import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm64 / kernel / smp.c
1 /*
2 * SMP initialisation and IPI support
3 * Based on arch/arm/kernel/smp.c
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/spinlock.h>
23 #include <linux/sched.h>
24 #include <linux/interrupt.h>
25 #include <linux/cache.h>
26 #include <linux/profile.h>
27 #include <linux/errno.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/cpu.h>
31 #include <linux/smp.h>
32 #include <linux/seq_file.h>
33 #include <linux/irq.h>
34 #include <linux/percpu.h>
35 #include <linux/clockchips.h>
36 #include <linux/completion.h>
37 #include <linux/of.h>
38
39 #include <asm/atomic.h>
40 #include <asm/cacheflush.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/mmu_context.h>
44 #include <asm/pgtable.h>
45 #include <asm/pgalloc.h>
46 #include <asm/processor.h>
47 #include <asm/smp_plat.h>
48 #include <asm/sections.h>
49 #include <asm/tlbflush.h>
50 #include <asm/ptrace.h>
51
52 #include <linux/mt_sched_mon.h>
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56
57 /*
58 * as from 2.5, kernels no longer have an init_tasks structure
59 * so we need some other way of telling a new secondary core
60 * where to place its SVC stack
61 */
62 struct secondary_data secondary_data;
63
64 enum ipi_msg_type {
65 IPI_RESCHEDULE,
66 IPI_CALL_FUNC,
67 IPI_CALL_FUNC_SINGLE,
68 IPI_CPU_STOP,
69 };
70
71 /*
72 * Boot a secondary CPU, and assign it the specified idle task.
73 * This also gives us the initial stack to use for this CPU.
74 */
75 static int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
76 {
77 if (cpu_ops[cpu]->cpu_boot)
78 return cpu_ops[cpu]->cpu_boot(cpu);
79
80 return -EOPNOTSUPP;
81 }
82
83 static DECLARE_COMPLETION(cpu_running);
84
85 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
86 {
87 int ret;
88
89 /*
90 * We need to tell the secondary core where to find its stack and the
91 * page tables.
92 */
93 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
94 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
95
96 /*
97 * Now bring the CPU into our world.
98 */
99 ret = boot_secondary(cpu, idle);
100 if (ret == 0) {
101 /*
102 * CPU was successfully started, wait for it to come online or
103 * time out.
104 */
105 wait_for_completion_timeout(&cpu_running,
106 msecs_to_jiffies(1000));
107
108 if (!cpu_online(cpu)) {
109 pr_crit("CPU%u: failed to come online\n", cpu);
110 ret = -EIO;
111 }
112 } else {
113 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
114 }
115
116 secondary_data.stack = NULL;
117
118 return ret;
119 }
120
121 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
122 {
123 store_cpu_topology(cpuid);
124 }
125
126 /*
127 * This is the secondary CPU boot entry. We're using this CPUs
128 * idle thread stack, but a set of temporary page tables.
129 */
130 asmlinkage void __cpuinit secondary_start_kernel(void)
131 {
132 struct mm_struct *mm = &init_mm;
133 unsigned int cpu = smp_processor_id();
134
135 printk("CPU%u: Booted secondary processor\n", cpu);
136
137 /*
138 * All kernel threads share the same mm context; grab a
139 * reference and switch to it.
140 */
141 atomic_inc(&mm->mm_count);
142 current->active_mm = mm;
143 cpumask_set_cpu(cpu, mm_cpumask(mm));
144
145 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
146
147 /*
148 * TTBR0 is only used for the identity mapping at this stage. Make it
149 * point to zero page to avoid speculatively fetching new entries.
150 */
151 cpu_set_reserved_ttbr0();
152 flush_tlb_all();
153
154 preempt_disable();
155 trace_hardirqs_off();
156
157 if (cpu_ops[cpu]->cpu_postboot)
158 cpu_ops[cpu]->cpu_postboot();
159
160 /*
161 * OK, now it's safe to let the boot CPU continue. Wait for
162 * the CPU migration code to notice that the CPU is online
163 * before we continue.
164 */
165 set_cpu_online(cpu, true);
166 complete(&cpu_running);
167
168 smp_store_cpu_info(cpu);
169
170 /*
171 * Enable GIC and timers.
172 */
173 notify_cpu_starting(cpu);
174
175 local_dbg_enable();
176 local_irq_enable();
177 local_fiq_enable();
178
179 /*
180 * OK, it's off to the idle thread for us
181 */
182 cpu_startup_entry(CPUHP_ONLINE);
183 }
184
185 #ifdef CONFIG_HOTPLUG_CPU
186 static int op_cpu_disable(unsigned int cpu)
187 {
188 /*
189 * If we don't have a cpu_die method, abort before we reach the point
190 * of no return. CPU0 may not have an cpu_ops, so test for it.
191 */
192 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
193 return -EOPNOTSUPP;
194
195 /*
196 * We may need to abort a hot unplug for some other mechanism-specific
197 * reason.
198 */
199 if (cpu_ops[cpu]->cpu_disable)
200 return cpu_ops[cpu]->cpu_disable(cpu);
201
202 return 0;
203 }
204
205 /*
206 * __cpu_disable runs on the processor to be shutdown.
207 */
208 int __cpu_disable(void)
209 {
210 unsigned int cpu = smp_processor_id();
211 int ret;
212
213 ret = op_cpu_disable(cpu);
214 if (ret)
215 return ret;
216
217 /*
218 * Take this CPU offline. Once we clear this, we can't return,
219 * and we must not schedule until we're ready to give up the cpu.
220 */
221 set_cpu_online(cpu, false);
222
223 /*
224 * OK - migrate IRQs away from this CPU
225 */
226 migrate_irqs();
227
228 /*
229 * Remove this CPU from the vm mask set of all processes.
230 */
231 clear_tasks_mm_cpumask(cpu);
232
233 return 0;
234 }
235
236 static int op_cpu_kill(unsigned int cpu)
237 {
238 /*
239 * If we have no means of synchronising with the dying CPU, then assume
240 * that it is really dead. We can only wait for an arbitrary length of
241 * time and hope that it's dead, so let's skip the wait and just hope.
242 */
243 if (!cpu_ops[cpu]->cpu_kill)
244 return 1;
245
246 return cpu_ops[cpu]->cpu_kill(cpu);
247 }
248
249 static DECLARE_COMPLETION(cpu_died);
250
251 /*
252 * called on the thread which is asking for a CPU to be shutdown -
253 * waits until shutdown has completed, or it is timed out.
254 */
255 void __cpu_die(unsigned int cpu)
256 {
257 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
258 pr_crit("CPU%u: cpu didn't die\n", cpu);
259 return;
260 }
261 pr_notice("CPU%u: shutdown\n", cpu);
262
263 /*
264 * Now that the dying CPU is beyond the point of no return w.r.t.
265 * in-kernel synchronisation, try to get the firwmare to help us to
266 * verify that it has really left the kernel before we consider
267 * clobbering anything it might still be using.
268 */
269 if (!op_cpu_kill(cpu))
270 pr_warn("CPU%d may not have shut down cleanly\n", cpu);
271 }
272
273 /*
274 * Called from the idle thread for the CPU which has been shutdown.
275 *
276 * Note that we disable IRQs here, but do not re-enable them
277 * before returning to the caller. This is also the behaviour
278 * of the other hotplug-cpu capable cores, so presumably coming
279 * out of idle fixes this.
280 */
281 void cpu_die(void)
282 {
283 unsigned int cpu = smp_processor_id();
284
285 idle_task_exit();
286
287 local_irq_disable();
288
289 /* Tell __cpu_die() that this CPU is now safe to dispose of */
290 complete(&cpu_died);
291
292 /*
293 * Actually shutdown the CPU. This must never fail. The specific hotplug
294 * mechanism must perform all required cache maintenance to ensure that
295 * no dirty lines are lost in the process of shutting down the CPU.
296 */
297 cpu_ops[cpu]->cpu_die(cpu);
298
299 BUG();
300 }
301 #endif
302
303 void __init smp_cpus_done(unsigned int max_cpus)
304 {
305 unsigned long bogosum = loops_per_jiffy * num_online_cpus();
306
307 pr_info("SMP: Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
308 num_online_cpus(), bogosum / (500000/HZ),
309 (bogosum / (5000/HZ)) % 100);
310 }
311
312 void __init smp_prepare_boot_cpu(void)
313 {
314 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
315 }
316
317 /*
318 * Enumerate the possible CPU set from the device tree and build the
319 * cpu logical map array containing MPIDR values related to logical
320 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
321 */
322 void __init smp_init_cpus(void)
323 {
324 struct device_node *dn = NULL;
325 unsigned int i, cpu = 1;
326 bool bootcpu_valid = false;
327
328 while ((dn = of_find_node_by_type(dn, "cpu"))) {
329 const u32 *cell;
330 u64 hwid;
331
332 /*
333 * A cpu node with missing "reg" property is
334 * considered invalid to build a cpu_logical_map
335 * entry.
336 */
337 cell = of_get_property(dn, "reg", NULL);
338 if (!cell) {
339 pr_err("%s: missing reg property\n", dn->full_name);
340 goto next;
341 }
342 hwid = of_read_number(cell, of_n_addr_cells(dn));
343
344 /*
345 * Non affinity bits must be set to 0 in the DT
346 */
347 if (hwid & ~MPIDR_HWID_BITMASK) {
348 pr_err("%s: invalid reg property\n", dn->full_name);
349 goto next;
350 }
351
352 /*
353 * Duplicate MPIDRs are a recipe for disaster. Scan
354 * all initialized entries and check for
355 * duplicates. If any is found just ignore the cpu.
356 * cpu_logical_map was initialized to INVALID_HWID to
357 * avoid matching valid MPIDR values.
358 */
359 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) {
360 if (cpu_logical_map(i) == hwid) {
361 pr_err("%s: duplicate cpu reg properties in the DT\n",
362 dn->full_name);
363 goto next;
364 }
365 }
366
367 /*
368 * The numbering scheme requires that the boot CPU
369 * must be assigned logical id 0. Record it so that
370 * the logical map built from DT is validated and can
371 * be used.
372 */
373 if (hwid == cpu_logical_map(0)) {
374 if (bootcpu_valid) {
375 pr_err("%s: duplicate boot cpu reg property in DT\n",
376 dn->full_name);
377 goto next;
378 }
379
380 bootcpu_valid = true;
381
382 /*
383 * cpu_logical_map has already been
384 * initialized and the boot cpu doesn't need
385 * the enable-method so continue without
386 * incrementing cpu.
387 */
388 continue;
389 }
390
391 if (cpu >= NR_CPUS)
392 goto next;
393
394 if (cpu_read_ops(dn, cpu) != 0)
395 goto next;
396
397 if (cpu_ops[cpu]->cpu_init(dn, cpu))
398 goto next;
399
400 pr_debug("cpu logical map 0x%llx\n", hwid);
401 cpu_logical_map(cpu) = hwid;
402 next:
403 cpu++;
404 }
405
406 /* sanity check */
407 if (cpu > NR_CPUS)
408 pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n",
409 cpu, NR_CPUS);
410
411 if (!bootcpu_valid) {
412 pr_err("DT missing boot CPU MPIDR, not enabling secondaries\n");
413 return;
414 }
415
416 /*
417 * All the cpus that made it to the cpu_logical_map have been
418 * validated so set them as possible cpus.
419 */
420 for (i = 0; i < NR_CPUS; i++)
421 if (cpu_logical_map(i) != INVALID_HWID)
422 set_cpu_possible(i, true);
423 }
424
425 void __init smp_prepare_cpus(unsigned int max_cpus)
426 {
427 int err;
428 unsigned int cpu, ncores = num_possible_cpus();
429
430 init_cpu_topology();
431
432 smp_store_cpu_info(smp_processor_id());
433
434
435 /*
436 * are we trying to boot more cores than exist?
437 */
438 if (max_cpus > ncores)
439 max_cpus = ncores;
440
441 /* Don't bother if we're effectively UP */
442 if (max_cpus <= 1)
443 return;
444
445 /*
446 * Initialise the present map (which describes the set of CPUs
447 * actually populated at the present time) and release the
448 * secondaries from the bootloader.
449 *
450 * Make sure we online at most (max_cpus - 1) additional CPUs.
451 */
452 max_cpus--;
453 for_each_possible_cpu(cpu) {
454 if (max_cpus == 0)
455 break;
456
457 if (cpu == smp_processor_id())
458 continue;
459
460 if (!cpu_ops[cpu])
461 continue;
462
463 err = cpu_ops[cpu]->cpu_prepare(cpu);
464 if (err)
465 continue;
466
467 set_cpu_present(cpu, true);
468 max_cpus--;
469 }
470 }
471
472 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
473
474 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
475 {
476 __smp_cross_call = fn;
477 }
478
479 static const char *ipi_types[NR_IPI] __tracepoint_string = {
480 #define S(x,s) [x] = s
481 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
482 S(IPI_CALL_FUNC, "Function call interrupts"),
483 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
484 S(IPI_CPU_STOP, "CPU stop interrupts"),
485 };
486
487 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
488 {
489 trace_ipi_raise(target, ipi_types[ipinr]);
490 __smp_cross_call(target, ipinr);
491 }
492
493 void show_ipi_list(struct seq_file *p, int prec)
494 {
495 unsigned int cpu, i;
496
497 for (i = 0; i < NR_IPI; i++) {
498 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
499 prec >= 4 ? " " : "");
500 for_each_present_cpu(cpu)
501 seq_printf(p, "%10u ",
502 __get_irq_stat(cpu, ipi_irqs[i]));
503 seq_printf(p, " %s\n", ipi_types[i]);
504 }
505 }
506
507 u64 smp_irq_stat_cpu(unsigned int cpu)
508 {
509 u64 sum = 0;
510 int i;
511
512 for (i = 0; i < NR_IPI; i++)
513 sum += __get_irq_stat(cpu, ipi_irqs[i]);
514
515 return sum;
516 }
517
518 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
519 {
520 smp_cross_call(mask, IPI_CALL_FUNC);
521 }
522
523 void arch_send_call_function_single_ipi(int cpu)
524 {
525 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
526 }
527
528 static DEFINE_RAW_SPINLOCK(stop_lock);
529
530 /*
531 * ipi_cpu_stop - handle IPI from smp_send_stop()
532 */
533 static void ipi_cpu_stop(unsigned int cpu)
534 {
535 if (system_state == SYSTEM_BOOTING ||
536 system_state == SYSTEM_RUNNING) {
537 raw_spin_lock(&stop_lock);
538 pr_crit("CPU%u: stopping\n", cpu);
539 dump_stack();
540 raw_spin_unlock(&stop_lock);
541 }
542
543 set_cpu_online(cpu, false);
544
545 local_fiq_disable();
546 local_irq_disable();
547
548 while (1)
549 cpu_relax();
550 }
551
552 /*
553 * Main handler for inter-processor interrupts
554 */
555 void handle_IPI(int ipinr, struct pt_regs *regs)
556 {
557 unsigned int cpu = smp_processor_id();
558 struct pt_regs *old_regs = set_irq_regs(regs);
559
560 if ((unsigned)ipinr < NR_IPI) {
561 trace_ipi_entry(ipi_types[ipinr]);
562 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
563 }
564
565 switch (ipinr) {
566 case IPI_RESCHEDULE:
567 scheduler_ipi();
568 break;
569
570 case IPI_CALL_FUNC:
571 irq_enter();
572 mt_trace_ISR_start(ipinr);
573 generic_smp_call_function_interrupt();
574 mt_trace_ISR_end(ipinr);
575 irq_exit();
576 break;
577
578 case IPI_CALL_FUNC_SINGLE:
579 irq_enter();
580 mt_trace_ISR_start(ipinr);
581 generic_smp_call_function_single_interrupt();
582 mt_trace_ISR_end(ipinr);
583 irq_exit();
584 break;
585
586 case IPI_CPU_STOP:
587 irq_enter();
588 mt_trace_ISR_start(ipinr);
589 ipi_cpu_stop(cpu);
590 mt_trace_ISR_end(ipinr);
591 irq_exit();
592 break;
593
594 default:
595 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
596 break;
597 }
598
599 if ((unsigned)ipinr < NR_IPI)
600 trace_ipi_exit(ipi_types[ipinr]);
601 set_irq_regs(old_regs);
602 }
603
604 void smp_send_reschedule(int cpu)
605 {
606 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
607 }
608
609 void smp_send_stop(void)
610 {
611 unsigned long timeout;
612
613 if (num_online_cpus() > 1) {
614 cpumask_t mask;
615
616 cpumask_copy(&mask, cpu_online_mask);
617 cpu_clear(smp_processor_id(), mask);
618
619 smp_cross_call(&mask, IPI_CPU_STOP);
620 }
621
622 /* Wait up to one second for other CPUs to stop */
623 timeout = USEC_PER_SEC;
624 while (num_online_cpus() > 1 && timeout--)
625 udelay(1);
626
627 if (num_online_cpus() > 1)
628 pr_warning("SMP: failed to stop secondary CPUs\n");
629 }
630
631 /*
632 * not supported here
633 */
634 int setup_profiling_timer(unsigned int multiplier)
635 {
636 return -EINVAL;
637 }