import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kernel / process.c
1 /*
2 * linux/arch/arm/kernel/process.c
3 *
4 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
5 * Original Copyright (C) 1995 Linus Torvalds
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <stdarg.h>
12
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/user.h>
20 #include <linux/delay.h>
21 #include <linux/reboot.h>
22 #include <linux/interrupt.h>
23 #include <linux/kallsyms.h>
24 #include <linux/init.h>
25 #include <linux/cpu.h>
26 #include <linux/elfcore.h>
27 #include <linux/pm.h>
28 #include <linux/tick.h>
29 #include <linux/utsname.h>
30 #include <linux/uaccess.h>
31 #include <linux/random.h>
32 #include <linux/hw_breakpoint.h>
33 #include <linux/cpuidle.h>
34 #include <linux/leds.h>
35 #include <linux/console.h>
36 #include <linux/mtk_ram_console.h>
37
38 #include <asm/cacheflush.h>
39 #include <asm/idmap.h>
40 #include <asm/processor.h>
41 #include <asm/thread_notify.h>
42 #include <asm/stacktrace.h>
43 #include <asm/mach/time.h>
44 #include <mach/system.h>
45
46 #ifdef CONFIG_CC_STACKPROTECTOR
47 #include <linux/stackprotector.h>
48 unsigned long __stack_chk_guard __read_mostly;
49 EXPORT_SYMBOL(__stack_chk_guard);
50 #endif
51
52 static const char *processor_modes[] = {
53 "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
54 "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
55 "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
56 "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
57 };
58
59 static const char *isa_modes[] = {
60 "ARM" , "Thumb" , "Jazelle", "ThumbEE"
61 };
62
63 #ifdef CONFIG_SMP
64 void arch_trigger_all_cpu_backtrace(void)
65 {
66 smp_send_all_cpu_backtrace();
67 }
68 #else
69 void arch_trigger_all_cpu_backtrace(void)
70 {
71 dump_stack();
72 }
73 #endif
74
75 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
76 typedef void (*phys_reset_t)(unsigned long);
77
78 #ifdef CONFIG_ARM_FLUSH_CONSOLE_ON_RESTART
79 void arm_machine_flush_console(void)
80 {
81 printk("\n");
82 pr_emerg("Restarting %s\n", linux_banner);
83 if (console_trylock()) {
84 console_unlock();
85 return;
86 }
87
88 mdelay(50);
89
90 local_irq_disable();
91 if (!console_trylock())
92 pr_emerg("arm_restart: Console was locked! Busting\n");
93 else
94 pr_emerg("arm_restart: Console was locked!\n");
95 console_unlock();
96 }
97 #else
98 void arm_machine_flush_console(void)
99 {
100 }
101 #endif
102
103 /*
104 * A temporary stack to use for CPU reset. This is static so that we
105 * don't clobber it with the identity mapping. When running with this
106 * stack, any references to the current task *will not work* so you
107 * should really do as little as possible before jumping to your reset
108 * code.
109 */
110 static u64 soft_restart_stack[16];
111
112 void arm_machine_restart(char mode, const char *cmd)
113 {
114 /* Flush the console to make sure all the relevant messages make it
115 * out to the console drivers */
116 arm_machine_flush_console();
117
118 /* Disable interrupts first */
119 local_irq_disable();
120 local_fiq_disable();
121
122 /*
123 * Tell the mm system that we are going to reboot -
124 * we may need it to insert some 1:1 mappings so that
125 * soft boot works.
126 */
127 setup_mm_for_reboot();
128
129 /* When l1 is disabled and l2 is enabled, the spinlock cannot get the lock,
130 * so we need to disable the l2 as well. by Chia-Hao Hsu
131 */
132 outer_flush_all();
133 outer_disable();
134 outer_flush_all();
135
136 /* Clean and invalidate caches */
137 flush_cache_all();
138 #ifdef CONFIG_RESTART_DISABLE_CACHE
139 /* Turn off caching */
140 // cpu_proc_fin(); // Don't turn off cach during reboot phase. CA15 have risk if turn off cach.
141 #endif
142 /* Push out any further dirty data, and ensure cache is empty */
143 flush_cache_all();
144
145 /*
146 * Now call the architecture specific reboot code.
147 */
148 arch_reset(mode, cmd);
149
150 /*
151 * Whoops - the architecture was unable to reboot.
152 * Tell the user!
153 */
154 mdelay(1000);
155 printk("Reboot failed -- System halted\n");
156 while (1);
157 }
158
159 static void __soft_restart(void *addr)
160 {
161 phys_reset_t phys_reset;
162
163 /* Take out a flat memory mapping. */
164 setup_mm_for_reboot();
165
166 /* Clean and invalidate caches */
167 flush_cache_all();
168
169 /* Turn off caching */
170 cpu_proc_fin();
171
172 /* Push out any further dirty data, and ensure cache is empty */
173 flush_cache_all();
174
175 /* Switch to the identity mapping. */
176 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
177 phys_reset((unsigned long)addr);
178
179 /* Should never get here. */
180 BUG();
181 }
182
183 void soft_restart(unsigned long addr)
184 {
185 u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
186
187 /* Disable interrupts first */
188 local_irq_disable();
189 local_fiq_disable();
190
191 /* Disable the L2 if we're the last man standing. */
192 if (num_online_cpus() == 1) {
193 outer_flush_all();
194 outer_disable();
195 }
196
197 /* Change to the new stack and continue with the reset. */
198 call_with_stack(__soft_restart, (void *)addr, (void *)stack);
199
200 /* Should never get here. */
201 BUG();
202 }
203
204 static void null_restart(char mode, const char *cmd)
205 {
206 }
207
208 /*
209 * Function pointers to optional machine specific functions
210 */
211 void (*pm_power_off)(void);
212 EXPORT_SYMBOL(pm_power_off);
213
214 void (*arm_pm_restart)(char str, const char *cmd) = null_restart;
215 EXPORT_SYMBOL_GPL(arm_pm_restart);
216
217 /*
218 * This is our default idle handler.
219 */
220
221 void (*arm_pm_idle)(void);
222
223 static void default_idle(void)
224 {
225 if (arm_pm_idle)
226 arm_pm_idle();
227 else
228 cpu_do_idle();
229 local_irq_enable();
230 }
231
232 void arch_cpu_idle_prepare(void)
233 {
234 local_fiq_enable();
235 }
236
237 void arch_cpu_idle_enter(void)
238 {
239 idle_notifier_call_chain(IDLE_START);
240 ledtrig_cpu(CPU_LED_IDLE_START);
241 #ifdef CONFIG_PL310_ERRATA_769419
242 wmb();
243 #endif
244 }
245
246 void arch_cpu_idle_exit(void)
247 {
248 ledtrig_cpu(CPU_LED_IDLE_END);
249 idle_notifier_call_chain(IDLE_END);
250 }
251
252 #ifdef CONFIG_HOTPLUG_CPU
253 void arch_cpu_idle_dead(void)
254 {
255 cpu_die();
256 }
257 #endif
258
259 /*
260 * Called from the core idle loop.
261 */
262 void arch_cpu_idle(void)
263 {
264 if (cpuidle_idle_call())
265 default_idle();
266 }
267
268 static char reboot_mode = 'h';
269
270 int __init reboot_setup(char *str)
271 {
272 reboot_mode = str[0];
273 return 1;
274 }
275
276 __setup("reboot=", reboot_setup);
277
278 /*
279 * Called by kexec, immediately prior to machine_kexec().
280 *
281 * This must completely disable all secondary CPUs; simply causing those CPUs
282 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
283 * kexec'd kernel to use any and all RAM as it sees fit, without having to
284 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
285 * functionality embodied in disable_nonboot_cpus() to achieve this.
286 */
287 void machine_shutdown(void)
288 {
289 #ifdef CONFIG_SMP
290 /*
291 * Disable preemption so we're guaranteed to
292 * run to power off or reboot and prevent
293 * the possibility of switching to another
294 * thread that might wind up blocking on
295 * one of the stopped CPUs.
296 */
297 printk("machine_shutdown: start, Proess(%s:%d)\n", current->comm, current->pid);
298 dump_stack();
299 preempt_disable();
300 #endif
301 disable_nonboot_cpus();
302 printk("machine_shutdown: done\n");
303 }
304
305 /*
306 * Halting simply requires that the secondary CPUs stop performing any
307 * activity (executing tasks, handling interrupts). smp_send_stop()
308 * achieves this.
309 */
310 void machine_halt(void)
311 {
312 smp_send_stop();
313
314 local_irq_disable();
315 while (1);
316 }
317
318 extern int reboot_pid;
319 /*
320 * Power-off simply requires that the secondary CPUs stop performing any
321 * activity (executing tasks, handling interrupts). smp_send_stop()
322 * achieves this. When the system power is turned off, it will take all CPUs
323 * with it.
324 */
325 void machine_power_off(void)
326 {
327 struct task_struct *tsk;
328
329 /* Disable interrupts first */
330 local_irq_disable();
331 local_fiq_disable();
332
333 smp_send_stop();
334 if(reboot_pid > 1)
335 {
336 tsk = find_task_by_vpid(reboot_pid);
337 if(tsk == NULL)
338 tsk = current;
339 dump_stack();
340 }
341 else
342 {
343 tsk = current;
344 }
345
346 if(tsk->real_parent)
347 {
348 if(tsk->real_parent->real_parent)
349 {
350 printk("machine_shutdown: start, Proess(%s:%d). father %s:%d. grandfather %s:%d.\n",
351 tsk->comm, tsk->pid,tsk->real_parent->comm,tsk->real_parent->pid,
352 tsk->real_parent->real_parent->comm,tsk->real_parent->real_parent->pid);
353 }
354 else
355 {
356 printk("machine_shutdown: start, Proess(%s:%d). father %s:%d.\n",
357 tsk->comm, tsk->pid,tsk->real_parent->comm,tsk->real_parent->pid);
358 }
359 }
360 else
361 {
362 printk("machine_shutdown: start, Proess(%s:%d)\n", tsk->comm, tsk->pid);
363 }
364
365 #ifdef CONFIG_MTK_EMMC_SUPPORT
366 last_kmsg_store_to_emmc();
367 #endif
368
369 if (pm_power_off)
370 pm_power_off();
371 }
372
373 /*
374 * Restart requires that the secondary CPUs stop performing any activity
375 * while the primary CPU resets the system. Systems with a single CPU can
376 * use soft_restart() as their machine descriptor's .restart hook, since that
377 * will cause the only available CPU to reset. Systems with multiple CPUs must
378 * provide a HW restart implementation, to ensure that all CPUs reset at once.
379 * This is required so that any code running after reset on the primary CPU
380 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
381 * executing pre-reset code, and using RAM that the primary CPU's code wishes
382 * to use. Implementing such co-ordination would be essentially impossible.
383 */
384 void machine_restart(char *cmd)
385 {
386 struct task_struct *tsk;
387 /* Disable interrupts first */
388 local_irq_disable();
389 local_fiq_disable();
390
391 smp_send_stop();
392
393 if(reboot_pid > 1)
394 {
395 tsk = find_task_by_vpid(reboot_pid);
396 if(tsk == NULL)
397 tsk = current;
398 dump_stack();
399 }
400 else
401 {
402 tsk = current;
403 }
404
405 if(tsk->real_parent)
406 {
407 if(tsk->real_parent->real_parent)
408 {
409 printk("machine_shutdown: start, Proess(%s:%d). father %s:%d. grandfather %s:%d.\n",
410 tsk->comm, tsk->pid,tsk->real_parent->comm,tsk->real_parent->pid,
411 tsk->real_parent->real_parent->comm,tsk->real_parent->real_parent->pid);
412 }
413 else
414 {
415 printk("machine_shutdown: start, Proess(%s:%d). father %s:%d.\n",
416 tsk->comm, tsk->pid,tsk->real_parent->comm,tsk->real_parent->pid);
417 }
418 }
419 else
420 {
421 printk("machine_shutdown: start, Proess(%s:%d)\n", tsk->comm, tsk->pid);
422 }
423
424 /* Flush the console to make sure all the relevant messages make it
425 * out to the console drivers */
426 arm_machine_flush_console();
427
428 arm_pm_restart(reboot_mode, cmd);
429
430 /* Give a grace period for failure to restart of 1s */
431 mdelay(1000);
432
433 /* Whoops - the platform was unable to reboot. Tell the user! */
434 printk("Reboot failed -- System halted\n");
435 local_irq_disable();
436 while (1);
437 }
438
439 /*
440 * dump a block of kernel memory from around the given address
441 */
442 static void show_data(unsigned long addr, int nbytes, const char *name)
443 {
444 int i, j;
445 int nlines;
446 u32 *p;
447
448 /*
449 * don't attempt to dump non-kernel addresses or
450 * values that are probably just small negative numbers
451 */
452 if (addr < PAGE_OFFSET || addr > -256UL)
453 return;
454
455 printk("\n%s: %#lx:\n", name, addr);
456
457 /*
458 * round address down to a 32 bit boundary
459 * and always dump a multiple of 32 bytes
460 */
461 p = (u32 *)(addr & ~(sizeof(u32) - 1));
462 nbytes += (addr & (sizeof(u32) - 1));
463 nlines = (nbytes + 31) / 32;
464
465
466 for (i = 0; i < nlines; i++) {
467 /*
468 * just display low 16 bits of address to keep
469 * each line of the dump < 80 characters
470 */
471 printk("%04lx ", (unsigned long)p & 0xffff);
472 for (j = 0; j < 8; j++) {
473 u32 data;
474 if (probe_kernel_address(p, data)) {
475 printk(" ********");
476 } else {
477 printk(" %08x", data);
478 }
479 ++p;
480 }
481 printk("\n");
482 }
483 }
484
485 static void show_extra_register_data(struct pt_regs *regs, int nbytes)
486 {
487 mm_segment_t fs;
488
489 fs = get_fs();
490 set_fs(KERNEL_DS);
491 show_data(regs->ARM_pc - nbytes, nbytes * 2, "PC");
492 show_data(regs->ARM_lr - nbytes, nbytes * 2, "LR");
493 show_data(regs->ARM_sp - nbytes, nbytes * 2, "SP");
494 show_data(regs->ARM_ip - nbytes, nbytes * 2, "IP");
495 show_data(regs->ARM_fp - nbytes, nbytes * 2, "FP");
496 show_data(regs->ARM_r0 - nbytes, nbytes * 2, "R0");
497 show_data(regs->ARM_r1 - nbytes, nbytes * 2, "R1");
498 show_data(regs->ARM_r2 - nbytes, nbytes * 2, "R2");
499 show_data(regs->ARM_r3 - nbytes, nbytes * 2, "R3");
500 show_data(regs->ARM_r4 - nbytes, nbytes * 2, "R4");
501 show_data(regs->ARM_r5 - nbytes, nbytes * 2, "R5");
502 show_data(regs->ARM_r6 - nbytes, nbytes * 2, "R6");
503 show_data(regs->ARM_r7 - nbytes, nbytes * 2, "R7");
504 show_data(regs->ARM_r8 - nbytes, nbytes * 2, "R8");
505 show_data(regs->ARM_r9 - nbytes, nbytes * 2, "R9");
506 show_data(regs->ARM_r10 - nbytes, nbytes * 2, "R10");
507 set_fs(fs);
508 }
509
510 void __show_regs(struct pt_regs *regs)
511 {
512 unsigned long flags;
513 char buf[64];
514
515 show_regs_print_info(KERN_DEFAULT);
516
517 print_symbol("PC is at %s\n", instruction_pointer(regs));
518 print_symbol("LR is at %s\n", regs->ARM_lr);
519 printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
520 "sp : %08lx ip : %08lx fp : %08lx\n",
521 regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
522 regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
523 printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
524 regs->ARM_r10, regs->ARM_r9,
525 regs->ARM_r8);
526 printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
527 regs->ARM_r7, regs->ARM_r6,
528 regs->ARM_r5, regs->ARM_r4);
529 printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
530 regs->ARM_r3, regs->ARM_r2,
531 regs->ARM_r1, regs->ARM_r0);
532
533 flags = regs->ARM_cpsr;
534 buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
535 buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
536 buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
537 buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
538 buf[4] = '\0';
539
540 printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
541 buf, interrupts_enabled(regs) ? "n" : "ff",
542 fast_interrupts_enabled(regs) ? "n" : "ff",
543 processor_modes[processor_mode(regs)],
544 isa_modes[isa_mode(regs)],
545 get_fs() == get_ds() ? "kernel" : "user");
546 #ifdef CONFIG_CPU_CP15
547 {
548 unsigned int ctrl;
549
550 buf[0] = '\0';
551 #ifdef CONFIG_CPU_CP15_MMU
552 {
553 unsigned int transbase, dac;
554 asm("mrc p15, 0, %0, c2, c0\n\t"
555 "mrc p15, 0, %1, c3, c0\n"
556 : "=r" (transbase), "=r" (dac));
557 snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
558 transbase, dac);
559 }
560 #endif
561 asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
562
563 printk("Control: %08x%s\n", ctrl, buf);
564 }
565 #endif
566
567 show_extra_register_data(regs, 128);
568 }
569
570 void show_regs(struct pt_regs * regs)
571 {
572 printk("\n");
573 __show_regs(regs);
574 dump_stack();
575 }
576
577 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
578
579 EXPORT_SYMBOL_GPL(thread_notify_head);
580
581 /*
582 * Free current thread data structures etc..
583 */
584 void exit_thread(void)
585 {
586 thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
587 }
588
589 void flush_thread(void)
590 {
591 struct thread_info *thread = current_thread_info();
592 struct task_struct *tsk = current;
593
594 flush_ptrace_hw_breakpoint(tsk);
595
596 memset(thread->used_cp, 0, sizeof(thread->used_cp));
597 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
598 memset(&thread->fpstate, 0, sizeof(union fp_state));
599
600 thread_notify(THREAD_NOTIFY_FLUSH, thread);
601 }
602
603 void release_thread(struct task_struct *dead_task)
604 {
605 }
606
607 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
608
609 int
610 copy_thread(unsigned long clone_flags, unsigned long stack_start,
611 unsigned long stk_sz, struct task_struct *p)
612 {
613 struct thread_info *thread = task_thread_info(p);
614 struct pt_regs *childregs = task_pt_regs(p);
615
616 memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
617
618 if (likely(!(p->flags & PF_KTHREAD))) {
619 *childregs = *current_pt_regs();
620 childregs->ARM_r0 = 0;
621 if (stack_start)
622 childregs->ARM_sp = stack_start;
623 } else {
624 memset(childregs, 0, sizeof(struct pt_regs));
625 thread->cpu_context.r4 = stk_sz;
626 thread->cpu_context.r5 = stack_start;
627 childregs->ARM_cpsr = SVC_MODE;
628 }
629 thread->cpu_context.pc = (unsigned long)ret_from_fork;
630 thread->cpu_context.sp = (unsigned long)childregs;
631
632 clear_ptrace_hw_breakpoint(p);
633
634 if (clone_flags & CLONE_SETTLS)
635 thread->tp_value = childregs->ARM_r3;
636
637 thread_notify(THREAD_NOTIFY_COPY, thread);
638
639 return 0;
640 }
641
642 /*
643 * Fill in the task's elfregs structure for a core dump.
644 */
645 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
646 {
647 elf_core_copy_regs(elfregs, task_pt_regs(t));
648 return 1;
649 }
650
651 /*
652 * fill in the fpe structure for a core dump...
653 */
654 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
655 {
656 struct thread_info *thread = current_thread_info();
657 int used_math = thread->used_cp[1] | thread->used_cp[2];
658
659 if (used_math)
660 memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
661
662 return used_math != 0;
663 }
664 EXPORT_SYMBOL(dump_fpu);
665
666 unsigned long get_wchan(struct task_struct *p)
667 {
668 struct stackframe frame;
669 unsigned long stack_page;
670 int count = 0;
671 if (!p || p == current || p->state == TASK_RUNNING)
672 return 0;
673
674 frame.fp = thread_saved_fp(p);
675 frame.sp = thread_saved_sp(p);
676 frame.lr = 0; /* recovered from the stack */
677 frame.pc = thread_saved_pc(p);
678 stack_page = (unsigned long)task_stack_page(p);
679 do {
680 if (frame.sp < stack_page ||
681 frame.sp >= stack_page + THREAD_SIZE ||
682 unwind_frame(&frame) < 0)
683 return 0;
684 if (!in_sched_functions(frame.pc))
685 return frame.pc;
686 } while (count ++ < 16);
687 return 0;
688 }
689
690 unsigned long arch_randomize_brk(struct mm_struct *mm)
691 {
692 unsigned long range_end = mm->brk + 0x02000000;
693 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
694 }
695
696 #ifdef CONFIG_MMU
697 #ifdef CONFIG_KUSER_HELPERS
698 /*
699 * The vectors page is always readable from user space for the
700 * atomic helpers. Insert it into the gate_vma so that it is visible
701 * through ptrace and /proc/<pid>/mem.
702 */
703 static struct vm_area_struct gate_vma = {
704 .vm_start = 0xffff0000,
705 .vm_end = 0xffff0000 + PAGE_SIZE,
706 .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
707 };
708
709 static int __init gate_vma_init(void)
710 {
711 gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
712 return 0;
713 }
714 arch_initcall(gate_vma_init);
715
716 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
717 {
718 return &gate_vma;
719 }
720
721 int in_gate_area(struct mm_struct *mm, unsigned long addr)
722 {
723 return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
724 }
725
726 int in_gate_area_no_mm(unsigned long addr)
727 {
728 return in_gate_area(NULL, addr);
729 }
730 #define is_gate_vma(vma) ((vma) == &gate_vma)
731 #else
732 #define is_gate_vma(vma) 0
733 #endif
734
735 const char *arch_vma_name(struct vm_area_struct *vma)
736 {
737 return is_gate_vma(vma) ? "[vectors]" :
738 (vma->vm_mm && vma->vm_start == vma->vm_mm->context.sigpage) ?
739 "[sigpage]" : NULL;
740 }
741
742 static struct page *signal_page;
743 extern struct page *get_signal_page(void);
744
745 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
746 {
747 struct mm_struct *mm = current->mm;
748 unsigned long addr;
749 int ret;
750
751 if (!signal_page)
752 signal_page = get_signal_page();
753 if (!signal_page)
754 return -ENOMEM;
755
756 down_write(&mm->mmap_sem);
757 addr = get_unmapped_area(NULL, 0, PAGE_SIZE, 0, 0);
758 if (IS_ERR_VALUE(addr)) {
759 ret = addr;
760 goto up_fail;
761 }
762
763 ret = install_special_mapping(mm, addr, PAGE_SIZE,
764 VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
765 &signal_page);
766
767 if (ret == 0)
768 mm->context.sigpage = addr;
769
770 up_fail:
771 up_write(&mm->mmap_sem);
772 return ret;
773 }
774 #endif