import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / vfp / vfpmodule.c
1 /*
2 * linux/arch/arm/vfp/vfpmodule.c
3 *
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/hardirq.h>
15 #include <linux/kernel.h>
16 #include <linux/notifier.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/uaccess.h>
22 #include <linux/user.h>
23
24 #include <asm/cp15.h>
25 #include <asm/cputype.h>
26 #include <asm/system_info.h>
27 #include <asm/thread_notify.h>
28 #include <asm/vfp.h>
29
30 #include "vfpinstr.h"
31 #include "vfp.h"
32
33 /*
34 * Our undef handlers (in entry.S)
35 */
36 void vfp_testing_entry(void);
37 void vfp_support_entry(void);
38 void vfp_null_entry(void);
39
40 void (*vfp_vector)(void) = vfp_null_entry;
41
42 /*
43 * Dual-use variable.
44 * Used in startup: set to non-zero if VFP checks fail
45 * After startup, holds VFP architecture
46 */
47 unsigned int VFP_arch;
48
49 /*
50 * The pointer to the vfpstate structure of the thread which currently
51 * owns the context held in the VFP hardware, or NULL if the hardware
52 * context is invalid.
53 *
54 * For UP, this is sufficient to tell which thread owns the VFP context.
55 * However, for SMP, we also need to check the CPU number stored in the
56 * saved state too to catch migrations.
57 */
58 union vfp_state *vfp_current_hw_state[NR_CPUS];
59
60 /*
61 * Is 'thread's most up to date state stored in this CPUs hardware?
62 * Must be called from non-preemptible context.
63 */
64 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
65 {
66 #ifdef CONFIG_SMP
67 if (thread->vfpstate.hard.cpu != cpu)
68 return false;
69 #endif
70 return vfp_current_hw_state[cpu] == &thread->vfpstate;
71 }
72
73 /*
74 * Force a reload of the VFP context from the thread structure. We do
75 * this by ensuring that access to the VFP hardware is disabled, and
76 * clear vfp_current_hw_state. Must be called from non-preemptible context.
77 */
78 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
79 {
80 if (vfp_state_in_hw(cpu, thread)) {
81 #ifndef CONFIG_VFP_OPT
82 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
83 #endif
84 vfp_current_hw_state[cpu] = NULL;
85 }
86 #ifdef CONFIG_SMP
87 thread->vfpstate.hard.cpu = NR_CPUS;
88 #endif
89 }
90
91 /*
92 * Per-thread VFP initialization.
93 */
94 static void vfp_thread_flush(struct thread_info *thread)
95 {
96 union vfp_state *vfp = &thread->vfpstate;
97 unsigned int cpu;
98
99 /*
100 * Disable VFP to ensure we initialize it first. We must ensure
101 * that the modification of vfp_current_hw_state[] and hardware
102 * disable are done for the same CPU and without preemption.
103 *
104 * Do this first to ensure that preemption won't overwrite our
105 * state saving should access to the VFP be enabled at this point.
106 */
107 cpu = get_cpu();
108 if (vfp_current_hw_state[cpu] == vfp)
109 vfp_current_hw_state[cpu] = NULL;
110 #ifndef CONFIG_VFP_OPT
111 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
112 #endif
113 put_cpu();
114
115 memset(vfp, 0, sizeof(union vfp_state));
116
117 vfp->hard.fpexc = FPEXC_EN;
118 vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
119 #ifdef CONFIG_SMP
120 vfp->hard.cpu = NR_CPUS;
121 #endif
122 }
123
124 static void vfp_thread_exit(struct thread_info *thread)
125 {
126 /* release case: Per-thread VFP cleanup. */
127 union vfp_state *vfp = &thread->vfpstate;
128 unsigned int cpu = get_cpu();
129
130 if (vfp_current_hw_state[cpu] == vfp)
131 vfp_current_hw_state[cpu] = NULL;
132 put_cpu();
133 }
134
135 static void vfp_thread_copy(struct thread_info *thread)
136 {
137 struct thread_info *parent = current_thread_info();
138
139 vfp_sync_hwstate(parent);
140 thread->vfpstate = parent->vfpstate;
141 #ifdef CONFIG_SMP
142 thread->vfpstate.hard.cpu = NR_CPUS;
143 #endif
144 }
145
146 /*
147 * When this function is called with the following 'cmd's, the following
148 * is true while this function is being run:
149 * THREAD_NOFTIFY_SWTICH:
150 * - the previously running thread will not be scheduled onto another CPU.
151 * - the next thread to be run (v) will not be running on another CPU.
152 * - thread->cpu is the local CPU number
153 * - not preemptible as we're called in the middle of a thread switch
154 * THREAD_NOTIFY_FLUSH:
155 * - the thread (v) will be running on the local CPU, so
156 * v === current_thread_info()
157 * - thread->cpu is the local CPU number at the time it is accessed,
158 * but may change at any time.
159 * - we could be preempted if tree preempt rcu is enabled, so
160 * it is unsafe to use thread->cpu.
161 * THREAD_NOTIFY_EXIT
162 * - the thread (v) will be running on the local CPU, so
163 * v === current_thread_info()
164 * - thread->cpu is the local CPU number at the time it is accessed,
165 * but may change at any time.
166 * - we could be preempted if tree preempt rcu is enabled, so
167 * it is unsafe to use thread->cpu.
168 */
169 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
170 {
171 struct thread_info *thread = v;
172 u32 fpexc;
173 #ifndef CONFIG_VFP_OPT
174 #ifdef CONFIG_SMP
175 unsigned int cpu;
176 #endif
177 #endif
178 switch (cmd) {
179 case THREAD_NOTIFY_SWITCH:
180 fpexc = fmrx(FPEXC);
181 #ifndef CONFIG_VFP_OPT
182 #ifdef CONFIG_SMP
183 cpu = thread->cpu;
184
185 /*
186 * On SMP, if VFP is enabled, save the old state in
187 * case the thread migrates to a different CPU. The
188 * restoring is done lazily.
189 */
190 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
191 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
192 #endif
193
194 /*
195 * Always disable VFP so we can lazily save/restore the
196 * old state.
197 */
198 fmxr(FPEXC, fpexc & ~FPEXC_EN);
199 #endif
200 break;
201
202 case THREAD_NOTIFY_FLUSH:
203 vfp_thread_flush(thread);
204 break;
205
206 case THREAD_NOTIFY_EXIT:
207 vfp_thread_exit(thread);
208 break;
209
210 case THREAD_NOTIFY_COPY:
211 vfp_thread_copy(thread);
212 break;
213 }
214
215 return NOTIFY_DONE;
216 }
217
218 static struct notifier_block vfp_notifier_block = {
219 .notifier_call = vfp_notifier,
220 };
221
222 /*
223 * Raise a SIGFPE for the current process.
224 * sicode describes the signal being raised.
225 */
226 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
227 {
228 siginfo_t info;
229
230 memset(&info, 0, sizeof(info));
231
232 info.si_signo = SIGFPE;
233 info.si_code = sicode;
234 info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
235
236 /*
237 * This is the same as NWFPE, because it's not clear what
238 * this is used for
239 */
240 current->thread.error_code = 0;
241 current->thread.trap_no = 6;
242
243 send_sig_info(SIGFPE, &info, current);
244 }
245
246 static void vfp_panic(char *reason, u32 inst)
247 {
248 int i;
249
250 pr_err("VFP: Error: %s\n", reason);
251 pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
252 fmrx(FPEXC), fmrx(FPSCR), inst);
253 for (i = 0; i < 32; i += 2)
254 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
255 i, vfp_get_float(i), i+1, vfp_get_float(i+1));
256 }
257
258 /*
259 * Process bitmask of exception conditions.
260 */
261 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
262 {
263 int si_code = 0;
264
265 pr_debug("VFP: raising exceptions %08x\n", exceptions);
266
267 if (exceptions == VFP_EXCEPTION_ERROR) {
268 vfp_panic("unhandled bounce", inst);
269 vfp_raise_sigfpe(0, regs);
270 return;
271 }
272
273 /*
274 * If any of the status flags are set, update the FPSCR.
275 * Comparison instructions always return at least one of
276 * these flags set.
277 */
278 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
279 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
280
281 fpscr |= exceptions;
282
283 fmxr(FPSCR, fpscr);
284
285 #define RAISE(stat,en,sig) \
286 if (exceptions & stat && fpscr & en) \
287 si_code = sig;
288
289 /*
290 * These are arranged in priority order, least to highest.
291 */
292 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
293 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
294 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
295 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
296 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
297
298 if (si_code)
299 vfp_raise_sigfpe(si_code, regs);
300 }
301
302 /*
303 * Emulate a VFP instruction.
304 */
305 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
306 {
307 u32 exceptions = VFP_EXCEPTION_ERROR;
308
309 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
310
311 if (INST_CPRTDO(inst)) {
312 if (!INST_CPRT(inst)) {
313 /*
314 * CPDO
315 */
316 if (vfp_single(inst)) {
317 exceptions = vfp_single_cpdo(inst, fpscr);
318 } else {
319 exceptions = vfp_double_cpdo(inst, fpscr);
320 }
321 } else {
322 /*
323 * A CPRT instruction can not appear in FPINST2, nor
324 * can it cause an exception. Therefore, we do not
325 * have to emulate it.
326 */
327 }
328 } else {
329 /*
330 * A CPDT instruction can not appear in FPINST2, nor can
331 * it cause an exception. Therefore, we do not have to
332 * emulate it.
333 */
334 }
335 return exceptions & ~VFP_NAN_FLAG;
336 }
337
338 /*
339 * Package up a bounce condition.
340 */
341 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
342 {
343 u32 fpscr, orig_fpscr, fpsid, exceptions;
344
345 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
346
347 /*
348 * At this point, FPEXC can have the following configuration:
349 *
350 * EX DEX IXE
351 * 0 1 x - synchronous exception
352 * 1 x 0 - asynchronous exception
353 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
354 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
355 * implementation), undefined otherwise
356 *
357 * Clear various bits and enable access to the VFP so we can
358 * handle the bounce.
359 */
360 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
361
362 fpsid = fmrx(FPSID);
363 orig_fpscr = fpscr = fmrx(FPSCR);
364
365 /*
366 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
367 */
368 if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
369 && (fpscr & FPSCR_IXE)) {
370 /*
371 * Synchronous exception, emulate the trigger instruction
372 */
373 goto emulate;
374 }
375
376 if (fpexc & FPEXC_EX) {
377 #ifndef CONFIG_CPU_FEROCEON
378 /*
379 * Asynchronous exception. The instruction is read from FPINST
380 * and the interrupted instruction has to be restarted.
381 */
382 trigger = fmrx(FPINST);
383 regs->ARM_pc -= 4;
384 #endif
385 } else if (!(fpexc & FPEXC_DEX)) {
386 /*
387 * Illegal combination of bits. It can be caused by an
388 * unallocated VFP instruction but with FPSCR.IXE set and not
389 * on VFP subarch 1.
390 */
391 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
392 goto exit;
393 }
394
395 /*
396 * Modify fpscr to indicate the number of iterations remaining.
397 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
398 * whether FPEXC.VECITR or FPSCR.LEN is used.
399 */
400 if (fpexc & (FPEXC_EX | FPEXC_VV)) {
401 u32 len;
402
403 len = fpexc + (1 << FPEXC_LENGTH_BIT);
404
405 fpscr &= ~FPSCR_LENGTH_MASK;
406 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
407 }
408
409 /*
410 * Handle the first FP instruction. We used to take note of the
411 * FPEXC bounce reason, but this appears to be unreliable.
412 * Emulate the bounced instruction instead.
413 */
414 exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
415 if (exceptions)
416 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
417
418 /*
419 * If there isn't a second FP instruction, exit now. Note that
420 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
421 */
422 if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
423 goto exit;
424
425 /*
426 * The barrier() here prevents fpinst2 being read
427 * before the condition above.
428 */
429 barrier();
430 trigger = fmrx(FPINST2);
431
432 emulate:
433 exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
434 if (exceptions)
435 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
436 exit:
437 preempt_enable();
438 }
439
440 static void vfp_enable(void *unused)
441 {
442 u32 access;
443
444 BUG_ON(preemptible());
445 access = get_copro_access();
446
447 /*
448 * Enable full access to VFP (cp10 and cp11)
449 */
450 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
451 }
452
453 #ifdef CONFIG_CPU_PM
454 static int vfp_pm_suspend(void)
455 {
456 struct thread_info *ti = current_thread_info();
457 u32 fpexc = fmrx(FPEXC);
458
459 /* if vfp is on, then save state for resumption */
460 if (fpexc & FPEXC_EN) {
461 pr_debug("%s: saving vfp state\n", __func__);
462 vfp_save_state(&ti->vfpstate, fpexc);
463
464 #ifndef CONFIG_VFP_OPT
465 /* disable, just in case */
466 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
467 #endif
468 } else if (vfp_current_hw_state[ti->cpu]) {
469 #ifndef CONFIG_SMP
470 fmxr(FPEXC, fpexc | FPEXC_EN);
471 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
472 #ifndef CONFIG_VFP_OPT
473 fmxr(FPEXC, fpexc);
474 #endif
475 #endif
476 }
477
478 /* clear any information we had about last context state */
479 vfp_current_hw_state[ti->cpu] = NULL;
480
481 return 0;
482 }
483
484 static void vfp_pm_resume(void)
485 {
486 #ifdef CONFIG_VFP_OPT
487 struct thread_info *ti = current_thread_info();
488 u32 *vfpstate = (u32 *)(&ti->vfpstate);
489 u32 temp = 0;
490 u32 fpexc = 0, fpscr = 0, fpinst = 0, fpinst2 = 0;
491 #endif
492
493 /* ensure we have access to the vfp */
494 vfp_enable(NULL);
495
496 #ifndef CONFIG_VFP_OPT
497 /* and disable it to ensure the next usage restores the state */
498 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
499 #else
500 /* restore VFP registers and state */
501 asm volatile (
502 "LDC p11, cr0, [%0],#32*4\n"
503 //"VFPFMRX \tmp, MVFR0\n"
504 "MRC p10, 7, %1, cr7, cr0, 0\n"
505 "and %1, %1, %6\n"
506 "cmp %1, #2\n"
507 "ldceql p11, cr0, [%0],#32*4\n"
508 "addne %0, %0, #32*4\n"
509 "ldmia %0, {%2, %3, %4, %5}\n"
510 //"VFPFMXR FPSCR, %3\n"
511 "MCR p10, 7, %3, cr1, cr0, 0"
512 : "+r"(vfpstate), "+r"(temp), "+r"(fpexc), "+r"(fpscr), "+r"(fpinst), "+r"(fpinst2)
513 : "r" (MVFR0_A_SIMD_MASK)
514 : "cc"
515 );
516 #endif
517
518 }
519
520 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
521 void *v)
522 {
523 switch (cmd) {
524 case CPU_PM_ENTER:
525 vfp_pm_suspend();
526 break;
527 case CPU_PM_ENTER_FAILED:
528 case CPU_PM_EXIT:
529 vfp_pm_resume();
530 break;
531 }
532 return NOTIFY_OK;
533 }
534
535 static struct notifier_block vfp_cpu_pm_notifier_block = {
536 .notifier_call = vfp_cpu_pm_notifier,
537 };
538
539 static void vfp_pm_init(void)
540 {
541 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
542 }
543
544 #else
545 static inline void vfp_pm_init(void) { }
546 #endif /* CONFIG_CPU_PM */
547
548 /*
549 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
550 * with the hardware state.
551 */
552 void vfp_sync_hwstate(struct thread_info *thread)
553 {
554 unsigned int cpu = get_cpu();
555
556 if (vfp_state_in_hw(cpu, thread)) {
557 u32 fpexc = fmrx(FPEXC);
558
559 /*
560 * Save the last VFP state on this CPU.
561 */
562 fmxr(FPEXC, fpexc | FPEXC_EN);
563 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
564 #ifndef CONFIG_VFP_OPT
565 fmxr(FPEXC, fpexc);
566 #endif
567 }
568
569 put_cpu();
570 }
571
572 /* Ensure that the thread reloads the hardware VFP state on the next use. */
573 void vfp_flush_hwstate(struct thread_info *thread)
574 {
575 unsigned int cpu = get_cpu();
576
577 vfp_force_reload(cpu, thread);
578
579 put_cpu();
580 }
581
582 /*
583 * Save the current VFP state into the provided structures and prepare
584 * for entry into a new function (signal handler).
585 */
586 int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,
587 struct user_vfp_exc __user *ufp_exc)
588 {
589 struct thread_info *thread = current_thread_info();
590 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
591 int err = 0;
592
593 /* Ensure that the saved hwstate is up-to-date. */
594 vfp_sync_hwstate(thread);
595
596 /*
597 * Copy the floating point registers. There can be unused
598 * registers see asm/hwcap.h for details.
599 */
600 err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
601 sizeof(hwstate->fpregs));
602 /*
603 * Copy the status and control register.
604 */
605 __put_user_error(hwstate->fpscr, &ufp->fpscr, err);
606
607 /*
608 * Copy the exception registers.
609 */
610 __put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
611 __put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
612 __put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
613
614 if (err)
615 return -EFAULT;
616
617 /* Ensure that VFP is disabled. */
618 vfp_flush_hwstate(thread);
619
620 /*
621 * As per the PCS, clear the length and stride bits for function
622 * entry.
623 */
624 hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
625 return 0;
626 }
627
628 /* Sanitise and restore the current VFP state from the provided structures. */
629 int vfp_restore_user_hwstate(struct user_vfp __user *ufp,
630 struct user_vfp_exc __user *ufp_exc)
631 {
632 struct thread_info *thread = current_thread_info();
633 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
634 unsigned long fpexc;
635 int err = 0;
636
637 /* Disable VFP to avoid corrupting the new thread state. */
638 vfp_flush_hwstate(thread);
639
640 /*
641 * Copy the floating point registers. There can be unused
642 * registers see asm/hwcap.h for details.
643 */
644 err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,
645 sizeof(hwstate->fpregs));
646 /*
647 * Copy the status and control register.
648 */
649 __get_user_error(hwstate->fpscr, &ufp->fpscr, err);
650
651 /*
652 * Sanitise and restore the exception registers.
653 */
654 __get_user_error(fpexc, &ufp_exc->fpexc, err);
655
656 /* Ensure the VFP is enabled. */
657 fpexc |= FPEXC_EN;
658
659 /* Ensure FPINST2 is invalid and the exception flag is cleared. */
660 fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
661 hwstate->fpexc = fpexc;
662
663 __get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
664 __get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
665
666 return err ? -EFAULT : 0;
667 }
668
669 /*
670 * VFP hardware can lose all context when a CPU goes offline.
671 * As we will be running in SMP mode with CPU hotplug, we will save the
672 * hardware state at every thread switch. We clear our held state when
673 * a CPU has been killed, indicating that the VFP hardware doesn't contain
674 * a threads VFP state. When a CPU starts up, we re-enable access to the
675 * VFP hardware.
676 *
677 * Both CPU_DYING and CPU_STARTING are called on the CPU which
678 * is being offlined/onlined.
679 */
680 static int vfp_hotplug(struct notifier_block *b, unsigned long action,
681 void *hcpu)
682 {
683 if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
684 vfp_force_reload((long)hcpu, current_thread_info());
685 } else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
686 vfp_enable(NULL);
687 return NOTIFY_OK;
688 }
689
690 /*
691 * VFP support code initialisation.
692 */
693 static int __init vfp_init(void)
694 {
695 unsigned int vfpsid;
696 unsigned int cpu_arch = cpu_architecture();
697
698 if (cpu_arch >= CPU_ARCH_ARMv6)
699 on_each_cpu(vfp_enable, NULL, 1);
700
701 /*
702 * First check that there is a VFP that we can use.
703 * The handler is already setup to just log calls, so
704 * we just need to read the VFPSID register.
705 */
706 vfp_vector = vfp_testing_entry;
707 barrier();
708 vfpsid = fmrx(FPSID);
709 barrier();
710 vfp_vector = vfp_null_entry;
711
712 pr_info("VFP support v0.3: ");
713 if (VFP_arch)
714 pr_cont("not present\n");
715 else if (vfpsid & FPSID_NODOUBLE) {
716 pr_cont("no double precision support\n");
717 } else {
718 hotcpu_notifier(vfp_hotplug, 0);
719
720 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
721 pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
722 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
723 (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
724 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
725 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
726 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
727
728 vfp_vector = vfp_support_entry;
729
730 thread_register_notifier(&vfp_notifier_block);
731 vfp_pm_init();
732
733 /*
734 * We detected VFP, and the support code is
735 * in place; report VFP support to userspace.
736 */
737 elf_hwcap |= HWCAP_VFP;
738 #ifdef CONFIG_VFPv3
739 if (VFP_arch >= 2) {
740 elf_hwcap |= HWCAP_VFPv3;
741
742 /*
743 * Check for VFPv3 D16 and VFPv4 D16. CPUs in
744 * this configuration only have 16 x 64bit
745 * registers.
746 */
747 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
748 elf_hwcap |= HWCAP_VFPv3D16; /* also v4-D16 */
749 else
750 elf_hwcap |= HWCAP_VFPD32;
751 }
752 #endif
753 /*
754 * Check for the presence of the Advanced SIMD
755 * load/store instructions, integer and single
756 * precision floating point operations. Only check
757 * for NEON if the hardware has the MVFR registers.
758 */
759 if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
760 #ifdef CONFIG_NEON
761 if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
762 elf_hwcap |= HWCAP_NEON;
763 #endif
764 #ifdef CONFIG_VFPv3
765 if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
766 elf_hwcap |= HWCAP_VFPv4;
767 #endif
768 }
769 }
770 return 0;
771 }
772
773 late_initcall(vfp_init);