import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/cpumask.h>
16 #include <linux/kernel.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/uaccess.h>
20
21 #include <asm/irq_regs.h>
22 #include <asm/pmu.h>
23 #include <asm/stacktrace.h>
24
25 static int
26 armpmu_map_cache_event(const unsigned (*cache_map)
27 [PERF_COUNT_HW_CACHE_MAX]
28 [PERF_COUNT_HW_CACHE_OP_MAX]
29 [PERF_COUNT_HW_CACHE_RESULT_MAX],
30 u64 config)
31 {
32 unsigned int cache_type, cache_op, cache_result, ret;
33
34 cache_type = (config >> 0) & 0xff;
35 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
36 return -EINVAL;
37
38 cache_op = (config >> 8) & 0xff;
39 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
40 return -EINVAL;
41
42 cache_result = (config >> 16) & 0xff;
43 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
44 return -EINVAL;
45
46 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
47
48 if (ret == CACHE_OP_UNSUPPORTED)
49 return -ENOENT;
50
51 return ret;
52 }
53
54 static int
55 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
56 {
57 int mapping;
58
59 if (config >= PERF_COUNT_HW_MAX)
60 return -ENOENT;
61
62 mapping = (*event_map)[config];
63 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
64 }
65
66 static int
67 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
68 {
69 return (int)(config & raw_event_mask);
70 }
71
72 int
73 armpmu_map_event(struct perf_event *event,
74 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
75 const unsigned (*cache_map)
76 [PERF_COUNT_HW_CACHE_MAX]
77 [PERF_COUNT_HW_CACHE_OP_MAX]
78 [PERF_COUNT_HW_CACHE_RESULT_MAX],
79 u32 raw_event_mask)
80 {
81 u64 config = event->attr.config;
82
83 switch (event->attr.type) {
84 case PERF_TYPE_HARDWARE:
85 return armpmu_map_hw_event(event_map, config);
86 case PERF_TYPE_HW_CACHE:
87 return armpmu_map_cache_event(cache_map, config);
88 case PERF_TYPE_RAW:
89 return armpmu_map_raw_event(raw_event_mask, config);
90 default:
91 if (event->attr.type >= PERF_TYPE_MAX)
92 return armpmu_map_raw_event(raw_event_mask, config);
93 }
94
95 return -ENOENT;
96 }
97
98 int armpmu_event_set_period(struct perf_event *event)
99 {
100 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
101 struct hw_perf_event *hwc = &event->hw;
102 s64 left = local64_read(&hwc->period_left);
103 s64 period = hwc->sample_period;
104 int ret = 0;
105
106 /* The period may have been changed by PERF_EVENT_IOC_PERIOD */
107 if (unlikely(period != hwc->last_period))
108 left = period - (hwc->last_period - left);
109
110 if (unlikely(left <= -period)) {
111 left = period;
112 local64_set(&hwc->period_left, left);
113 hwc->last_period = period;
114 ret = 1;
115 }
116
117 if (unlikely(left <= 0)) {
118 left += period;
119 local64_set(&hwc->period_left, left);
120 hwc->last_period = period;
121 ret = 1;
122 }
123
124 if (left > (s64)armpmu->max_period)
125 left = armpmu->max_period;
126
127 local64_set(&hwc->prev_count, (u64)-left);
128
129 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
130
131 perf_event_update_userpage(event);
132
133 return ret;
134 }
135
136 u64 armpmu_event_update(struct perf_event *event)
137 {
138 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
139 struct hw_perf_event *hwc = &event->hw;
140 u64 delta, prev_raw_count, new_raw_count;
141
142 again:
143 prev_raw_count = local64_read(&hwc->prev_count);
144 new_raw_count = armpmu->read_counter(event);
145
146 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
147 new_raw_count) != prev_raw_count)
148 goto again;
149
150 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
151
152 local64_add(delta, &event->count);
153 local64_sub(delta, &hwc->period_left);
154
155 return new_raw_count;
156 }
157
158 static void
159 armpmu_read(struct perf_event *event)
160 {
161 armpmu_event_update(event);
162 }
163
164 static void
165 armpmu_stop(struct perf_event *event, int flags)
166 {
167 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
168 struct hw_perf_event *hwc = &event->hw;
169
170 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->valid_cpus))
171 return;
172 /*
173 * ARM pmu always has to update the counter, so ignore
174 * PERF_EF_UPDATE, see comments in armpmu_start().
175 */
176 if (!(hwc->state & PERF_HES_STOPPED)) {
177 armpmu->disable(event);
178 armpmu_event_update(event);
179 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
180 }
181 }
182
183 static void armpmu_start(struct perf_event *event, int flags)
184 {
185 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
186 struct hw_perf_event *hwc = &event->hw;
187
188 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->valid_cpus))
189 return;
190 /*
191 * ARM pmu always has to reprogram the period, so ignore
192 * PERF_EF_RELOAD, see the comment below.
193 */
194 if (flags & PERF_EF_RELOAD)
195 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
196
197 hwc->state = 0;
198 /*
199 * Set the period again. Some counters can't be stopped, so when we
200 * were stopped we simply disabled the IRQ source and the counter
201 * may have been left counting. If we don't do this step then we may
202 * get an interrupt too soon or *way* too late if the overflow has
203 * happened since disabling.
204 */
205 armpmu_event_set_period(event);
206 armpmu->enable(event);
207 }
208
209 static void
210 armpmu_del(struct perf_event *event, int flags)
211 {
212 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
213 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
214 struct hw_perf_event *hwc = &event->hw;
215 int idx = hwc->idx;
216
217 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->valid_cpus))
218 return;
219
220 armpmu_stop(event, PERF_EF_UPDATE);
221 hw_events->events[idx] = NULL;
222 clear_bit(idx, hw_events->used_mask);
223
224 perf_event_update_userpage(event);
225 }
226
227 static int
228 armpmu_add(struct perf_event *event, int flags)
229 {
230 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
231 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
232 struct hw_perf_event *hwc = &event->hw;
233 int idx;
234 int err = 0;
235
236 /* An event following a process won't be stopped earlier */
237 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->valid_cpus))
238 return 0;
239
240 perf_pmu_disable(event->pmu);
241
242 /* If we don't have a space for the counter then finish early. */
243 idx = armpmu->get_event_idx(hw_events, event);
244 if (idx < 0) {
245 err = idx;
246 goto out;
247 }
248
249 /*
250 * If there is an event in the counter we are going to use then make
251 * sure it is disabled.
252 */
253 event->hw.idx = idx;
254 armpmu->disable(event);
255 hw_events->events[idx] = event;
256
257 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
258 if (flags & PERF_EF_START)
259 armpmu_start(event, PERF_EF_RELOAD);
260
261 /* Propagate our changes to the userspace mapping. */
262 perf_event_update_userpage(event);
263
264 out:
265 perf_pmu_enable(event->pmu);
266 return err;
267 }
268
269 static int
270 validate_event(struct pmu_hw_events *hw_events,
271 struct perf_event *event)
272 {
273 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
274 struct pmu *leader_pmu = event->group_leader->pmu;
275
276 if (is_software_event(event))
277 return 1;
278
279 if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
280 return 1;
281
282 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
283 return 1;
284
285 return armpmu->get_event_idx(hw_events, event) >= 0;
286 }
287
288 static int
289 validate_group(struct perf_event *event)
290 {
291 struct perf_event *sibling, *leader = event->group_leader;
292 struct pmu_hw_events fake_pmu;
293 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
294
295 /*
296 * Initialise the fake PMU. We only need to populate the
297 * used_mask for the purposes of validation.
298 */
299 memset(fake_used_mask, 0, sizeof(fake_used_mask));
300 fake_pmu.used_mask = fake_used_mask;
301
302 if (!validate_event(&fake_pmu, leader))
303 return -EINVAL;
304
305 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
306 if (!validate_event(&fake_pmu, sibling))
307 return -EINVAL;
308 }
309
310 if (!validate_event(&fake_pmu, event))
311 return -EINVAL;
312
313 return 0;
314 }
315
316 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
317 {
318 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
319 struct platform_device *plat_device = armpmu->plat_device;
320 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
321 int ret;
322 u64 start_clock, finish_clock;
323
324 start_clock = sched_clock();
325 if (plat && plat->handle_irq)
326 ret = plat->handle_irq(irq, dev, armpmu->handle_irq);
327 else
328 ret = armpmu->handle_irq(irq, dev);
329 finish_clock = sched_clock();
330
331 perf_sample_event_took(finish_clock - start_clock);
332 return ret;
333 }
334
335 static void
336 armpmu_release_hardware(struct arm_pmu *armpmu)
337 {
338 armpmu->free_irq(armpmu);
339 pm_runtime_put_sync(&armpmu->plat_device->dev);
340 }
341
342 static int
343 armpmu_reserve_hardware(struct arm_pmu *armpmu)
344 {
345 int err;
346 struct platform_device *pmu_device = armpmu->plat_device;
347
348 if (!pmu_device)
349 return -ENODEV;
350
351 pm_runtime_get_sync(&pmu_device->dev);
352 err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
353 if (err) {
354 armpmu_release_hardware(armpmu);
355 return err;
356 }
357
358 return 0;
359 }
360
361 static void
362 hw_perf_event_destroy(struct perf_event *event)
363 {
364 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
365 atomic_t *active_events = &armpmu->active_events;
366 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
367
368 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
369 armpmu_release_hardware(armpmu);
370 mutex_unlock(pmu_reserve_mutex);
371 }
372 }
373
374 static int
375 event_requires_mode_exclusion(struct perf_event_attr *attr)
376 {
377 return attr->exclude_idle || attr->exclude_user ||
378 attr->exclude_kernel || attr->exclude_hv;
379 }
380
381 static int
382 __hw_perf_event_init(struct perf_event *event)
383 {
384 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
385 struct hw_perf_event *hwc = &event->hw;
386 int mapping;
387
388 mapping = armpmu->map_event(event);
389
390 if (mapping < 0) {
391 pr_debug("event %x:%llx not supported\n", event->attr.type,
392 event->attr.config);
393 return mapping;
394 }
395
396 /*
397 * We don't assign an index until we actually place the event onto
398 * hardware. Use -1 to signify that we haven't decided where to put it
399 * yet. For SMP systems, each core has it's own PMU so we can't do any
400 * clever allocation or constraints checking at this point.
401 */
402 hwc->idx = -1;
403 hwc->config_base = 0;
404 hwc->config = 0;
405 hwc->event_base = 0;
406
407 /*
408 * Check whether we need to exclude the counter from certain modes.
409 */
410 if ((!armpmu->set_event_filter ||
411 armpmu->set_event_filter(hwc, &event->attr)) &&
412 event_requires_mode_exclusion(&event->attr)) {
413 pr_debug("ARM performance counters do not support "
414 "mode exclusion\n");
415 return -EOPNOTSUPP;
416 }
417
418 /*
419 * Store the event encoding into the config_base field.
420 */
421 hwc->config_base |= (unsigned long)mapping;
422
423 if (!hwc->sample_period) {
424 /*
425 * For non-sampling runs, limit the sample_period to half
426 * of the counter width. That way, the new counter value
427 * is far less likely to overtake the previous one unless
428 * you have some serious IRQ latency issues.
429 */
430 hwc->sample_period = armpmu->max_period >> 1;
431 hwc->last_period = hwc->sample_period;
432 local64_set(&hwc->period_left, hwc->sample_period);
433 }
434
435 if (event->group_leader != event) {
436 if (validate_group(event) != 0)
437 return -EINVAL;
438 }
439
440 return 0;
441 }
442
443 static int armpmu_event_init(struct perf_event *event)
444 {
445 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
446 int err = 0;
447 atomic_t *active_events = &armpmu->active_events;
448
449 if (event->cpu != -1 &&
450 !cpumask_test_cpu(event->cpu, &armpmu->valid_cpus))
451 return -ENOENT;
452
453 /* does not support taken branch sampling */
454 if (has_branch_stack(event))
455 return -EOPNOTSUPP;
456
457 if (armpmu->map_event(event) == -ENOENT)
458 return -ENOENT;
459
460 event->destroy = hw_perf_event_destroy;
461
462 if (!atomic_inc_not_zero(active_events)) {
463 mutex_lock(&armpmu->reserve_mutex);
464 if (atomic_read(active_events) == 0)
465 err = armpmu_reserve_hardware(armpmu);
466
467 if (!err)
468 atomic_inc(active_events);
469 mutex_unlock(&armpmu->reserve_mutex);
470 }
471
472 if (err)
473 return err;
474
475 err = __hw_perf_event_init(event);
476 if (err)
477 hw_perf_event_destroy(event);
478
479 return err;
480 }
481
482 static void armpmu_enable(struct pmu *pmu)
483 {
484 struct arm_pmu *armpmu = to_arm_pmu(pmu);
485 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
486 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
487
488 if (enabled)
489 armpmu->start(armpmu);
490 }
491
492 static void armpmu_disable(struct pmu *pmu)
493 {
494 struct arm_pmu *armpmu = to_arm_pmu(pmu);
495 armpmu->stop(armpmu);
496 }
497
498 #ifdef CONFIG_PM_RUNTIME
499 static int armpmu_runtime_resume(struct device *dev)
500 {
501 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
502
503 if (plat && plat->runtime_resume)
504 return plat->runtime_resume(dev);
505
506 return 0;
507 }
508
509 static int armpmu_runtime_suspend(struct device *dev)
510 {
511 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
512
513 if (plat && plat->runtime_suspend)
514 return plat->runtime_suspend(dev);
515
516 return 0;
517 }
518 #endif
519
520 const struct dev_pm_ops armpmu_dev_pm_ops = {
521 SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
522 };
523
524 static void armpmu_init(struct arm_pmu *armpmu)
525 {
526 atomic_set(&armpmu->active_events, 0);
527 mutex_init(&armpmu->reserve_mutex);
528
529 armpmu->pmu = (struct pmu) {
530 .pmu_enable = armpmu_enable,
531 .pmu_disable = armpmu_disable,
532 .event_init = armpmu_event_init,
533 .add = armpmu_add,
534 .del = armpmu_del,
535 .start = armpmu_start,
536 .stop = armpmu_stop,
537 .read = armpmu_read,
538 };
539 }
540
541 int armpmu_register(struct arm_pmu *armpmu, int type)
542 {
543 armpmu_init(armpmu);
544 pm_runtime_enable(&armpmu->plat_device->dev);
545 pr_info("enabled with %s PMU driver, %d counters available\n",
546 armpmu->name, armpmu->num_events);
547 return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
548 }
549
550 /*
551 * Callchain handling code.
552 */
553
554 /*
555 * The registers we're interested in are at the end of the variable
556 * length saved register structure. The fp points at the end of this
557 * structure so the address of this struct is:
558 * (struct frame_tail *)(xxx->fp)-1
559 *
560 * This code has been adapted from the ARM OProfile support.
561 */
562 struct frame_tail {
563 struct frame_tail __user *fp;
564 unsigned long sp;
565 unsigned long lr;
566 } __attribute__((packed));
567
568 /*
569 * Get the return address for a single stackframe and return a pointer to the
570 * next frame tail.
571 */
572 static struct frame_tail __user *
573 user_backtrace(struct frame_tail __user *tail,
574 struct perf_callchain_entry *entry)
575 {
576 struct frame_tail buftail;
577
578 /* Also check accessibility of one struct frame_tail beyond */
579 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
580 return NULL;
581 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
582 return NULL;
583
584 perf_callchain_store(entry, buftail.lr);
585
586 /*
587 * Frame pointers should strictly progress back up the stack
588 * (towards higher addresses).
589 */
590 if (tail + 1 >= buftail.fp)
591 return NULL;
592
593 return buftail.fp - 1;
594 }
595
596 void
597 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
598 {
599 struct frame_tail __user *tail;
600
601 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
602 /* We don't support guest os callchain now */
603 return;
604 }
605
606 perf_callchain_store(entry, regs->ARM_pc);
607 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
608
609 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
610 tail && !((unsigned long)tail & 0x3))
611 tail = user_backtrace(tail, entry);
612 }
613
614 /*
615 * Gets called by walk_stackframe() for every stackframe. This will be called
616 * whist unwinding the stackframe and is like a subroutine return so we use
617 * the PC.
618 */
619 static int
620 callchain_trace(struct stackframe *fr,
621 void *data)
622 {
623 struct perf_callchain_entry *entry = data;
624 perf_callchain_store(entry, fr->pc);
625 return 0;
626 }
627
628 void
629 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
630 {
631 struct stackframe fr;
632
633 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
634 /* We don't support guest os callchain now */
635 return;
636 }
637
638 fr.fp = regs->ARM_fp;
639 fr.sp = regs->ARM_sp;
640 fr.lr = regs->ARM_lr;
641 fr.pc = regs->ARM_pc;
642 walk_stackframe(&fr, callchain_trace, entry);
643 }
644
645 unsigned long perf_instruction_pointer(struct pt_regs *regs)
646 {
647 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
648 return perf_guest_cbs->get_guest_ip();
649
650 return instruction_pointer(regs);
651 }
652
653 unsigned long perf_misc_flags(struct pt_regs *regs)
654 {
655 int misc = 0;
656
657 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
658 if (perf_guest_cbs->is_user_mode())
659 misc |= PERF_RECORD_MISC_GUEST_USER;
660 else
661 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
662 } else {
663 if (user_mode(regs))
664 misc |= PERF_RECORD_MISC_USER;
665 else
666 misc |= PERF_RECORD_MISC_KERNEL;
667 }
668
669 return misc;
670 }