Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / Documentation / trace / ftrace.txt
1 ftrace - Function Tracer
2 ========================
3
4 Copyright 2008 Red Hat Inc.
5 Author: Steven Rostedt <srostedt@redhat.com>
6 License: The GNU Free Documentation License, Version 1.2
7 (dual licensed under the GPL v2)
8 Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
9 John Kacur, and David Teigland.
10 Written for: 2.6.28-rc2
11 Updated for: 3.10
12
13 Introduction
14 ------------
15
16 Ftrace is an internal tracer designed to help out developers and
17 designers of systems to find what is going on inside the kernel.
18 It can be used for debugging or analyzing latencies and
19 performance issues that take place outside of user-space.
20
21 Although ftrace is typically considered the function tracer, it
22 is really a frame work of several assorted tracing utilities.
23 There's latency tracing to examine what occurs between interrupts
24 disabled and enabled, as well as for preemption and from a time
25 a task is woken to the task is actually scheduled in.
26
27 One of the most common uses of ftrace is the event tracing.
28 Through out the kernel is hundreds of static event points that
29 can be enabled via the debugfs file system to see what is
30 going on in certain parts of the kernel.
31
32
33 Implementation Details
34 ----------------------
35
36 See ftrace-design.txt for details for arch porters and such.
37
38
39 The File System
40 ---------------
41
42 Ftrace uses the debugfs file system to hold the control files as
43 well as the files to display output.
44
45 When debugfs is configured into the kernel (which selecting any ftrace
46 option will do) the directory /sys/kernel/debug will be created. To mount
47 this directory, you can add to your /etc/fstab file:
48
49 debugfs /sys/kernel/debug debugfs defaults 0 0
50
51 Or you can mount it at run time with:
52
53 mount -t debugfs nodev /sys/kernel/debug
54
55 For quicker access to that directory you may want to make a soft link to
56 it:
57
58 ln -s /sys/kernel/debug /debug
59
60 Any selected ftrace option will also create a directory called tracing
61 within the debugfs. The rest of the document will assume that you are in
62 the ftrace directory (cd /sys/kernel/debug/tracing) and will only concentrate
63 on the files within that directory and not distract from the content with
64 the extended "/sys/kernel/debug/tracing" path name.
65
66 That's it! (assuming that you have ftrace configured into your kernel)
67
68 After mounting debugfs, you can see a directory called
69 "tracing". This directory contains the control and output files
70 of ftrace. Here is a list of some of the key files:
71
72
73 Note: all time values are in microseconds.
74
75 current_tracer:
76
77 This is used to set or display the current tracer
78 that is configured.
79
80 available_tracers:
81
82 This holds the different types of tracers that
83 have been compiled into the kernel. The
84 tracers listed here can be configured by
85 echoing their name into current_tracer.
86
87 tracing_on:
88
89 This sets or displays whether writing to the trace
90 ring buffer is enabled. Echo 0 into this file to disable
91 the tracer or 1 to enable it. Note, this only disables
92 writing to the ring buffer, the tracing overhead may
93 still be occurring.
94
95 trace:
96
97 This file holds the output of the trace in a human
98 readable format (described below).
99
100 trace_pipe:
101
102 The output is the same as the "trace" file but this
103 file is meant to be streamed with live tracing.
104 Reads from this file will block until new data is
105 retrieved. Unlike the "trace" file, this file is a
106 consumer. This means reading from this file causes
107 sequential reads to display more current data. Once
108 data is read from this file, it is consumed, and
109 will not be read again with a sequential read. The
110 "trace" file is static, and if the tracer is not
111 adding more data,they will display the same
112 information every time they are read.
113
114 trace_options:
115
116 This file lets the user control the amount of data
117 that is displayed in one of the above output
118 files. Options also exist to modify how a tracer
119 or events work (stack traces, timestamps, etc).
120
121 options:
122
123 This is a directory that has a file for every available
124 trace option (also in trace_options). Options may also be set
125 or cleared by writing a "1" or "0" respectively into the
126 corresponding file with the option name.
127
128 tracing_max_latency:
129
130 Some of the tracers record the max latency.
131 For example, the time interrupts are disabled.
132 This time is saved in this file. The max trace
133 will also be stored, and displayed by "trace".
134 A new max trace will only be recorded if the
135 latency is greater than the value in this
136 file. (in microseconds)
137
138 tracing_thresh:
139
140 Some latency tracers will record a trace whenever the
141 latency is greater than the number in this file.
142 Only active when the file contains a number greater than 0.
143 (in microseconds)
144
145 buffer_size_kb:
146
147 This sets or displays the number of kilobytes each CPU
148 buffer holds. By default, the trace buffers are the same size
149 for each CPU. The displayed number is the size of the
150 CPU buffer and not total size of all buffers. The
151 trace buffers are allocated in pages (blocks of memory
152 that the kernel uses for allocation, usually 4 KB in size).
153 If the last page allocated has room for more bytes
154 than requested, the rest of the page will be used,
155 making the actual allocation bigger than requested.
156 ( Note, the size may not be a multiple of the page size
157 due to buffer management meta-data. )
158
159 buffer_total_size_kb:
160
161 This displays the total combined size of all the trace buffers.
162
163 free_buffer:
164
165 If a process is performing the tracing, and the ring buffer
166 should be shrunk "freed" when the process is finished, even
167 if it were to be killed by a signal, this file can be used
168 for that purpose. On close of this file, the ring buffer will
169 be resized to its minimum size. Having a process that is tracing
170 also open this file, when the process exits its file descriptor
171 for this file will be closed, and in doing so, the ring buffer
172 will be "freed".
173
174 It may also stop tracing if disable_on_free option is set.
175
176 tracing_cpumask:
177
178 This is a mask that lets the user only trace
179 on specified CPUs. The format is a hex string
180 representing the CPUs.
181
182 set_ftrace_filter:
183
184 When dynamic ftrace is configured in (see the
185 section below "dynamic ftrace"), the code is dynamically
186 modified (code text rewrite) to disable calling of the
187 function profiler (mcount). This lets tracing be configured
188 in with practically no overhead in performance. This also
189 has a side effect of enabling or disabling specific functions
190 to be traced. Echoing names of functions into this file
191 will limit the trace to only those functions.
192
193 This interface also allows for commands to be used. See the
194 "Filter commands" section for more details.
195
196 set_ftrace_notrace:
197
198 This has an effect opposite to that of
199 set_ftrace_filter. Any function that is added here will not
200 be traced. If a function exists in both set_ftrace_filter
201 and set_ftrace_notrace, the function will _not_ be traced.
202
203 set_ftrace_pid:
204
205 Have the function tracer only trace a single thread.
206
207 set_graph_function:
208
209 Set a "trigger" function where tracing should start
210 with the function graph tracer (See the section
211 "dynamic ftrace" for more details).
212
213 available_filter_functions:
214
215 This lists the functions that ftrace
216 has processed and can trace. These are the function
217 names that you can pass to "set_ftrace_filter" or
218 "set_ftrace_notrace". (See the section "dynamic ftrace"
219 below for more details.)
220
221 enabled_functions:
222
223 This file is more for debugging ftrace, but can also be useful
224 in seeing if any function has a callback attached to it.
225 Not only does the trace infrastructure use ftrace function
226 trace utility, but other subsystems might too. This file
227 displays all functions that have a callback attached to them
228 as well as the number of callbacks that have been attached.
229 Note, a callback may also call multiple functions which will
230 not be listed in this count.
231
232 If the callback registered to be traced by a function with
233 the "save regs" attribute (thus even more overhead), a 'R'
234 will be displayed on the same line as the function that
235 is returning registers.
236
237 function_profile_enabled:
238
239 When set it will enable all functions with either the function
240 tracer, or if enabled, the function graph tracer. It will
241 keep a histogram of the number of functions that were called
242 and if run with the function graph tracer, it will also keep
243 track of the time spent in those functions. The histogram
244 content can be displayed in the files:
245
246 trace_stats/function<cpu> ( function0, function1, etc).
247
248 trace_stats:
249
250 A directory that holds different tracing stats.
251
252 kprobe_events:
253
254 Enable dynamic trace points. See kprobetrace.txt.
255
256 kprobe_profile:
257
258 Dynamic trace points stats. See kprobetrace.txt.
259
260 max_graph_depth:
261
262 Used with the function graph tracer. This is the max depth
263 it will trace into a function. Setting this to a value of
264 one will show only the first kernel function that is called
265 from user space.
266
267 printk_formats:
268
269 This is for tools that read the raw format files. If an event in
270 the ring buffer references a string (currently only trace_printk()
271 does this), only a pointer to the string is recorded into the buffer
272 and not the string itself. This prevents tools from knowing what
273 that string was. This file displays the string and address for
274 the string allowing tools to map the pointers to what the
275 strings were.
276
277 saved_cmdlines:
278
279 Only the pid of the task is recorded in a trace event unless
280 the event specifically saves the task comm as well. Ftrace
281 makes a cache of pid mappings to comms to try to display
282 comms for events. If a pid for a comm is not listed, then
283 "<...>" is displayed in the output.
284
285 snapshot:
286
287 This displays the "snapshot" buffer and also lets the user
288 take a snapshot of the current running trace.
289 See the "Snapshot" section below for more details.
290
291 stack_max_size:
292
293 When the stack tracer is activated, this will display the
294 maximum stack size it has encountered.
295 See the "Stack Trace" section below.
296
297 stack_trace:
298
299 This displays the stack back trace of the largest stack
300 that was encountered when the stack tracer is activated.
301 See the "Stack Trace" section below.
302
303 stack_trace_filter:
304
305 This is similar to "set_ftrace_filter" but it limits what
306 functions the stack tracer will check.
307
308 trace_clock:
309
310 Whenever an event is recorded into the ring buffer, a
311 "timestamp" is added. This stamp comes from a specified
312 clock. By default, ftrace uses the "local" clock. This
313 clock is very fast and strictly per cpu, but on some
314 systems it may not be monotonic with respect to other
315 CPUs. In other words, the local clocks may not be in sync
316 with local clocks on other CPUs.
317
318 Usual clocks for tracing:
319
320 # cat trace_clock
321 [local] global counter x86-tsc
322
323 local: Default clock, but may not be in sync across CPUs
324
325 global: This clock is in sync with all CPUs but may
326 be a bit slower than the local clock.
327
328 counter: This is not a clock at all, but literally an atomic
329 counter. It counts up one by one, but is in sync
330 with all CPUs. This is useful when you need to
331 know exactly the order events occurred with respect to
332 each other on different CPUs.
333
334 uptime: This uses the jiffies counter and the time stamp
335 is relative to the time since boot up.
336
337 perf: This makes ftrace use the same clock that perf uses.
338 Eventually perf will be able to read ftrace buffers
339 and this will help out in interleaving the data.
340
341 x86-tsc: Architectures may define their own clocks. For
342 example, x86 uses its own TSC cycle clock here.
343
344 To set a clock, simply echo the clock name into this file.
345
346 echo global > trace_clock
347
348 trace_marker:
349
350 This is a very useful file for synchronizing user space
351 with events happening in the kernel. Writing strings into
352 this file will be written into the ftrace buffer.
353
354 It is useful in applications to open this file at the start
355 of the application and just reference the file descriptor
356 for the file.
357
358 void trace_write(const char *fmt, ...)
359 {
360 va_list ap;
361 char buf[256];
362 int n;
363
364 if (trace_fd < 0)
365 return;
366
367 va_start(ap, fmt);
368 n = vsnprintf(buf, 256, fmt, ap);
369 va_end(ap);
370
371 write(trace_fd, buf, n);
372 }
373
374 start:
375
376 trace_fd = open("trace_marker", WR_ONLY);
377
378 uprobe_events:
379
380 Add dynamic tracepoints in programs.
381 See uprobetracer.txt
382
383 uprobe_profile:
384
385 Uprobe statistics. See uprobetrace.txt
386
387 instances:
388
389 This is a way to make multiple trace buffers where different
390 events can be recorded in different buffers.
391 See "Instances" section below.
392
393 events:
394
395 This is the trace event directory. It holds event tracepoints
396 (also known as static tracepoints) that have been compiled
397 into the kernel. It shows what event tracepoints exist
398 and how they are grouped by system. There are "enable"
399 files at various levels that can enable the tracepoints
400 when a "1" is written to them.
401
402 See events.txt for more information.
403
404 per_cpu:
405
406 This is a directory that contains the trace per_cpu information.
407
408 per_cpu/cpu0/buffer_size_kb:
409
410 The ftrace buffer is defined per_cpu. That is, there's a separate
411 buffer for each CPU to allow writes to be done atomically,
412 and free from cache bouncing. These buffers may have different
413 size buffers. This file is similar to the buffer_size_kb
414 file, but it only displays or sets the buffer size for the
415 specific CPU. (here cpu0).
416
417 per_cpu/cpu0/trace:
418
419 This is similar to the "trace" file, but it will only display
420 the data specific for the CPU. If written to, it only clears
421 the specific CPU buffer.
422
423 per_cpu/cpu0/trace_pipe
424
425 This is similar to the "trace_pipe" file, and is a consuming
426 read, but it will only display (and consume) the data specific
427 for the CPU.
428
429 per_cpu/cpu0/trace_pipe_raw
430
431 For tools that can parse the ftrace ring buffer binary format,
432 the trace_pipe_raw file can be used to extract the data
433 from the ring buffer directly. With the use of the splice()
434 system call, the buffer data can be quickly transferred to
435 a file or to the network where a server is collecting the
436 data.
437
438 Like trace_pipe, this is a consuming reader, where multiple
439 reads will always produce different data.
440
441 per_cpu/cpu0/snapshot:
442
443 This is similar to the main "snapshot" file, but will only
444 snapshot the current CPU (if supported). It only displays
445 the content of the snapshot for a given CPU, and if
446 written to, only clears this CPU buffer.
447
448 per_cpu/cpu0/snapshot_raw:
449
450 Similar to the trace_pipe_raw, but will read the binary format
451 from the snapshot buffer for the given CPU.
452
453 per_cpu/cpu0/stats:
454
455 This displays certain stats about the ring buffer:
456
457 entries: The number of events that are still in the buffer.
458
459 overrun: The number of lost events due to overwriting when
460 the buffer was full.
461
462 commit overrun: Should always be zero.
463 This gets set if so many events happened within a nested
464 event (ring buffer is re-entrant), that it fills the
465 buffer and starts dropping events.
466
467 bytes: Bytes actually read (not overwritten).
468
469 oldest event ts: The oldest timestamp in the buffer
470
471 now ts: The current timestamp
472
473 dropped events: Events lost due to overwrite option being off.
474
475 read events: The number of events read.
476
477 The Tracers
478 -----------
479
480 Here is the list of current tracers that may be configured.
481
482 "function"
483
484 Function call tracer to trace all kernel functions.
485
486 "function_graph"
487
488 Similar to the function tracer except that the
489 function tracer probes the functions on their entry
490 whereas the function graph tracer traces on both entry
491 and exit of the functions. It then provides the ability
492 to draw a graph of function calls similar to C code
493 source.
494
495 "irqsoff"
496
497 Traces the areas that disable interrupts and saves
498 the trace with the longest max latency.
499 See tracing_max_latency. When a new max is recorded,
500 it replaces the old trace. It is best to view this
501 trace with the latency-format option enabled.
502
503 "preemptoff"
504
505 Similar to irqsoff but traces and records the amount of
506 time for which preemption is disabled.
507
508 "preemptirqsoff"
509
510 Similar to irqsoff and preemptoff, but traces and
511 records the largest time for which irqs and/or preemption
512 is disabled.
513
514 "wakeup"
515
516 Traces and records the max latency that it takes for
517 the highest priority task to get scheduled after
518 it has been woken up.
519 Traces all tasks as an average developer would expect.
520
521 "wakeup_rt"
522
523 Traces and records the max latency that it takes for just
524 RT tasks (as the current "wakeup" does). This is useful
525 for those interested in wake up timings of RT tasks.
526
527 "nop"
528
529 This is the "trace nothing" tracer. To remove all
530 tracers from tracing simply echo "nop" into
531 current_tracer.
532
533
534 Examples of using the tracer
535 ----------------------------
536
537 Here are typical examples of using the tracers when controlling
538 them only with the debugfs interface (without using any
539 user-land utilities).
540
541 Output format:
542 --------------
543
544 Here is an example of the output format of the file "trace"
545
546 --------
547 # tracer: function
548 #
549 # entries-in-buffer/entries-written: 140080/250280 #P:4
550 #
551 # _-----=> irqs-off
552 # / _----=> need-resched
553 # | / _---=> hardirq/softirq
554 # || / _--=> preempt-depth
555 # ||| / delay
556 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
557 # | | | |||| | |
558 bash-1977 [000] .... 17284.993652: sys_close <-system_call_fastpath
559 bash-1977 [000] .... 17284.993653: __close_fd <-sys_close
560 bash-1977 [000] .... 17284.993653: _raw_spin_lock <-__close_fd
561 sshd-1974 [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
562 bash-1977 [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
563 bash-1977 [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
564 bash-1977 [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
565 bash-1977 [000] .... 17284.993657: filp_close <-__close_fd
566 bash-1977 [000] .... 17284.993657: dnotify_flush <-filp_close
567 sshd-1974 [003] .... 17284.993658: sys_select <-system_call_fastpath
568 --------
569
570 A header is printed with the tracer name that is represented by
571 the trace. In this case the tracer is "function". Then it shows the
572 number of events in the buffer as well as the total number of entries
573 that were written. The difference is the number of entries that were
574 lost due to the buffer filling up (250280 - 140080 = 110200 events
575 lost).
576
577 The header explains the content of the events. Task name "bash", the task
578 PID "1977", the CPU that it was running on "000", the latency format
579 (explained below), the timestamp in <secs>.<usecs> format, the
580 function name that was traced "sys_close" and the parent function that
581 called this function "system_call_fastpath". The timestamp is the time
582 at which the function was entered.
583
584 Latency trace format
585 --------------------
586
587 When the latency-format option is enabled or when one of the latency
588 tracers is set, the trace file gives somewhat more information to see
589 why a latency happened. Here is a typical trace.
590
591 # tracer: irqsoff
592 #
593 # irqsoff latency trace v1.1.5 on 3.8.0-test+
594 # --------------------------------------------------------------------
595 # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
596 # -----------------
597 # | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
598 # -----------------
599 # => started at: __lock_task_sighand
600 # => ended at: _raw_spin_unlock_irqrestore
601 #
602 #
603 # _------=> CPU#
604 # / _-----=> irqs-off
605 # | / _----=> need-resched
606 # || / _---=> hardirq/softirq
607 # ||| / _--=> preempt-depth
608 # |||| / delay
609 # cmd pid ||||| time | caller
610 # \ / ||||| \ | /
611 ps-6143 2d... 0us!: trace_hardirqs_off <-__lock_task_sighand
612 ps-6143 2d..1 259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
613 ps-6143 2d..1 263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
614 ps-6143 2d..1 306us : <stack trace>
615 => trace_hardirqs_on_caller
616 => trace_hardirqs_on
617 => _raw_spin_unlock_irqrestore
618 => do_task_stat
619 => proc_tgid_stat
620 => proc_single_show
621 => seq_read
622 => vfs_read
623 => sys_read
624 => system_call_fastpath
625
626
627 This shows that the current tracer is "irqsoff" tracing the time
628 for which interrupts were disabled. It gives the trace version (which
629 never changes) and the version of the kernel upon which this was executed on
630 (3.10). Then it displays the max latency in microseconds (259 us). The number
631 of trace entries displayed and the total number (both are four: #4/4).
632 VP, KP, SP, and HP are always zero and are reserved for later use.
633 #P is the number of online CPUs (#P:4).
634
635 The task is the process that was running when the latency
636 occurred. (ps pid: 6143).
637
638 The start and stop (the functions in which the interrupts were
639 disabled and enabled respectively) that caused the latencies:
640
641 __lock_task_sighand is where the interrupts were disabled.
642 _raw_spin_unlock_irqrestore is where they were enabled again.
643
644 The next lines after the header are the trace itself. The header
645 explains which is which.
646
647 cmd: The name of the process in the trace.
648
649 pid: The PID of that process.
650
651 CPU#: The CPU which the process was running on.
652
653 irqs-off: 'd' interrupts are disabled. '.' otherwise.
654 Note: If the architecture does not support a way to
655 read the irq flags variable, an 'X' will always
656 be printed here.
657
658 need-resched: 'N' task need_resched is set, '.' otherwise.
659
660 hardirq/softirq:
661 'H' - hard irq occurred inside a softirq.
662 'h' - hard irq is running
663 's' - soft irq is running
664 '.' - normal context.
665
666 preempt-depth: The level of preempt_disabled
667
668 The above is mostly meaningful for kernel developers.
669
670 time: When the latency-format option is enabled, the trace file
671 output includes a timestamp relative to the start of the
672 trace. This differs from the output when latency-format
673 is disabled, which includes an absolute timestamp.
674
675 delay: This is just to help catch your eye a bit better. And
676 needs to be fixed to be only relative to the same CPU.
677 The marks are determined by the difference between this
678 current trace and the next trace.
679 '!' - greater than preempt_mark_thresh (default 100)
680 '+' - greater than 1 microsecond
681 ' ' - less than or equal to 1 microsecond.
682
683 The rest is the same as the 'trace' file.
684
685 Note, the latency tracers will usually end with a back trace
686 to easily find where the latency occurred.
687
688 trace_options
689 -------------
690
691 The trace_options file (or the options directory) is used to control
692 what gets printed in the trace output, or manipulate the tracers.
693 To see what is available, simply cat the file:
694
695 cat trace_options
696 print-parent
697 nosym-offset
698 nosym-addr
699 noverbose
700 noraw
701 nohex
702 nobin
703 noblock
704 nostacktrace
705 trace_printk
706 noftrace_preempt
707 nobranch
708 annotate
709 nouserstacktrace
710 nosym-userobj
711 noprintk-msg-only
712 context-info
713 latency-format
714 sleep-time
715 graph-time
716 record-cmd
717 overwrite
718 nodisable_on_free
719 irq-info
720 markers
721 function-trace
722
723 To disable one of the options, echo in the option prepended with
724 "no".
725
726 echo noprint-parent > trace_options
727
728 To enable an option, leave off the "no".
729
730 echo sym-offset > trace_options
731
732 Here are the available options:
733
734 print-parent - On function traces, display the calling (parent)
735 function as well as the function being traced.
736
737 print-parent:
738 bash-4000 [01] 1477.606694: simple_strtoul <-strict_strtoul
739
740 noprint-parent:
741 bash-4000 [01] 1477.606694: simple_strtoul
742
743
744 sym-offset - Display not only the function name, but also the
745 offset in the function. For example, instead of
746 seeing just "ktime_get", you will see
747 "ktime_get+0xb/0x20".
748
749 sym-offset:
750 bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
751
752 sym-addr - this will also display the function address as well
753 as the function name.
754
755 sym-addr:
756 bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
757
758 verbose - This deals with the trace file when the
759 latency-format option is enabled.
760
761 bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
762 (+0.000ms): simple_strtoul (strict_strtoul)
763
764 raw - This will display raw numbers. This option is best for
765 use with user applications that can translate the raw
766 numbers better than having it done in the kernel.
767
768 hex - Similar to raw, but the numbers will be in a hexadecimal
769 format.
770
771 bin - This will print out the formats in raw binary.
772
773 block - When set, reading trace_pipe will not block when polled.
774
775 stacktrace - This is one of the options that changes the trace
776 itself. When a trace is recorded, so is the stack
777 of functions. This allows for back traces of
778 trace sites.
779
780 trace_printk - Can disable trace_printk() from writing into the buffer.
781
782 branch - Enable branch tracing with the tracer.
783
784 annotate - It is sometimes confusing when the CPU buffers are full
785 and one CPU buffer had a lot of events recently, thus
786 a shorter time frame, were another CPU may have only had
787 a few events, which lets it have older events. When
788 the trace is reported, it shows the oldest events first,
789 and it may look like only one CPU ran (the one with the
790 oldest events). When the annotate option is set, it will
791 display when a new CPU buffer started:
792
793 <idle>-0 [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
794 <idle>-0 [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
795 <idle>-0 [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
796 ##### CPU 2 buffer started ####
797 <idle>-0 [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
798 <idle>-0 [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
799 <idle>-0 [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
800
801 userstacktrace - This option changes the trace. It records a
802 stacktrace of the current userspace thread.
803
804 sym-userobj - when user stacktrace are enabled, look up which
805 object the address belongs to, and print a
806 relative address. This is especially useful when
807 ASLR is on, otherwise you don't get a chance to
808 resolve the address to object/file/line after
809 the app is no longer running
810
811 The lookup is performed when you read
812 trace,trace_pipe. Example:
813
814 a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
815 x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
816
817
818 printk-msg-only - When set, trace_printk()s will only show the format
819 and not their parameters (if trace_bprintk() or
820 trace_bputs() was used to save the trace_printk()).
821
822 context-info - Show only the event data. Hides the comm, PID,
823 timestamp, CPU, and other useful data.
824
825 latency-format - This option changes the trace. When
826 it is enabled, the trace displays
827 additional information about the
828 latencies, as described in "Latency
829 trace format".
830
831 sleep-time - When running function graph tracer, to include
832 the time a task schedules out in its function.
833 When enabled, it will account time the task has been
834 scheduled out as part of the function call.
835
836 graph-time - When running function graph tracer, to include the
837 time to call nested functions. When this is not set,
838 the time reported for the function will only include
839 the time the function itself executed for, not the time
840 for functions that it called.
841
842 record-cmd - When any event or tracer is enabled, a hook is enabled
843 in the sched_switch trace point to fill comm cache
844 with mapped pids and comms. But this may cause some
845 overhead, and if you only care about pids, and not the
846 name of the task, disabling this option can lower the
847 impact of tracing.
848
849 overwrite - This controls what happens when the trace buffer is
850 full. If "1" (default), the oldest events are
851 discarded and overwritten. If "0", then the newest
852 events are discarded.
853 (see per_cpu/cpu0/stats for overrun and dropped)
854
855 disable_on_free - When the free_buffer is closed, tracing will
856 stop (tracing_on set to 0).
857
858 irq-info - Shows the interrupt, preempt count, need resched data.
859 When disabled, the trace looks like:
860
861 # tracer: function
862 #
863 # entries-in-buffer/entries-written: 144405/9452052 #P:4
864 #
865 # TASK-PID CPU# TIMESTAMP FUNCTION
866 # | | | | |
867 <idle>-0 [002] 23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
868 <idle>-0 [002] 23636.756054: activate_task <-ttwu_do_activate.constprop.89
869 <idle>-0 [002] 23636.756055: enqueue_task <-activate_task
870
871
872 markers - When set, the trace_marker is writable (only by root).
873 When disabled, the trace_marker will error with EINVAL
874 on write.
875
876
877 function-trace - The latency tracers will enable function tracing
878 if this option is enabled (default it is). When
879 it is disabled, the latency tracers do not trace
880 functions. This keeps the overhead of the tracer down
881 when performing latency tests.
882
883 Note: Some tracers have their own options. They only appear
884 when the tracer is active.
885
886
887
888 irqsoff
889 -------
890
891 When interrupts are disabled, the CPU can not react to any other
892 external event (besides NMIs and SMIs). This prevents the timer
893 interrupt from triggering or the mouse interrupt from letting
894 the kernel know of a new mouse event. The result is a latency
895 with the reaction time.
896
897 The irqsoff tracer tracks the time for which interrupts are
898 disabled. When a new maximum latency is hit, the tracer saves
899 the trace leading up to that latency point so that every time a
900 new maximum is reached, the old saved trace is discarded and the
901 new trace is saved.
902
903 To reset the maximum, echo 0 into tracing_max_latency. Here is
904 an example:
905
906 # echo 0 > options/function-trace
907 # echo irqsoff > current_tracer
908 # echo 1 > tracing_on
909 # echo 0 > tracing_max_latency
910 # ls -ltr
911 [...]
912 # echo 0 > tracing_on
913 # cat trace
914 # tracer: irqsoff
915 #
916 # irqsoff latency trace v1.1.5 on 3.8.0-test+
917 # --------------------------------------------------------------------
918 # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
919 # -----------------
920 # | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
921 # -----------------
922 # => started at: run_timer_softirq
923 # => ended at: run_timer_softirq
924 #
925 #
926 # _------=> CPU#
927 # / _-----=> irqs-off
928 # | / _----=> need-resched
929 # || / _---=> hardirq/softirq
930 # ||| / _--=> preempt-depth
931 # |||| / delay
932 # cmd pid ||||| time | caller
933 # \ / ||||| \ | /
934 <idle>-0 0d.s2 0us+: _raw_spin_lock_irq <-run_timer_softirq
935 <idle>-0 0dNs3 17us : _raw_spin_unlock_irq <-run_timer_softirq
936 <idle>-0 0dNs3 17us+: trace_hardirqs_on <-run_timer_softirq
937 <idle>-0 0dNs3 25us : <stack trace>
938 => _raw_spin_unlock_irq
939 => run_timer_softirq
940 => __do_softirq
941 => call_softirq
942 => do_softirq
943 => irq_exit
944 => smp_apic_timer_interrupt
945 => apic_timer_interrupt
946 => rcu_idle_exit
947 => cpu_idle
948 => rest_init
949 => start_kernel
950 => x86_64_start_reservations
951 => x86_64_start_kernel
952
953 Here we see that that we had a latency of 16 microseconds (which is
954 very good). The _raw_spin_lock_irq in run_timer_softirq disabled
955 interrupts. The difference between the 16 and the displayed
956 timestamp 25us occurred because the clock was incremented
957 between the time of recording the max latency and the time of
958 recording the function that had that latency.
959
960 Note the above example had function-trace not set. If we set
961 function-trace, we get a much larger output:
962
963 with echo 1 > options/function-trace
964
965 # tracer: irqsoff
966 #
967 # irqsoff latency trace v1.1.5 on 3.8.0-test+
968 # --------------------------------------------------------------------
969 # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
970 # -----------------
971 # | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
972 # -----------------
973 # => started at: ata_scsi_queuecmd
974 # => ended at: ata_scsi_queuecmd
975 #
976 #
977 # _------=> CPU#
978 # / _-----=> irqs-off
979 # | / _----=> need-resched
980 # || / _---=> hardirq/softirq
981 # ||| / _--=> preempt-depth
982 # |||| / delay
983 # cmd pid ||||| time | caller
984 # \ / ||||| \ | /
985 bash-2042 3d... 0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
986 bash-2042 3d... 0us : add_preempt_count <-_raw_spin_lock_irqsave
987 bash-2042 3d..1 1us : ata_scsi_find_dev <-ata_scsi_queuecmd
988 bash-2042 3d..1 1us : __ata_scsi_find_dev <-ata_scsi_find_dev
989 bash-2042 3d..1 2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
990 bash-2042 3d..1 2us : ata_qc_new_init <-__ata_scsi_queuecmd
991 bash-2042 3d..1 3us : ata_sg_init <-__ata_scsi_queuecmd
992 bash-2042 3d..1 4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
993 bash-2042 3d..1 4us : ata_build_rw_tf <-ata_scsi_rw_xlat
994 [...]
995 bash-2042 3d..1 67us : delay_tsc <-__delay
996 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
997 bash-2042 3d..2 67us : sub_preempt_count <-delay_tsc
998 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
999 bash-2042 3d..2 68us : sub_preempt_count <-delay_tsc
1000 bash-2042 3d..1 68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1001 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1002 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1003 bash-2042 3d..1 72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1004 bash-2042 3d..1 120us : <stack trace>
1005 => _raw_spin_unlock_irqrestore
1006 => ata_scsi_queuecmd
1007 => scsi_dispatch_cmd
1008 => scsi_request_fn
1009 => __blk_run_queue_uncond
1010 => __blk_run_queue
1011 => blk_queue_bio
1012 => generic_make_request
1013 => submit_bio
1014 => submit_bh
1015 => __ext3_get_inode_loc
1016 => ext3_iget
1017 => ext3_lookup
1018 => lookup_real
1019 => __lookup_hash
1020 => walk_component
1021 => lookup_last
1022 => path_lookupat
1023 => filename_lookup
1024 => user_path_at_empty
1025 => user_path_at
1026 => vfs_fstatat
1027 => vfs_stat
1028 => sys_newstat
1029 => system_call_fastpath
1030
1031
1032 Here we traced a 71 microsecond latency. But we also see all the
1033 functions that were called during that time. Note that by
1034 enabling function tracing, we incur an added overhead. This
1035 overhead may extend the latency times. But nevertheless, this
1036 trace has provided some very helpful debugging information.
1037
1038
1039 preemptoff
1040 ----------
1041
1042 When preemption is disabled, we may be able to receive
1043 interrupts but the task cannot be preempted and a higher
1044 priority task must wait for preemption to be enabled again
1045 before it can preempt a lower priority task.
1046
1047 The preemptoff tracer traces the places that disable preemption.
1048 Like the irqsoff tracer, it records the maximum latency for
1049 which preemption was disabled. The control of preemptoff tracer
1050 is much like the irqsoff tracer.
1051
1052 # echo 0 > options/function-trace
1053 # echo preemptoff > current_tracer
1054 # echo 1 > tracing_on
1055 # echo 0 > tracing_max_latency
1056 # ls -ltr
1057 [...]
1058 # echo 0 > tracing_on
1059 # cat trace
1060 # tracer: preemptoff
1061 #
1062 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1063 # --------------------------------------------------------------------
1064 # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1065 # -----------------
1066 # | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1067 # -----------------
1068 # => started at: do_IRQ
1069 # => ended at: do_IRQ
1070 #
1071 #
1072 # _------=> CPU#
1073 # / _-----=> irqs-off
1074 # | / _----=> need-resched
1075 # || / _---=> hardirq/softirq
1076 # ||| / _--=> preempt-depth
1077 # |||| / delay
1078 # cmd pid ||||| time | caller
1079 # \ / ||||| \ | /
1080 sshd-1991 1d.h. 0us+: irq_enter <-do_IRQ
1081 sshd-1991 1d..1 46us : irq_exit <-do_IRQ
1082 sshd-1991 1d..1 47us+: trace_preempt_on <-do_IRQ
1083 sshd-1991 1d..1 52us : <stack trace>
1084 => sub_preempt_count
1085 => irq_exit
1086 => do_IRQ
1087 => ret_from_intr
1088
1089
1090 This has some more changes. Preemption was disabled when an
1091 interrupt came in (notice the 'h'), and was enabled on exit.
1092 But we also see that interrupts have been disabled when entering
1093 the preempt off section and leaving it (the 'd'). We do not know if
1094 interrupts were enabled in the mean time or shortly after this
1095 was over.
1096
1097 # tracer: preemptoff
1098 #
1099 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1100 # --------------------------------------------------------------------
1101 # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1102 # -----------------
1103 # | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1104 # -----------------
1105 # => started at: wake_up_new_task
1106 # => ended at: task_rq_unlock
1107 #
1108 #
1109 # _------=> CPU#
1110 # / _-----=> irqs-off
1111 # | / _----=> need-resched
1112 # || / _---=> hardirq/softirq
1113 # ||| / _--=> preempt-depth
1114 # |||| / delay
1115 # cmd pid ||||| time | caller
1116 # \ / ||||| \ | /
1117 bash-1994 1d..1 0us : _raw_spin_lock_irqsave <-wake_up_new_task
1118 bash-1994 1d..1 0us : select_task_rq_fair <-select_task_rq
1119 bash-1994 1d..1 1us : __rcu_read_lock <-select_task_rq_fair
1120 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1121 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1122 [...]
1123 bash-1994 1d..1 12us : irq_enter <-smp_apic_timer_interrupt
1124 bash-1994 1d..1 12us : rcu_irq_enter <-irq_enter
1125 bash-1994 1d..1 13us : add_preempt_count <-irq_enter
1126 bash-1994 1d.h1 13us : exit_idle <-smp_apic_timer_interrupt
1127 bash-1994 1d.h1 13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1128 bash-1994 1d.h1 13us : _raw_spin_lock <-hrtimer_interrupt
1129 bash-1994 1d.h1 14us : add_preempt_count <-_raw_spin_lock
1130 bash-1994 1d.h2 14us : ktime_get_update_offsets <-hrtimer_interrupt
1131 [...]
1132 bash-1994 1d.h1 35us : lapic_next_event <-clockevents_program_event
1133 bash-1994 1d.h1 35us : irq_exit <-smp_apic_timer_interrupt
1134 bash-1994 1d.h1 36us : sub_preempt_count <-irq_exit
1135 bash-1994 1d..2 36us : do_softirq <-irq_exit
1136 bash-1994 1d..2 36us : __do_softirq <-call_softirq
1137 bash-1994 1d..2 36us : __local_bh_disable <-__do_softirq
1138 bash-1994 1d.s2 37us : add_preempt_count <-_raw_spin_lock_irq
1139 bash-1994 1d.s3 38us : _raw_spin_unlock <-run_timer_softirq
1140 bash-1994 1d.s3 39us : sub_preempt_count <-_raw_spin_unlock
1141 bash-1994 1d.s2 39us : call_timer_fn <-run_timer_softirq
1142 [...]
1143 bash-1994 1dNs2 81us : cpu_needs_another_gp <-rcu_process_callbacks
1144 bash-1994 1dNs2 82us : __local_bh_enable <-__do_softirq
1145 bash-1994 1dNs2 82us : sub_preempt_count <-__local_bh_enable
1146 bash-1994 1dN.2 82us : idle_cpu <-irq_exit
1147 bash-1994 1dN.2 83us : rcu_irq_exit <-irq_exit
1148 bash-1994 1dN.2 83us : sub_preempt_count <-irq_exit
1149 bash-1994 1.N.1 84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1150 bash-1994 1.N.1 84us+: trace_preempt_on <-task_rq_unlock
1151 bash-1994 1.N.1 104us : <stack trace>
1152 => sub_preempt_count
1153 => _raw_spin_unlock_irqrestore
1154 => task_rq_unlock
1155 => wake_up_new_task
1156 => do_fork
1157 => sys_clone
1158 => stub_clone
1159
1160
1161 The above is an example of the preemptoff trace with
1162 function-trace set. Here we see that interrupts were not disabled
1163 the entire time. The irq_enter code lets us know that we entered
1164 an interrupt 'h'. Before that, the functions being traced still
1165 show that it is not in an interrupt, but we can see from the
1166 functions themselves that this is not the case.
1167
1168 preemptirqsoff
1169 --------------
1170
1171 Knowing the locations that have interrupts disabled or
1172 preemption disabled for the longest times is helpful. But
1173 sometimes we would like to know when either preemption and/or
1174 interrupts are disabled.
1175
1176 Consider the following code:
1177
1178 local_irq_disable();
1179 call_function_with_irqs_off();
1180 preempt_disable();
1181 call_function_with_irqs_and_preemption_off();
1182 local_irq_enable();
1183 call_function_with_preemption_off();
1184 preempt_enable();
1185
1186 The irqsoff tracer will record the total length of
1187 call_function_with_irqs_off() and
1188 call_function_with_irqs_and_preemption_off().
1189
1190 The preemptoff tracer will record the total length of
1191 call_function_with_irqs_and_preemption_off() and
1192 call_function_with_preemption_off().
1193
1194 But neither will trace the time that interrupts and/or
1195 preemption is disabled. This total time is the time that we can
1196 not schedule. To record this time, use the preemptirqsoff
1197 tracer.
1198
1199 Again, using this trace is much like the irqsoff and preemptoff
1200 tracers.
1201
1202 # echo 0 > options/function-trace
1203 # echo preemptirqsoff > current_tracer
1204 # echo 1 > tracing_on
1205 # echo 0 > tracing_max_latency
1206 # ls -ltr
1207 [...]
1208 # echo 0 > tracing_on
1209 # cat trace
1210 # tracer: preemptirqsoff
1211 #
1212 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1213 # --------------------------------------------------------------------
1214 # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1215 # -----------------
1216 # | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1217 # -----------------
1218 # => started at: ata_scsi_queuecmd
1219 # => ended at: ata_scsi_queuecmd
1220 #
1221 #
1222 # _------=> CPU#
1223 # / _-----=> irqs-off
1224 # | / _----=> need-resched
1225 # || / _---=> hardirq/softirq
1226 # ||| / _--=> preempt-depth
1227 # |||| / delay
1228 # cmd pid ||||| time | caller
1229 # \ / ||||| \ | /
1230 ls-2230 3d... 0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1231 ls-2230 3...1 100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1232 ls-2230 3...1 101us+: trace_preempt_on <-ata_scsi_queuecmd
1233 ls-2230 3...1 111us : <stack trace>
1234 => sub_preempt_count
1235 => _raw_spin_unlock_irqrestore
1236 => ata_scsi_queuecmd
1237 => scsi_dispatch_cmd
1238 => scsi_request_fn
1239 => __blk_run_queue_uncond
1240 => __blk_run_queue
1241 => blk_queue_bio
1242 => generic_make_request
1243 => submit_bio
1244 => submit_bh
1245 => ext3_bread
1246 => ext3_dir_bread
1247 => htree_dirblock_to_tree
1248 => ext3_htree_fill_tree
1249 => ext3_readdir
1250 => vfs_readdir
1251 => sys_getdents
1252 => system_call_fastpath
1253
1254
1255 The trace_hardirqs_off_thunk is called from assembly on x86 when
1256 interrupts are disabled in the assembly code. Without the
1257 function tracing, we do not know if interrupts were enabled
1258 within the preemption points. We do see that it started with
1259 preemption enabled.
1260
1261 Here is a trace with function-trace set:
1262
1263 # tracer: preemptirqsoff
1264 #
1265 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1266 # --------------------------------------------------------------------
1267 # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1268 # -----------------
1269 # | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1270 # -----------------
1271 # => started at: schedule
1272 # => ended at: mutex_unlock
1273 #
1274 #
1275 # _------=> CPU#
1276 # / _-----=> irqs-off
1277 # | / _----=> need-resched
1278 # || / _---=> hardirq/softirq
1279 # ||| / _--=> preempt-depth
1280 # |||| / delay
1281 # cmd pid ||||| time | caller
1282 # \ / ||||| \ | /
1283 kworker/-59 3...1 0us : __schedule <-schedule
1284 kworker/-59 3d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
1285 kworker/-59 3d..1 1us : add_preempt_count <-_raw_spin_lock_irq
1286 kworker/-59 3d..2 1us : deactivate_task <-__schedule
1287 kworker/-59 3d..2 1us : dequeue_task <-deactivate_task
1288 kworker/-59 3d..2 2us : update_rq_clock <-dequeue_task
1289 kworker/-59 3d..2 2us : dequeue_task_fair <-dequeue_task
1290 kworker/-59 3d..2 2us : update_curr <-dequeue_task_fair
1291 kworker/-59 3d..2 2us : update_min_vruntime <-update_curr
1292 kworker/-59 3d..2 3us : cpuacct_charge <-update_curr
1293 kworker/-59 3d..2 3us : __rcu_read_lock <-cpuacct_charge
1294 kworker/-59 3d..2 3us : __rcu_read_unlock <-cpuacct_charge
1295 kworker/-59 3d..2 3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1296 kworker/-59 3d..2 4us : clear_buddies <-dequeue_task_fair
1297 kworker/-59 3d..2 4us : account_entity_dequeue <-dequeue_task_fair
1298 kworker/-59 3d..2 4us : update_min_vruntime <-dequeue_task_fair
1299 kworker/-59 3d..2 4us : update_cfs_shares <-dequeue_task_fair
1300 kworker/-59 3d..2 5us : hrtick_update <-dequeue_task_fair
1301 kworker/-59 3d..2 5us : wq_worker_sleeping <-__schedule
1302 kworker/-59 3d..2 5us : kthread_data <-wq_worker_sleeping
1303 kworker/-59 3d..2 5us : put_prev_task_fair <-__schedule
1304 kworker/-59 3d..2 6us : pick_next_task_fair <-pick_next_task
1305 kworker/-59 3d..2 6us : clear_buddies <-pick_next_task_fair
1306 kworker/-59 3d..2 6us : set_next_entity <-pick_next_task_fair
1307 kworker/-59 3d..2 6us : update_stats_wait_end <-set_next_entity
1308 ls-2269 3d..2 7us : finish_task_switch <-__schedule
1309 ls-2269 3d..2 7us : _raw_spin_unlock_irq <-finish_task_switch
1310 ls-2269 3d..2 8us : do_IRQ <-ret_from_intr
1311 ls-2269 3d..2 8us : irq_enter <-do_IRQ
1312 ls-2269 3d..2 8us : rcu_irq_enter <-irq_enter
1313 ls-2269 3d..2 9us : add_preempt_count <-irq_enter
1314 ls-2269 3d.h2 9us : exit_idle <-do_IRQ
1315 [...]
1316 ls-2269 3d.h3 20us : sub_preempt_count <-_raw_spin_unlock
1317 ls-2269 3d.h2 20us : irq_exit <-do_IRQ
1318 ls-2269 3d.h2 21us : sub_preempt_count <-irq_exit
1319 ls-2269 3d..3 21us : do_softirq <-irq_exit
1320 ls-2269 3d..3 21us : __do_softirq <-call_softirq
1321 ls-2269 3d..3 21us+: __local_bh_disable <-__do_softirq
1322 ls-2269 3d.s4 29us : sub_preempt_count <-_local_bh_enable_ip
1323 ls-2269 3d.s5 29us : sub_preempt_count <-_local_bh_enable_ip
1324 ls-2269 3d.s5 31us : do_IRQ <-ret_from_intr
1325 ls-2269 3d.s5 31us : irq_enter <-do_IRQ
1326 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1327 [...]
1328 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1329 ls-2269 3d.s5 32us : add_preempt_count <-irq_enter
1330 ls-2269 3d.H5 32us : exit_idle <-do_IRQ
1331 ls-2269 3d.H5 32us : handle_irq <-do_IRQ
1332 ls-2269 3d.H5 32us : irq_to_desc <-handle_irq
1333 ls-2269 3d.H5 33us : handle_fasteoi_irq <-handle_irq
1334 [...]
1335 ls-2269 3d.s5 158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1336 ls-2269 3d.s3 158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1337 ls-2269 3d.s3 159us : __local_bh_enable <-__do_softirq
1338 ls-2269 3d.s3 159us : sub_preempt_count <-__local_bh_enable
1339 ls-2269 3d..3 159us : idle_cpu <-irq_exit
1340 ls-2269 3d..3 159us : rcu_irq_exit <-irq_exit
1341 ls-2269 3d..3 160us : sub_preempt_count <-irq_exit
1342 ls-2269 3d... 161us : __mutex_unlock_slowpath <-mutex_unlock
1343 ls-2269 3d... 162us+: trace_hardirqs_on <-mutex_unlock
1344 ls-2269 3d... 186us : <stack trace>
1345 => __mutex_unlock_slowpath
1346 => mutex_unlock
1347 => process_output
1348 => n_tty_write
1349 => tty_write
1350 => vfs_write
1351 => sys_write
1352 => system_call_fastpath
1353
1354 This is an interesting trace. It started with kworker running and
1355 scheduling out and ls taking over. But as soon as ls released the
1356 rq lock and enabled interrupts (but not preemption) an interrupt
1357 triggered. When the interrupt finished, it started running softirqs.
1358 But while the softirq was running, another interrupt triggered.
1359 When an interrupt is running inside a softirq, the annotation is 'H'.
1360
1361
1362 wakeup
1363 ------
1364
1365 One common case that people are interested in tracing is the
1366 time it takes for a task that is woken to actually wake up.
1367 Now for non Real-Time tasks, this can be arbitrary. But tracing
1368 it none the less can be interesting.
1369
1370 Without function tracing:
1371
1372 # echo 0 > options/function-trace
1373 # echo wakeup > current_tracer
1374 # echo 1 > tracing_on
1375 # echo 0 > tracing_max_latency
1376 # chrt -f 5 sleep 1
1377 # echo 0 > tracing_on
1378 # cat trace
1379 # tracer: wakeup
1380 #
1381 # wakeup latency trace v1.1.5 on 3.8.0-test+
1382 # --------------------------------------------------------------------
1383 # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1384 # -----------------
1385 # | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1386 # -----------------
1387 #
1388 # _------=> CPU#
1389 # / _-----=> irqs-off
1390 # | / _----=> need-resched
1391 # || / _---=> hardirq/softirq
1392 # ||| / _--=> preempt-depth
1393 # |||| / delay
1394 # cmd pid ||||| time | caller
1395 # \ / ||||| \ | /
1396 <idle>-0 3dNs7 0us : 0:120:R + [003] 312:100:R kworker/3:1H
1397 <idle>-0 3dNs7 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1398 <idle>-0 3d..3 15us : __schedule <-schedule
1399 <idle>-0 3d..3 15us : 0:120:R ==> [003] 312:100:R kworker/3:1H
1400
1401 The tracer only traces the highest priority task in the system
1402 to avoid tracing the normal circumstances. Here we see that
1403 the kworker with a nice priority of -20 (not very nice), took
1404 just 15 microseconds from the time it woke up, to the time it
1405 ran.
1406
1407 Non Real-Time tasks are not that interesting. A more interesting
1408 trace is to concentrate only on Real-Time tasks.
1409
1410 wakeup_rt
1411 ---------
1412
1413 In a Real-Time environment it is very important to know the
1414 wakeup time it takes for the highest priority task that is woken
1415 up to the time that it executes. This is also known as "schedule
1416 latency". I stress the point that this is about RT tasks. It is
1417 also important to know the scheduling latency of non-RT tasks,
1418 but the average schedule latency is better for non-RT tasks.
1419 Tools like LatencyTop are more appropriate for such
1420 measurements.
1421
1422 Real-Time environments are interested in the worst case latency.
1423 That is the longest latency it takes for something to happen,
1424 and not the average. We can have a very fast scheduler that may
1425 only have a large latency once in a while, but that would not
1426 work well with Real-Time tasks. The wakeup_rt tracer was designed
1427 to record the worst case wakeups of RT tasks. Non-RT tasks are
1428 not recorded because the tracer only records one worst case and
1429 tracing non-RT tasks that are unpredictable will overwrite the
1430 worst case latency of RT tasks (just run the normal wakeup
1431 tracer for a while to see that effect).
1432
1433 Since this tracer only deals with RT tasks, we will run this
1434 slightly differently than we did with the previous tracers.
1435 Instead of performing an 'ls', we will run 'sleep 1' under
1436 'chrt' which changes the priority of the task.
1437
1438 # echo 0 > options/function-trace
1439 # echo wakeup_rt > current_tracer
1440 # echo 1 > tracing_on
1441 # echo 0 > tracing_max_latency
1442 # chrt -f 5 sleep 1
1443 # echo 0 > tracing_on
1444 # cat trace
1445 # tracer: wakeup
1446 #
1447 # tracer: wakeup_rt
1448 #
1449 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1450 # --------------------------------------------------------------------
1451 # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1452 # -----------------
1453 # | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1454 # -----------------
1455 #
1456 # _------=> CPU#
1457 # / _-----=> irqs-off
1458 # | / _----=> need-resched
1459 # || / _---=> hardirq/softirq
1460 # ||| / _--=> preempt-depth
1461 # |||| / delay
1462 # cmd pid ||||| time | caller
1463 # \ / ||||| \ | /
1464 <idle>-0 3d.h4 0us : 0:120:R + [003] 2389: 94:R sleep
1465 <idle>-0 3d.h4 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1466 <idle>-0 3d..3 5us : __schedule <-schedule
1467 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
1468
1469
1470 Running this on an idle system, we see that it only took 5 microseconds
1471 to perform the task switch. Note, since the trace point in the schedule
1472 is before the actual "switch", we stop the tracing when the recorded task
1473 is about to schedule in. This may change if we add a new marker at the
1474 end of the scheduler.
1475
1476 Notice that the recorded task is 'sleep' with the PID of 2389
1477 and it has an rt_prio of 5. This priority is user-space priority
1478 and not the internal kernel priority. The policy is 1 for
1479 SCHED_FIFO and 2 for SCHED_RR.
1480
1481 Note, that the trace data shows the internal priority (99 - rtprio).
1482
1483 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
1484
1485 The 0:120:R means idle was running with a nice priority of 0 (120 - 20)
1486 and in the running state 'R'. The sleep task was scheduled in with
1487 2389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1488 and it too is in the running state.
1489
1490 Doing the same with chrt -r 5 and function-trace set.
1491
1492 echo 1 > options/function-trace
1493
1494 # tracer: wakeup_rt
1495 #
1496 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1497 # --------------------------------------------------------------------
1498 # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1499 # -----------------
1500 # | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1501 # -----------------
1502 #
1503 # _------=> CPU#
1504 # / _-----=> irqs-off
1505 # | / _----=> need-resched
1506 # || / _---=> hardirq/softirq
1507 # ||| / _--=> preempt-depth
1508 # |||| / delay
1509 # cmd pid ||||| time | caller
1510 # \ / ||||| \ | /
1511 <idle>-0 3d.h4 1us+: 0:120:R + [003] 2448: 94:R sleep
1512 <idle>-0 3d.h4 2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1513 <idle>-0 3d.h3 3us : check_preempt_curr <-ttwu_do_wakeup
1514 <idle>-0 3d.h3 3us : resched_task <-check_preempt_curr
1515 <idle>-0 3dNh3 4us : task_woken_rt <-ttwu_do_wakeup
1516 <idle>-0 3dNh3 4us : _raw_spin_unlock <-try_to_wake_up
1517 <idle>-0 3dNh3 4us : sub_preempt_count <-_raw_spin_unlock
1518 <idle>-0 3dNh2 5us : ttwu_stat <-try_to_wake_up
1519 <idle>-0 3dNh2 5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1520 <idle>-0 3dNh2 6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1521 <idle>-0 3dNh1 6us : _raw_spin_lock <-__run_hrtimer
1522 <idle>-0 3dNh1 6us : add_preempt_count <-_raw_spin_lock
1523 <idle>-0 3dNh2 7us : _raw_spin_unlock <-hrtimer_interrupt
1524 <idle>-0 3dNh2 7us : sub_preempt_count <-_raw_spin_unlock
1525 <idle>-0 3dNh1 7us : tick_program_event <-hrtimer_interrupt
1526 <idle>-0 3dNh1 7us : clockevents_program_event <-tick_program_event
1527 <idle>-0 3dNh1 8us : ktime_get <-clockevents_program_event
1528 <idle>-0 3dNh1 8us : lapic_next_event <-clockevents_program_event
1529 <idle>-0 3dNh1 8us : irq_exit <-smp_apic_timer_interrupt
1530 <idle>-0 3dNh1 9us : sub_preempt_count <-irq_exit
1531 <idle>-0 3dN.2 9us : idle_cpu <-irq_exit
1532 <idle>-0 3dN.2 9us : rcu_irq_exit <-irq_exit
1533 <idle>-0 3dN.2 10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1534 <idle>-0 3dN.2 10us : sub_preempt_count <-irq_exit
1535 <idle>-0 3.N.1 11us : rcu_idle_exit <-cpu_idle
1536 <idle>-0 3dN.1 11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1537 <idle>-0 3.N.1 11us : tick_nohz_idle_exit <-cpu_idle
1538 <idle>-0 3dN.1 12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1539 <idle>-0 3dN.1 12us : ktime_get <-tick_nohz_idle_exit
1540 <idle>-0 3dN.1 12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1541 <idle>-0 3dN.1 13us : update_cpu_load_nohz <-tick_nohz_idle_exit
1542 <idle>-0 3dN.1 13us : _raw_spin_lock <-update_cpu_load_nohz
1543 <idle>-0 3dN.1 13us : add_preempt_count <-_raw_spin_lock
1544 <idle>-0 3dN.2 13us : __update_cpu_load <-update_cpu_load_nohz
1545 <idle>-0 3dN.2 14us : sched_avg_update <-__update_cpu_load
1546 <idle>-0 3dN.2 14us : _raw_spin_unlock <-update_cpu_load_nohz
1547 <idle>-0 3dN.2 14us : sub_preempt_count <-_raw_spin_unlock
1548 <idle>-0 3dN.1 15us : calc_load_exit_idle <-tick_nohz_idle_exit
1549 <idle>-0 3dN.1 15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1550 <idle>-0 3dN.1 15us : hrtimer_cancel <-tick_nohz_idle_exit
1551 <idle>-0 3dN.1 15us : hrtimer_try_to_cancel <-hrtimer_cancel
1552 <idle>-0 3dN.1 16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1553 <idle>-0 3dN.1 16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1554 <idle>-0 3dN.1 16us : add_preempt_count <-_raw_spin_lock_irqsave
1555 <idle>-0 3dN.2 17us : __remove_hrtimer <-remove_hrtimer.part.16
1556 <idle>-0 3dN.2 17us : hrtimer_force_reprogram <-__remove_hrtimer
1557 <idle>-0 3dN.2 17us : tick_program_event <-hrtimer_force_reprogram
1558 <idle>-0 3dN.2 18us : clockevents_program_event <-tick_program_event
1559 <idle>-0 3dN.2 18us : ktime_get <-clockevents_program_event
1560 <idle>-0 3dN.2 18us : lapic_next_event <-clockevents_program_event
1561 <idle>-0 3dN.2 19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1562 <idle>-0 3dN.2 19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1563 <idle>-0 3dN.1 19us : hrtimer_forward <-tick_nohz_idle_exit
1564 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
1565 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
1566 <idle>-0 3dN.1 20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1567 <idle>-0 3dN.1 20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1568 <idle>-0 3dN.1 21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1569 <idle>-0 3dN.1 21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1570 <idle>-0 3dN.1 21us : add_preempt_count <-_raw_spin_lock_irqsave
1571 <idle>-0 3dN.2 22us : ktime_add_safe <-__hrtimer_start_range_ns
1572 <idle>-0 3dN.2 22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1573 <idle>-0 3dN.2 22us : tick_program_event <-__hrtimer_start_range_ns
1574 <idle>-0 3dN.2 23us : clockevents_program_event <-tick_program_event
1575 <idle>-0 3dN.2 23us : ktime_get <-clockevents_program_event
1576 <idle>-0 3dN.2 23us : lapic_next_event <-clockevents_program_event
1577 <idle>-0 3dN.2 24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
1578 <idle>-0 3dN.2 24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1579 <idle>-0 3dN.1 24us : account_idle_ticks <-tick_nohz_idle_exit
1580 <idle>-0 3dN.1 24us : account_idle_time <-account_idle_ticks
1581 <idle>-0 3.N.1 25us : sub_preempt_count <-cpu_idle
1582 <idle>-0 3.N.. 25us : schedule <-cpu_idle
1583 <idle>-0 3.N.. 25us : __schedule <-preempt_schedule
1584 <idle>-0 3.N.. 26us : add_preempt_count <-__schedule
1585 <idle>-0 3.N.1 26us : rcu_note_context_switch <-__schedule
1586 <idle>-0 3.N.1 26us : rcu_sched_qs <-rcu_note_context_switch
1587 <idle>-0 3dN.1 27us : rcu_preempt_qs <-rcu_note_context_switch
1588 <idle>-0 3.N.1 27us : _raw_spin_lock_irq <-__schedule
1589 <idle>-0 3dN.1 27us : add_preempt_count <-_raw_spin_lock_irq
1590 <idle>-0 3dN.2 28us : put_prev_task_idle <-__schedule
1591 <idle>-0 3dN.2 28us : pick_next_task_stop <-pick_next_task
1592 <idle>-0 3dN.2 28us : pick_next_task_rt <-pick_next_task
1593 <idle>-0 3dN.2 29us : dequeue_pushable_task <-pick_next_task_rt
1594 <idle>-0 3d..3 29us : __schedule <-preempt_schedule
1595 <idle>-0 3d..3 30us : 0:120:R ==> [003] 2448: 94:R sleep
1596
1597 This isn't that big of a trace, even with function tracing enabled,
1598 so I included the entire trace.
1599
1600 The interrupt went off while when the system was idle. Somewhere
1601 before task_woken_rt() was called, the NEED_RESCHED flag was set,
1602 this is indicated by the first occurrence of the 'N' flag.
1603
1604 Latency tracing and events
1605 --------------------------
1606 As function tracing can induce a much larger latency, but without
1607 seeing what happens within the latency it is hard to know what
1608 caused it. There is a middle ground, and that is with enabling
1609 events.
1610
1611 # echo 0 > options/function-trace
1612 # echo wakeup_rt > current_tracer
1613 # echo 1 > events/enable
1614 # echo 1 > tracing_on
1615 # echo 0 > tracing_max_latency
1616 # chrt -f 5 sleep 1
1617 # echo 0 > tracing_on
1618 # cat trace
1619 # tracer: wakeup_rt
1620 #
1621 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1622 # --------------------------------------------------------------------
1623 # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1624 # -----------------
1625 # | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
1626 # -----------------
1627 #
1628 # _------=> CPU#
1629 # / _-----=> irqs-off
1630 # | / _----=> need-resched
1631 # || / _---=> hardirq/softirq
1632 # ||| / _--=> preempt-depth
1633 # |||| / delay
1634 # cmd pid ||||| time | caller
1635 # \ / ||||| \ | /
1636 <idle>-0 2d.h4 0us : 0:120:R + [002] 5882: 94:R sleep
1637 <idle>-0 2d.h4 0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1638 <idle>-0 2d.h4 1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
1639 <idle>-0 2dNh2 1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
1640 <idle>-0 2.N.2 2us : power_end: cpu_id=2
1641 <idle>-0 2.N.2 3us : cpu_idle: state=4294967295 cpu_id=2
1642 <idle>-0 2dN.3 4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
1643 <idle>-0 2dN.3 4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
1644 <idle>-0 2.N.2 5us : rcu_utilization: Start context switch
1645 <idle>-0 2.N.2 5us : rcu_utilization: End context switch
1646 <idle>-0 2d..3 6us : __schedule <-schedule
1647 <idle>-0 2d..3 6us : 0:120:R ==> [002] 5882: 94:R sleep
1648
1649
1650 function
1651 --------
1652
1653 This tracer is the function tracer. Enabling the function tracer
1654 can be done from the debug file system. Make sure the
1655 ftrace_enabled is set; otherwise this tracer is a nop.
1656 See the "ftrace_enabled" section below.
1657
1658 # sysctl kernel.ftrace_enabled=1
1659 # echo function > current_tracer
1660 # echo 1 > tracing_on
1661 # usleep 1
1662 # echo 0 > tracing_on
1663 # cat trace
1664 # tracer: function
1665 #
1666 # entries-in-buffer/entries-written: 24799/24799 #P:4
1667 #
1668 # _-----=> irqs-off
1669 # / _----=> need-resched
1670 # | / _---=> hardirq/softirq
1671 # || / _--=> preempt-depth
1672 # ||| / delay
1673 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
1674 # | | | |||| | |
1675 bash-1994 [002] .... 3082.063030: mutex_unlock <-rb_simple_write
1676 bash-1994 [002] .... 3082.063031: __mutex_unlock_slowpath <-mutex_unlock
1677 bash-1994 [002] .... 3082.063031: __fsnotify_parent <-fsnotify_modify
1678 bash-1994 [002] .... 3082.063032: fsnotify <-fsnotify_modify
1679 bash-1994 [002] .... 3082.063032: __srcu_read_lock <-fsnotify
1680 bash-1994 [002] .... 3082.063032: add_preempt_count <-__srcu_read_lock
1681 bash-1994 [002] ...1 3082.063032: sub_preempt_count <-__srcu_read_lock
1682 bash-1994 [002] .... 3082.063033: __srcu_read_unlock <-fsnotify
1683 [...]
1684
1685
1686 Note: function tracer uses ring buffers to store the above
1687 entries. The newest data may overwrite the oldest data.
1688 Sometimes using echo to stop the trace is not sufficient because
1689 the tracing could have overwritten the data that you wanted to
1690 record. For this reason, it is sometimes better to disable
1691 tracing directly from a program. This allows you to stop the
1692 tracing at the point that you hit the part that you are
1693 interested in. To disable the tracing directly from a C program,
1694 something like following code snippet can be used:
1695
1696 int trace_fd;
1697 [...]
1698 int main(int argc, char *argv[]) {
1699 [...]
1700 trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
1701 [...]
1702 if (condition_hit()) {
1703 write(trace_fd, "0", 1);
1704 }
1705 [...]
1706 }
1707
1708
1709 Single thread tracing
1710 ---------------------
1711
1712 By writing into set_ftrace_pid you can trace a
1713 single thread. For example:
1714
1715 # cat set_ftrace_pid
1716 no pid
1717 # echo 3111 > set_ftrace_pid
1718 # cat set_ftrace_pid
1719 3111
1720 # echo function > current_tracer
1721 # cat trace | head
1722 # tracer: function
1723 #
1724 # TASK-PID CPU# TIMESTAMP FUNCTION
1725 # | | | | |
1726 yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return
1727 yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
1728 yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
1729 yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
1730 yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll
1731 yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll
1732 # echo -1 > set_ftrace_pid
1733 # cat trace |head
1734 # tracer: function
1735 #
1736 # TASK-PID CPU# TIMESTAMP FUNCTION
1737 # | | | | |
1738 ##### CPU 3 buffer started ####
1739 yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait
1740 yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry
1741 yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry
1742 yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit
1743 yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit
1744
1745 If you want to trace a function when executing, you could use
1746 something like this simple program:
1747
1748 #include <stdio.h>
1749 #include <stdlib.h>
1750 #include <sys/types.h>
1751 #include <sys/stat.h>
1752 #include <fcntl.h>
1753 #include <unistd.h>
1754 #include <string.h>
1755
1756 #define _STR(x) #x
1757 #define STR(x) _STR(x)
1758 #define MAX_PATH 256
1759
1760 const char *find_debugfs(void)
1761 {
1762 static char debugfs[MAX_PATH+1];
1763 static int debugfs_found;
1764 char type[100];
1765 FILE *fp;
1766
1767 if (debugfs_found)
1768 return debugfs;
1769
1770 if ((fp = fopen("/proc/mounts","r")) == NULL) {
1771 perror("/proc/mounts");
1772 return NULL;
1773 }
1774
1775 while (fscanf(fp, "%*s %"
1776 STR(MAX_PATH)
1777 "s %99s %*s %*d %*d\n",
1778 debugfs, type) == 2) {
1779 if (strcmp(type, "debugfs") == 0)
1780 break;
1781 }
1782 fclose(fp);
1783
1784 if (strcmp(type, "debugfs") != 0) {
1785 fprintf(stderr, "debugfs not mounted");
1786 return NULL;
1787 }
1788
1789 strcat(debugfs, "/tracing/");
1790 debugfs_found = 1;
1791
1792 return debugfs;
1793 }
1794
1795 const char *tracing_file(const char *file_name)
1796 {
1797 static char trace_file[MAX_PATH+1];
1798 snprintf(trace_file, MAX_PATH, "%s/%s", find_debugfs(), file_name);
1799 return trace_file;
1800 }
1801
1802 int main (int argc, char **argv)
1803 {
1804 if (argc < 1)
1805 exit(-1);
1806
1807 if (fork() > 0) {
1808 int fd, ffd;
1809 char line[64];
1810 int s;
1811
1812 ffd = open(tracing_file("current_tracer"), O_WRONLY);
1813 if (ffd < 0)
1814 exit(-1);
1815 write(ffd, "nop", 3);
1816
1817 fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
1818 s = sprintf(line, "%d\n", getpid());
1819 write(fd, line, s);
1820
1821 write(ffd, "function", 8);
1822
1823 close(fd);
1824 close(ffd);
1825
1826 execvp(argv[1], argv+1);
1827 }
1828
1829 return 0;
1830 }
1831
1832 Or this simple script!
1833
1834 ------
1835 #!/bin/bash
1836
1837 debugfs=`sed -ne 's/^debugfs \(.*\) debugfs.*/\1/p' /proc/mounts`
1838 echo nop > $debugfs/tracing/current_tracer
1839 echo 0 > $debugfs/tracing/tracing_on
1840 echo $$ > $debugfs/tracing/set_ftrace_pid
1841 echo function > $debugfs/tracing/current_tracer
1842 echo 1 > $debugfs/tracing/tracing_on
1843 exec "$@"
1844 ------
1845
1846
1847 function graph tracer
1848 ---------------------------
1849
1850 This tracer is similar to the function tracer except that it
1851 probes a function on its entry and its exit. This is done by
1852 using a dynamically allocated stack of return addresses in each
1853 task_struct. On function entry the tracer overwrites the return
1854 address of each function traced to set a custom probe. Thus the
1855 original return address is stored on the stack of return address
1856 in the task_struct.
1857
1858 Probing on both ends of a function leads to special features
1859 such as:
1860
1861 - measure of a function's time execution
1862 - having a reliable call stack to draw function calls graph
1863
1864 This tracer is useful in several situations:
1865
1866 - you want to find the reason of a strange kernel behavior and
1867 need to see what happens in detail on any areas (or specific
1868 ones).
1869
1870 - you are experiencing weird latencies but it's difficult to
1871 find its origin.
1872
1873 - you want to find quickly which path is taken by a specific
1874 function
1875
1876 - you just want to peek inside a working kernel and want to see
1877 what happens there.
1878
1879 # tracer: function_graph
1880 #
1881 # CPU DURATION FUNCTION CALLS
1882 # | | | | | | |
1883
1884 0) | sys_open() {
1885 0) | do_sys_open() {
1886 0) | getname() {
1887 0) | kmem_cache_alloc() {
1888 0) 1.382 us | __might_sleep();
1889 0) 2.478 us | }
1890 0) | strncpy_from_user() {
1891 0) | might_fault() {
1892 0) 1.389 us | __might_sleep();
1893 0) 2.553 us | }
1894 0) 3.807 us | }
1895 0) 7.876 us | }
1896 0) | alloc_fd() {
1897 0) 0.668 us | _spin_lock();
1898 0) 0.570 us | expand_files();
1899 0) 0.586 us | _spin_unlock();
1900
1901
1902 There are several columns that can be dynamically
1903 enabled/disabled. You can use every combination of options you
1904 want, depending on your needs.
1905
1906 - The cpu number on which the function executed is default
1907 enabled. It is sometimes better to only trace one cpu (see
1908 tracing_cpu_mask file) or you might sometimes see unordered
1909 function calls while cpu tracing switch.
1910
1911 hide: echo nofuncgraph-cpu > trace_options
1912 show: echo funcgraph-cpu > trace_options
1913
1914 - The duration (function's time of execution) is displayed on
1915 the closing bracket line of a function or on the same line
1916 than the current function in case of a leaf one. It is default
1917 enabled.
1918
1919 hide: echo nofuncgraph-duration > trace_options
1920 show: echo funcgraph-duration > trace_options
1921
1922 - The overhead field precedes the duration field in case of
1923 reached duration thresholds.
1924
1925 hide: echo nofuncgraph-overhead > trace_options
1926 show: echo funcgraph-overhead > trace_options
1927 depends on: funcgraph-duration
1928
1929 ie:
1930
1931 0) | up_write() {
1932 0) 0.646 us | _spin_lock_irqsave();
1933 0) 0.684 us | _spin_unlock_irqrestore();
1934 0) 3.123 us | }
1935 0) 0.548 us | fput();
1936 0) + 58.628 us | }
1937
1938 [...]
1939
1940 0) | putname() {
1941 0) | kmem_cache_free() {
1942 0) 0.518 us | __phys_addr();
1943 0) 1.757 us | }
1944 0) 2.861 us | }
1945 0) ! 115.305 us | }
1946 0) ! 116.402 us | }
1947
1948 + means that the function exceeded 10 usecs.
1949 ! means that the function exceeded 100 usecs.
1950
1951
1952 - The task/pid field displays the thread cmdline and pid which
1953 executed the function. It is default disabled.
1954
1955 hide: echo nofuncgraph-proc > trace_options
1956 show: echo funcgraph-proc > trace_options
1957
1958 ie:
1959
1960 # tracer: function_graph
1961 #
1962 # CPU TASK/PID DURATION FUNCTION CALLS
1963 # | | | | | | | | |
1964 0) sh-4802 | | d_free() {
1965 0) sh-4802 | | call_rcu() {
1966 0) sh-4802 | | __call_rcu() {
1967 0) sh-4802 | 0.616 us | rcu_process_gp_end();
1968 0) sh-4802 | 0.586 us | check_for_new_grace_period();
1969 0) sh-4802 | 2.899 us | }
1970 0) sh-4802 | 4.040 us | }
1971 0) sh-4802 | 5.151 us | }
1972 0) sh-4802 | + 49.370 us | }
1973
1974
1975 - The absolute time field is an absolute timestamp given by the
1976 system clock since it started. A snapshot of this time is
1977 given on each entry/exit of functions
1978
1979 hide: echo nofuncgraph-abstime > trace_options
1980 show: echo funcgraph-abstime > trace_options
1981
1982 ie:
1983
1984 #
1985 # TIME CPU DURATION FUNCTION CALLS
1986 # | | | | | | | |
1987 360.774522 | 1) 0.541 us | }
1988 360.774522 | 1) 4.663 us | }
1989 360.774523 | 1) 0.541 us | __wake_up_bit();
1990 360.774524 | 1) 6.796 us | }
1991 360.774524 | 1) 7.952 us | }
1992 360.774525 | 1) 9.063 us | }
1993 360.774525 | 1) 0.615 us | journal_mark_dirty();
1994 360.774527 | 1) 0.578 us | __brelse();
1995 360.774528 | 1) | reiserfs_prepare_for_journal() {
1996 360.774528 | 1) | unlock_buffer() {
1997 360.774529 | 1) | wake_up_bit() {
1998 360.774529 | 1) | bit_waitqueue() {
1999 360.774530 | 1) 0.594 us | __phys_addr();
2000
2001
2002 You can put some comments on specific functions by using
2003 trace_printk() For example, if you want to put a comment inside
2004 the __might_sleep() function, you just have to include
2005 <linux/ftrace.h> and call trace_printk() inside __might_sleep()
2006
2007 trace_printk("I'm a comment!\n")
2008
2009 will produce:
2010
2011 1) | __might_sleep() {
2012 1) | /* I'm a comment! */
2013 1) 1.449 us | }
2014
2015
2016 You can disable the hierarchical function call formatting and instead print a
2017 flat list of function entry and return events. This uses the format described
2018 in the Output Formatting section and respects all the trace options that
2019 control that formatting. Hierarchical formatting is the default.
2020
2021 hierachical: echo nofuncgraph-flat > trace_options
2022 flat: echo funcgraph-flat > trace_options
2023
2024 ie:
2025
2026 # tracer: function_graph
2027 #
2028 # entries-in-buffer/entries-written: 68355/68355 #P:2
2029 #
2030 # _-----=> irqs-off
2031 # / _----=> need-resched
2032 # | / _---=> hardirq/softirq
2033 # || / _--=> preempt-depth
2034 # ||| / delay
2035 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2036 # | | | |||| | |
2037 sh-1806 [001] d... 198.843443: graph_ent: func=_raw_spin_lock
2038 sh-1806 [001] d... 198.843445: graph_ent: func=__raw_spin_lock
2039 sh-1806 [001] d..1 198.843447: graph_ret: func=__raw_spin_lock
2040 sh-1806 [001] d..1 198.843449: graph_ret: func=_raw_spin_lock
2041 sh-1806 [001] d..1 198.843451: graph_ent: func=_raw_spin_unlock_irqrestore
2042 sh-1806 [001] d... 198.843453: graph_ret: func=_raw_spin_unlock_irqrestore
2043
2044
2045 You might find other useful features for this tracer in the
2046 following "dynamic ftrace" section such as tracing only specific
2047 functions or tasks.
2048
2049 dynamic ftrace
2050 --------------
2051
2052 If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2053 virtually no overhead when function tracing is disabled. The way
2054 this works is the mcount function call (placed at the start of
2055 every kernel function, produced by the -pg switch in gcc),
2056 starts of pointing to a simple return. (Enabling FTRACE will
2057 include the -pg switch in the compiling of the kernel.)
2058
2059 At compile time every C file object is run through the
2060 recordmcount program (located in the scripts directory). This
2061 program will parse the ELF headers in the C object to find all
2062 the locations in the .text section that call mcount. (Note, only
2063 white listed .text sections are processed, since processing other
2064 sections like .init.text may cause races due to those sections
2065 being freed unexpectedly).
2066
2067 A new section called "__mcount_loc" is created that holds
2068 references to all the mcount call sites in the .text section.
2069 The recordmcount program re-links this section back into the
2070 original object. The final linking stage of the kernel will add all these
2071 references into a single table.
2072
2073 On boot up, before SMP is initialized, the dynamic ftrace code
2074 scans this table and updates all the locations into nops. It
2075 also records the locations, which are added to the
2076 available_filter_functions list. Modules are processed as they
2077 are loaded and before they are executed. When a module is
2078 unloaded, it also removes its functions from the ftrace function
2079 list. This is automatic in the module unload code, and the
2080 module author does not need to worry about it.
2081
2082 When tracing is enabled, the process of modifying the function
2083 tracepoints is dependent on architecture. The old method is to use
2084 kstop_machine to prevent races with the CPUs executing code being
2085 modified (which can cause the CPU to do undesirable things, especially
2086 if the modified code crosses cache (or page) boundaries), and the nops are
2087 patched back to calls. But this time, they do not call mcount
2088 (which is just a function stub). They now call into the ftrace
2089 infrastructure.
2090
2091 The new method of modifying the function tracepoints is to place
2092 a breakpoint at the location to be modified, sync all CPUs, modify
2093 the rest of the instruction not covered by the breakpoint. Sync
2094 all CPUs again, and then remove the breakpoint with the finished
2095 version to the ftrace call site.
2096
2097 Some archs do not even need to monkey around with the synchronization,
2098 and can just slap the new code on top of the old without any
2099 problems with other CPUs executing it at the same time.
2100
2101 One special side-effect to the recording of the functions being
2102 traced is that we can now selectively choose which functions we
2103 wish to trace and which ones we want the mcount calls to remain
2104 as nops.
2105
2106 Two files are used, one for enabling and one for disabling the
2107 tracing of specified functions. They are:
2108
2109 set_ftrace_filter
2110
2111 and
2112
2113 set_ftrace_notrace
2114
2115 A list of available functions that you can add to these files is
2116 listed in:
2117
2118 available_filter_functions
2119
2120 # cat available_filter_functions
2121 put_prev_task_idle
2122 kmem_cache_create
2123 pick_next_task_rt
2124 get_online_cpus
2125 pick_next_task_fair
2126 mutex_lock
2127 [...]
2128
2129 If I am only interested in sys_nanosleep and hrtimer_interrupt:
2130
2131 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2132 # echo function > current_tracer
2133 # echo 1 > tracing_on
2134 # usleep 1
2135 # echo 0 > tracing_on
2136 # cat trace
2137 # tracer: function
2138 #
2139 # entries-in-buffer/entries-written: 5/5 #P:4
2140 #
2141 # _-----=> irqs-off
2142 # / _----=> need-resched
2143 # | / _---=> hardirq/softirq
2144 # || / _--=> preempt-depth
2145 # ||| / delay
2146 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2147 # | | | |||| | |
2148 usleep-2665 [001] .... 4186.475355: sys_nanosleep <-system_call_fastpath
2149 <idle>-0 [001] d.h1 4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2150 usleep-2665 [001] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2151 <idle>-0 [003] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2152 <idle>-0 [002] d.h1 4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2153
2154 To see which functions are being traced, you can cat the file:
2155
2156 # cat set_ftrace_filter
2157 hrtimer_interrupt
2158 sys_nanosleep
2159
2160
2161 Perhaps this is not enough. The filters also allow simple wild
2162 cards. Only the following are currently available
2163
2164 <match>* - will match functions that begin with <match>
2165 *<match> - will match functions that end with <match>
2166 *<match>* - will match functions that have <match> in it
2167
2168 These are the only wild cards which are supported.
2169
2170 <match>*<match> will not work.
2171
2172 Note: It is better to use quotes to enclose the wild cards,
2173 otherwise the shell may expand the parameters into names
2174 of files in the local directory.
2175
2176 # echo 'hrtimer_*' > set_ftrace_filter
2177
2178 Produces:
2179
2180 # tracer: function
2181 #
2182 # entries-in-buffer/entries-written: 897/897 #P:4
2183 #
2184 # _-----=> irqs-off
2185 # / _----=> need-resched
2186 # | / _---=> hardirq/softirq
2187 # || / _--=> preempt-depth
2188 # ||| / delay
2189 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2190 # | | | |||| | |
2191 <idle>-0 [003] dN.1 4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2192 <idle>-0 [003] dN.1 4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2193 <idle>-0 [003] dN.2 4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2194 <idle>-0 [003] dN.1 4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2195 <idle>-0 [003] dN.1 4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2196 <idle>-0 [003] d..1 4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2197 <idle>-0 [003] d..1 4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2198 <idle>-0 [003] d..2 4228.547860: hrtimer_force_reprogram <-__rem
2199
2200 Notice that we lost the sys_nanosleep.
2201
2202 # cat set_ftrace_filter
2203 hrtimer_run_queues
2204 hrtimer_run_pending
2205 hrtimer_init
2206 hrtimer_cancel
2207 hrtimer_try_to_cancel
2208 hrtimer_forward
2209 hrtimer_start
2210 hrtimer_reprogram
2211 hrtimer_force_reprogram
2212 hrtimer_get_next_event
2213 hrtimer_interrupt
2214 hrtimer_nanosleep
2215 hrtimer_wakeup
2216 hrtimer_get_remaining
2217 hrtimer_get_res
2218 hrtimer_init_sleeper
2219
2220
2221 This is because the '>' and '>>' act just like they do in bash.
2222 To rewrite the filters, use '>'
2223 To append to the filters, use '>>'
2224
2225 To clear out a filter so that all functions will be recorded
2226 again:
2227
2228 # echo > set_ftrace_filter
2229 # cat set_ftrace_filter
2230 #
2231
2232 Again, now we want to append.
2233
2234 # echo sys_nanosleep > set_ftrace_filter
2235 # cat set_ftrace_filter
2236 sys_nanosleep
2237 # echo 'hrtimer_*' >> set_ftrace_filter
2238 # cat set_ftrace_filter
2239 hrtimer_run_queues
2240 hrtimer_run_pending
2241 hrtimer_init
2242 hrtimer_cancel
2243 hrtimer_try_to_cancel
2244 hrtimer_forward
2245 hrtimer_start
2246 hrtimer_reprogram
2247 hrtimer_force_reprogram
2248 hrtimer_get_next_event
2249 hrtimer_interrupt
2250 sys_nanosleep
2251 hrtimer_nanosleep
2252 hrtimer_wakeup
2253 hrtimer_get_remaining
2254 hrtimer_get_res
2255 hrtimer_init_sleeper
2256
2257
2258 The set_ftrace_notrace prevents those functions from being
2259 traced.
2260
2261 # echo '*preempt*' '*lock*' > set_ftrace_notrace
2262
2263 Produces:
2264
2265 # tracer: function
2266 #
2267 # entries-in-buffer/entries-written: 39608/39608 #P:4
2268 #
2269 # _-----=> irqs-off
2270 # / _----=> need-resched
2271 # | / _---=> hardirq/softirq
2272 # || / _--=> preempt-depth
2273 # ||| / delay
2274 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2275 # | | | |||| | |
2276 bash-1994 [000] .... 4342.324896: file_ra_state_init <-do_dentry_open
2277 bash-1994 [000] .... 4342.324897: open_check_o_direct <-do_last
2278 bash-1994 [000] .... 4342.324897: ima_file_check <-do_last
2279 bash-1994 [000] .... 4342.324898: process_measurement <-ima_file_check
2280 bash-1994 [000] .... 4342.324898: ima_get_action <-process_measurement
2281 bash-1994 [000] .... 4342.324898: ima_match_policy <-ima_get_action
2282 bash-1994 [000] .... 4342.324899: do_truncate <-do_last
2283 bash-1994 [000] .... 4342.324899: should_remove_suid <-do_truncate
2284 bash-1994 [000] .... 4342.324899: notify_change <-do_truncate
2285 bash-1994 [000] .... 4342.324900: current_fs_time <-notify_change
2286 bash-1994 [000] .... 4342.324900: current_kernel_time <-current_fs_time
2287 bash-1994 [000] .... 4342.324900: timespec_trunc <-current_fs_time
2288
2289 We can see that there's no more lock or preempt tracing.
2290
2291
2292 Dynamic ftrace with the function graph tracer
2293 ---------------------------------------------
2294
2295 Although what has been explained above concerns both the
2296 function tracer and the function-graph-tracer, there are some
2297 special features only available in the function-graph tracer.
2298
2299 If you want to trace only one function and all of its children,
2300 you just have to echo its name into set_graph_function:
2301
2302 echo __do_fault > set_graph_function
2303
2304 will produce the following "expanded" trace of the __do_fault()
2305 function:
2306
2307 0) | __do_fault() {
2308 0) | filemap_fault() {
2309 0) | find_lock_page() {
2310 0) 0.804 us | find_get_page();
2311 0) | __might_sleep() {
2312 0) 1.329 us | }
2313 0) 3.904 us | }
2314 0) 4.979 us | }
2315 0) 0.653 us | _spin_lock();
2316 0) 0.578 us | page_add_file_rmap();
2317 0) 0.525 us | native_set_pte_at();
2318 0) 0.585 us | _spin_unlock();
2319 0) | unlock_page() {
2320 0) 0.541 us | page_waitqueue();
2321 0) 0.639 us | __wake_up_bit();
2322 0) 2.786 us | }
2323 0) + 14.237 us | }
2324 0) | __do_fault() {
2325 0) | filemap_fault() {
2326 0) | find_lock_page() {
2327 0) 0.698 us | find_get_page();
2328 0) | __might_sleep() {
2329 0) 1.412 us | }
2330 0) 3.950 us | }
2331 0) 5.098 us | }
2332 0) 0.631 us | _spin_lock();
2333 0) 0.571 us | page_add_file_rmap();
2334 0) 0.526 us | native_set_pte_at();
2335 0) 0.586 us | _spin_unlock();
2336 0) | unlock_page() {
2337 0) 0.533 us | page_waitqueue();
2338 0) 0.638 us | __wake_up_bit();
2339 0) 2.793 us | }
2340 0) + 14.012 us | }
2341
2342 You can also expand several functions at once:
2343
2344 echo sys_open > set_graph_function
2345 echo sys_close >> set_graph_function
2346
2347 Now if you want to go back to trace all functions you can clear
2348 this special filter via:
2349
2350 echo > set_graph_function
2351
2352
2353 ftrace_enabled
2354 --------------
2355
2356 Note, the proc sysctl ftrace_enable is a big on/off switch for the
2357 function tracer. By default it is enabled (when function tracing is
2358 enabled in the kernel). If it is disabled, all function tracing is
2359 disabled. This includes not only the function tracers for ftrace, but
2360 also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2361
2362 Please disable this with care.
2363
2364 This can be disable (and enabled) with:
2365
2366 sysctl kernel.ftrace_enabled=0
2367 sysctl kernel.ftrace_enabled=1
2368
2369 or
2370
2371 echo 0 > /proc/sys/kernel/ftrace_enabled
2372 echo 1 > /proc/sys/kernel/ftrace_enabled
2373
2374
2375 Filter commands
2376 ---------------
2377
2378 A few commands are supported by the set_ftrace_filter interface.
2379 Trace commands have the following format:
2380
2381 <function>:<command>:<parameter>
2382
2383 The following commands are supported:
2384
2385 - mod
2386 This command enables function filtering per module. The
2387 parameter defines the module. For example, if only the write*
2388 functions in the ext3 module are desired, run:
2389
2390 echo 'write*:mod:ext3' > set_ftrace_filter
2391
2392 This command interacts with the filter in the same way as
2393 filtering based on function names. Thus, adding more functions
2394 in a different module is accomplished by appending (>>) to the
2395 filter file. Remove specific module functions by prepending
2396 '!':
2397
2398 echo '!writeback*:mod:ext3' >> set_ftrace_filter
2399
2400 - traceon/traceoff
2401 These commands turn tracing on and off when the specified
2402 functions are hit. The parameter determines how many times the
2403 tracing system is turned on and off. If unspecified, there is
2404 no limit. For example, to disable tracing when a schedule bug
2405 is hit the first 5 times, run:
2406
2407 echo '__schedule_bug:traceoff:5' > set_ftrace_filter
2408
2409 To always disable tracing when __schedule_bug is hit:
2410
2411 echo '__schedule_bug:traceoff' > set_ftrace_filter
2412
2413 These commands are cumulative whether or not they are appended
2414 to set_ftrace_filter. To remove a command, prepend it by '!'
2415 and drop the parameter:
2416
2417 echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
2418
2419 The above removes the traceoff command for __schedule_bug
2420 that have a counter. To remove commands without counters:
2421
2422 echo '!__schedule_bug:traceoff' > set_ftrace_filter
2423
2424 - snapshot
2425 Will cause a snapshot to be triggered when the function is hit.
2426
2427 echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
2428
2429 To only snapshot once:
2430
2431 echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
2432
2433 To remove the above commands:
2434
2435 echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
2436 echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
2437
2438 - enable_event/disable_event
2439 These commands can enable or disable a trace event. Note, because
2440 function tracing callbacks are very sensitive, when these commands
2441 are registered, the trace point is activated, but disabled in
2442 a "soft" mode. That is, the tracepoint will be called, but
2443 just will not be traced. The event tracepoint stays in this mode
2444 as long as there's a command that triggers it.
2445
2446 echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
2447 set_ftrace_filter
2448
2449 The format is:
2450
2451 <function>:enable_event:<system>:<event>[:count]
2452 <function>:disable_event:<system>:<event>[:count]
2453
2454 To remove the events commands:
2455
2456
2457 echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
2458 set_ftrace_filter
2459 echo '!schedule:disable_event:sched:sched_switch' > \
2460 set_ftrace_filter
2461
2462 trace_pipe
2463 ----------
2464
2465 The trace_pipe outputs the same content as the trace file, but
2466 the effect on the tracing is different. Every read from
2467 trace_pipe is consumed. This means that subsequent reads will be
2468 different. The trace is live.
2469
2470 # echo function > current_tracer
2471 # cat trace_pipe > /tmp/trace.out &
2472 [1] 4153
2473 # echo 1 > tracing_on
2474 # usleep 1
2475 # echo 0 > tracing_on
2476 # cat trace
2477 # tracer: function
2478 #
2479 # entries-in-buffer/entries-written: 0/0 #P:4
2480 #
2481 # _-----=> irqs-off
2482 # / _----=> need-resched
2483 # | / _---=> hardirq/softirq
2484 # || / _--=> preempt-depth
2485 # ||| / delay
2486 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2487 # | | | |||| | |
2488
2489 #
2490 # cat /tmp/trace.out
2491 bash-1994 [000] .... 5281.568961: mutex_unlock <-rb_simple_write
2492 bash-1994 [000] .... 5281.568963: __mutex_unlock_slowpath <-mutex_unlock
2493 bash-1994 [000] .... 5281.568963: __fsnotify_parent <-fsnotify_modify
2494 bash-1994 [000] .... 5281.568964: fsnotify <-fsnotify_modify
2495 bash-1994 [000] .... 5281.568964: __srcu_read_lock <-fsnotify
2496 bash-1994 [000] .... 5281.568964: add_preempt_count <-__srcu_read_lock
2497 bash-1994 [000] ...1 5281.568965: sub_preempt_count <-__srcu_read_lock
2498 bash-1994 [000] .... 5281.568965: __srcu_read_unlock <-fsnotify
2499 bash-1994 [000] .... 5281.568967: sys_dup2 <-system_call_fastpath
2500
2501
2502 Note, reading the trace_pipe file will block until more input is
2503 added.
2504
2505 trace entries
2506 -------------
2507
2508 Having too much or not enough data can be troublesome in
2509 diagnosing an issue in the kernel. The file buffer_size_kb is
2510 used to modify the size of the internal trace buffers. The
2511 number listed is the number of entries that can be recorded per
2512 CPU. To know the full size, multiply the number of possible CPUs
2513 with the number of entries.
2514
2515 # cat buffer_size_kb
2516 1408 (units kilobytes)
2517
2518 Or simply read buffer_total_size_kb
2519
2520 # cat buffer_total_size_kb
2521 5632
2522
2523 To modify the buffer, simple echo in a number (in 1024 byte segments).
2524
2525 # echo 10000 > buffer_size_kb
2526 # cat buffer_size_kb
2527 10000 (units kilobytes)
2528
2529 It will try to allocate as much as possible. If you allocate too
2530 much, it can cause Out-Of-Memory to trigger.
2531
2532 # echo 1000000000000 > buffer_size_kb
2533 -bash: echo: write error: Cannot allocate memory
2534 # cat buffer_size_kb
2535 85
2536
2537 The per_cpu buffers can be changed individually as well:
2538
2539 # echo 10000 > per_cpu/cpu0/buffer_size_kb
2540 # echo 100 > per_cpu/cpu1/buffer_size_kb
2541
2542 When the per_cpu buffers are not the same, the buffer_size_kb
2543 at the top level will just show an X
2544
2545 # cat buffer_size_kb
2546 X
2547
2548 This is where the buffer_total_size_kb is useful:
2549
2550 # cat buffer_total_size_kb
2551 12916
2552
2553 Writing to the top level buffer_size_kb will reset all the buffers
2554 to be the same again.
2555
2556 Snapshot
2557 --------
2558 CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
2559 available to all non latency tracers. (Latency tracers which
2560 record max latency, such as "irqsoff" or "wakeup", can't use
2561 this feature, since those are already using the snapshot
2562 mechanism internally.)
2563
2564 Snapshot preserves a current trace buffer at a particular point
2565 in time without stopping tracing. Ftrace swaps the current
2566 buffer with a spare buffer, and tracing continues in the new
2567 current (=previous spare) buffer.
2568
2569 The following debugfs files in "tracing" are related to this
2570 feature:
2571
2572 snapshot:
2573
2574 This is used to take a snapshot and to read the output
2575 of the snapshot. Echo 1 into this file to allocate a
2576 spare buffer and to take a snapshot (swap), then read
2577 the snapshot from this file in the same format as
2578 "trace" (described above in the section "The File
2579 System"). Both reads snapshot and tracing are executable
2580 in parallel. When the spare buffer is allocated, echoing
2581 0 frees it, and echoing else (positive) values clear the
2582 snapshot contents.
2583 More details are shown in the table below.
2584
2585 status\input | 0 | 1 | else |
2586 --------------+------------+------------+------------+
2587 not allocated |(do nothing)| alloc+swap |(do nothing)|
2588 --------------+------------+------------+------------+
2589 allocated | free | swap | clear |
2590 --------------+------------+------------+------------+
2591
2592 Here is an example of using the snapshot feature.
2593
2594 # echo 1 > events/sched/enable
2595 # echo 1 > snapshot
2596 # cat snapshot
2597 # tracer: nop
2598 #
2599 # entries-in-buffer/entries-written: 71/71 #P:8
2600 #
2601 # _-----=> irqs-off
2602 # / _----=> need-resched
2603 # | / _---=> hardirq/softirq
2604 # || / _--=> preempt-depth
2605 # ||| / delay
2606 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2607 # | | | |||| | |
2608 <idle>-0 [005] d... 2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
2609 sleep-2242 [005] d... 2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
2610 [...]
2611 <idle>-0 [002] d... 2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
2612
2613 # cat trace
2614 # tracer: nop
2615 #
2616 # entries-in-buffer/entries-written: 77/77 #P:8
2617 #
2618 # _-----=> irqs-off
2619 # / _----=> need-resched
2620 # | / _---=> hardirq/softirq
2621 # || / _--=> preempt-depth
2622 # ||| / delay
2623 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2624 # | | | |||| | |
2625 <idle>-0 [007] d... 2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
2626 snapshot-test-2-2229 [002] d... 2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
2627 [...]
2628
2629
2630 If you try to use this snapshot feature when current tracer is
2631 one of the latency tracers, you will get the following results.
2632
2633 # echo wakeup > current_tracer
2634 # echo 1 > snapshot
2635 bash: echo: write error: Device or resource busy
2636 # cat snapshot
2637 cat: snapshot: Device or resource busy
2638
2639
2640 Instances
2641 ---------
2642 In the debugfs tracing directory is a directory called "instances".
2643 This directory can have new directories created inside of it using
2644 mkdir, and removing directories with rmdir. The directory created
2645 with mkdir in this directory will already contain files and other
2646 directories after it is created.
2647
2648 # mkdir instances/foo
2649 # ls instances/foo
2650 buffer_size_kb buffer_total_size_kb events free_buffer per_cpu
2651 set_event snapshot trace trace_clock trace_marker trace_options
2652 trace_pipe tracing_on
2653
2654 As you can see, the new directory looks similar to the tracing directory
2655 itself. In fact, it is very similar, except that the buffer and
2656 events are agnostic from the main director, or from any other
2657 instances that are created.
2658
2659 The files in the new directory work just like the files with the
2660 same name in the tracing directory except the buffer that is used
2661 is a separate and new buffer. The files affect that buffer but do not
2662 affect the main buffer with the exception of trace_options. Currently,
2663 the trace_options affect all instances and the top level buffer
2664 the same, but this may change in future releases. That is, options
2665 may become specific to the instance they reside in.
2666
2667 Notice that none of the function tracer files are there, nor is
2668 current_tracer and available_tracers. This is because the buffers
2669 can currently only have events enabled for them.
2670
2671 # mkdir instances/foo
2672 # mkdir instances/bar
2673 # mkdir instances/zoot
2674 # echo 100000 > buffer_size_kb
2675 # echo 1000 > instances/foo/buffer_size_kb
2676 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
2677 # echo function > current_trace
2678 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
2679 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
2680 # echo 1 > instances/foo/events/sched/sched_switch/enable
2681 # echo 1 > instances/bar/events/irq/enable
2682 # echo 1 > instances/zoot/events/syscalls/enable
2683 # cat trace_pipe
2684 CPU:2 [LOST 11745 EVENTS]
2685 bash-2044 [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
2686 bash-2044 [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
2687 bash-2044 [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
2688 bash-2044 [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
2689 bash-2044 [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
2690 bash-2044 [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
2691 bash-2044 [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
2692 bash-2044 [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
2693 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
2694 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
2695 bash-2044 [002] .... 10594.481035: arch_dup_task_struct <-copy_process
2696 [...]
2697
2698 # cat instances/foo/trace_pipe
2699 bash-1998 [000] d..4 136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
2700 bash-1998 [000] dN.4 136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
2701 <idle>-0 [003] d.h3 136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
2702 <idle>-0 [003] d..3 136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
2703 rcu_preempt-9 [003] d..3 136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
2704 bash-1998 [000] d..4 136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
2705 bash-1998 [000] dN.4 136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
2706 bash-1998 [000] d..3 136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
2707 kworker/0:1-59 [000] d..4 136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
2708 kworker/0:1-59 [000] d..3 136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
2709 [...]
2710
2711 # cat instances/bar/trace_pipe
2712 migration/1-14 [001] d.h3 138.732674: softirq_raise: vec=3 [action=NET_RX]
2713 <idle>-0 [001] dNh3 138.732725: softirq_raise: vec=3 [action=NET_RX]
2714 bash-1998 [000] d.h1 138.733101: softirq_raise: vec=1 [action=TIMER]
2715 bash-1998 [000] d.h1 138.733102: softirq_raise: vec=9 [action=RCU]
2716 bash-1998 [000] ..s2 138.733105: softirq_entry: vec=1 [action=TIMER]
2717 bash-1998 [000] ..s2 138.733106: softirq_exit: vec=1 [action=TIMER]
2718 bash-1998 [000] ..s2 138.733106: softirq_entry: vec=9 [action=RCU]
2719 bash-1998 [000] ..s2 138.733109: softirq_exit: vec=9 [action=RCU]
2720 sshd-1995 [001] d.h1 138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
2721 sshd-1995 [001] d.h1 138.733280: irq_handler_exit: irq=21 ret=unhandled
2722 sshd-1995 [001] d.h1 138.733281: irq_handler_entry: irq=21 name=eth0
2723 sshd-1995 [001] d.h1 138.733283: irq_handler_exit: irq=21 ret=handled
2724 [...]
2725
2726 # cat instances/zoot/trace
2727 # tracer: nop
2728 #
2729 # entries-in-buffer/entries-written: 18996/18996 #P:4
2730 #
2731 # _-----=> irqs-off
2732 # / _----=> need-resched
2733 # | / _---=> hardirq/softirq
2734 # || / _--=> preempt-depth
2735 # ||| / delay
2736 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2737 # | | | |||| | |
2738 bash-1998 [000] d... 140.733501: sys_write -> 0x2
2739 bash-1998 [000] d... 140.733504: sys_dup2(oldfd: a, newfd: 1)
2740 bash-1998 [000] d... 140.733506: sys_dup2 -> 0x1
2741 bash-1998 [000] d... 140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
2742 bash-1998 [000] d... 140.733509: sys_fcntl -> 0x1
2743 bash-1998 [000] d... 140.733510: sys_close(fd: a)
2744 bash-1998 [000] d... 140.733510: sys_close -> 0x0
2745 bash-1998 [000] d... 140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
2746 bash-1998 [000] d... 140.733515: sys_rt_sigprocmask -> 0x0
2747 bash-1998 [000] d... 140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
2748 bash-1998 [000] d... 140.733516: sys_rt_sigaction -> 0x0
2749
2750 You can see that the trace of the top most trace buffer shows only
2751 the function tracing. The foo instance displays wakeups and task
2752 switches.
2753
2754 To remove the instances, simply delete their directories:
2755
2756 # rmdir instances/foo
2757 # rmdir instances/bar
2758 # rmdir instances/zoot
2759
2760 Note, if a process has a trace file open in one of the instance
2761 directories, the rmdir will fail with EBUSY.
2762
2763
2764 Stack trace
2765 -----------
2766 Since the kernel has a fixed sized stack, it is important not to
2767 waste it in functions. A kernel developer must be conscience of
2768 what they allocate on the stack. If they add too much, the system
2769 can be in danger of a stack overflow, and corruption will occur,
2770 usually leading to a system panic.
2771
2772 There are some tools that check this, usually with interrupts
2773 periodically checking usage. But if you can perform a check
2774 at every function call that will become very useful. As ftrace provides
2775 a function tracer, it makes it convenient to check the stack size
2776 at every function call. This is enabled via the stack tracer.
2777
2778 CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
2779 To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
2780
2781 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
2782
2783 You can also enable it from the kernel command line to trace
2784 the stack size of the kernel during boot up, by adding "stacktrace"
2785 to the kernel command line parameter.
2786
2787 After running it for a few minutes, the output looks like:
2788
2789 # cat stack_max_size
2790 2928
2791
2792 # cat stack_trace
2793 Depth Size Location (18 entries)
2794 ----- ---- --------
2795 0) 2928 224 update_sd_lb_stats+0xbc/0x4ac
2796 1) 2704 160 find_busiest_group+0x31/0x1f1
2797 2) 2544 256 load_balance+0xd9/0x662
2798 3) 2288 80 idle_balance+0xbb/0x130
2799 4) 2208 128 __schedule+0x26e/0x5b9
2800 5) 2080 16 schedule+0x64/0x66
2801 6) 2064 128 schedule_timeout+0x34/0xe0
2802 7) 1936 112 wait_for_common+0x97/0xf1
2803 8) 1824 16 wait_for_completion+0x1d/0x1f
2804 9) 1808 128 flush_work+0xfe/0x119
2805 10) 1680 16 tty_flush_to_ldisc+0x1e/0x20
2806 11) 1664 48 input_available_p+0x1d/0x5c
2807 12) 1616 48 n_tty_poll+0x6d/0x134
2808 13) 1568 64 tty_poll+0x64/0x7f
2809 14) 1504 880 do_select+0x31e/0x511
2810 15) 624 400 core_sys_select+0x177/0x216
2811 16) 224 96 sys_select+0x91/0xb9
2812 17) 128 128 system_call_fastpath+0x16/0x1b
2813
2814 Note, if -mfentry is being used by gcc, functions get traced before
2815 they set up the stack frame. This means that leaf level functions
2816 are not tested by the stack tracer when -mfentry is used.
2817
2818 Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
2819
2820 ---------
2821
2822 More details can be found in the source code, in the
2823 kernel/trace/*.c files.