Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <linux/mt_sched_mon.h>
49 /*******************************************************************************
50 * 20131225 marc.huang *
51 * CPU Hotplug debug *
52 *******************************************************************************/
53 #include <linux/mtk_ram_console.h>
54 /******************************************************************************/
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/ipi.h>
58
59 /*
60 * as from 2.5, kernels no longer have an init_tasks structure
61 * so we need some other way of telling a new secondary core
62 * where to place its SVC stack
63 */
64 struct secondary_data secondary_data;
65
66 /*
67 * control for which core is the next to come out of the secondary
68 * boot "holding pen"
69 */
70 volatile int __cpuinitdata pen_release = -1;
71
72 enum ipi_msg_type {
73 IPI_WAKEUP,
74 IPI_TIMER,
75 IPI_RESCHEDULE,
76 IPI_CALL_FUNC,
77 IPI_CALL_FUNC_SINGLE,
78 IPI_CPU_STOP,
79 IPI_CPU_BACKTRACE,
80 };
81
82 static DECLARE_COMPLETION(cpu_running);
83
84 static struct smp_operations smp_ops;
85
86 void __init smp_set_ops(struct smp_operations *ops)
87 {
88 if (ops)
89 smp_ops = *ops;
90 };
91
92 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
93 {
94 int ret;
95
96 /*
97 * We need to tell the secondary core where to find
98 * its stack and the page tables.
99 */
100 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
101 secondary_data.pgdir = virt_to_phys(idmap_pgd);
102 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
103 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
104 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
105
106 /*
107 * Now bring the CPU into our world.
108 */
109 ret = boot_secondary(cpu, idle);
110 if (ret == 0) {
111 /*
112 * CPU was successfully started, wait for it
113 * to come online or time out.
114 */
115 wait_for_completion_timeout(&cpu_running,
116 msecs_to_jiffies(1000));
117
118 if (!cpu_online(cpu)) {
119 pr_crit("CPU%u: failed to come online\n", cpu);
120 ret = -EIO;
121 }
122 } else {
123 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
124 }
125
126 secondary_data.stack = NULL;
127 secondary_data.pgdir = 0;
128
129 return ret;
130 }
131
132 /* platform specific SMP operations */
133 void __init smp_init_cpus(void)
134 {
135 if (smp_ops.smp_init_cpus)
136 smp_ops.smp_init_cpus();
137 }
138
139 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
140 {
141 if (smp_ops.smp_boot_secondary)
142 return smp_ops.smp_boot_secondary(cpu, idle);
143 return -ENOSYS;
144 }
145
146 #ifdef CONFIG_HOTPLUG_CPU
147 static void percpu_timer_stop(void);
148
149 static int platform_cpu_kill(unsigned int cpu)
150 {
151 if (smp_ops.cpu_kill)
152 return smp_ops.cpu_kill(cpu);
153 return 1;
154 }
155
156 static int platform_cpu_disable(unsigned int cpu)
157 {
158 if (smp_ops.cpu_disable)
159 return smp_ops.cpu_disable(cpu);
160
161 /*
162 * By default, allow disabling all CPUs except the first one,
163 * since this is special on a lot of platforms, e.g. because
164 * of clock tick interrupts.
165 */
166 return cpu == 0 ? -EPERM : 0;
167 }
168 /*
169 * __cpu_disable runs on the processor to be shutdown.
170 */
171 int __cpuinit __cpu_disable(void)
172 {
173 unsigned int cpu = smp_processor_id();
174 int ret;
175
176 ret = platform_cpu_disable(cpu);
177 if (ret)
178 return ret;
179
180 /*
181 * Take this CPU offline. Once we clear this, we can't return,
182 * and we must not schedule until we're ready to give up the cpu.
183 */
184 set_cpu_online(cpu, false);
185
186 /*
187 * OK - migrate IRQs away from this CPU
188 */
189 migrate_irqs();
190
191 /*
192 * Stop the local timer for this CPU.
193 */
194 percpu_timer_stop();
195
196 /*
197 * Flush user cache and TLB mappings, and then remove this CPU
198 * from the vm mask set of all processes.
199 *
200 * Caches are flushed to the Level of Unification Inner Shareable
201 * to write-back dirty lines to unified caches shared by all CPUs.
202 */
203 flush_cache_louis();
204 local_flush_tlb_all();
205
206 clear_tasks_mm_cpumask(cpu);
207
208 return 0;
209 }
210
211 static DECLARE_COMPLETION(cpu_died);
212
213 /*
214 * called on the thread which is asking for a CPU to be shutdown -
215 * waits until shutdown has completed, or it is timed out.
216 */
217 void __cpuinit __cpu_die(unsigned int cpu)
218 {
219 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
220 pr_err("CPU%u: cpu didn't die\n", cpu);
221 return;
222 }
223 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
224
225 /*
226 * platform_cpu_kill() is generally expected to do the powering off
227 * and/or cutting of clocks to the dying CPU. Optionally, this may
228 * be done by the CPU which is dying in preference to supporting
229 * this call, but that means there is _no_ synchronisation between
230 * the requesting CPU and the dying CPU actually losing power.
231 */
232 if (!platform_cpu_kill(cpu))
233 printk("CPU%u: unable to kill\n", cpu);
234 }
235
236 /*
237 * Called from the idle thread for the CPU which has been shutdown.
238 *
239 * Note that we disable IRQs here, but do not re-enable them
240 * before returning to the caller. This is also the behaviour
241 * of the other hotplug-cpu capable cores, so presumably coming
242 * out of idle fixes this.
243 */
244 void __ref cpu_die(void)
245 {
246 unsigned int cpu = smp_processor_id();
247 aee_rr_rec_hoplug(cpu, 51, 0);
248
249 idle_task_exit();
250 aee_rr_rec_hoplug(cpu, 52, 0);
251
252 local_irq_disable();
253 aee_rr_rec_hoplug(cpu, 53, 0);
254
255 /*
256 * Flush the data out of the L1 cache for this CPU. This must be
257 * before the completion to ensure that data is safely written out
258 * before platform_cpu_kill() gets called - which may disable
259 * *this* CPU and power down its cache.
260 */
261 flush_cache_louis();
262 aee_rr_rec_hoplug(cpu, 54, 0);
263
264 /*
265 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
266 * this returns, power and/or clocks can be removed at any point
267 * from this CPU and its cache by platform_cpu_kill().
268 */
269 complete(&cpu_died);
270 aee_rr_rec_hoplug(cpu, 55, 0);
271
272 /*
273 * Ensure that the cache lines associated with that completion are
274 * written out. This covers the case where _this_ CPU is doing the
275 * powering down, to ensure that the completion is visible to the
276 * CPU waiting for this one.
277 */
278 flush_cache_louis();
279 aee_rr_rec_hoplug(cpu, 56, 0);
280
281 /*
282 * The actual CPU shutdown procedure is at least platform (if not
283 * CPU) specific. This may remove power, or it may simply spin.
284 *
285 * Platforms are generally expected *NOT* to return from this call,
286 * although there are some which do because they have no way to
287 * power down the CPU. These platforms are the _only_ reason we
288 * have a return path which uses the fragment of assembly below.
289 *
290 * The return path should not be used for platforms which can
291 * power off the CPU.
292 */
293 if (smp_ops.cpu_die)
294 smp_ops.cpu_die(cpu);
295
296 /*
297 * Do not return to the idle loop - jump back to the secondary
298 * cpu initialisation. There's some initialisation which needs
299 * to be repeated to undo the effects of taking the CPU offline.
300 */
301 __asm__("mov sp, %0\n"
302 " mov fp, #0\n"
303 " b secondary_start_kernel"
304 :
305 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
306 }
307 #endif /* CONFIG_HOTPLUG_CPU */
308
309 /*
310 * Called by both boot and secondaries to move global data into
311 * per-processor storage.
312 */
313 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
314 {
315 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
316
317 cpu_info->loops_per_jiffy = loops_per_jiffy;
318 cpu_info->cpuid = read_cpuid_id();
319
320 store_cpu_topology(cpuid);
321 }
322
323 static void percpu_timer_setup(void);
324
325 /*
326 * This is the secondary CPU boot entry. We're using this CPUs
327 * idle thread stack, but a set of temporary page tables.
328 */
329 asmlinkage void __cpuinit secondary_start_kernel(void)
330 {
331 struct mm_struct *mm = &init_mm;
332 unsigned int cpu = 0;
333 aee_rr_rec_hoplug(cpu, 1, 0);
334
335 /*
336 * The identity mapping is uncached (strongly ordered), so
337 * switch away from it before attempting any exclusive accesses.
338 */
339 cpu_switch_mm(mm->pgd, mm);
340 local_flush_bp_all();
341 enter_lazy_tlb(mm, current);
342 local_flush_tlb_all();
343 aee_rr_rec_hoplug(cpu, 2, 0);
344
345 /*
346 * All kernel threads share the same mm context; grab a
347 * reference and switch to it.
348 */
349 cpu = smp_processor_id();
350 aee_rr_rec_hoplug(cpu, 3, 0);
351 atomic_inc(&mm->mm_count);
352 current->active_mm = mm;
353 cpumask_set_cpu(cpu, mm_cpumask(mm));
354 aee_rr_rec_hoplug(cpu, 4, 0);
355
356 cpu_init();
357 aee_rr_rec_hoplug(cpu, 5, 0);
358
359 printk("CPU%u: Booted secondary processor\n", cpu);
360
361 preempt_disable();
362 aee_rr_rec_hoplug(cpu, 6, 0);
363 trace_hardirqs_off();
364 aee_rr_rec_hoplug(cpu, 7, 0);
365
366 /*
367 * Give the platform a chance to do its own initialisation.
368 */
369 if (smp_ops.smp_secondary_init)
370 smp_ops.smp_secondary_init(cpu);
371 aee_rr_rec_hoplug(cpu, 8, 0);
372
373 notify_cpu_starting(cpu);
374 aee_rr_rec_hoplug(cpu, 9, 0);
375
376 calibrate_delay();
377 aee_rr_rec_hoplug(cpu, 10, 0);
378
379 smp_store_cpu_info(cpu);
380 aee_rr_rec_hoplug(cpu, 11, 0);
381
382 /*
383 * OK, now it's safe to let the boot CPU continue. Wait for
384 * the CPU migration code to notice that the CPU is online
385 * before we continue - which happens after __cpu_up returns.
386 */
387 set_cpu_online(cpu, true);
388 aee_rr_rec_hoplug(cpu, 12, 0);
389 complete(&cpu_running);
390 aee_rr_rec_hoplug(cpu, 13, 0);
391
392 /*
393 * Setup the percpu timer for this CPU.
394 */
395 percpu_timer_setup();
396 aee_rr_rec_hoplug(cpu, 14, 0);
397
398 local_irq_enable();
399 aee_rr_rec_hoplug(cpu, 15, 0);
400 local_fiq_enable();
401 aee_rr_rec_hoplug(cpu, 16, 0);
402
403 /*
404 * OK, it's off to the idle thread for us
405 */
406 cpu_startup_entry(CPUHP_ONLINE);
407 aee_rr_rec_hoplug(cpu, 17, 0);
408 }
409
410 void __init smp_cpus_done(unsigned int max_cpus)
411 {
412 int cpu;
413 unsigned long bogosum = 0;
414
415 for_each_online_cpu(cpu)
416 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
417
418 printk(KERN_INFO "SMP: Total of %d processors activated "
419 "(%lu.%02lu BogoMIPS).\n",
420 num_online_cpus(),
421 bogosum / (500000/HZ),
422 (bogosum / (5000/HZ)) % 100);
423
424 hyp_mode_check();
425 }
426
427 void __init smp_prepare_boot_cpu(void)
428 {
429 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
430 }
431
432 void __init smp_prepare_cpus(unsigned int max_cpus)
433 {
434 unsigned int ncores = num_possible_cpus();
435
436 init_cpu_topology();
437
438 smp_store_cpu_info(smp_processor_id());
439
440 /*
441 * are we trying to boot more cores than exist?
442 */
443 if (max_cpus > ncores)
444 max_cpus = ncores;
445 if (ncores > 1 && max_cpus) {
446 /*
447 * Enable the local timer or broadcast device for the
448 * boot CPU, but only if we have more than one CPU.
449 */
450 percpu_timer_setup();
451
452 /*
453 * Initialise the present map, which describes the set of CPUs
454 * actually populated at the present time. A platform should
455 * re-initialize the map in the platforms smp_prepare_cpus()
456 * if present != possible (e.g. physical hotplug).
457 */
458 init_cpu_present(cpu_possible_mask);
459
460 /*
461 * Initialise the SCU if there are more than one CPU
462 * and let them know where to start.
463 */
464 if (smp_ops.smp_prepare_cpus)
465 smp_ops.smp_prepare_cpus(max_cpus);
466 }
467 }
468
469 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
470
471 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
472 {
473 if (!__smp_cross_call)
474 __smp_cross_call = fn;
475 }
476
477 static const char *ipi_types[NR_IPI] __tracepoint_string = {
478 #define S(x,s) [x] = s
479 S(IPI_WAKEUP, "CPU wakeup interrupts"),
480 S(IPI_TIMER, "Timer broadcast interrupts"),
481 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
482 S(IPI_CALL_FUNC, "Function call interrupts"),
483 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
484 S(IPI_CPU_STOP, "CPU stop interrupts"),
485 S(IPI_CPU_BACKTRACE, "CPU backtrace"),
486 };
487
488 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
489 {
490 trace_ipi_raise(target, ipi_types[ipinr]);
491 __smp_cross_call(target, ipinr);
492 }
493
494 void show_ipi_list(struct seq_file *p, int prec)
495 {
496 unsigned int cpu, i;
497
498 for (i = 0; i < NR_IPI; i++) {
499 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
500
501 for_each_online_cpu(cpu)
502 seq_printf(p, "%10u ",
503 __get_irq_stat(cpu, ipi_irqs[i]));
504
505 seq_printf(p, " %s\n", ipi_types[i]);
506 }
507 }
508
509 u64 smp_irq_stat_cpu(unsigned int cpu)
510 {
511 u64 sum = 0;
512 int i;
513
514 for (i = 0; i < NR_IPI; i++)
515 sum += __get_irq_stat(cpu, ipi_irqs[i]);
516
517 return sum;
518 }
519
520 /*
521 * Timer (local or broadcast) support
522 */
523 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
524
525 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
526 {
527 smp_cross_call(mask, IPI_CALL_FUNC);
528 }
529
530 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
531 {
532 smp_cross_call(mask, IPI_WAKEUP);
533 }
534
535 void arch_send_call_function_single_ipi(int cpu)
536 {
537 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
538 }
539
540 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
541 void tick_broadcast(const struct cpumask *mask)
542 {
543 smp_cross_call(mask, IPI_TIMER);
544 }
545 #endif
546
547 static void broadcast_timer_set_mode(enum clock_event_mode mode,
548 struct clock_event_device *evt)
549 {
550 }
551
552 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
553 {
554 evt->name = "dummy_timer";
555 evt->features = CLOCK_EVT_FEAT_ONESHOT |
556 CLOCK_EVT_FEAT_PERIODIC |
557 CLOCK_EVT_FEAT_DUMMY;
558 evt->rating = 100;
559 evt->mult = 1;
560 evt->set_mode = broadcast_timer_set_mode;
561
562 clockevents_register_device(evt);
563 }
564
565 static struct local_timer_ops *lt_ops;
566
567 #ifdef CONFIG_LOCAL_TIMERS
568 int local_timer_register(struct local_timer_ops *ops)
569 {
570 if (!is_smp() || !setup_max_cpus)
571 return -ENXIO;
572
573 if (lt_ops)
574 return -EBUSY;
575
576 lt_ops = ops;
577 return 0;
578 }
579 #endif
580
581 static void __cpuinit percpu_timer_setup(void)
582 {
583 unsigned int cpu = smp_processor_id();
584 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
585
586 evt->cpumask = cpumask_of(cpu);
587
588 if (!lt_ops || lt_ops->setup(evt))
589 broadcast_timer_setup(evt);
590 }
591
592 #ifdef CONFIG_HOTPLUG_CPU
593 /*
594 * The generic clock events code purposely does not stop the local timer
595 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
596 * manually here.
597 */
598 static void percpu_timer_stop(void)
599 {
600 unsigned int cpu = smp_processor_id();
601 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
602
603 if (lt_ops)
604 lt_ops->stop(evt);
605 }
606 #endif
607
608 static DEFINE_RAW_SPINLOCK(stop_lock);
609
610 /*
611 * ipi_cpu_stop - handle IPI from smp_send_stop()
612 */
613 static void ipi_cpu_stop(unsigned int cpu)
614 {
615 if (system_state == SYSTEM_BOOTING ||
616 system_state == SYSTEM_RUNNING) {
617 raw_spin_lock(&stop_lock);
618 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
619 dump_stack();
620 raw_spin_unlock(&stop_lock);
621 }
622
623 set_cpu_online(cpu, false);
624
625 local_fiq_disable();
626 local_irq_disable();
627
628 while (1)
629 cpu_relax();
630 }
631
632 static cpumask_t backtrace_mask;
633 static DEFINE_RAW_SPINLOCK(backtrace_lock);
634
635 /* "in progress" flag of arch_trigger_all_cpu_backtrace */
636 static unsigned long backtrace_flag;
637
638 void smp_send_all_cpu_backtrace(void)
639 {
640 unsigned int this_cpu = smp_processor_id();
641 int i;
642
643 if (test_and_set_bit(0, &backtrace_flag))
644 /*
645 * If there is already a trigger_all_cpu_backtrace() in progress
646 * (backtrace_flag == 1), don't output double cpu dump infos.
647 */
648 return;
649
650 cpumask_copy(&backtrace_mask, cpu_online_mask);
651 cpu_clear(this_cpu, backtrace_mask);
652
653 pr_info("Backtrace for cpu %d (current):\n", this_cpu);
654 dump_stack();
655
656 pr_info("\nsending IPI to all other CPUs:\n");
657 smp_cross_call(&backtrace_mask, IPI_CPU_BACKTRACE);
658
659 /* Wait for up to 10 seconds for all other CPUs to do the backtrace */
660 for (i = 0; i < 10 * 1000; i++) {
661 if (cpumask_empty(&backtrace_mask))
662 break;
663 mdelay(1);
664 }
665
666 clear_bit(0, &backtrace_flag);
667 smp_mb__after_clear_bit();
668 }
669
670 /*
671 * ipi_cpu_backtrace - handle IPI from smp_send_all_cpu_backtrace()
672 */
673 static void ipi_cpu_backtrace(unsigned int cpu, struct pt_regs *regs)
674 {
675 if (cpu_isset(cpu, backtrace_mask)) {
676 raw_spin_lock(&backtrace_lock);
677 pr_warning("IPI backtrace for cpu %d\n", cpu);
678 show_regs(regs);
679 raw_spin_unlock(&backtrace_lock);
680 cpu_clear(cpu, backtrace_mask);
681 }
682 }
683
684 /*
685 * Main handler for inter-processor interrupts
686 */
687 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
688 {
689 handle_IPI(ipinr, regs);
690 }
691
692 void handle_IPI(int ipinr, struct pt_regs *regs)
693 {
694 unsigned int cpu = smp_processor_id();
695 struct pt_regs *old_regs = set_irq_regs(regs);
696
697 if ((unsigned)ipinr < NR_IPI) {
698 trace_ipi_entry(ipi_types[ipinr]);
699 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
700 }
701
702 switch (ipinr) {
703 case IPI_WAKEUP:
704 mt_trace_ISR_start(ipinr);
705 mt_trace_ISR_end(ipinr);
706 break;
707
708 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
709 case IPI_TIMER:
710 irq_enter();
711 mt_trace_ISR_start(ipinr);
712 tick_receive_broadcast();
713 mt_trace_ISR_end(ipinr);
714 irq_exit();
715 break;
716 #endif
717
718 case IPI_RESCHEDULE:
719 scheduler_ipi();
720 break;
721
722 case IPI_CALL_FUNC:
723 irq_enter();
724 mt_trace_ISR_start(ipinr);
725 generic_smp_call_function_interrupt();
726 mt_trace_ISR_end(ipinr);
727 irq_exit();
728 break;
729
730 case IPI_CALL_FUNC_SINGLE:
731 irq_enter();
732 mt_trace_ISR_start(ipinr);
733 generic_smp_call_function_single_interrupt();
734 mt_trace_ISR_end(ipinr);
735 irq_exit();
736 break;
737
738 case IPI_CPU_STOP:
739 irq_enter();
740 mt_trace_ISR_start(ipinr);
741 ipi_cpu_stop(cpu);
742 mt_trace_ISR_end(ipinr);
743 irq_exit();
744 break;
745
746 case IPI_CPU_BACKTRACE:
747 mt_trace_ISR_start(ipinr);
748 ipi_cpu_backtrace(cpu, regs);
749 mt_trace_ISR_end(ipinr);
750 break;
751
752 default:
753 mt_trace_ISR_start(ipinr);
754 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
755 cpu, ipinr);
756 mt_trace_ISR_end(ipinr);
757 break;
758 }
759
760 if ((unsigned)ipinr < NR_IPI)
761 trace_ipi_exit(ipi_types[ipinr]);
762 set_irq_regs(old_regs);
763 }
764
765 void smp_send_reschedule(int cpu)
766 {
767 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
768 }
769
770 void smp_send_stop(void)
771 {
772 unsigned long timeout;
773 struct cpumask mask;
774
775 cpumask_copy(&mask, cpu_online_mask);
776 cpumask_clear_cpu(smp_processor_id(), &mask);
777 if (!cpumask_empty(&mask))
778 smp_cross_call(&mask, IPI_CPU_STOP);
779
780 /* Wait up to one second for other CPUs to stop */
781 timeout = USEC_PER_SEC;
782 while (num_online_cpus() > 1 && timeout--)
783 udelay(1);
784
785 if (num_online_cpus() > 1)
786 pr_warning("SMP: failed to stop secondary CPUs\n");
787 }
788
789 /*
790 * not supported here
791 */
792 int setup_profiling_timer(unsigned int multiplier)
793 {
794 return -EINVAL;
795 }
796
797 #ifdef CONFIG_CPU_FREQ
798
799 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
800 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
801 static unsigned long global_l_p_j_ref;
802 static unsigned long global_l_p_j_ref_freq;
803
804 static int cpufreq_callback(struct notifier_block *nb,
805 unsigned long val, void *data)
806 {
807 struct cpufreq_freqs *freq = data;
808 int cpu = freq->cpu;
809
810 if (freq->flags & CPUFREQ_CONST_LOOPS)
811 return NOTIFY_OK;
812
813 if (!per_cpu(l_p_j_ref, cpu)) {
814 per_cpu(l_p_j_ref, cpu) =
815 per_cpu(cpu_data, cpu).loops_per_jiffy;
816 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
817 if (!global_l_p_j_ref) {
818 global_l_p_j_ref = loops_per_jiffy;
819 global_l_p_j_ref_freq = freq->old;
820 }
821 }
822
823 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
824 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
825 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
826 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
827 global_l_p_j_ref_freq,
828 freq->new);
829 per_cpu(cpu_data, cpu).loops_per_jiffy =
830 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
831 per_cpu(l_p_j_ref_freq, cpu),
832 freq->new);
833 }
834 return NOTIFY_OK;
835 }
836
837 static struct notifier_block cpufreq_notifier = {
838 .notifier_call = cpufreq_callback,
839 };
840
841 static int __init register_cpufreq_notifier(void)
842 {
843 return cpufreq_register_notifier(&cpufreq_notifier,
844 CPUFREQ_TRANSITION_NOTIFIER);
845 }
846 core_initcall(register_cpufreq_notifier);
847
848 #endif