Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38
39 #include "mm.h"
40
41 /*
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
46 *
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
51 *
52 */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 size_t, enum dma_data_direction);
57
58 /**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
65 *
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
68 *
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
71 */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
75 {
76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 unsigned long offset, size_t size, enum dma_data_direction dir,
83 struct dma_attrs *attrs)
84 {
85 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86 }
87
88 /**
89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91 * @handle: DMA address of buffer
92 * @size: size of buffer (same as passed to dma_map_page)
93 * @dir: DMA transfer direction (same as passed to dma_map_page)
94 *
95 * Unmap a page streaming mode DMA translation. The handle and size
96 * must match what was provided in the previous dma_map_page() call.
97 * All other usages are undefined.
98 *
99 * After this call, reads by the CPU to the buffer are guaranteed to see
100 * whatever the device wrote there.
101 */
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 size_t size, enum dma_data_direction dir,
104 struct dma_attrs *attrs)
105 {
106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 handle & ~PAGE_MASK, size, dir);
109 }
110
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 dma_addr_t handle, size_t size, enum dma_data_direction dir)
113 {
114 unsigned int offset = handle & (PAGE_SIZE - 1);
115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 __dma_page_dev_to_cpu(page, offset, size, dir);
117 }
118
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 dma_addr_t handle, size_t size, enum dma_data_direction dir)
121 {
122 unsigned int offset = handle & (PAGE_SIZE - 1);
123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 __dma_page_cpu_to_dev(page, offset, size, dir);
125 }
126
127 struct dma_map_ops arm_dma_ops = {
128 .alloc = arm_dma_alloc,
129 .free = arm_dma_free,
130 .mmap = arm_dma_mmap,
131 .get_sgtable = arm_dma_get_sgtable,
132 .map_page = arm_dma_map_page,
133 .unmap_page = arm_dma_unmap_page,
134 .map_sg = arm_dma_map_sg,
135 .unmap_sg = arm_dma_unmap_sg,
136 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
137 .sync_single_for_device = arm_dma_sync_single_for_device,
138 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
139 .sync_sg_for_device = arm_dma_sync_sg_for_device,
140 .set_dma_mask = arm_dma_set_mask,
141 };
142 EXPORT_SYMBOL(arm_dma_ops);
143
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 dma_addr_t handle, struct dma_attrs *attrs);
148
149 struct dma_map_ops arm_coherent_dma_ops = {
150 .alloc = arm_coherent_dma_alloc,
151 .free = arm_coherent_dma_free,
152 .mmap = arm_dma_mmap,
153 .get_sgtable = arm_dma_get_sgtable,
154 .map_page = arm_coherent_dma_map_page,
155 .map_sg = arm_dma_map_sg,
156 .set_dma_mask = arm_dma_set_mask,
157 };
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
159
160 static u64 get_coherent_dma_mask(struct device *dev)
161 {
162 u64 mask = (u64)arm_dma_limit;
163
164 if (dev) {
165 mask = dev->coherent_dma_mask;
166
167 /*
168 * Sanity check the DMA mask - it must be non-zero, and
169 * must be able to be satisfied by a DMA allocation.
170 */
171 if (mask == 0) {
172 dev_warn(dev, "coherent DMA mask is unset\n");
173 return 0;
174 }
175
176 if ((~mask) & (u64)arm_dma_limit) {
177 dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 "than system GFP_DMA mask %#llx\n",
179 mask, (u64)arm_dma_limit);
180 return 0;
181 }
182 }
183
184 return mask;
185 }
186
187 static void __dma_clear_buffer(struct page *page, size_t size)
188 {
189 /*
190 * Ensure that the allocated pages are zeroed, and that any data
191 * lurking in the kernel direct-mapped region is invalidated.
192 */
193 if (PageHighMem(page)) {
194 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
195 phys_addr_t end = base + size;
196 while (size > 0) {
197 void *ptr = kmap_atomic(page);
198 memset(ptr, 0, PAGE_SIZE);
199 dmac_flush_range(ptr, ptr + PAGE_SIZE);
200 kunmap_atomic(ptr);
201 page++;
202 size -= PAGE_SIZE;
203 }
204 outer_flush_range(base, end);
205 } else {
206 void *ptr = page_address(page);
207 memset(ptr, 0, size);
208 dmac_flush_range(ptr, ptr + size);
209 outer_flush_range(__pa(ptr), __pa(ptr) + size);
210 }
211 }
212
213 /*
214 * Allocate a DMA buffer for 'dev' of size 'size' using the
215 * specified gfp mask. Note that 'size' must be page aligned.
216 */
217 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
218 {
219 unsigned long order = get_order(size);
220 struct page *page, *p, *e;
221
222 page = alloc_pages(gfp, order);
223 if (!page)
224 return NULL;
225
226 /*
227 * Now split the huge page and free the excess pages
228 */
229 split_page(page, order);
230 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
231 __free_page(p);
232
233 __dma_clear_buffer(page, size);
234
235 return page;
236 }
237
238 /*
239 * Free a DMA buffer. 'size' must be page aligned.
240 */
241 static void __dma_free_buffer(struct page *page, size_t size)
242 {
243 struct page *e = page + (size >> PAGE_SHIFT);
244
245 while (page < e) {
246 __free_page(page);
247 page++;
248 }
249 }
250
251 #ifdef CONFIG_MMU
252 #ifdef CONFIG_HUGETLB_PAGE
253 #error ARM Coherent DMA allocator does not (yet) support huge TLB
254 #endif
255
256 static void *__alloc_from_contiguous(struct device *dev, size_t size,
257 pgprot_t prot, struct page **ret_page,
258 const void *caller);
259
260 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
261 pgprot_t prot, struct page **ret_page,
262 const void *caller);
263
264 static void *
265 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
266 const void *caller)
267 {
268 struct vm_struct *area;
269 unsigned long addr;
270
271 /*
272 * DMA allocation can be mapped to user space, so lets
273 * set VM_USERMAP flags too.
274 */
275 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
276 caller);
277 if (!area)
278 return NULL;
279 addr = (unsigned long)area->addr;
280 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
281
282 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
283 vunmap((void *)addr);
284 return NULL;
285 }
286 return (void *)addr;
287 }
288
289 static void __dma_free_remap(void *cpu_addr, size_t size)
290 {
291 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
292 struct vm_struct *area = find_vm_area(cpu_addr);
293 if (!area || (area->flags & flags) != flags) {
294 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
295 return;
296 }
297 unmap_kernel_range((unsigned long)cpu_addr, size);
298 vunmap(cpu_addr);
299 }
300
301 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
302
303 struct dma_pool {
304 size_t size;
305 spinlock_t lock;
306 unsigned long *bitmap;
307 unsigned long nr_pages;
308 void *vaddr;
309 struct page **pages;
310 };
311
312 static struct dma_pool atomic_pool = {
313 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
314 };
315
316 static int __init early_coherent_pool(char *p)
317 {
318 atomic_pool.size = memparse(p, &p);
319 return 0;
320 }
321 early_param("coherent_pool", early_coherent_pool);
322
323 void __init init_dma_coherent_pool_size(unsigned long size)
324 {
325 /*
326 * Catch any attempt to set the pool size too late.
327 */
328 BUG_ON(atomic_pool.vaddr);
329
330 /*
331 * Set architecture specific coherent pool size only if
332 * it has not been changed by kernel command line parameter.
333 */
334 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
335 atomic_pool.size = size;
336 }
337
338 /*
339 * Initialise the coherent pool for atomic allocations.
340 */
341 static int __init atomic_pool_init(void)
342 {
343 struct dma_pool *pool = &atomic_pool;
344 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
345 gfp_t gfp = GFP_KERNEL | GFP_DMA;
346 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
347 unsigned long *bitmap;
348 struct page *page;
349 struct page **pages;
350 void *ptr;
351 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
352
353 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
354 if (!bitmap)
355 goto no_bitmap;
356
357 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
358 if (!pages)
359 goto no_pages;
360
361 if (IS_ENABLED(CONFIG_CMA))
362 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
363 atomic_pool_init);
364 else
365 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
366 atomic_pool_init);
367 if (ptr) {
368 int i;
369
370 for (i = 0; i < nr_pages; i++)
371 pages[i] = page + i;
372
373 spin_lock_init(&pool->lock);
374 pool->vaddr = ptr;
375 pool->pages = pages;
376 pool->bitmap = bitmap;
377 pool->nr_pages = nr_pages;
378 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
379 (unsigned)pool->size / 1024);
380 return 0;
381 }
382
383 kfree(pages);
384 no_pages:
385 kfree(bitmap);
386 no_bitmap:
387 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
388 (unsigned)pool->size / 1024);
389 return -ENOMEM;
390 }
391 /*
392 * CMA is activated by core_initcall, so we must be called after it.
393 */
394 postcore_initcall(atomic_pool_init);
395
396 struct dma_contig_early_reserve {
397 phys_addr_t base;
398 unsigned long size;
399 };
400
401 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
402
403 static int dma_mmu_remap_num __initdata;
404
405 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
406 {
407 dma_mmu_remap[dma_mmu_remap_num].base = base;
408 dma_mmu_remap[dma_mmu_remap_num].size = size;
409 dma_mmu_remap_num++;
410 }
411
412 void __init dma_contiguous_remap(void)
413 {
414 int i;
415 for (i = 0; i < dma_mmu_remap_num; i++) {
416 phys_addr_t start = dma_mmu_remap[i].base;
417 phys_addr_t end = start + dma_mmu_remap[i].size;
418 struct map_desc map;
419 unsigned long addr;
420
421 if (end > arm_lowmem_limit)
422 end = arm_lowmem_limit;
423 if (start >= end)
424 continue;
425
426 map.pfn = __phys_to_pfn(start);
427 map.virtual = __phys_to_virt(start);
428 map.length = end - start;
429 map.type = MT_MEMORY_DMA_READY;
430
431 /*
432 * Clear previous low-memory mapping to ensure that the
433 * TLB does not see any conflicting entries, then flush
434 * the TLB of the old entries before creating new mappings.
435 *
436 * This ensures that any speculatively loaded TLB entries
437 * (even though they may be rare) can not cause any problems,
438 * and ensures that this code is architecturally compliant.
439 */
440 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
441 addr += PMD_SIZE)
442 pmd_clear(pmd_off_k(addr));
443
444 flush_tlb_kernel_range(__phys_to_virt(start),
445 __phys_to_virt(end));
446
447 iotable_init(&map, 1);
448 }
449 }
450
451 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
452 void *data)
453 {
454 struct page *page = virt_to_page(addr);
455 pgprot_t prot = *(pgprot_t *)data;
456
457 set_pte_ext(pte, mk_pte(page, prot), 0);
458 return 0;
459 }
460
461 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
462 {
463 unsigned long start = (unsigned long) page_address(page);
464 unsigned end = start + size;
465
466 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
467 dsb();
468 flush_tlb_kernel_range(start, end);
469 }
470
471 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
472 pgprot_t prot, struct page **ret_page,
473 const void *caller)
474 {
475 struct page *page;
476 void *ptr;
477 page = __dma_alloc_buffer(dev, size, gfp);
478 if (!page)
479 return NULL;
480
481 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
482 if (!ptr) {
483 __dma_free_buffer(page, size);
484 return NULL;
485 }
486
487 *ret_page = page;
488 return ptr;
489 }
490
491 static void *__alloc_from_pool(size_t size, struct page **ret_page)
492 {
493 struct dma_pool *pool = &atomic_pool;
494 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
495 unsigned int pageno;
496 unsigned long flags;
497 void *ptr = NULL;
498 unsigned long align_mask;
499
500 if (!pool->vaddr) {
501 WARN(1, "coherent pool not initialised!\n");
502 return NULL;
503 }
504
505 /*
506 * Align the region allocation - allocations from pool are rather
507 * small, so align them to their order in pages, minimum is a page
508 * size. This helps reduce fragmentation of the DMA space.
509 */
510 align_mask = (1 << get_order(size)) - 1;
511
512 spin_lock_irqsave(&pool->lock, flags);
513 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
514 0, count, align_mask);
515 if (pageno < pool->nr_pages) {
516 bitmap_set(pool->bitmap, pageno, count);
517 ptr = pool->vaddr + PAGE_SIZE * pageno;
518 *ret_page = pool->pages[pageno];
519 } else {
520 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
521 "Please increase it with coherent_pool= kernel parameter!\n",
522 (unsigned)pool->size / 1024);
523 }
524 spin_unlock_irqrestore(&pool->lock, flags);
525
526 return ptr;
527 }
528
529 static bool __in_atomic_pool(void *start, size_t size)
530 {
531 struct dma_pool *pool = &atomic_pool;
532 void *end = start + size;
533 void *pool_start = pool->vaddr;
534 void *pool_end = pool->vaddr + pool->size;
535
536 if (start < pool_start || start >= pool_end)
537 return false;
538
539 if (end <= pool_end)
540 return true;
541
542 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
543 start, end - 1, pool_start, pool_end - 1);
544
545 return false;
546 }
547
548 static int __free_from_pool(void *start, size_t size)
549 {
550 struct dma_pool *pool = &atomic_pool;
551 unsigned long pageno, count;
552 unsigned long flags;
553
554 if (!__in_atomic_pool(start, size))
555 return 0;
556
557 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
558 count = size >> PAGE_SHIFT;
559
560 spin_lock_irqsave(&pool->lock, flags);
561 bitmap_clear(pool->bitmap, pageno, count);
562 spin_unlock_irqrestore(&pool->lock, flags);
563
564 return 1;
565 }
566
567 static void *__alloc_from_contiguous(struct device *dev, size_t size,
568 pgprot_t prot, struct page **ret_page,
569 const void *caller)
570 {
571 unsigned long order = get_order(size);
572 size_t count = size >> PAGE_SHIFT;
573 struct page *page;
574 void *ptr;
575
576 page = dma_alloc_from_contiguous(dev, count, order);
577 if (!page)
578 return NULL;
579
580 __dma_clear_buffer(page, size);
581
582 if (PageHighMem(page)) {
583 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
584 if (!ptr) {
585 dma_release_from_contiguous(dev, page, count);
586 return NULL;
587 }
588 } else {
589 __dma_remap(page, size, prot);
590 ptr = page_address(page);
591 }
592 *ret_page = page;
593 return ptr;
594 }
595
596 static void __free_from_contiguous(struct device *dev, struct page *page,
597 void *cpu_addr, size_t size)
598 {
599 if (PageHighMem(page))
600 __dma_free_remap(cpu_addr, size);
601 else
602 __dma_remap(page, size, pgprot_kernel);
603 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
604 }
605
606 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
607 {
608 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
609 pgprot_writecombine(prot) :
610 pgprot_dmacoherent(prot);
611 return prot;
612 }
613
614 #define nommu() 0
615
616 #else /* !CONFIG_MMU */
617
618 #define nommu() 1
619
620 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
621 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
622 #define __alloc_from_pool(size, ret_page) NULL
623 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
624 #define __free_from_pool(cpu_addr, size) 0
625 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
626 #define __dma_free_remap(cpu_addr, size) do { } while (0)
627
628 #endif /* CONFIG_MMU */
629
630 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
631 struct page **ret_page)
632 {
633 struct page *page;
634 page = __dma_alloc_buffer(dev, size, gfp);
635 if (!page)
636 return NULL;
637
638 *ret_page = page;
639 return page_address(page);
640 }
641
642
643
644 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
645 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
646 {
647 u64 mask = get_coherent_dma_mask(dev);
648 struct page *page = NULL;
649 void *addr;
650
651 #ifdef CONFIG_DMA_API_DEBUG
652 u64 limit = (mask + 1) & ~mask;
653 if (limit && size >= limit) {
654 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
655 size, mask);
656 return NULL;
657 }
658 #endif
659
660 if (!mask)
661 return NULL;
662
663 if (mask < 0xffffffffULL)
664 gfp |= GFP_DMA;
665
666 /*
667 * Following is a work-around (a.k.a. hack) to prevent pages
668 * with __GFP_COMP being passed to split_page() which cannot
669 * handle them. The real problem is that this flag probably
670 * should be 0 on ARM as it is not supported on this
671 * platform; see CONFIG_HUGETLBFS.
672 */
673 gfp &= ~(__GFP_COMP);
674
675 *handle = DMA_ERROR_CODE;
676 size = PAGE_ALIGN(size);
677
678 if (is_coherent || nommu())
679 addr = __alloc_simple_buffer(dev, size, gfp, &page);
680 else if (!(gfp & __GFP_WAIT))
681 addr = __alloc_from_pool(size, &page);
682 else if (!IS_ENABLED(CONFIG_CMA))
683 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
684 else
685 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
686
687 if (addr)
688 *handle = pfn_to_dma(dev, page_to_pfn(page));
689
690 return addr;
691 }
692
693 /*
694 * Allocate DMA-coherent memory space and return both the kernel remapped
695 * virtual and bus address for that space.
696 */
697 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
698 gfp_t gfp, struct dma_attrs *attrs)
699 {
700 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
701 void *memory;
702
703 if (dma_alloc_from_coherent(dev, size, handle, &memory))
704 return memory;
705
706 return __dma_alloc(dev, size, handle, gfp, prot, false,
707 __builtin_return_address(0));
708 }
709
710 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
711 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
712 {
713 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
714 void *memory;
715
716 if (dma_alloc_from_coherent(dev, size, handle, &memory))
717 return memory;
718
719 return __dma_alloc(dev, size, handle, gfp, prot, true,
720 __builtin_return_address(0));
721 }
722
723 /*
724 * Create userspace mapping for the DMA-coherent memory.
725 */
726 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
727 void *cpu_addr, dma_addr_t dma_addr, size_t size,
728 struct dma_attrs *attrs)
729 {
730 int ret = -ENXIO;
731 #ifdef CONFIG_MMU
732 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
733 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
734 unsigned long pfn = dma_to_pfn(dev, dma_addr);
735 unsigned long off = vma->vm_pgoff;
736
737 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
738
739 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
740 return ret;
741
742 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
743 ret = remap_pfn_range(vma, vma->vm_start,
744 pfn + off,
745 vma->vm_end - vma->vm_start,
746 vma->vm_page_prot);
747 }
748 #endif /* CONFIG_MMU */
749
750 return ret;
751 }
752
753 /*
754 * Free a buffer as defined by the above mapping.
755 */
756 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
757 dma_addr_t handle, struct dma_attrs *attrs,
758 bool is_coherent)
759 {
760 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
761
762 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
763 return;
764
765 size = PAGE_ALIGN(size);
766
767 if (is_coherent || nommu()) {
768 __dma_free_buffer(page, size);
769 } else if (__free_from_pool(cpu_addr, size)) {
770 return;
771 } else if (!IS_ENABLED(CONFIG_CMA)) {
772 __dma_free_remap(cpu_addr, size);
773 __dma_free_buffer(page, size);
774 } else {
775 /*
776 * Non-atomic allocations cannot be freed with IRQs disabled
777 */
778 WARN_ON(irqs_disabled());
779 __free_from_contiguous(dev, page, cpu_addr, size);
780 }
781 }
782
783 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
784 dma_addr_t handle, struct dma_attrs *attrs)
785 {
786 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
787 }
788
789 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
790 dma_addr_t handle, struct dma_attrs *attrs)
791 {
792 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
793 }
794
795 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
796 void *cpu_addr, dma_addr_t handle, size_t size,
797 struct dma_attrs *attrs)
798 {
799 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
800 int ret;
801
802 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
803 if (unlikely(ret))
804 return ret;
805
806 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
807 return 0;
808 }
809
810 static void dma_cache_maint_page(struct page *page, unsigned long offset,
811 size_t size, enum dma_data_direction dir,
812 void (*op)(const void *, size_t, int))
813 {
814 unsigned long pfn;
815 size_t left = size;
816
817 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
818 offset %= PAGE_SIZE;
819
820 /*
821 * A single sg entry may refer to multiple physically contiguous
822 * pages. But we still need to process highmem pages individually.
823 * If highmem is not configured then the bulk of this loop gets
824 * optimized out.
825 */
826 do {
827 size_t len = left;
828 void *vaddr;
829
830 page = pfn_to_page(pfn);
831
832 if (PageHighMem(page)) {
833 if (len + offset > PAGE_SIZE)
834 len = PAGE_SIZE - offset;
835
836 if (cache_is_vipt_nonaliasing()) {
837 vaddr = kmap_atomic(page);
838 op(vaddr + offset, len, dir);
839 kunmap_atomic(vaddr);
840 } else {
841 vaddr = kmap_high_get(page);
842 if (vaddr) {
843 op(vaddr + offset, len, dir);
844 kunmap_high(page);
845 }
846 }
847 } else {
848 vaddr = page_address(page) + offset;
849 op(vaddr, len, dir);
850 }
851 offset = 0;
852 pfn++;
853 left -= len;
854 } while (left);
855 }
856
857 /*
858 * Make an area consistent for devices.
859 * Note: Drivers should NOT use this function directly, as it will break
860 * platforms with CONFIG_DMABOUNCE.
861 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
862 */
863 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
864 size_t size, enum dma_data_direction dir)
865 {
866 unsigned long paddr;
867
868 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
869
870 paddr = page_to_phys(page) + off;
871 if (dir == DMA_FROM_DEVICE) {
872 outer_inv_range(paddr, paddr + size);
873 } else {
874 outer_clean_range(paddr, paddr + size);
875 }
876 /* FIXME: non-speculating: flush on bidirectional mappings? */
877 }
878
879 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
880 size_t size, enum dma_data_direction dir)
881 {
882 unsigned long paddr = page_to_phys(page) + off;
883
884 /* FIXME: non-speculating: not required */
885 /* don't bother invalidating if DMA to device */
886 if (dir != DMA_TO_DEVICE)
887 outer_inv_range(paddr, paddr + size);
888
889 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
890
891 /*
892 * Mark the D-cache clean for this page to avoid extra flushing.
893 */
894 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
895 set_bit(PG_dcache_clean, &page->flags);
896 }
897
898 /**
899 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
900 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
901 * @sg: list of buffers
902 * @nents: number of buffers to map
903 * @dir: DMA transfer direction
904 *
905 * Map a set of buffers described by scatterlist in streaming mode for DMA.
906 * This is the scatter-gather version of the dma_map_single interface.
907 * Here the scatter gather list elements are each tagged with the
908 * appropriate dma address and length. They are obtained via
909 * sg_dma_{address,length}.
910 *
911 * Device ownership issues as mentioned for dma_map_single are the same
912 * here.
913 */
914 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
915 enum dma_data_direction dir, struct dma_attrs *attrs)
916 {
917 struct dma_map_ops *ops = get_dma_ops(dev);
918 struct scatterlist *s;
919 int i, j;
920
921 for_each_sg(sg, s, nents, i) {
922 #ifdef CONFIG_NEED_SG_DMA_LENGTH
923 s->dma_length = s->length;
924 #endif
925 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
926 s->length, dir, attrs);
927 if (dma_mapping_error(dev, s->dma_address))
928 goto bad_mapping;
929 }
930 return nents;
931
932 bad_mapping:
933 for_each_sg(sg, s, i, j)
934 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
935 return 0;
936 }
937
938 /**
939 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
940 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
941 * @sg: list of buffers
942 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
943 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
944 *
945 * Unmap a set of streaming mode DMA translations. Again, CPU access
946 * rules concerning calls here are the same as for dma_unmap_single().
947 */
948 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
949 enum dma_data_direction dir, struct dma_attrs *attrs)
950 {
951 struct dma_map_ops *ops = get_dma_ops(dev);
952 struct scatterlist *s;
953
954 int i;
955
956 for_each_sg(sg, s, nents, i)
957 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
958 }
959
960 /**
961 * arm_dma_sync_sg_for_cpu
962 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
963 * @sg: list of buffers
964 * @nents: number of buffers to map (returned from dma_map_sg)
965 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
966 */
967 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
968 int nents, enum dma_data_direction dir)
969 {
970 struct dma_map_ops *ops = get_dma_ops(dev);
971 struct scatterlist *s;
972 int i;
973
974 for_each_sg(sg, s, nents, i)
975 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
976 dir);
977 }
978
979 /**
980 * arm_dma_sync_sg_for_device
981 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
982 * @sg: list of buffers
983 * @nents: number of buffers to map (returned from dma_map_sg)
984 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
985 */
986 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
987 int nents, enum dma_data_direction dir)
988 {
989 struct dma_map_ops *ops = get_dma_ops(dev);
990 struct scatterlist *s;
991 int i;
992
993 for_each_sg(sg, s, nents, i)
994 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
995 dir);
996 }
997
998 /*
999 * Return whether the given device DMA address mask can be supported
1000 * properly. For example, if your device can only drive the low 24-bits
1001 * during bus mastering, then you would pass 0x00ffffff as the mask
1002 * to this function.
1003 */
1004 int dma_supported(struct device *dev, u64 mask)
1005 {
1006 if (mask < (u64)arm_dma_limit)
1007 return 0;
1008 return 1;
1009 }
1010 EXPORT_SYMBOL(dma_supported);
1011
1012 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1013 {
1014 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1015 return -EIO;
1016
1017 *dev->dma_mask = dma_mask;
1018
1019 return 0;
1020 }
1021
1022 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1023
1024 static int __init dma_debug_do_init(void)
1025 {
1026 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1027 return 0;
1028 }
1029 fs_initcall(dma_debug_do_init);
1030
1031 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1032
1033 /* IOMMU */
1034
1035 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1036 size_t size)
1037 {
1038 unsigned int order = get_order(size);
1039 unsigned int align = 0;
1040 unsigned int count, start;
1041 unsigned long flags;
1042
1043 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1044 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1045
1046 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1047 (1 << mapping->order) - 1) >> mapping->order;
1048
1049 if (order > mapping->order)
1050 align = (1 << (order - mapping->order)) - 1;
1051
1052 spin_lock_irqsave(&mapping->lock, flags);
1053 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1054 count, align);
1055 if (start > mapping->bits) {
1056 spin_unlock_irqrestore(&mapping->lock, flags);
1057 return DMA_ERROR_CODE;
1058 }
1059
1060 bitmap_set(mapping->bitmap, start, count);
1061 spin_unlock_irqrestore(&mapping->lock, flags);
1062
1063 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1064 }
1065
1066 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1067 dma_addr_t addr, size_t size)
1068 {
1069 unsigned int start = (addr - mapping->base) >>
1070 (mapping->order + PAGE_SHIFT);
1071 unsigned int count = ((size >> PAGE_SHIFT) +
1072 (1 << mapping->order) - 1) >> mapping->order;
1073 unsigned long flags;
1074
1075 spin_lock_irqsave(&mapping->lock, flags);
1076 bitmap_clear(mapping->bitmap, start, count);
1077 spin_unlock_irqrestore(&mapping->lock, flags);
1078 }
1079
1080 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1081 gfp_t gfp, struct dma_attrs *attrs)
1082 {
1083 struct page **pages;
1084 int count = size >> PAGE_SHIFT;
1085 int array_size = count * sizeof(struct page *);
1086 int i = 0;
1087
1088 if (array_size <= PAGE_SIZE)
1089 pages = kzalloc(array_size, gfp);
1090 else
1091 pages = vzalloc(array_size);
1092 if (!pages)
1093 return NULL;
1094
1095 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1096 {
1097 unsigned long order = get_order(size);
1098 struct page *page;
1099
1100 page = dma_alloc_from_contiguous(dev, count, order);
1101 if (!page)
1102 goto error;
1103
1104 __dma_clear_buffer(page, size);
1105
1106 for (i = 0; i < count; i++)
1107 pages[i] = page + i;
1108
1109 return pages;
1110 }
1111
1112 /*
1113 * IOMMU can map any pages, so himem can also be used here
1114 */
1115 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1116
1117 while (count) {
1118 int j, order = __fls(count);
1119
1120 pages[i] = alloc_pages(gfp, order);
1121 while (!pages[i] && order)
1122 pages[i] = alloc_pages(gfp, --order);
1123 if (!pages[i])
1124 goto error;
1125
1126 if (order) {
1127 split_page(pages[i], order);
1128 j = 1 << order;
1129 while (--j)
1130 pages[i + j] = pages[i] + j;
1131 }
1132
1133 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1134 i += 1 << order;
1135 count -= 1 << order;
1136 }
1137
1138 return pages;
1139 error:
1140 while (i--)
1141 if (pages[i])
1142 __free_pages(pages[i], 0);
1143 if (array_size <= PAGE_SIZE)
1144 kfree(pages);
1145 else
1146 vfree(pages);
1147 return NULL;
1148 }
1149
1150 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1151 size_t size, struct dma_attrs *attrs)
1152 {
1153 int count = size >> PAGE_SHIFT;
1154 int array_size = count * sizeof(struct page *);
1155 int i;
1156
1157 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1158 dma_release_from_contiguous(dev, pages[0], count);
1159 } else {
1160 for (i = 0; i < count; i++)
1161 if (pages[i])
1162 __free_pages(pages[i], 0);
1163 }
1164
1165 if (array_size <= PAGE_SIZE)
1166 kfree(pages);
1167 else
1168 vfree(pages);
1169 return 0;
1170 }
1171
1172 /*
1173 * Create a CPU mapping for a specified pages
1174 */
1175 static void *
1176 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1177 const void *caller)
1178 {
1179 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1180 struct vm_struct *area;
1181 unsigned long p;
1182
1183 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1184 caller);
1185 if (!area)
1186 return NULL;
1187
1188 area->pages = pages;
1189 area->nr_pages = nr_pages;
1190 p = (unsigned long)area->addr;
1191
1192 for (i = 0; i < nr_pages; i++) {
1193 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1194 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1195 goto err;
1196 p += PAGE_SIZE;
1197 }
1198 return area->addr;
1199 err:
1200 unmap_kernel_range((unsigned long)area->addr, size);
1201 vunmap(area->addr);
1202 return NULL;
1203 }
1204
1205 /*
1206 * Create a mapping in device IO address space for specified pages
1207 */
1208 static dma_addr_t
1209 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1210 {
1211 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1212 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1213 dma_addr_t dma_addr, iova;
1214 int i, ret = DMA_ERROR_CODE;
1215
1216 dma_addr = __alloc_iova(mapping, size);
1217 if (dma_addr == DMA_ERROR_CODE)
1218 return dma_addr;
1219
1220 iova = dma_addr;
1221 for (i = 0; i < count; ) {
1222 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1223 phys_addr_t phys = page_to_phys(pages[i]);
1224 unsigned int len, j;
1225
1226 for (j = i + 1; j < count; j++, next_pfn++)
1227 if (page_to_pfn(pages[j]) != next_pfn)
1228 break;
1229
1230 len = (j - i) << PAGE_SHIFT;
1231 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1232 if (ret < 0)
1233 goto fail;
1234 iova += len;
1235 i = j;
1236 }
1237 return dma_addr;
1238 fail:
1239 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1240 __free_iova(mapping, dma_addr, size);
1241 return DMA_ERROR_CODE;
1242 }
1243
1244 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1245 {
1246 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1247
1248 /*
1249 * add optional in-page offset from iova to size and align
1250 * result to page size
1251 */
1252 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1253 iova &= PAGE_MASK;
1254
1255 iommu_unmap(mapping->domain, iova, size);
1256 __free_iova(mapping, iova, size);
1257 return 0;
1258 }
1259
1260 static struct page **__atomic_get_pages(void *addr)
1261 {
1262 struct dma_pool *pool = &atomic_pool;
1263 struct page **pages = pool->pages;
1264 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1265
1266 return pages + offs;
1267 }
1268
1269 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1270 {
1271 struct vm_struct *area;
1272
1273 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1274 return __atomic_get_pages(cpu_addr);
1275
1276 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1277 return cpu_addr;
1278
1279 area = find_vm_area(cpu_addr);
1280 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1281 return area->pages;
1282 return NULL;
1283 }
1284
1285 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1286 dma_addr_t *handle)
1287 {
1288 struct page *page;
1289 void *addr;
1290
1291 addr = __alloc_from_pool(size, &page);
1292 if (!addr)
1293 return NULL;
1294
1295 *handle = __iommu_create_mapping(dev, &page, size);
1296 if (*handle == DMA_ERROR_CODE)
1297 goto err_mapping;
1298
1299 return addr;
1300
1301 err_mapping:
1302 __free_from_pool(addr, size);
1303 return NULL;
1304 }
1305
1306 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1307 dma_addr_t handle, size_t size)
1308 {
1309 __iommu_remove_mapping(dev, handle, size);
1310 __free_from_pool(cpu_addr, size);
1311 }
1312
1313 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1314 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1315 {
1316 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1317 struct page **pages;
1318 void *addr = NULL;
1319
1320 *handle = DMA_ERROR_CODE;
1321 size = PAGE_ALIGN(size);
1322
1323 if (!(gfp & __GFP_WAIT))
1324 return __iommu_alloc_atomic(dev, size, handle);
1325
1326 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1327 if (!pages)
1328 return NULL;
1329
1330 *handle = __iommu_create_mapping(dev, pages, size);
1331 if (*handle == DMA_ERROR_CODE)
1332 goto err_buffer;
1333
1334 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1335 return pages;
1336
1337 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1338 __builtin_return_address(0));
1339 if (!addr)
1340 goto err_mapping;
1341
1342 return addr;
1343
1344 err_mapping:
1345 __iommu_remove_mapping(dev, *handle, size);
1346 err_buffer:
1347 __iommu_free_buffer(dev, pages, size, attrs);
1348 return NULL;
1349 }
1350
1351 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1352 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1353 struct dma_attrs *attrs)
1354 {
1355 unsigned long uaddr = vma->vm_start;
1356 unsigned long usize = vma->vm_end - vma->vm_start;
1357 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1358
1359 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1360
1361 if (!pages)
1362 return -ENXIO;
1363
1364 do {
1365 int ret = vm_insert_page(vma, uaddr, *pages++);
1366 if (ret) {
1367 pr_err("Remapping memory failed: %d\n", ret);
1368 return ret;
1369 }
1370 uaddr += PAGE_SIZE;
1371 usize -= PAGE_SIZE;
1372 } while (usize > 0);
1373
1374 return 0;
1375 }
1376
1377 /*
1378 * free a page as defined by the above mapping.
1379 * Must not be called with IRQs disabled.
1380 */
1381 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1382 dma_addr_t handle, struct dma_attrs *attrs)
1383 {
1384 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1385 size = PAGE_ALIGN(size);
1386
1387 if (!pages) {
1388 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1389 return;
1390 }
1391
1392 if (__in_atomic_pool(cpu_addr, size)) {
1393 __iommu_free_atomic(dev, cpu_addr, handle, size);
1394 return;
1395 }
1396
1397 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1398 unmap_kernel_range((unsigned long)cpu_addr, size);
1399 vunmap(cpu_addr);
1400 }
1401
1402 __iommu_remove_mapping(dev, handle, size);
1403 __iommu_free_buffer(dev, pages, size, attrs);
1404 }
1405
1406 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1407 void *cpu_addr, dma_addr_t dma_addr,
1408 size_t size, struct dma_attrs *attrs)
1409 {
1410 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1411 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1412
1413 if (!pages)
1414 return -ENXIO;
1415
1416 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1417 GFP_KERNEL);
1418 }
1419
1420 /*
1421 * Map a part of the scatter-gather list into contiguous io address space
1422 */
1423 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1424 size_t size, dma_addr_t *handle,
1425 enum dma_data_direction dir, struct dma_attrs *attrs,
1426 bool is_coherent)
1427 {
1428 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1429 dma_addr_t iova, iova_base;
1430 int ret = 0;
1431 unsigned int count;
1432 struct scatterlist *s;
1433
1434 size = PAGE_ALIGN(size);
1435 *handle = DMA_ERROR_CODE;
1436
1437 iova_base = iova = __alloc_iova(mapping, size);
1438 if (iova == DMA_ERROR_CODE)
1439 return -ENOMEM;
1440
1441 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1442 phys_addr_t phys = page_to_phys(sg_page(s));
1443 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1444
1445 if (!is_coherent &&
1446 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1447 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1448
1449 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1450 if (ret < 0)
1451 goto fail;
1452 count += len >> PAGE_SHIFT;
1453 iova += len;
1454 }
1455 *handle = iova_base;
1456
1457 return 0;
1458 fail:
1459 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1460 __free_iova(mapping, iova_base, size);
1461 return ret;
1462 }
1463
1464 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1465 enum dma_data_direction dir, struct dma_attrs *attrs,
1466 bool is_coherent)
1467 {
1468 struct scatterlist *s = sg, *dma = sg, *start = sg;
1469 int i, count = 0;
1470 unsigned int offset = s->offset;
1471 unsigned int size = s->offset + s->length;
1472 unsigned int max = dma_get_max_seg_size(dev);
1473
1474 for (i = 1; i < nents; i++) {
1475 s = sg_next(s);
1476
1477 s->dma_address = DMA_ERROR_CODE;
1478 s->dma_length = 0;
1479
1480 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1481 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1482 dir, attrs, is_coherent) < 0)
1483 goto bad_mapping;
1484
1485 dma->dma_address += offset;
1486 dma->dma_length = size - offset;
1487
1488 size = offset = s->offset;
1489 start = s;
1490 dma = sg_next(dma);
1491 count += 1;
1492 }
1493 size += s->length;
1494 }
1495 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1496 is_coherent) < 0)
1497 goto bad_mapping;
1498
1499 dma->dma_address += offset;
1500 dma->dma_length = size - offset;
1501
1502 return count+1;
1503
1504 bad_mapping:
1505 for_each_sg(sg, s, count, i)
1506 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1507 return 0;
1508 }
1509
1510 /**
1511 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1512 * @dev: valid struct device pointer
1513 * @sg: list of buffers
1514 * @nents: number of buffers to map
1515 * @dir: DMA transfer direction
1516 *
1517 * Map a set of i/o coherent buffers described by scatterlist in streaming
1518 * mode for DMA. The scatter gather list elements are merged together (if
1519 * possible) and tagged with the appropriate dma address and length. They are
1520 * obtained via sg_dma_{address,length}.
1521 */
1522 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1523 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1524 {
1525 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1526 }
1527
1528 /**
1529 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1530 * @dev: valid struct device pointer
1531 * @sg: list of buffers
1532 * @nents: number of buffers to map
1533 * @dir: DMA transfer direction
1534 *
1535 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1536 * The scatter gather list elements are merged together (if possible) and
1537 * tagged with the appropriate dma address and length. They are obtained via
1538 * sg_dma_{address,length}.
1539 */
1540 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1541 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1542 {
1543 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1544 }
1545
1546 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1547 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1548 bool is_coherent)
1549 {
1550 struct scatterlist *s;
1551 int i;
1552
1553 for_each_sg(sg, s, nents, i) {
1554 if (sg_dma_len(s))
1555 __iommu_remove_mapping(dev, sg_dma_address(s),
1556 sg_dma_len(s));
1557 if (!is_coherent &&
1558 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1559 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1560 s->length, dir);
1561 }
1562 }
1563
1564 /**
1565 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1566 * @dev: valid struct device pointer
1567 * @sg: list of buffers
1568 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1569 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1570 *
1571 * Unmap a set of streaming mode DMA translations. Again, CPU access
1572 * rules concerning calls here are the same as for dma_unmap_single().
1573 */
1574 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1575 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1576 {
1577 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1578 }
1579
1580 /**
1581 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1582 * @dev: valid struct device pointer
1583 * @sg: list of buffers
1584 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1585 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1586 *
1587 * Unmap a set of streaming mode DMA translations. Again, CPU access
1588 * rules concerning calls here are the same as for dma_unmap_single().
1589 */
1590 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1591 enum dma_data_direction dir, struct dma_attrs *attrs)
1592 {
1593 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1594 }
1595
1596 /**
1597 * arm_iommu_sync_sg_for_cpu
1598 * @dev: valid struct device pointer
1599 * @sg: list of buffers
1600 * @nents: number of buffers to map (returned from dma_map_sg)
1601 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1602 */
1603 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1604 int nents, enum dma_data_direction dir)
1605 {
1606 struct scatterlist *s;
1607 int i;
1608
1609 for_each_sg(sg, s, nents, i)
1610 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1611
1612 }
1613
1614 /**
1615 * arm_iommu_sync_sg_for_device
1616 * @dev: valid struct device pointer
1617 * @sg: list of buffers
1618 * @nents: number of buffers to map (returned from dma_map_sg)
1619 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1620 */
1621 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1622 int nents, enum dma_data_direction dir)
1623 {
1624 struct scatterlist *s;
1625 int i;
1626
1627 for_each_sg(sg, s, nents, i)
1628 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1629 }
1630
1631
1632 /**
1633 * arm_coherent_iommu_map_page
1634 * @dev: valid struct device pointer
1635 * @page: page that buffer resides in
1636 * @offset: offset into page for start of buffer
1637 * @size: size of buffer to map
1638 * @dir: DMA transfer direction
1639 *
1640 * Coherent IOMMU aware version of arm_dma_map_page()
1641 */
1642 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1643 unsigned long offset, size_t size, enum dma_data_direction dir,
1644 struct dma_attrs *attrs)
1645 {
1646 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1647 dma_addr_t dma_addr;
1648 int ret, len = PAGE_ALIGN(size + offset);
1649
1650 dma_addr = __alloc_iova(mapping, len);
1651 if (dma_addr == DMA_ERROR_CODE)
1652 return dma_addr;
1653
1654 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1655 if (ret < 0)
1656 goto fail;
1657
1658 return dma_addr + offset;
1659 fail:
1660 __free_iova(mapping, dma_addr, len);
1661 return DMA_ERROR_CODE;
1662 }
1663
1664 /**
1665 * arm_iommu_map_page
1666 * @dev: valid struct device pointer
1667 * @page: page that buffer resides in
1668 * @offset: offset into page for start of buffer
1669 * @size: size of buffer to map
1670 * @dir: DMA transfer direction
1671 *
1672 * IOMMU aware version of arm_dma_map_page()
1673 */
1674 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1675 unsigned long offset, size_t size, enum dma_data_direction dir,
1676 struct dma_attrs *attrs)
1677 {
1678 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1679 __dma_page_cpu_to_dev(page, offset, size, dir);
1680
1681 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1682 }
1683
1684 /**
1685 * arm_coherent_iommu_unmap_page
1686 * @dev: valid struct device pointer
1687 * @handle: DMA address of buffer
1688 * @size: size of buffer (same as passed to dma_map_page)
1689 * @dir: DMA transfer direction (same as passed to dma_map_page)
1690 *
1691 * Coherent IOMMU aware version of arm_dma_unmap_page()
1692 */
1693 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1694 size_t size, enum dma_data_direction dir,
1695 struct dma_attrs *attrs)
1696 {
1697 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1698 dma_addr_t iova = handle & PAGE_MASK;
1699 int offset = handle & ~PAGE_MASK;
1700 int len = PAGE_ALIGN(size + offset);
1701
1702 if (!iova)
1703 return;
1704
1705 iommu_unmap(mapping->domain, iova, len);
1706 __free_iova(mapping, iova, len);
1707 }
1708
1709 /**
1710 * arm_iommu_unmap_page
1711 * @dev: valid struct device pointer
1712 * @handle: DMA address of buffer
1713 * @size: size of buffer (same as passed to dma_map_page)
1714 * @dir: DMA transfer direction (same as passed to dma_map_page)
1715 *
1716 * IOMMU aware version of arm_dma_unmap_page()
1717 */
1718 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1719 size_t size, enum dma_data_direction dir,
1720 struct dma_attrs *attrs)
1721 {
1722 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1723 dma_addr_t iova = handle & PAGE_MASK;
1724 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1725 int offset = handle & ~PAGE_MASK;
1726 int len = PAGE_ALIGN(size + offset);
1727
1728 if (!iova)
1729 return;
1730
1731 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1732 __dma_page_dev_to_cpu(page, offset, size, dir);
1733
1734 iommu_unmap(mapping->domain, iova, len);
1735 __free_iova(mapping, iova, len);
1736 }
1737
1738 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1739 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1740 {
1741 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1742 dma_addr_t iova = handle & PAGE_MASK;
1743 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1744 unsigned int offset = handle & ~PAGE_MASK;
1745
1746 if (!iova)
1747 return;
1748
1749 __dma_page_dev_to_cpu(page, offset, size, dir);
1750 }
1751
1752 static void arm_iommu_sync_single_for_device(struct device *dev,
1753 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1754 {
1755 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1756 dma_addr_t iova = handle & PAGE_MASK;
1757 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1758 unsigned int offset = handle & ~PAGE_MASK;
1759
1760 if (!iova)
1761 return;
1762
1763 __dma_page_cpu_to_dev(page, offset, size, dir);
1764 }
1765
1766 struct dma_map_ops iommu_ops = {
1767 .alloc = arm_iommu_alloc_attrs,
1768 .free = arm_iommu_free_attrs,
1769 .mmap = arm_iommu_mmap_attrs,
1770 .get_sgtable = arm_iommu_get_sgtable,
1771
1772 .map_page = arm_iommu_map_page,
1773 .unmap_page = arm_iommu_unmap_page,
1774 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1775 .sync_single_for_device = arm_iommu_sync_single_for_device,
1776
1777 .map_sg = arm_iommu_map_sg,
1778 .unmap_sg = arm_iommu_unmap_sg,
1779 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1780 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1781
1782 .set_dma_mask = arm_dma_set_mask,
1783 };
1784
1785 struct dma_map_ops iommu_coherent_ops = {
1786 .alloc = arm_iommu_alloc_attrs,
1787 .free = arm_iommu_free_attrs,
1788 .mmap = arm_iommu_mmap_attrs,
1789 .get_sgtable = arm_iommu_get_sgtable,
1790
1791 .map_page = arm_coherent_iommu_map_page,
1792 .unmap_page = arm_coherent_iommu_unmap_page,
1793
1794 .map_sg = arm_coherent_iommu_map_sg,
1795 .unmap_sg = arm_coherent_iommu_unmap_sg,
1796
1797 .set_dma_mask = arm_dma_set_mask,
1798 };
1799
1800 /**
1801 * arm_iommu_create_mapping
1802 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1803 * @base: start address of the valid IO address space
1804 * @size: size of the valid IO address space
1805 * @order: accuracy of the IO addresses allocations
1806 *
1807 * Creates a mapping structure which holds information about used/unused
1808 * IO address ranges, which is required to perform memory allocation and
1809 * mapping with IOMMU aware functions.
1810 *
1811 * The client device need to be attached to the mapping with
1812 * arm_iommu_attach_device function.
1813 */
1814 struct dma_iommu_mapping *
1815 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1816 int order)
1817 {
1818 unsigned int count = size >> (PAGE_SHIFT + order);
1819 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1820 struct dma_iommu_mapping *mapping;
1821 int err = -ENOMEM;
1822
1823 if (!count)
1824 return ERR_PTR(-EINVAL);
1825
1826 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1827 if (!mapping)
1828 goto err;
1829
1830 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1831 if (!mapping->bitmap)
1832 goto err2;
1833
1834 mapping->base = base;
1835 mapping->bits = BITS_PER_BYTE * bitmap_size;
1836 mapping->order = order;
1837 spin_lock_init(&mapping->lock);
1838
1839 mapping->domain = iommu_domain_alloc(bus);
1840 if (!mapping->domain)
1841 goto err3;
1842
1843 kref_init(&mapping->kref);
1844 return mapping;
1845 err3:
1846 kfree(mapping->bitmap);
1847 err2:
1848 kfree(mapping);
1849 err:
1850 return ERR_PTR(err);
1851 }
1852 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1853
1854 static void release_iommu_mapping(struct kref *kref)
1855 {
1856 struct dma_iommu_mapping *mapping =
1857 container_of(kref, struct dma_iommu_mapping, kref);
1858
1859 iommu_domain_free(mapping->domain);
1860 kfree(mapping->bitmap);
1861 kfree(mapping);
1862 }
1863
1864 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1865 {
1866 if (mapping)
1867 kref_put(&mapping->kref, release_iommu_mapping);
1868 }
1869 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1870
1871 /**
1872 * arm_iommu_attach_device
1873 * @dev: valid struct device pointer
1874 * @mapping: io address space mapping structure (returned from
1875 * arm_iommu_create_mapping)
1876 *
1877 * Attaches specified io address space mapping to the provided device,
1878 * this replaces the dma operations (dma_map_ops pointer) with the
1879 * IOMMU aware version. More than one client might be attached to
1880 * the same io address space mapping.
1881 */
1882 int arm_iommu_attach_device(struct device *dev,
1883 struct dma_iommu_mapping *mapping)
1884 {
1885 int err;
1886
1887 err = iommu_attach_device(mapping->domain, dev);
1888 if (err)
1889 return err;
1890
1891 kref_get(&mapping->kref);
1892 dev->archdata.mapping = mapping;
1893 set_dma_ops(dev, &iommu_ops);
1894
1895 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1896 return 0;
1897 }
1898 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1899
1900 /**
1901 * arm_iommu_detach_device
1902 * @dev: valid struct device pointer
1903 *
1904 * Detaches the provided device from a previously attached map.
1905 * This voids the dma operations (dma_map_ops pointer)
1906 */
1907 void arm_iommu_detach_device(struct device *dev)
1908 {
1909 struct dma_iommu_mapping *mapping;
1910
1911 mapping = to_dma_iommu_mapping(dev);
1912 if (!mapping) {
1913 dev_warn(dev, "Not attached\n");
1914 return;
1915 }
1916
1917 iommu_detach_device(mapping->domain, dev);
1918 kref_put(&mapping->kref, release_iommu_mapping);
1919 mapping = NULL;
1920 set_dma_ops(dev, NULL);
1921
1922 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1923 }
1924 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1925
1926 #endif