Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kernel / ptrace.c
1 /*
2 * linux/arch/arm/kernel/ptrace.c
3 *
4 * By Ross Biro 1/23/92
5 * edited by Linus Torvalds
6 * ARM modifications Copyright (C) 2000 Russell King
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
27 #include <linux/tracehook.h>
28 #include <linux/unistd.h>
29
30 #include <asm/pgtable.h>
31 #include <asm/traps.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/syscalls.h>
35
36 #define REG_PC 15
37 #define REG_PSR 16
38 /*
39 * does not yet catch signals sent when the child dies.
40 * in exit.c or in signal.c.
41 */
42
43 #if 0
44 /*
45 * Breakpoint SWI instruction: SWI &9F0001
46 */
47 #define BREAKINST_ARM 0xef9f0001
48 #define BREAKINST_THUMB 0xdf00 /* fill this in later */
49 #else
50 /*
51 * New breakpoints - use an undefined instruction. The ARM architecture
52 * reference manual guarantees that the following instruction space
53 * will produce an undefined instruction exception on all CPUs:
54 *
55 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
56 * Thumb: 1101 1110 xxxx xxxx
57 */
58 #define BREAKINST_ARM 0xe7f001f0
59 #define BREAKINST_THUMB 0xde01
60 #endif
61
62 struct pt_regs_offset {
63 const char *name;
64 int offset;
65 };
66
67 #define REG_OFFSET_NAME(r) \
68 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
69 #define REG_OFFSET_END {.name = NULL, .offset = 0}
70
71 static const struct pt_regs_offset regoffset_table[] = {
72 REG_OFFSET_NAME(r0),
73 REG_OFFSET_NAME(r1),
74 REG_OFFSET_NAME(r2),
75 REG_OFFSET_NAME(r3),
76 REG_OFFSET_NAME(r4),
77 REG_OFFSET_NAME(r5),
78 REG_OFFSET_NAME(r6),
79 REG_OFFSET_NAME(r7),
80 REG_OFFSET_NAME(r8),
81 REG_OFFSET_NAME(r9),
82 REG_OFFSET_NAME(r10),
83 REG_OFFSET_NAME(fp),
84 REG_OFFSET_NAME(ip),
85 REG_OFFSET_NAME(sp),
86 REG_OFFSET_NAME(lr),
87 REG_OFFSET_NAME(pc),
88 REG_OFFSET_NAME(cpsr),
89 REG_OFFSET_NAME(ORIG_r0),
90 REG_OFFSET_END,
91 };
92
93 /**
94 * regs_query_register_offset() - query register offset from its name
95 * @name: the name of a register
96 *
97 * regs_query_register_offset() returns the offset of a register in struct
98 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
99 */
100 int regs_query_register_offset(const char *name)
101 {
102 const struct pt_regs_offset *roff;
103 for (roff = regoffset_table; roff->name != NULL; roff++)
104 if (!strcmp(roff->name, name))
105 return roff->offset;
106 return -EINVAL;
107 }
108
109 /**
110 * regs_query_register_name() - query register name from its offset
111 * @offset: the offset of a register in struct pt_regs.
112 *
113 * regs_query_register_name() returns the name of a register from its
114 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
115 */
116 const char *regs_query_register_name(unsigned int offset)
117 {
118 const struct pt_regs_offset *roff;
119 for (roff = regoffset_table; roff->name != NULL; roff++)
120 if (roff->offset == offset)
121 return roff->name;
122 return NULL;
123 }
124
125 /**
126 * regs_within_kernel_stack() - check the address in the stack
127 * @regs: pt_regs which contains kernel stack pointer.
128 * @addr: address which is checked.
129 *
130 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
131 * If @addr is within the kernel stack, it returns true. If not, returns false.
132 */
133 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
134 {
135 return ((addr & ~(THREAD_SIZE - 1)) ==
136 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
137 }
138
139 /**
140 * regs_get_kernel_stack_nth() - get Nth entry of the stack
141 * @regs: pt_regs which contains kernel stack pointer.
142 * @n: stack entry number.
143 *
144 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
145 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
146 * this returns 0.
147 */
148 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
149 {
150 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
151 addr += n;
152 if (regs_within_kernel_stack(regs, (unsigned long)addr))
153 return *addr;
154 else
155 return 0;
156 }
157
158 /*
159 * this routine will get a word off of the processes privileged stack.
160 * the offset is how far from the base addr as stored in the THREAD.
161 * this routine assumes that all the privileged stacks are in our
162 * data space.
163 */
164 static inline long get_user_reg(struct task_struct *task, int offset)
165 {
166 return task_pt_regs(task)->uregs[offset];
167 }
168
169 /*
170 * this routine will put a word on the processes privileged stack.
171 * the offset is how far from the base addr as stored in the THREAD.
172 * this routine assumes that all the privileged stacks are in our
173 * data space.
174 */
175 static inline int
176 put_user_reg(struct task_struct *task, int offset, long data)
177 {
178 struct pt_regs newregs, *regs = task_pt_regs(task);
179 int ret = -EINVAL;
180
181 newregs = *regs;
182 newregs.uregs[offset] = data;
183
184 if (valid_user_regs(&newregs)) {
185 regs->uregs[offset] = data;
186 ret = 0;
187 }
188
189 return ret;
190 }
191
192 /*
193 * Called by kernel/ptrace.c when detaching..
194 */
195 void ptrace_disable(struct task_struct *child)
196 {
197 /* Nothing to do. */
198 }
199
200 /*
201 * Handle hitting a breakpoint.
202 */
203 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
204 {
205 siginfo_t info;
206
207 info.si_signo = SIGTRAP;
208 info.si_errno = 0;
209 info.si_code = TRAP_BRKPT;
210 info.si_addr = (void __user *)instruction_pointer(regs);
211
212 force_sig_info(SIGTRAP, &info, tsk);
213 }
214
215 static int break_trap(struct pt_regs *regs, unsigned int instr)
216 {
217 ptrace_break(current, regs);
218 return 0;
219 }
220
221 static struct undef_hook arm_break_hook = {
222 .instr_mask = 0x0fffffff,
223 .instr_val = 0x07f001f0,
224 .cpsr_mask = PSR_T_BIT,
225 .cpsr_val = 0,
226 .fn = break_trap,
227 };
228
229 static struct undef_hook thumb_break_hook = {
230 .instr_mask = 0xffff,
231 .instr_val = 0xde01,
232 .cpsr_mask = PSR_T_BIT,
233 .cpsr_val = PSR_T_BIT,
234 .fn = break_trap,
235 };
236
237 static struct undef_hook thumb2_break_hook = {
238 .instr_mask = 0xffffffff,
239 .instr_val = 0xf7f0a000,
240 .cpsr_mask = PSR_T_BIT,
241 .cpsr_val = PSR_T_BIT,
242 .fn = break_trap,
243 };
244
245 static int __init ptrace_break_init(void)
246 {
247 register_undef_hook(&arm_break_hook);
248 register_undef_hook(&thumb_break_hook);
249 register_undef_hook(&thumb2_break_hook);
250 return 0;
251 }
252
253 core_initcall(ptrace_break_init);
254
255 /*
256 * Read the word at offset "off" into the "struct user". We
257 * actually access the pt_regs stored on the kernel stack.
258 */
259 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
260 unsigned long __user *ret)
261 {
262 unsigned long tmp;
263
264 if (off & 3)
265 return -EIO;
266
267 tmp = 0;
268 if (off == PT_TEXT_ADDR)
269 tmp = tsk->mm->start_code;
270 else if (off == PT_DATA_ADDR)
271 tmp = tsk->mm->start_data;
272 else if (off == PT_TEXT_END_ADDR)
273 tmp = tsk->mm->end_code;
274 else if (off < sizeof(struct pt_regs))
275 tmp = get_user_reg(tsk, off >> 2);
276 else if (off >= sizeof(struct user))
277 return -EIO;
278
279 return put_user(tmp, ret);
280 }
281
282 /*
283 * Write the word at offset "off" into "struct user". We
284 * actually access the pt_regs stored on the kernel stack.
285 */
286 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
287 unsigned long val)
288 {
289 if (off & 3 || off >= sizeof(struct user))
290 return -EIO;
291
292 if (off >= sizeof(struct pt_regs))
293 return 0;
294
295 return put_user_reg(tsk, off >> 2, val);
296 }
297
298 #ifdef CONFIG_IWMMXT
299
300 /*
301 * Get the child iWMMXt state.
302 */
303 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
304 {
305 struct thread_info *thread = task_thread_info(tsk);
306
307 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
308 return -ENODATA;
309 iwmmxt_task_disable(thread); /* force it to ram */
310 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
311 ? -EFAULT : 0;
312 }
313
314 /*
315 * Set the child iWMMXt state.
316 */
317 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
318 {
319 struct thread_info *thread = task_thread_info(tsk);
320
321 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
322 return -EACCES;
323 iwmmxt_task_release(thread); /* force a reload */
324 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
325 ? -EFAULT : 0;
326 }
327
328 #endif
329
330 #ifdef CONFIG_CRUNCH
331 /*
332 * Get the child Crunch state.
333 */
334 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
335 {
336 struct thread_info *thread = task_thread_info(tsk);
337
338 crunch_task_disable(thread); /* force it to ram */
339 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
340 ? -EFAULT : 0;
341 }
342
343 /*
344 * Set the child Crunch state.
345 */
346 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
347 {
348 struct thread_info *thread = task_thread_info(tsk);
349
350 crunch_task_release(thread); /* force a reload */
351 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
352 ? -EFAULT : 0;
353 }
354 #endif
355
356 #ifdef CONFIG_HAVE_HW_BREAKPOINT
357 /*
358 * Convert a virtual register number into an index for a thread_info
359 * breakpoint array. Breakpoints are identified using positive numbers
360 * whilst watchpoints are negative. The registers are laid out as pairs
361 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
362 * Register 0 is reserved for describing resource information.
363 */
364 static int ptrace_hbp_num_to_idx(long num)
365 {
366 if (num < 0)
367 num = (ARM_MAX_BRP << 1) - num;
368 return (num - 1) >> 1;
369 }
370
371 /*
372 * Returns the virtual register number for the address of the
373 * breakpoint at index idx.
374 */
375 static long ptrace_hbp_idx_to_num(int idx)
376 {
377 long mid = ARM_MAX_BRP << 1;
378 long num = (idx << 1) + 1;
379 return num > mid ? mid - num : num;
380 }
381
382 /*
383 * Handle hitting a HW-breakpoint.
384 */
385 static void ptrace_hbptriggered(struct perf_event *bp,
386 struct perf_sample_data *data,
387 struct pt_regs *regs)
388 {
389 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
390 long num;
391 int i;
392 siginfo_t info;
393
394 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
395 if (current->thread.debug.hbp[i] == bp)
396 break;
397
398 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
399
400 info.si_signo = SIGTRAP;
401 info.si_errno = (int)num;
402 info.si_code = TRAP_HWBKPT;
403 info.si_addr = (void __user *)(bkpt->trigger);
404
405 force_sig_info(SIGTRAP, &info, current);
406 }
407
408 /*
409 * Set ptrace breakpoint pointers to zero for this task.
410 * This is required in order to prevent child processes from unregistering
411 * breakpoints held by their parent.
412 */
413 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
414 {
415 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
416 }
417
418 /*
419 * Unregister breakpoints from this task and reset the pointers in
420 * the thread_struct.
421 */
422 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
423 {
424 int i;
425 struct thread_struct *t = &tsk->thread;
426
427 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
428 if (t->debug.hbp[i]) {
429 unregister_hw_breakpoint(t->debug.hbp[i]);
430 t->debug.hbp[i] = NULL;
431 }
432 }
433 }
434
435 static u32 ptrace_get_hbp_resource_info(void)
436 {
437 u8 num_brps, num_wrps, debug_arch, wp_len;
438 u32 reg = 0;
439
440 num_brps = hw_breakpoint_slots(TYPE_INST);
441 num_wrps = hw_breakpoint_slots(TYPE_DATA);
442 debug_arch = arch_get_debug_arch();
443 wp_len = arch_get_max_wp_len();
444
445 reg |= debug_arch;
446 reg <<= 8;
447 reg |= wp_len;
448 reg <<= 8;
449 reg |= num_wrps;
450 reg <<= 8;
451 reg |= num_brps;
452
453 return reg;
454 }
455
456 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
457 {
458 struct perf_event_attr attr;
459
460 ptrace_breakpoint_init(&attr);
461
462 /* Initialise fields to sane defaults. */
463 attr.bp_addr = 0;
464 attr.bp_len = HW_BREAKPOINT_LEN_4;
465 attr.bp_type = type;
466 attr.disabled = 1;
467
468 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
469 tsk);
470 }
471
472 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
473 unsigned long __user *data)
474 {
475 u32 reg;
476 int idx, ret = 0;
477 struct perf_event *bp;
478 struct arch_hw_breakpoint_ctrl arch_ctrl;
479
480 if (num == 0) {
481 reg = ptrace_get_hbp_resource_info();
482 } else {
483 idx = ptrace_hbp_num_to_idx(num);
484 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
485 ret = -EINVAL;
486 goto out;
487 }
488
489 bp = tsk->thread.debug.hbp[idx];
490 if (!bp) {
491 reg = 0;
492 goto put;
493 }
494
495 arch_ctrl = counter_arch_bp(bp)->ctrl;
496
497 /*
498 * Fix up the len because we may have adjusted it
499 * to compensate for an unaligned address.
500 */
501 while (!(arch_ctrl.len & 0x1))
502 arch_ctrl.len >>= 1;
503
504 if (num & 0x1)
505 reg = bp->attr.bp_addr;
506 else
507 reg = encode_ctrl_reg(arch_ctrl);
508 }
509
510 put:
511 if (put_user(reg, data))
512 ret = -EFAULT;
513
514 out:
515 return ret;
516 }
517
518 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
519 unsigned long __user *data)
520 {
521 int idx, gen_len, gen_type, implied_type, ret = 0;
522 u32 user_val;
523 struct perf_event *bp;
524 struct arch_hw_breakpoint_ctrl ctrl;
525 struct perf_event_attr attr;
526
527 if (num == 0)
528 goto out;
529 else if (num < 0)
530 implied_type = HW_BREAKPOINT_RW;
531 else
532 implied_type = HW_BREAKPOINT_X;
533
534 idx = ptrace_hbp_num_to_idx(num);
535 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
536 ret = -EINVAL;
537 goto out;
538 }
539
540 if (get_user(user_val, data)) {
541 ret = -EFAULT;
542 goto out;
543 }
544
545 bp = tsk->thread.debug.hbp[idx];
546 if (!bp) {
547 bp = ptrace_hbp_create(tsk, implied_type);
548 if (IS_ERR(bp)) {
549 ret = PTR_ERR(bp);
550 goto out;
551 }
552 tsk->thread.debug.hbp[idx] = bp;
553 }
554
555 attr = bp->attr;
556
557 if (num & 0x1) {
558 /* Address */
559 attr.bp_addr = user_val;
560 } else {
561 /* Control */
562 decode_ctrl_reg(user_val, &ctrl);
563 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
564 if (ret)
565 goto out;
566
567 if ((gen_type & implied_type) != gen_type) {
568 ret = -EINVAL;
569 goto out;
570 }
571
572 attr.bp_len = gen_len;
573 attr.bp_type = gen_type;
574 attr.disabled = !ctrl.enabled;
575 }
576
577 ret = modify_user_hw_breakpoint(bp, &attr);
578 out:
579 return ret;
580 }
581 #endif
582
583 /* regset get/set implementations */
584
585 static int gpr_get(struct task_struct *target,
586 const struct user_regset *regset,
587 unsigned int pos, unsigned int count,
588 void *kbuf, void __user *ubuf)
589 {
590 struct pt_regs *regs = task_pt_regs(target);
591
592 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
593 regs,
594 0, sizeof(*regs));
595 }
596
597 static int gpr_set(struct task_struct *target,
598 const struct user_regset *regset,
599 unsigned int pos, unsigned int count,
600 const void *kbuf, const void __user *ubuf)
601 {
602 int ret;
603 struct pt_regs newregs;
604
605 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
606 &newregs,
607 0, sizeof(newregs));
608 if (ret)
609 return ret;
610
611 if (!valid_user_regs(&newregs))
612 return -EINVAL;
613
614 *task_pt_regs(target) = newregs;
615 return 0;
616 }
617
618 static int fpa_get(struct task_struct *target,
619 const struct user_regset *regset,
620 unsigned int pos, unsigned int count,
621 void *kbuf, void __user *ubuf)
622 {
623 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
624 &task_thread_info(target)->fpstate,
625 0, sizeof(struct user_fp));
626 }
627
628 static int fpa_set(struct task_struct *target,
629 const struct user_regset *regset,
630 unsigned int pos, unsigned int count,
631 const void *kbuf, const void __user *ubuf)
632 {
633 struct thread_info *thread = task_thread_info(target);
634
635 thread->used_cp[1] = thread->used_cp[2] = 1;
636
637 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
638 &thread->fpstate,
639 0, sizeof(struct user_fp));
640 }
641
642 #ifdef CONFIG_VFP
643 /*
644 * VFP register get/set implementations.
645 *
646 * With respect to the kernel, struct user_fp is divided into three chunks:
647 * 16 or 32 real VFP registers (d0-d15 or d0-31)
648 * These are transferred to/from the real registers in the task's
649 * vfp_hard_struct. The number of registers depends on the kernel
650 * configuration.
651 *
652 * 16 or 0 fake VFP registers (d16-d31 or empty)
653 * i.e., the user_vfp structure has space for 32 registers even if
654 * the kernel doesn't have them all.
655 *
656 * vfp_get() reads this chunk as zero where applicable
657 * vfp_set() ignores this chunk
658 *
659 * 1 word for the FPSCR
660 *
661 * The bounds-checking logic built into user_regset_copyout and friends
662 * means that we can make a simple sequence of calls to map the relevant data
663 * to/from the specified slice of the user regset structure.
664 */
665 static int vfp_get(struct task_struct *target,
666 const struct user_regset *regset,
667 unsigned int pos, unsigned int count,
668 void *kbuf, void __user *ubuf)
669 {
670 int ret;
671 struct thread_info *thread = task_thread_info(target);
672 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
673 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
674 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
675
676 vfp_sync_hwstate(thread);
677
678 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
679 &vfp->fpregs,
680 user_fpregs_offset,
681 user_fpregs_offset + sizeof(vfp->fpregs));
682 if (ret)
683 return ret;
684
685 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
686 user_fpregs_offset + sizeof(vfp->fpregs),
687 user_fpscr_offset);
688 if (ret)
689 return ret;
690
691 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
692 &vfp->fpscr,
693 user_fpscr_offset,
694 user_fpscr_offset + sizeof(vfp->fpscr));
695 }
696
697 /*
698 * For vfp_set() a read-modify-write is done on the VFP registers,
699 * in order to avoid writing back a half-modified set of registers on
700 * failure.
701 */
702 static int vfp_set(struct task_struct *target,
703 const struct user_regset *regset,
704 unsigned int pos, unsigned int count,
705 const void *kbuf, const void __user *ubuf)
706 {
707 int ret;
708 struct thread_info *thread = task_thread_info(target);
709 struct vfp_hard_struct new_vfp;
710 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
711 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
712
713 vfp_sync_hwstate(thread);
714 new_vfp = thread->vfpstate.hard;
715
716 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
717 &new_vfp.fpregs,
718 user_fpregs_offset,
719 user_fpregs_offset + sizeof(new_vfp.fpregs));
720 if (ret)
721 return ret;
722
723 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
724 user_fpregs_offset + sizeof(new_vfp.fpregs),
725 user_fpscr_offset);
726 if (ret)
727 return ret;
728
729 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
730 &new_vfp.fpscr,
731 user_fpscr_offset,
732 user_fpscr_offset + sizeof(new_vfp.fpscr));
733 if (ret)
734 return ret;
735
736 vfp_flush_hwstate(thread);
737 thread->vfpstate.hard = new_vfp;
738
739 return 0;
740 }
741 #endif /* CONFIG_VFP */
742
743 enum arm_regset {
744 REGSET_GPR,
745 REGSET_FPR,
746 #ifdef CONFIG_VFP
747 REGSET_VFP,
748 #endif
749 };
750
751 static const struct user_regset arm_regsets[] = {
752 [REGSET_GPR] = {
753 .core_note_type = NT_PRSTATUS,
754 .n = ELF_NGREG,
755 .size = sizeof(u32),
756 .align = sizeof(u32),
757 .get = gpr_get,
758 .set = gpr_set
759 },
760 [REGSET_FPR] = {
761 /*
762 * For the FPA regs in fpstate, the real fields are a mixture
763 * of sizes, so pretend that the registers are word-sized:
764 */
765 .core_note_type = NT_PRFPREG,
766 .n = sizeof(struct user_fp) / sizeof(u32),
767 .size = sizeof(u32),
768 .align = sizeof(u32),
769 .get = fpa_get,
770 .set = fpa_set
771 },
772 #ifdef CONFIG_VFP
773 [REGSET_VFP] = {
774 /*
775 * Pretend that the VFP regs are word-sized, since the FPSCR is
776 * a single word dangling at the end of struct user_vfp:
777 */
778 .core_note_type = NT_ARM_VFP,
779 .n = ARM_VFPREGS_SIZE / sizeof(u32),
780 .size = sizeof(u32),
781 .align = sizeof(u32),
782 .get = vfp_get,
783 .set = vfp_set
784 },
785 #endif /* CONFIG_VFP */
786 };
787
788 static const struct user_regset_view user_arm_view = {
789 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
790 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
791 };
792
793 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
794 {
795 return &user_arm_view;
796 }
797
798 long arch_ptrace(struct task_struct *child, long request,
799 unsigned long addr, unsigned long data)
800 {
801 int ret;
802 unsigned long __user *datap = (unsigned long __user *) data;
803
804 switch (request) {
805 case PTRACE_PEEKUSR:
806 ret = ptrace_read_user(child, addr, datap);
807 break;
808
809 case PTRACE_POKEUSR:
810 ret = ptrace_write_user(child, addr, data);
811 break;
812
813 case PTRACE_GETREGS:
814 ret = copy_regset_to_user(child,
815 &user_arm_view, REGSET_GPR,
816 0, sizeof(struct pt_regs),
817 datap);
818 break;
819
820 case PTRACE_SETREGS:
821 ret = copy_regset_from_user(child,
822 &user_arm_view, REGSET_GPR,
823 0, sizeof(struct pt_regs),
824 datap);
825 break;
826
827 case PTRACE_GETFPREGS:
828 ret = copy_regset_to_user(child,
829 &user_arm_view, REGSET_FPR,
830 0, sizeof(union fp_state),
831 datap);
832 break;
833
834 case PTRACE_SETFPREGS:
835 ret = copy_regset_from_user(child,
836 &user_arm_view, REGSET_FPR,
837 0, sizeof(union fp_state),
838 datap);
839 break;
840
841 #ifdef CONFIG_IWMMXT
842 case PTRACE_GETWMMXREGS:
843 ret = ptrace_getwmmxregs(child, datap);
844 break;
845
846 case PTRACE_SETWMMXREGS:
847 ret = ptrace_setwmmxregs(child, datap);
848 break;
849 #endif
850
851 case PTRACE_GET_THREAD_AREA:
852 ret = put_user(task_thread_info(child)->tp_value[0],
853 datap);
854 break;
855
856 case PTRACE_SET_SYSCALL:
857 task_thread_info(child)->syscall = data;
858 ret = 0;
859 break;
860
861 #ifdef CONFIG_CRUNCH
862 case PTRACE_GETCRUNCHREGS:
863 ret = ptrace_getcrunchregs(child, datap);
864 break;
865
866 case PTRACE_SETCRUNCHREGS:
867 ret = ptrace_setcrunchregs(child, datap);
868 break;
869 #endif
870
871 #ifdef CONFIG_VFP
872 case PTRACE_GETVFPREGS:
873 ret = copy_regset_to_user(child,
874 &user_arm_view, REGSET_VFP,
875 0, ARM_VFPREGS_SIZE,
876 datap);
877 break;
878
879 case PTRACE_SETVFPREGS:
880 ret = copy_regset_from_user(child,
881 &user_arm_view, REGSET_VFP,
882 0, ARM_VFPREGS_SIZE,
883 datap);
884 break;
885 #endif
886
887 #ifdef CONFIG_HAVE_HW_BREAKPOINT
888 case PTRACE_GETHBPREGS:
889 if (ptrace_get_breakpoints(child) < 0)
890 return -ESRCH;
891
892 ret = ptrace_gethbpregs(child, addr,
893 (unsigned long __user *)data);
894 ptrace_put_breakpoints(child);
895 break;
896 case PTRACE_SETHBPREGS:
897 if (ptrace_get_breakpoints(child) < 0)
898 return -ESRCH;
899
900 ret = ptrace_sethbpregs(child, addr,
901 (unsigned long __user *)data);
902 ptrace_put_breakpoints(child);
903 break;
904 #endif
905
906 default:
907 ret = ptrace_request(child, request, addr, data);
908 break;
909 }
910
911 return ret;
912 }
913
914 enum ptrace_syscall_dir {
915 PTRACE_SYSCALL_ENTER = 0,
916 PTRACE_SYSCALL_EXIT,
917 };
918
919 static int tracehook_report_syscall(struct pt_regs *regs,
920 enum ptrace_syscall_dir dir)
921 {
922 unsigned long ip;
923
924 /*
925 * IP is used to denote syscall entry/exit:
926 * IP = 0 -> entry, =1 -> exit
927 */
928 ip = regs->ARM_ip;
929 regs->ARM_ip = dir;
930
931 if (dir == PTRACE_SYSCALL_EXIT)
932 tracehook_report_syscall_exit(regs, 0);
933 else if (tracehook_report_syscall_entry(regs))
934 current_thread_info()->syscall = -1;
935
936 regs->ARM_ip = ip;
937 return current_thread_info()->syscall;
938 }
939
940 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
941 {
942 current_thread_info()->syscall = scno;
943
944 /* Do the secure computing check first; failures should be fast. */
945 if (secure_computing(scno) == -1)
946 return -1;
947
948 if (test_thread_flag(TIF_SYSCALL_TRACE))
949 scno = tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
950
951 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
952 trace_sys_enter(regs, scno);
953
954 audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0, regs->ARM_r1,
955 regs->ARM_r2, regs->ARM_r3);
956
957 return scno;
958 }
959
960 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
961 {
962 /*
963 * Audit the syscall before anything else, as a debugger may
964 * come in and change the current registers.
965 */
966 audit_syscall_exit(regs);
967
968 /*
969 * Note that we haven't updated the ->syscall field for the
970 * current thread. This isn't a problem because it will have
971 * been set on syscall entry and there hasn't been an opportunity
972 * for a PTRACE_SET_SYSCALL since then.
973 */
974 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
975 trace_sys_exit(regs, regs_return_value(regs));
976
977 if (test_thread_flag(TIF_SYSCALL_TRACE))
978 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
979 }