell_cnt, rc;
1141 unsigned long lmb_size;
1142 struct assoc_arrays aa;
1143 int nid = -1;
1144
1145 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1146 if (!drconf_cell_cnt)
1147 return -1;
1148
1149 lmb_size = of_get_lmb_size(memory);
1150 if (!lmb_size)
1151 return -1;
1152
1153 rc = of_get_assoc_arrays(memory, &aa);
1154 if (rc)
1155 return -1;
1156
1157 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1158 struct of_drconf_cell drmem;
1159
1160 read_drconf_cell(&drmem, &dm);
1161
1162 /* skip this block if it is reserved or not assigned to
1163 * this partition */
1164 if ((drmem.flags & DRCONF_MEM_RESERVED)
1165 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1166 continue;
1167
1168 if ((scn_addr < drmem.base_addr)
1169 || (scn_addr >= (drmem.base_addr + lmb_size)))
1170 continue;
1171
1172 nid = of_drconf_to_nid_single(&drmem, &aa);
1173 break;
1174 }
1175
1176 return nid;
1177 }
1178
1179 /*
1180 * Find the node associated with a hot added memory section for memory
1181 * represented in the device tree as a node (i.e. memory@XXXX) for
1182 * each memblock.
1183 */
1184 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1185 {
1186 struct device_node *memory;
1187 int nid = -1;
1188
1189 for_each_node_by_type(memory, "memory") {
1190 unsigned long start, size;
1191 int ranges;
1192 const unsigned int *memcell_buf;
1193 unsigned int len;
1194
1195 memcell_buf = of_get_property(memory, "reg", &len);
1196 if (!memcell_buf || len <= 0)
1197 continue;
1198
1199 /* ranges in cell */
1200 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1201
1202 while (ranges--) {
1203 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1204 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1205
1206 if ((scn_addr < start) || (scn_addr >= (start + size)))
1207 continue;
1208
1209 nid = of_node_to_nid_single(memory);
1210 break;
1211 }
1212
1213 if (nid >= 0)
1214 break;
1215 }
1216
1217 of_node_put(memory);
1218
1219 return nid;
1220 }
1221
1222 /*
1223 * Find the node associated with a hot added memory section. Section
1224 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1225 * sections are fully contained within a single MEMBLOCK.
1226 */
1227 int hot_add_scn_to_nid(unsigned long scn_addr)
1228 {
1229 struct device_node *memory = NULL;
1230 int nid, found = 0;
1231
1232 if (!numa_enabled || (min_common_depth < 0))
1233 return first_online_node;
1234
1235 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1236 if (memory) {
1237 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1238 of_node_put(memory);
1239 } else {
1240 nid = hot_add_node_scn_to_nid(scn_addr);
1241 }
1242
1243 if (nid < 0 || !node_online(nid))
1244 nid = first_online_node;
1245
1246 if (NODE_DATA(nid)->node_spanned_pages)
1247 return nid;
1248
1249 for_each_online_node(nid) {
1250 if (NODE_DATA(nid)->node_spanned_pages) {
1251 found = 1;
1252 break;
1253 }
1254 }
1255
1256 BUG_ON(!found);
1257 return nid;
1258 }
1259
1260 static u64 hot_add_drconf_memory_max(void)
1261 {
1262 struct device_node *memory = NULL;
1263 unsigned int drconf_cell_cnt = 0;
1264 u64 lmb_size = 0;
1265 const u32 *dm = 0;
1266
1267 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1268 if (memory) {
1269 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1270 lmb_size = of_get_lmb_size(memory);
1271 of_node_put(memory);
1272 }
1273 return lmb_size * drconf_cell_cnt;
1274 }
1275
1276 /*
1277 * memory_hotplug_max - return max address of memory that may be added
1278 *
1279 * This is currently only used on systems that support drconfig memory
1280 * hotplug.
1281 */
1282 u64 memory_hotplug_max(void)
1283 {
1284 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1285 }
1286 #endif /* CONFIG_MEMORY_HOTPLUG */
1287
1288 /* Virtual Processor Home Node (VPHN) support */
1289 #ifdef CONFIG_PPC_SPLPAR
1290 struct topology_update_data {
1291 struct topology_update_data *next;
1292 unsigned int cpu;
1293 int old_nid;
1294 int new_nid;
1295 };
1296
1297 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1298 static cpumask_t cpu_associativity_changes_mask;
1299 static int vphn_enabled;
1300 static int prrn_enabled;
1301 static void reset_topology_timer(void);
1302
1303 /*
1304 * Store the current values of the associativity change counters in the
1305 * hypervisor.
1306 */
1307 static void setup_cpu_associativity_change_counters(void)
1308 {
1309 int cpu;
1310
1311 /* The VPHN feature supports a maximum of 8 reference points */
1312 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1313
1314 for_each_possible_cpu(cpu) {
1315 int i;
1316 u8 *counts = vphn_cpu_change_counts[cpu];
1317 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1318
1319 for (i = 0; i < distance_ref_points_depth; i++)
1320 counts[i] = hypervisor_counts[i];
1321 }
1322 }
1323
1324 /*
1325 * The hypervisor maintains a set of 8 associativity change counters in
1326 * the VPA of each cpu that correspond to the associativity levels in the
1327 * ibm,associativity-reference-points property. When an associativity
1328 * level changes, the corresponding counter is incremented.
1329 *
1330 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1331 * node associativity levels have changed.
1332 *
1333 * Returns the number of cpus with unhandled associativity changes.
1334 */
1335 static int update_cpu_associativity_changes_mask(void)
1336 {
1337 int cpu;
1338 cpumask_t *changes = &cpu_associativity_changes_mask;
1339
1340 for_each_possible_cpu(cpu) {
1341 int i, changed = 0;
1342 u8 *counts = vphn_cpu_change_counts[cpu];
1343 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1344
1345 for (i = 0; i < distance_ref_points_depth; i++) {
1346 if (hypervisor_counts[i] != counts[i]) {
1347 counts[i] = hypervisor_counts[i];
1348 changed = 1;
1349 }
1350 }
1351 if (changed) {
1352 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1353 cpu = cpu_last_thread_sibling(cpu);
1354 }
1355 }
1356
1357 return cpumask_weight(changes);
1358 }
1359
1360 /*
1361 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1362 * the complete property we have to add the length in the first cell.
1363 */
1364 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1365
1366 /*
1367 * Convert the associativity domain numbers returned from the hypervisor
1368 * to the sequence they would appear in the ibm,associativity property.
1369 */
1370 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1371 {
1372 int i, nr_assoc_doms = 0;
1373 const u16 *field = (const u16*) packed;
1374
1375 #define VPHN_FIELD_UNUSED (0xffff)
1376 #define VPHN_FIELD_MSB (0x8000)
1377 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1378
1379 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1380 if (*field == VPHN_FIELD_UNUSED) {
1381 /* All significant fields processed, and remaining
1382 * fields contain the reserved value of all 1's.
1383 * Just store them.
1384 */
1385 unpacked[i] = *((u32*)field);
1386 field += 2;
1387 } else if (*field & VPHN_FIELD_MSB) {
1388 /* Data is in the lower 15 bits of this field */
1389 unpacked[i] = *field & VPHN_FIELD_MASK;
1390 field++;
1391 nr_assoc_doms++;
1392 } else {
1393 /* Data is in the lower 15 bits of this field
1394 * concatenated with the next 16 bit field
1395 */
1396 unpacked[i] = *((u32*)field);
1397 field += 2;
1398 nr_assoc_doms++;
1399 }
1400 }
1401
1402 /* The first cell contains the length of the property */
1403 unpacked[0] = nr_assoc_doms;
1404
1405 return nr_assoc_doms;
1406 }
1407
1408 /*
1409 * Retrieve the new associativity information for a virtual processor's
1410 * home node.
1411 */
1412 static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1413 {
1414 long rc;
1415 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1416 u64 flags = 1;
1417 int hwcpu = get_hard_smp_processor_id(cpu);
1418
1419 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1420 vphn_unpack_associativity(retbuf, associativity);
1421
1422 return rc;
1423 }
1424
1425 static long vphn_get_associativity(unsigned long cpu,
1426 unsigned int *associativity)
1427 {
1428 long rc;
1429
1430 rc = hcall_vphn(cpu, associativity);
1431
1432 switch (rc) {
1433 case H_FUNCTION:
1434 printk(KERN_INFO
1435 "VPHN is not supported. Disabling polling...\n");
1436 stop_topology_update();
1437 break;
1438 case H_HARDWARE:
1439 printk(KERN_ERR
1440 "hcall_vphn() experienced a hardware fault "
1441 "preventing VPHN. Disabling polling...\n");
1442 stop_topology_update();
1443 }
1444
1445 return rc;
1446 }
1447
1448 /*
1449 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1450 * characteristics change. This function doesn't perform any locking and is
1451 * only safe to call from stop_machine().
1452 */
1453 static int update_cpu_topology(void *data)
1454 {
1455 struct topology_update_data *update;
1456 unsigned long cpu;
1457
1458 if (!data)
1459 return -EINVAL;
1460
1461 cpu = smp_processor_id();
1462
1463 for (update = data; update; update = update->next) {
1464 if (cpu != update->cpu)
1465 continue;
1466
1467 unmap_cpu_from_node(update->cpu);
1468 map_cpu_to_node(update->cpu, update->new_nid);
1469 vdso_getcpu_init();
1470 }
1471
1472 return 0;
1473 }
1474
1475 static int update_lookup_table(void *data)
1476 {
1477 struct topology_update_data *update;
1478
1479 if (!data)
1480 return -EINVAL;
1481
1482 /*
1483 * Upon topology update, the numa-cpu lookup table needs to be updated
1484 * for all threads in the core, including offline CPUs, to ensure that
1485 * future hotplug operations respect the cpu-to-node associativity
1486 * properly.
1487 */
1488 for (update = data; update; update = update->next) {
1489 int nid, base, j;
1490
1491 nid = update->new_nid;
1492 base = cpu_first_thread_sibling(update->cpu);
1493
1494 for (j = 0; j < threads_per_core; j++) {
1495 update_numa_cpu_lookup_table(base + j, nid);
1496 }
1497 }
1498
1499 return 0;
1500 }
1501
1502 /*
1503 * Update the node maps and sysfs entries for each cpu whose home node
1504 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1505 */
1506 int arch_update_cpu_topology(void)
1507 {
1508 unsigned int cpu, sibling, changed = 0;
1509 struct topology_update_data *updates, *ud;
1510 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1511 cpumask_t updated_cpus;
1512 struct device *dev;
1513 int weight, new_nid, i = 0;
1514
1515 weight = cpumask_weight(&cpu_associativity_changes_mask);
1516 if (!weight)
1517 return 0;
1518
1519 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1520 if (!updates)
1521 return 0;
1522
1523 cpumask_clear(&updated_cpus);
1524
1525 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1526 /*
1527 * If siblings aren't flagged for changes, updates list
1528 * will be too short. Skip on this update and set for next
1529 * update.
1530 */
1531 if (!cpumask_subset(cpu_sibling_mask(cpu),
1532 &cpu_associativity_changes_mask)) {
1533 pr_info("Sibling bits not set for associativity "
1534 "change, cpu%d\n", cpu);
1535 cpumask_or(&cpu_associativity_changes_mask,
1536 &cpu_associativity_changes_mask,
1537 cpu_sibling_mask(cpu));
1538 cpu = cpu_last_thread_sibling(cpu);
1539 continue;
1540 }
1541
1542 /* Use associativity from first thread for all siblings */
1543 vphn_get_associativity(cpu, associativity);
1544 new_nid = associativity_to_nid(associativity);
1545 if (new_nid < 0 || !node_online(new_nid))
1546 new_nid = first_online_node;
1547
1548 if (new_nid == numa_cpu_lookup_table[cpu]) {
1549 cpumask_andnot(&cpu_associativity_changes_mask,
1550 &cpu_associativity_changes_mask,
1551 cpu_sibling_mask(cpu));
1552 cpu = cpu_last_thread_sibling(cpu);
1553 continue;
1554 }
1555
1556 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1557 ud = &updates[i++];
1558 ud->cpu = sibling;
1559 ud->new_nid = new_nid;
1560 ud->old_nid = numa_cpu_lookup_table[sibling];
1561 cpumask_set_cpu(sibling, &updated_cpus);
1562 if (i < weight)
1563 ud->next = &updates[i];
1564 }
1565 cpu = cpu_last_thread_sibling(cpu);
1566 }
1567
1568 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1569
1570 /*
1571 * Update the numa-cpu lookup table with the new mappings, even for
1572 * offline CPUs. It is best to perform this update from the stop-
1573 * machine context.
1574 */
1575 stop_machine(update_lookup_table, &updates[0],
1576 cpumask_of(raw_smp_processor_id()));
1577
1578 for (ud = &updates[0]; ud; ud = ud->next) {
1579 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1580 register_cpu_under_node(ud->cpu, ud->new_nid);
1581
1582 dev = get_cpu_device(ud->cpu);
1583 if (dev)
1584 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1585 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1586 changed = 1;
1587 }
1588
1589 kfree(updates);
1590 return changed;
1591 }
1592
1593 static void topology_work_fn(struct work_struct *work)
1594 {
1595 rebuild_sched_domains();
1596 }
1597 static DECLARE_WORK(topology_work, topology_work_fn);
1598
1599 void topology_schedule_update(void)
1600 {
1601 schedule_work(&topology_work);
1602 }
1603
1604 static void topology_timer_fn(unsigned long ignored)
1605 {
1606 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1607 topology_schedule_update();
1608 else if (vphn_enabled) {
1609 if (update_cpu_associativity_changes_mask() > 0)
1610 topology_schedule_update();
1611 reset_topology_timer();
1612 }
1613 }
1614 static struct timer_list topology_timer =
1615 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1616
1617 static void reset_topology_timer(void)
1618 {
1619 topology_timer.data = 0;
1620 topology_timer.expires = jiffies + 60 * HZ;
1621 mod_timer(&topology_timer, topology_timer.expires);
1622 }
1623
1624 #ifdef CONFIG_SMP
1625
1626 static void stage_topology_update(int core_id)
1627 {
1628 cpumask_or(&cpu_associativity_changes_mask,
1629 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1630 reset_topology_timer();
1631 }
1632
1633 static int dt_update_callback(struct notifier_block *nb,
1634 unsigned long action, void *data)
1635 {
1636 struct of_prop_reconfig *update;
1637 int rc = NOTIFY_DONE;
1638
1639 switch (action) {
1640 case OF_RECONFIG_UPDATE_PROPERTY:
1641 update = (struct of_prop_reconfig *)data;
1642 if (!of_prop_cmp(update->dn->type, "cpu") &&
1643 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1644 u32 core_id;
1645 of_property_read_u32(update->dn, "reg", &core_id);
1646 stage_topology_update(core_id);
1647 rc = NOTIFY_OK;
1648 }
1649 break;
1650 }
1651
1652 return rc;
1653 }
1654
1655 static struct notifier_block dt_update_nb = {
1656 .notifier_call = dt_update_callback,
1657 };
1658
1659 #endif
1660
1661 /*
1662 * Start polling for associativity changes.
1663 */
1664 int start_topology_update(void)
1665 {
1666 int rc = 0;
1667
1668 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1669 if (!prrn_enabled) {
1670 prrn_enabled = 1;
1671 vphn_enabled = 0;
1672 #ifdef CONFIG_SMP
1673 rc = of_reconfig_notifier_register(&dt_update_nb);
1674 #endif
1675 }
1676 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1677 get_lppaca()->shared_proc) {
1678 if (!vphn_enabled) {
1679 prrn_enabled = 0;
1680 vphn_enabled = 1;
1681 setup_cpu_associativity_change_counters();
1682 init_timer_deferrable(&topology_timer);
1683 reset_topology_timer();
1684 }
1685 }
1686
1687 return rc;
1688 }
1689
1690 /*
1691 * Disable polling for VPHN associativity changes.
1692 */
1693 int stop_topology_update(void)
1694 {
1695 int rc = 0;
1696
1697 if (prrn_enabled) {
1698 prrn_enabled = 0;
1699 #ifdef CONFIG_SMP
1700 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1701 #endif
1702 } else if (vphn_enabled) {
1703 vphn_enabled = 0;
1704 rc = del_timer_sync(&topology_timer);
1705 }
1706
1707 return rc;
1708 }
1709
1710 int prrn_is_enabled(void)
1711 {
1712 return prrn_enabled;
1713 }
1714
1715 static int topology_read(struct seq_file *file, void *v)
1716 {
1717 if (vphn_enabled || prrn_enabled)
1718 seq_puts(file, "on\n");
1719 else
1720 seq_puts(file, "off\n");
1721
1722 return 0;
1723 }
1724
1725 static int topology_open(struct inode *inode, struct file *file)
1726 {
1727 return single_open(file, topology_read, NULL);
1728 }
1729
1730 static ssize_t topology_write(struct file *file, const char __user *buf,
1731 size_t count, loff_t *off)
1732 {
1733 char kbuf[4]; /* "on" or "off" plus null. */
1734 int read_len;
1735
1736 read_len = count < 3 ? count : 3;
1737 if (copy_from_user(kbuf, buf, read_len))
1738 return -EINVAL;
1739
1740 kbuf[read_len] = '\0';
1741
1742 if (!strncmp(kbuf, "on", 2))
1743 start_topology_update();
1744 else if (!strncmp(kbuf, "off", 3))
1745 stop_topology_update();
1746 else
1747 return -EINVAL;
1748
1749 return count;
1750 }
1751
1752 static const struct file_operations topology_ops = {
1753 .read = seq_read,
1754 .write = topology_write,
1755 .open = topology_open,
1756 .release = single_release
1757 };
1758
1759 static int topology_update_init(void)
1760 {
1761 start_topology_update();
1762 proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);
1763
1764 return 0;
1765 }
1766 device_initcall(topology_update_init);
1767 #endif /* CONFIG_PPC_SPLPAR */