Merge tag 'v3.10.108' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp.c
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <linux/kernel.h>
251#include <linux/module.h>
252#include <linux/types.h>
253#include <linux/fcntl.h>
254#include <linux/poll.h>
255#include <linux/init.h>
256#include <linux/fs.h>
257#include <linux/skbuff.h>
258#include <linux/scatterlist.h>
259#include <linux/splice.h>
260#include <linux/net.h>
261#include <linux/socket.h>
262#include <linux/random.h>
263#include <linux/bootmem.h>
264#include <linux/highmem.h>
265#include <linux/swap.h>
266#include <linux/cache.h>
267#include <linux/err.h>
268#include <linux/crypto.h>
269#include <linux/time.h>
270#include <linux/slab.h>
271#include <linux/uid_stat.h>
272
273#include <net/icmp.h>
274#include <net/inet_common.h>
275#include <net/tcp.h>
276#include <net/xfrm.h>
277#include <net/ip.h>
278#include <net/ip6_route.h>
279#include <net/ipv6.h>
280#include <net/transp_v6.h>
281#include <net/netdma.h>
282#include <net/sock.h>
283
284#include <asm/uaccess.h>
285#include <asm/ioctls.h>
286
287int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
288
289int sysctl_tcp_min_tso_segs __read_mostly = 2;
290
291struct percpu_counter tcp_orphan_count;
292EXPORT_SYMBOL_GPL(tcp_orphan_count);
293
294int sysctl_tcp_wmem[3] __read_mostly;
295int sysctl_tcp_rmem[3] __read_mostly;
296
297EXPORT_SYMBOL(sysctl_tcp_rmem);
298EXPORT_SYMBOL(sysctl_tcp_wmem);
299
300atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301EXPORT_SYMBOL(tcp_memory_allocated);
302
303/*
304 * Current number of TCP sockets.
305 */
306struct percpu_counter tcp_sockets_allocated;
307EXPORT_SYMBOL(tcp_sockets_allocated);
308
309/*
310 * TCP splice context
311 */
312struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
316};
317
318/*
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
323 */
324int tcp_memory_pressure __read_mostly;
325EXPORT_SYMBOL(tcp_memory_pressure);
326
327void tcp_enter_memory_pressure(struct sock *sk)
328{
329 if (!tcp_memory_pressure) {
330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 tcp_memory_pressure = 1;
332 }
333}
334EXPORT_SYMBOL(tcp_enter_memory_pressure);
335
336/* Convert seconds to retransmits based on initial and max timeout */
337static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338{
339 u8 res = 0;
340
341 if (seconds > 0) {
342 int period = timeout;
343
344 res = 1;
345 while (seconds > period && res < 255) {
346 res++;
347 timeout <<= 1;
348 if (timeout > rto_max)
349 timeout = rto_max;
350 period += timeout;
351 }
352 }
353 return res;
354}
355
356/* Convert retransmits to seconds based on initial and max timeout */
357static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358{
359 int period = 0;
360
361 if (retrans > 0) {
362 period = timeout;
363 while (--retrans) {
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
368 }
369 }
370 return period;
371}
372
373/* Address-family independent initialization for a tcp_sock.
374 *
375 * NOTE: A lot of things set to zero explicitly by call to
376 * sk_alloc() so need not be done here.
377 */
378void tcp_init_sock(struct sock *sk)
379{
380 struct inet_connection_sock *icsk = inet_csk(sk);
381 struct tcp_sock *tp = tcp_sk(sk);
382
383 skb_queue_head_init(&tp->out_of_order_queue);
384 tcp_init_xmit_timers(sk);
385 tcp_prequeue_init(tp);
386 INIT_LIST_HEAD(&tp->tsq_node);
387
388 icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 tp->mdev = TCP_TIMEOUT_INIT;
390
391 /* So many TCP implementations out there (incorrectly) count the
392 * initial SYN frame in their delayed-ACK and congestion control
393 * algorithms that we must have the following bandaid to talk
394 * efficiently to them. -DaveM
395 */
396 tp->snd_cwnd = TCP_INIT_CWND;
397
398 /* See draft-stevens-tcpca-spec-01 for discussion of the
399 * initialization of these values.
400 */
401 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
402 tp->snd_cwnd_clamp = ~0;
403 tp->mss_cache = TCP_MSS_DEFAULT;
404
405 tp->reordering = sysctl_tcp_reordering;
406 tcp_enable_early_retrans(tp);
407 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
408
409 tp->tsoffset = 0;
410
411 sk->sk_state = TCP_CLOSE;
412
413 sk->sk_write_space = sk_stream_write_space;
414 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
415
416 icsk->icsk_sync_mss = tcp_sync_mss;
417
418 /* Presumed zeroed, in order of appearance:
419 * cookie_in_always, cookie_out_never,
420 * s_data_constant, s_data_in, s_data_out
421 */
422 sk->sk_sndbuf = sysctl_tcp_wmem[1];
423 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
424
425 local_bh_disable();
426 sock_update_memcg(sk);
427 sk_sockets_allocated_inc(sk);
428 local_bh_enable();
429}
430EXPORT_SYMBOL(tcp_init_sock);
431
432/*
433 * Wait for a TCP event.
434 *
435 * Note that we don't need to lock the socket, as the upper poll layers
436 * take care of normal races (between the test and the event) and we don't
437 * go look at any of the socket buffers directly.
438 */
439unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
440{
441 unsigned int mask;
442 struct sock *sk = sock->sk;
443 const struct tcp_sock *tp = tcp_sk(sk);
444
445 sock_poll_wait(file, sk_sleep(sk), wait);
446 if (sk->sk_state == TCP_LISTEN)
447 return inet_csk_listen_poll(sk);
448
449 /* Socket is not locked. We are protected from async events
450 * by poll logic and correct handling of state changes
451 * made by other threads is impossible in any case.
452 */
453
454 mask = 0;
455
456 /*
457 * POLLHUP is certainly not done right. But poll() doesn't
458 * have a notion of HUP in just one direction, and for a
459 * socket the read side is more interesting.
460 *
461 * Some poll() documentation says that POLLHUP is incompatible
462 * with the POLLOUT/POLLWR flags, so somebody should check this
463 * all. But careful, it tends to be safer to return too many
464 * bits than too few, and you can easily break real applications
465 * if you don't tell them that something has hung up!
466 *
467 * Check-me.
468 *
469 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
470 * our fs/select.c). It means that after we received EOF,
471 * poll always returns immediately, making impossible poll() on write()
472 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
473 * if and only if shutdown has been made in both directions.
474 * Actually, it is interesting to look how Solaris and DUX
475 * solve this dilemma. I would prefer, if POLLHUP were maskable,
476 * then we could set it on SND_SHUTDOWN. BTW examples given
477 * in Stevens' books assume exactly this behaviour, it explains
478 * why POLLHUP is incompatible with POLLOUT. --ANK
479 *
480 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
481 * blocking on fresh not-connected or disconnected socket. --ANK
482 */
483 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
484 mask |= POLLHUP;
485 if (sk->sk_shutdown & RCV_SHUTDOWN)
486 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
487
488 /* Connected or passive Fast Open socket? */
489 if (sk->sk_state != TCP_SYN_SENT &&
490 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
491 int target = sock_rcvlowat(sk, 0, INT_MAX);
492
493 if (tp->urg_seq == tp->copied_seq &&
494 !sock_flag(sk, SOCK_URGINLINE) &&
495 tp->urg_data)
496 target++;
497
498 /* Potential race condition. If read of tp below will
499 * escape above sk->sk_state, we can be illegally awaken
500 * in SYN_* states. */
501 if (tp->rcv_nxt - tp->copied_seq >= target)
502 mask |= POLLIN | POLLRDNORM;
503
504 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
505 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
506 mask |= POLLOUT | POLLWRNORM;
507 } else { /* send SIGIO later */
508 set_bit(SOCK_ASYNC_NOSPACE,
509 &sk->sk_socket->flags);
510 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
511
512 /* Race breaker. If space is freed after
513 * wspace test but before the flags are set,
514 * IO signal will be lost.
515 */
516 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
517 mask |= POLLOUT | POLLWRNORM;
518 }
519 } else
520 mask |= POLLOUT | POLLWRNORM;
521
522 if (tp->urg_data & TCP_URG_VALID)
523 mask |= POLLPRI;
524 }
525 /* This barrier is coupled with smp_wmb() in tcp_reset() */
526 smp_rmb();
527 if (sk->sk_err)
528 mask |= POLLERR;
529
530 return mask;
531}
532EXPORT_SYMBOL(tcp_poll);
533
534int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
535{
536 struct tcp_sock *tp = tcp_sk(sk);
537 int answ;
538 bool slow;
539
540 switch (cmd) {
541 case SIOCINQ:
542 if (sk->sk_state == TCP_LISTEN)
543 return -EINVAL;
544
545 slow = lock_sock_fast(sk);
546 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
547 answ = 0;
548 else if (sock_flag(sk, SOCK_URGINLINE) ||
549 !tp->urg_data ||
550 before(tp->urg_seq, tp->copied_seq) ||
551 !before(tp->urg_seq, tp->rcv_nxt)) {
552
553 answ = tp->rcv_nxt - tp->copied_seq;
554
555 /* Subtract 1, if FIN was received */
556 if (answ && sock_flag(sk, SOCK_DONE))
557 answ--;
558 } else
559 answ = tp->urg_seq - tp->copied_seq;
560 unlock_sock_fast(sk, slow);
561 break;
562 case SIOCATMARK:
563 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
564 break;
565 case SIOCOUTQ:
566 if (sk->sk_state == TCP_LISTEN)
567 return -EINVAL;
568
569 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
570 answ = 0;
571 else
572 answ = tp->write_seq - tp->snd_una;
573 break;
574 case SIOCOUTQNSD:
575 if (sk->sk_state == TCP_LISTEN)
576 return -EINVAL;
577
578 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
579 answ = 0;
580 else
581 answ = tp->write_seq - tp->snd_nxt;
582 break;
583 /* MTK_NET_CHANGES */
584 case SIOCKILLSOCK:
585 {
586 struct uid_err uid_e;
587 if (copy_from_user(&uid_e, (char __user *)arg, sizeof(uid_e)))
588 return -EFAULT;
589 printk(KERN_WARNING "SIOCKILLSOCK uid = %d , err = %d",
590 uid_e.appuid, uid_e.errNum);
591 if (uid_e.errNum == 0)
592 {
593 // handle BR release problem
594 tcp_v4_handle_retrans_time_by_uid(uid_e);
595 }
596 else
597 {
598 tcp_v4_reset_connections_by_uid(uid_e);
599 }
600
601 return 0;
602 }
603 default:
604 return -ENOIOCTLCMD;
605 }
606
607 return put_user(answ, (int __user *)arg);
608}
609EXPORT_SYMBOL(tcp_ioctl);
610
611static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
612{
613 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
614 tp->pushed_seq = tp->write_seq;
615}
616
617static inline bool forced_push(const struct tcp_sock *tp)
618{
619 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
620}
621
622static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
623{
624 struct tcp_sock *tp = tcp_sk(sk);
625 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
626
627 skb->csum = 0;
628 tcb->seq = tcb->end_seq = tp->write_seq;
629 tcb->tcp_flags = TCPHDR_ACK;
630 tcb->sacked = 0;
631 skb_header_release(skb);
632 tcp_add_write_queue_tail(sk, skb);
633 sk->sk_wmem_queued += skb->truesize;
634 sk_mem_charge(sk, skb->truesize);
635 if (tp->nonagle & TCP_NAGLE_PUSH)
636 tp->nonagle &= ~TCP_NAGLE_PUSH;
637}
638
639static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
640{
641 if (flags & MSG_OOB)
642 tp->snd_up = tp->write_seq;
643}
644
645static inline void tcp_push(struct sock *sk, int flags, int mss_now,
646 int nonagle)
647{
648 if (tcp_send_head(sk)) {
649 struct tcp_sock *tp = tcp_sk(sk);
650
651 if (!(flags & MSG_MORE) || forced_push(tp))
652 tcp_mark_push(tp, tcp_write_queue_tail(sk));
653
654 tcp_mark_urg(tp, flags);
655 __tcp_push_pending_frames(sk, mss_now,
656 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
657 }
658}
659
660static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
661 unsigned int offset, size_t len)
662{
663 struct tcp_splice_state *tss = rd_desc->arg.data;
664 int ret;
665
666 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
667 tss->flags);
668 if (ret > 0)
669 rd_desc->count -= ret;
670 return ret;
671}
672
673static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
674{
675 /* Store TCP splice context information in read_descriptor_t. */
676 read_descriptor_t rd_desc = {
677 .arg.data = tss,
678 .count = tss->len,
679 };
680
681 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
682}
683
684/**
685 * tcp_splice_read - splice data from TCP socket to a pipe
686 * @sock: socket to splice from
687 * @ppos: position (not valid)
688 * @pipe: pipe to splice to
689 * @len: number of bytes to splice
690 * @flags: splice modifier flags
691 *
692 * Description:
693 * Will read pages from given socket and fill them into a pipe.
694 *
695 **/
696ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
697 struct pipe_inode_info *pipe, size_t len,
698 unsigned int flags)
699{
700 struct sock *sk = sock->sk;
701 struct tcp_splice_state tss = {
702 .pipe = pipe,
703 .len = len,
704 .flags = flags,
705 };
706 long timeo;
707 ssize_t spliced;
708 int ret;
709
710 sock_rps_record_flow(sk);
711 /*
712 * We can't seek on a socket input
713 */
714 if (unlikely(*ppos))
715 return -ESPIPE;
716
717 ret = spliced = 0;
718
719 lock_sock(sk);
720
721 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
722 while (tss.len) {
723 ret = __tcp_splice_read(sk, &tss);
724 if (ret < 0)
725 break;
726 else if (!ret) {
727 if (spliced)
728 break;
729 if (sock_flag(sk, SOCK_DONE))
730 break;
731 if (sk->sk_err) {
732 ret = sock_error(sk);
733 break;
734 }
735 if (sk->sk_shutdown & RCV_SHUTDOWN)
736 break;
737 if (sk->sk_state == TCP_CLOSE) {
738 /*
739 * This occurs when user tries to read
740 * from never connected socket.
741 */
742 if (!sock_flag(sk, SOCK_DONE))
743 ret = -ENOTCONN;
744 break;
745 }
746 if (!timeo) {
747 ret = -EAGAIN;
748 break;
749 }
750 /* if __tcp_splice_read() got nothing while we have
751 * an skb in receive queue, we do not want to loop.
752 * This might happen with URG data.
753 */
754 if (!skb_queue_empty(&sk->sk_receive_queue))
755 break;
756 sk_wait_data(sk, &timeo);
757 if (signal_pending(current)) {
758 ret = sock_intr_errno(timeo);
759 break;
760 }
761 continue;
762 }
763 tss.len -= ret;
764 spliced += ret;
765
766 if (!timeo)
767 break;
768 release_sock(sk);
769 lock_sock(sk);
770
771 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
772 (sk->sk_shutdown & RCV_SHUTDOWN) ||
773 signal_pending(current))
774 break;
775 }
776
777 release_sock(sk);
778
779 if (spliced)
780 return spliced;
781
782 return ret;
783}
784EXPORT_SYMBOL(tcp_splice_read);
785
786struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
787{
788 struct sk_buff *skb;
789
790 /* The TCP header must be at least 32-bit aligned. */
791 size = ALIGN(size, 4);
792
793 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
794 if (skb) {
795 if (sk_wmem_schedule(sk, skb->truesize)) {
796 skb_reserve(skb, sk->sk_prot->max_header);
797 /*
798 * Make sure that we have exactly size bytes
799 * available to the caller, no more, no less.
800 */
801 skb->reserved_tailroom = skb->end - skb->tail - size;
802 return skb;
803 }
804 __kfree_skb(skb);
805 } else {
806 sk->sk_prot->enter_memory_pressure(sk);
807 sk_stream_moderate_sndbuf(sk);
808 }
809 return NULL;
810}
811
812static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
813 int large_allowed)
814{
815 struct tcp_sock *tp = tcp_sk(sk);
816 u32 xmit_size_goal, old_size_goal;
817
818 xmit_size_goal = mss_now;
819
820 if (large_allowed && sk_can_gso(sk)) {
821 u32 gso_size, hlen;
822
823 /* Maybe we should/could use sk->sk_prot->max_header here ? */
824 hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
825 inet_csk(sk)->icsk_ext_hdr_len +
826 tp->tcp_header_len;
827
828 /* Goal is to send at least one packet per ms,
829 * not one big TSO packet every 100 ms.
830 * This preserves ACK clocking and is consistent
831 * with tcp_tso_should_defer() heuristic.
832 */
833 gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
834 gso_size = max_t(u32, gso_size,
835 sysctl_tcp_min_tso_segs * mss_now);
836
837 xmit_size_goal = min_t(u32, gso_size,
838 sk->sk_gso_max_size - 1 - hlen);
839
840 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
841
842 /* We try hard to avoid divides here */
843 old_size_goal = tp->xmit_size_goal_segs * mss_now;
844
845 if (likely(old_size_goal <= xmit_size_goal &&
846 old_size_goal + mss_now > xmit_size_goal)) {
847 xmit_size_goal = old_size_goal;
848 } else {
849 tp->xmit_size_goal_segs =
850 min_t(u16, xmit_size_goal / mss_now,
851 sk->sk_gso_max_segs);
852 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
853 }
854 }
855
856 return max(xmit_size_goal, mss_now);
857}
858
859static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
860{
861 int mss_now;
862
863 mss_now = tcp_current_mss(sk);
864 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
865
866 return mss_now;
867}
868
869static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
870 size_t size, int flags)
871{
872 struct tcp_sock *tp = tcp_sk(sk);
873 int mss_now, size_goal;
874 int err;
875 ssize_t copied;
876 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
877
878 /* Wait for a connection to finish. One exception is TCP Fast Open
879 * (passive side) where data is allowed to be sent before a connection
880 * is fully established.
881 */
882 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
883 !tcp_passive_fastopen(sk)) {
884 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
885 goto out_err;
886 }
887
888 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
889
890 mss_now = tcp_send_mss(sk, &size_goal, flags);
891 copied = 0;
892
893 err = -EPIPE;
894 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
895 goto out_err;
896
897 while (size > 0) {
898 struct sk_buff *skb = tcp_write_queue_tail(sk);
899 int copy, i;
900 bool can_coalesce;
901
902 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
903new_segment:
904 if (!sk_stream_memory_free(sk))
905 goto wait_for_sndbuf;
906
907 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
908 if (!skb)
909 goto wait_for_memory;
910
911 skb_entail(sk, skb);
912 copy = size_goal;
913 }
914
915 if (copy > size)
916 copy = size;
917
918 i = skb_shinfo(skb)->nr_frags;
919 can_coalesce = skb_can_coalesce(skb, i, page, offset);
920 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
921 tcp_mark_push(tp, skb);
922 goto new_segment;
923 }
924 if (!sk_wmem_schedule(sk, copy))
925 goto wait_for_memory;
926
927 if (can_coalesce) {
928 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
929 } else {
930 get_page(page);
931 skb_fill_page_desc(skb, i, page, offset, copy);
932 }
933 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
934
935 skb->len += copy;
936 skb->data_len += copy;
937 skb->truesize += copy;
938 sk->sk_wmem_queued += copy;
939 sk_mem_charge(sk, copy);
940 skb->ip_summed = CHECKSUM_PARTIAL;
941 tp->write_seq += copy;
942 TCP_SKB_CB(skb)->end_seq += copy;
943 skb_shinfo(skb)->gso_segs = 0;
944
945 if (!copied)
946 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
947
948 copied += copy;
949 offset += copy;
950 if (!(size -= copy))
951 goto out;
952
953 if (skb->len < size_goal || (flags & MSG_OOB))
954 continue;
955
956 if (forced_push(tp)) {
957 tcp_mark_push(tp, skb);
958 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
959 } else if (skb == tcp_send_head(sk))
960 tcp_push_one(sk, mss_now);
961 continue;
962
963wait_for_sndbuf:
964 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
965wait_for_memory:
966 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
967
968 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
969 goto do_error;
970
971 mss_now = tcp_send_mss(sk, &size_goal, flags);
972 }
973
974out:
975 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
976 tcp_push(sk, flags, mss_now, tp->nonagle);
977 return copied;
978
979do_error:
980 if (copied)
981 goto out;
982out_err:
983 return sk_stream_error(sk, flags, err);
984}
985
986int tcp_sendpage(struct sock *sk, struct page *page, int offset,
987 size_t size, int flags)
988{
989 ssize_t res;
990
991 if (!(sk->sk_route_caps & NETIF_F_SG) ||
992 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
993 return sock_no_sendpage(sk->sk_socket, page, offset, size,
994 flags);
995
996 lock_sock(sk);
997 res = do_tcp_sendpages(sk, page, offset, size, flags);
998 release_sock(sk);
999 return res;
1000}
1001EXPORT_SYMBOL(tcp_sendpage);
1002
1003static inline int select_size(const struct sock *sk, bool sg)
1004{
1005 const struct tcp_sock *tp = tcp_sk(sk);
1006 int tmp = tp->mss_cache;
1007
1008 if (sg) {
1009 if (sk_can_gso(sk)) {
1010 /* Small frames wont use a full page:
1011 * Payload will immediately follow tcp header.
1012 */
1013 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1014 } else {
1015 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1016
1017 if (tmp >= pgbreak &&
1018 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1019 tmp = pgbreak;
1020 }
1021 }
1022
1023 return tmp;
1024}
1025
1026void tcp_free_fastopen_req(struct tcp_sock *tp)
1027{
1028 if (tp->fastopen_req != NULL) {
1029 kfree(tp->fastopen_req);
1030 tp->fastopen_req = NULL;
1031 }
1032}
1033
1034static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1035 int *copied, size_t size)
1036{
1037 struct tcp_sock *tp = tcp_sk(sk);
1038 int err, flags;
1039
1040 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1041 return -EOPNOTSUPP;
1042 if (tp->fastopen_req != NULL)
1043 return -EALREADY; /* Another Fast Open is in progress */
1044
1045 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1046 sk->sk_allocation);
1047 if (unlikely(tp->fastopen_req == NULL))
1048 return -ENOBUFS;
1049 tp->fastopen_req->data = msg;
1050 tp->fastopen_req->size = size;
1051
1052 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1053 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1054 msg->msg_namelen, flags);
1055 *copied = tp->fastopen_req->copied;
1056 tcp_free_fastopen_req(tp);
1057 return err;
1058}
1059
1060int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1061 size_t size)
1062{
1063 struct iovec *iov;
1064 struct tcp_sock *tp = tcp_sk(sk);
1065 struct sk_buff *skb;
1066 int iovlen, flags, err, copied = 0;
1067 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1068 bool sg;
1069 long timeo;
1070
1071 lock_sock(sk);
1072
1073 flags = msg->msg_flags;
1074 if (flags & MSG_FASTOPEN) {
1075 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1076 if (err == -EINPROGRESS && copied_syn > 0)
1077 goto out;
1078 else if (err)
1079 goto out_err;
1080 offset = copied_syn;
1081 }
1082
1083 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1084
1085 /* Wait for a connection to finish. One exception is TCP Fast Open
1086 * (passive side) where data is allowed to be sent before a connection
1087 * is fully established.
1088 */
1089 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1090 !tcp_passive_fastopen(sk)) {
1091 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1092 goto do_error;
1093 }
1094
1095 if (unlikely(tp->repair)) {
1096 if (tp->repair_queue == TCP_RECV_QUEUE) {
1097 copied = tcp_send_rcvq(sk, msg, size);
1098 goto out_nopush;
1099 }
1100
1101 err = -EINVAL;
1102 if (tp->repair_queue == TCP_NO_QUEUE)
1103 goto out_err;
1104
1105 /* 'common' sending to sendq */
1106 }
1107
1108 /* This should be in poll */
1109 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1110
1111 mss_now = tcp_send_mss(sk, &size_goal, flags);
1112
1113 /* Ok commence sending. */
1114 iovlen = msg->msg_iovlen;
1115 iov = msg->msg_iov;
1116 copied = 0;
1117
1118 err = -EPIPE;
1119 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1120 goto out_err;
1121
1122 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1123
1124 while (--iovlen >= 0) {
1125 size_t seglen = iov->iov_len;
1126 unsigned char __user *from = iov->iov_base;
1127
1128 iov++;
1129 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1130 if (offset >= seglen) {
1131 offset -= seglen;
1132 continue;
1133 }
1134 seglen -= offset;
1135 from += offset;
1136 offset = 0;
1137 }
1138
1139 while (seglen > 0) {
1140 int copy = 0;
1141 int max = size_goal;
1142
1143 skb = tcp_write_queue_tail(sk);
1144 if (tcp_send_head(sk)) {
1145 if (skb->ip_summed == CHECKSUM_NONE)
1146 max = mss_now;
1147 copy = max - skb->len;
1148 }
1149
1150 if (copy <= 0) {
1151new_segment:
1152 /* Allocate new segment. If the interface is SG,
1153 * allocate skb fitting to single page.
1154 */
1155 if (!sk_stream_memory_free(sk))
1156 goto wait_for_sndbuf;
1157
1158 skb = sk_stream_alloc_skb(sk,
1159 select_size(sk, sg),
1160 sk->sk_allocation);
1161 if (!skb)
1162 goto wait_for_memory;
1163
1164 /*
1165 * All packets are restored as if they have
1166 * already been sent.
1167 */
1168 if (tp->repair)
1169 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1170
1171 /*
1172 * Check whether we can use HW checksum.
1173 */
1174 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1175 skb->ip_summed = CHECKSUM_PARTIAL;
1176
1177 skb_entail(sk, skb);
1178 copy = size_goal;
1179 max = size_goal;
1180 }
1181
1182 /* Try to append data to the end of skb. */
1183 if (copy > seglen)
1184 copy = seglen;
1185
1186 /* Where to copy to? */
1187 if (skb_availroom(skb) > 0) {
1188 /* We have some space in skb head. Superb! */
1189 copy = min_t(int, copy, skb_availroom(skb));
1190 err = skb_add_data_nocache(sk, skb, from, copy);
1191 if (err)
1192 goto do_fault;
1193 } else {
1194 bool merge = true;
1195 int i = skb_shinfo(skb)->nr_frags;
1196 struct page_frag *pfrag = sk_page_frag(sk);
1197
1198 if (!sk_page_frag_refill(sk, pfrag))
1199 goto wait_for_memory;
1200
1201 if (!skb_can_coalesce(skb, i, pfrag->page,
1202 pfrag->offset)) {
1203 if (i == MAX_SKB_FRAGS || !sg) {
1204 tcp_mark_push(tp, skb);
1205 goto new_segment;
1206 }
1207 merge = false;
1208 }
1209
1210 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1211
1212 if (!sk_wmem_schedule(sk, copy))
1213 goto wait_for_memory;
1214
1215 err = skb_copy_to_page_nocache(sk, from, skb,
1216 pfrag->page,
1217 pfrag->offset,
1218 copy);
1219 if (err)
1220 goto do_error;
1221
1222 /* Update the skb. */
1223 if (merge) {
1224 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1225 } else {
1226 skb_fill_page_desc(skb, i, pfrag->page,
1227 pfrag->offset, copy);
1228 get_page(pfrag->page);
1229 }
1230 pfrag->offset += copy;
1231 }
1232
1233 if (!copied)
1234 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1235
1236 tp->write_seq += copy;
1237 TCP_SKB_CB(skb)->end_seq += copy;
1238 skb_shinfo(skb)->gso_segs = 0;
1239
1240 from += copy;
1241 copied += copy;
1242 if ((seglen -= copy) == 0 && iovlen == 0)
1243 goto out;
1244
1245 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1246 continue;
1247
1248 if (forced_push(tp)) {
1249 tcp_mark_push(tp, skb);
1250 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1251 } else if (skb == tcp_send_head(sk))
1252 tcp_push_one(sk, mss_now);
1253 continue;
1254
1255wait_for_sndbuf:
1256 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1257wait_for_memory:
1258 if (copied)
1259 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1260
1261 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1262 goto do_error;
1263
1264 mss_now = tcp_send_mss(sk, &size_goal, flags);
1265 }
1266 }
1267
1268out:
1269 if (copied)
1270 tcp_push(sk, flags, mss_now, tp->nonagle);
1271out_nopush:
1272 release_sock(sk);
1273
1274 if (copied + copied_syn)
1275 uid_stat_tcp_snd(current_uid(), copied + copied_syn);
1276 return copied + copied_syn;
1277
1278do_fault:
1279 if (!skb->len) {
1280 tcp_unlink_write_queue(skb, sk);
1281 /* It is the one place in all of TCP, except connection
1282 * reset, where we can be unlinking the send_head.
1283 */
1284 tcp_check_send_head(sk, skb);
1285 sk_wmem_free_skb(sk, skb);
1286 }
1287
1288do_error:
1289 if (copied + copied_syn)
1290 goto out;
1291out_err:
1292 err = sk_stream_error(sk, flags, err);
1293 release_sock(sk);
1294 return err;
1295}
1296EXPORT_SYMBOL(tcp_sendmsg);
1297
1298/*
1299 * Handle reading urgent data. BSD has very simple semantics for
1300 * this, no blocking and very strange errors 8)
1301 */
1302
1303static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1304{
1305 struct tcp_sock *tp = tcp_sk(sk);
1306
1307 /* No URG data to read. */
1308 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1309 tp->urg_data == TCP_URG_READ)
1310 return -EINVAL; /* Yes this is right ! */
1311
1312 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1313 return -ENOTCONN;
1314
1315 if (tp->urg_data & TCP_URG_VALID) {
1316 int err = 0;
1317 char c = tp->urg_data;
1318
1319 if (!(flags & MSG_PEEK))
1320 tp->urg_data = TCP_URG_READ;
1321
1322 /* Read urgent data. */
1323 msg->msg_flags |= MSG_OOB;
1324
1325 if (len > 0) {
1326 if (!(flags & MSG_TRUNC))
1327 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1328 len = 1;
1329 } else
1330 msg->msg_flags |= MSG_TRUNC;
1331
1332 return err ? -EFAULT : len;
1333 }
1334
1335 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1336 return 0;
1337
1338 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1339 * the available implementations agree in this case:
1340 * this call should never block, independent of the
1341 * blocking state of the socket.
1342 * Mike <pall@rz.uni-karlsruhe.de>
1343 */
1344 return -EAGAIN;
1345}
1346
1347static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1348{
1349 struct sk_buff *skb;
1350 int copied = 0, err = 0;
1351
1352 /* XXX -- need to support SO_PEEK_OFF */
1353
1354 skb_queue_walk(&sk->sk_write_queue, skb) {
1355 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1356 if (err)
1357 break;
1358
1359 copied += skb->len;
1360 }
1361
1362 return err ?: copied;
1363}
1364
1365/* Clean up the receive buffer for full frames taken by the user,
1366 * then send an ACK if necessary. COPIED is the number of bytes
1367 * tcp_recvmsg has given to the user so far, it speeds up the
1368 * calculation of whether or not we must ACK for the sake of
1369 * a window update.
1370 */
1371void tcp_cleanup_rbuf(struct sock *sk, int copied)
1372{
1373 struct tcp_sock *tp = tcp_sk(sk);
1374 bool time_to_ack = false;
1375
1376 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1377
1378 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1379 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1380 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1381
1382 if (inet_csk_ack_scheduled(sk)) {
1383 const struct inet_connection_sock *icsk = inet_csk(sk);
1384 /* Delayed ACKs frequently hit locked sockets during bulk
1385 * receive. */
1386 if (icsk->icsk_ack.blocked ||
1387 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1388 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1389 /*
1390 * If this read emptied read buffer, we send ACK, if
1391 * connection is not bidirectional, user drained
1392 * receive buffer and there was a small segment
1393 * in queue.
1394 */
1395 (copied > 0 &&
1396 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1397 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1398 !icsk->icsk_ack.pingpong)) &&
1399 !atomic_read(&sk->sk_rmem_alloc)))
1400 time_to_ack = true;
1401 }
1402
1403 /* We send an ACK if we can now advertise a non-zero window
1404 * which has been raised "significantly".
1405 *
1406 * Even if window raised up to infinity, do not send window open ACK
1407 * in states, where we will not receive more. It is useless.
1408 */
1409 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1410 __u32 rcv_window_now = tcp_receive_window(tp);
1411
1412 /* Optimize, __tcp_select_window() is not cheap. */
1413 if (2*rcv_window_now <= tp->window_clamp) {
1414 __u32 new_window = __tcp_select_window(sk);
1415
1416 /* Send ACK now, if this read freed lots of space
1417 * in our buffer. Certainly, new_window is new window.
1418 * We can advertise it now, if it is not less than current one.
1419 * "Lots" means "at least twice" here.
1420 */
1421 if (new_window && new_window >= 2 * rcv_window_now)
1422 time_to_ack = true;
1423 }
1424 }
1425 if (time_to_ack)
1426 tcp_send_ack(sk);
1427}
1428
1429static void tcp_prequeue_process(struct sock *sk)
1430{
1431 struct sk_buff *skb;
1432 struct tcp_sock *tp = tcp_sk(sk);
1433
1434 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1435
1436 /* RX process wants to run with disabled BHs, though it is not
1437 * necessary */
1438 local_bh_disable();
1439 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1440 sk_backlog_rcv(sk, skb);
1441 local_bh_enable();
1442
1443 /* Clear memory counter. */
1444 tp->ucopy.memory = 0;
1445}
1446
1447#ifdef CONFIG_NET_DMA
1448static void tcp_service_net_dma(struct sock *sk, bool wait)
1449{
1450 dma_cookie_t done, used;
1451 dma_cookie_t last_issued;
1452 struct tcp_sock *tp = tcp_sk(sk);
1453
1454 if (!tp->ucopy.dma_chan)
1455 return;
1456
1457 last_issued = tp->ucopy.dma_cookie;
1458 dma_async_issue_pending(tp->ucopy.dma_chan);
1459
1460 do {
1461 if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1462 last_issued, &done,
1463 &used) == DMA_SUCCESS) {
1464 /* Safe to free early-copied skbs now */
1465 __skb_queue_purge(&sk->sk_async_wait_queue);
1466 break;
1467 } else {
1468 struct sk_buff *skb;
1469 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1470 (dma_async_is_complete(skb->dma_cookie, done,
1471 used) == DMA_SUCCESS)) {
1472 __skb_dequeue(&sk->sk_async_wait_queue);
1473 kfree_skb(skb);
1474 }
1475 }
1476 } while (wait);
1477}
1478#endif
1479
1480static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1481{
1482 struct sk_buff *skb;
1483 u32 offset;
1484
1485 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1486 offset = seq - TCP_SKB_CB(skb)->seq;
1487 if (tcp_hdr(skb)->syn)
1488 offset--;
1489 if (offset < skb->len || tcp_hdr(skb)->fin) {
1490 *off = offset;
1491 return skb;
1492 }
1493 /* This looks weird, but this can happen if TCP collapsing
1494 * splitted a fat GRO packet, while we released socket lock
1495 * in skb_splice_bits()
1496 */
1497 sk_eat_skb(sk, skb, false);
1498 }
1499 return NULL;
1500}
1501
1502/*
1503 * This routine provides an alternative to tcp_recvmsg() for routines
1504 * that would like to handle copying from skbuffs directly in 'sendfile'
1505 * fashion.
1506 * Note:
1507 * - It is assumed that the socket was locked by the caller.
1508 * - The routine does not block.
1509 * - At present, there is no support for reading OOB data
1510 * or for 'peeking' the socket using this routine
1511 * (although both would be easy to implement).
1512 */
1513int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1514 sk_read_actor_t recv_actor)
1515{
1516 struct sk_buff *skb;
1517 struct tcp_sock *tp = tcp_sk(sk);
1518 u32 seq = tp->copied_seq;
1519 u32 offset;
1520 int copied = 0;
1521
1522 if (sk->sk_state == TCP_LISTEN)
1523 return -ENOTCONN;
1524 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1525 if (offset < skb->len) {
1526 int used;
1527 size_t len;
1528
1529 len = skb->len - offset;
1530 /* Stop reading if we hit a patch of urgent data */
1531 if (tp->urg_data) {
1532 u32 urg_offset = tp->urg_seq - seq;
1533 if (urg_offset < len)
1534 len = urg_offset;
1535 if (!len)
1536 break;
1537 }
1538 used = recv_actor(desc, skb, offset, len);
1539 if (used <= 0) {
1540 if (!copied)
1541 copied = used;
1542 break;
1543 } else if (used <= len) {
1544 seq += used;
1545 copied += used;
1546 offset += used;
1547 }
1548 /* If recv_actor drops the lock (e.g. TCP splice
1549 * receive) the skb pointer might be invalid when
1550 * getting here: tcp_collapse might have deleted it
1551 * while aggregating skbs from the socket queue.
1552 */
1553 skb = tcp_recv_skb(sk, seq - 1, &offset);
1554 if (!skb)
1555 break;
1556 /* TCP coalescing might have appended data to the skb.
1557 * Try to splice more frags
1558 */
1559 if (offset + 1 != skb->len)
1560 continue;
1561 }
1562 if (tcp_hdr(skb)->fin) {
1563 sk_eat_skb(sk, skb, false);
1564 ++seq;
1565 break;
1566 }
1567 sk_eat_skb(sk, skb, false);
1568 if (!desc->count)
1569 break;
1570 tp->copied_seq = seq;
1571 }
1572 tp->copied_seq = seq;
1573
1574 tcp_rcv_space_adjust(sk);
1575
1576 /* Clean up data we have read: This will do ACK frames. */
1577 if (copied > 0) {
1578 tcp_recv_skb(sk, seq, &offset);
1579 tcp_cleanup_rbuf(sk, copied);
1580 uid_stat_tcp_rcv(current_uid(), copied);
1581 }
1582 return copied;
1583}
1584EXPORT_SYMBOL(tcp_read_sock);
1585
1586/*
1587 * This routine copies from a sock struct into the user buffer.
1588 *
1589 * Technical note: in 2.3 we work on _locked_ socket, so that
1590 * tricks with *seq access order and skb->users are not required.
1591 * Probably, code can be easily improved even more.
1592 */
1593
1594int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1595 size_t len, int nonblock, int flags, int *addr_len)
1596{
1597 struct tcp_sock *tp = tcp_sk(sk);
1598 int copied = 0;
1599 u32 peek_seq;
1600 u32 *seq;
1601 unsigned long used;
1602 int err;
1603 int target; /* Read at least this many bytes */
1604 long timeo;
1605 struct task_struct *user_recv = NULL;
1606 bool copied_early = false;
1607 struct sk_buff *skb;
1608 u32 urg_hole = 0;
1609
1610 lock_sock(sk);
1611
1612 err = -ENOTCONN;
1613 if (sk->sk_state == TCP_LISTEN)
1614 goto out;
1615
1616 timeo = sock_rcvtimeo(sk, nonblock);
1617
1618 /* Urgent data needs to be handled specially. */
1619 if (flags & MSG_OOB)
1620 goto recv_urg;
1621
1622 if (unlikely(tp->repair)) {
1623 err = -EPERM;
1624 if (!(flags & MSG_PEEK))
1625 goto out;
1626
1627 if (tp->repair_queue == TCP_SEND_QUEUE)
1628 goto recv_sndq;
1629
1630 err = -EINVAL;
1631 if (tp->repair_queue == TCP_NO_QUEUE)
1632 goto out;
1633
1634 /* 'common' recv queue MSG_PEEK-ing */
1635 }
1636
1637 seq = &tp->copied_seq;
1638 if (flags & MSG_PEEK) {
1639 peek_seq = tp->copied_seq;
1640 seq = &peek_seq;
1641 }
1642
1643 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1644
1645#ifdef CONFIG_NET_DMA
1646 tp->ucopy.dma_chan = NULL;
1647 preempt_disable();
1648 skb = skb_peek_tail(&sk->sk_receive_queue);
1649 {
1650 int available = 0;
1651
1652 if (skb)
1653 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1654 if ((available < target) &&
1655 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1656 !sysctl_tcp_low_latency &&
1657 net_dma_find_channel()) {
1658 preempt_enable_no_resched();
1659 tp->ucopy.pinned_list =
1660 dma_pin_iovec_pages(msg->msg_iov, len);
1661 } else {
1662 preempt_enable_no_resched();
1663 }
1664 }
1665#endif
1666
1667 do {
1668 u32 offset;
1669
1670 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1671 if (tp->urg_data && tp->urg_seq == *seq) {
1672 if (copied)
1673 break;
1674 if (signal_pending(current)) {
1675 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1676 break;
1677 }
1678 }
1679
1680 /* Next get a buffer. */
1681
1682 skb_queue_walk(&sk->sk_receive_queue, skb) {
1683 /* Now that we have two receive queues this
1684 * shouldn't happen.
1685 */
1686 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1687 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1688 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1689 flags))
1690 break;
1691
1692 offset = *seq - TCP_SKB_CB(skb)->seq;
1693 if (tcp_hdr(skb)->syn)
1694 offset--;
1695 if (offset < skb->len)
1696 goto found_ok_skb;
1697 if (tcp_hdr(skb)->fin)
1698 goto found_fin_ok;
1699 WARN(!(flags & MSG_PEEK),
1700 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1701 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1702 }
1703
1704 /* Well, if we have backlog, try to process it now yet. */
1705
1706 if (copied >= target && !sk->sk_backlog.tail)
1707 break;
1708
1709 if (copied) {
1710 if (sk->sk_err ||
1711 sk->sk_state == TCP_CLOSE ||
1712 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1713 !timeo ||
1714 signal_pending(current))
1715 break;
1716 } else {
1717 if (sock_flag(sk, SOCK_DONE))
1718 break;
1719
1720 if (sk->sk_err) {
1721 copied = sock_error(sk);
1722 break;
1723 }
1724
1725 if (sk->sk_shutdown & RCV_SHUTDOWN)
1726 break;
1727
1728 if (sk->sk_state == TCP_CLOSE) {
1729 if (!sock_flag(sk, SOCK_DONE)) {
1730 /* This occurs when user tries to read
1731 * from never connected socket.
1732 */
1733 copied = -ENOTCONN;
1734 break;
1735 }
1736 break;
1737 }
1738
1739 if (!timeo) {
1740 copied = -EAGAIN;
1741 break;
1742 }
1743
1744 if (signal_pending(current)) {
1745 copied = sock_intr_errno(timeo);
1746 break;
1747 }
1748 }
1749
1750 tcp_cleanup_rbuf(sk, copied);
1751
1752 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1753 /* Install new reader */
1754 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1755 user_recv = current;
1756 tp->ucopy.task = user_recv;
1757 tp->ucopy.iov = msg->msg_iov;
1758 }
1759
1760 tp->ucopy.len = len;
1761
1762 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1763 !(flags & (MSG_PEEK | MSG_TRUNC)));
1764
1765 /* Ugly... If prequeue is not empty, we have to
1766 * process it before releasing socket, otherwise
1767 * order will be broken at second iteration.
1768 * More elegant solution is required!!!
1769 *
1770 * Look: we have the following (pseudo)queues:
1771 *
1772 * 1. packets in flight
1773 * 2. backlog
1774 * 3. prequeue
1775 * 4. receive_queue
1776 *
1777 * Each queue can be processed only if the next ones
1778 * are empty. At this point we have empty receive_queue.
1779 * But prequeue _can_ be not empty after 2nd iteration,
1780 * when we jumped to start of loop because backlog
1781 * processing added something to receive_queue.
1782 * We cannot release_sock(), because backlog contains
1783 * packets arrived _after_ prequeued ones.
1784 *
1785 * Shortly, algorithm is clear --- to process all
1786 * the queues in order. We could make it more directly,
1787 * requeueing packets from backlog to prequeue, if
1788 * is not empty. It is more elegant, but eats cycles,
1789 * unfortunately.
1790 */
1791 if (!skb_queue_empty(&tp->ucopy.prequeue))
1792 goto do_prequeue;
1793
1794 /* __ Set realtime policy in scheduler __ */
1795 }
1796
1797#ifdef CONFIG_NET_DMA
1798 if (tp->ucopy.dma_chan) {
1799 if (tp->rcv_wnd == 0 &&
1800 !skb_queue_empty(&sk->sk_async_wait_queue)) {
1801 tcp_service_net_dma(sk, true);
1802 tcp_cleanup_rbuf(sk, copied);
1803 } else
1804 dma_async_issue_pending(tp->ucopy.dma_chan);
1805 }
1806#endif
1807 if (copied >= target) {
1808 /* Do not sleep, just process backlog. */
1809 release_sock(sk);
1810 lock_sock(sk);
1811 } else
1812 sk_wait_data(sk, &timeo);
1813
1814#ifdef CONFIG_NET_DMA
1815 tcp_service_net_dma(sk, false); /* Don't block */
1816 tp->ucopy.wakeup = 0;
1817#endif
1818
1819 if (user_recv) {
1820 int chunk;
1821
1822 /* __ Restore normal policy in scheduler __ */
1823
1824 if ((chunk = len - tp->ucopy.len) != 0) {
1825 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1826 len -= chunk;
1827 copied += chunk;
1828 }
1829
1830 if (tp->rcv_nxt == tp->copied_seq &&
1831 !skb_queue_empty(&tp->ucopy.prequeue)) {
1832do_prequeue:
1833 tcp_prequeue_process(sk);
1834
1835 if ((chunk = len - tp->ucopy.len) != 0) {
1836 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1837 len -= chunk;
1838 copied += chunk;
1839 }
1840 }
1841 }
1842 if ((flags & MSG_PEEK) &&
1843 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1844 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1845 current->comm,
1846 task_pid_nr(current));
1847 peek_seq = tp->copied_seq;
1848 }
1849 continue;
1850
1851 found_ok_skb:
1852 /* Ok so how much can we use? */
1853 used = skb->len - offset;
1854 if (len < used)
1855 used = len;
1856
1857 /* Do we have urgent data here? */
1858 if (tp->urg_data) {
1859 u32 urg_offset = tp->urg_seq - *seq;
1860 if (urg_offset < used) {
1861 if (!urg_offset) {
1862 if (!sock_flag(sk, SOCK_URGINLINE)) {
1863 ++*seq;
1864 urg_hole++;
1865 offset++;
1866 used--;
1867 if (!used)
1868 goto skip_copy;
1869 }
1870 } else
1871 used = urg_offset;
1872 }
1873 }
1874
1875 if (!(flags & MSG_TRUNC)) {
1876#ifdef CONFIG_NET_DMA
1877 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1878 tp->ucopy.dma_chan = net_dma_find_channel();
1879
1880 if (tp->ucopy.dma_chan) {
1881 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1882 tp->ucopy.dma_chan, skb, offset,
1883 msg->msg_iov, used,
1884 tp->ucopy.pinned_list);
1885
1886 if (tp->ucopy.dma_cookie < 0) {
1887
1888 pr_alert("%s: dma_cookie < 0\n",
1889 __func__);
1890
1891 /* Exception. Bailout! */
1892 if (!copied)
1893 copied = -EFAULT;
1894 break;
1895 }
1896
1897 dma_async_issue_pending(tp->ucopy.dma_chan);
1898
1899 if ((offset + used) == skb->len)
1900 copied_early = true;
1901
1902 } else
1903#endif
1904 {
1905 err = skb_copy_datagram_iovec(skb, offset,
1906 msg->msg_iov, used);
1907 if (err) {
1908 /* Exception. Bailout! */
1909 if (!copied)
1910 copied = -EFAULT;
1911 break;
1912 }
1913 }
1914 }
1915
1916 *seq += used;
1917 copied += used;
1918 len -= used;
1919
1920 tcp_rcv_space_adjust(sk);
1921
1922skip_copy:
1923 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1924 tp->urg_data = 0;
1925 tcp_fast_path_check(sk);
1926 }
1927 if (used + offset < skb->len)
1928 continue;
1929
1930 if (tcp_hdr(skb)->fin)
1931 goto found_fin_ok;
1932 if (!(flags & MSG_PEEK)) {
1933 sk_eat_skb(sk, skb, copied_early);
1934 copied_early = false;
1935 }
1936 continue;
1937
1938 found_fin_ok:
1939 /* Process the FIN. */
1940 ++*seq;
1941 if (!(flags & MSG_PEEK)) {
1942 sk_eat_skb(sk, skb, copied_early);
1943 copied_early = false;
1944 }
1945 break;
1946 } while (len > 0);
1947
1948 if (user_recv) {
1949 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1950 int chunk;
1951
1952 tp->ucopy.len = copied > 0 ? len : 0;
1953
1954 tcp_prequeue_process(sk);
1955
1956 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1957 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1958 len -= chunk;
1959 copied += chunk;
1960 }
1961 }
1962
1963 tp->ucopy.task = NULL;
1964 tp->ucopy.len = 0;
1965 }
1966
1967#ifdef CONFIG_NET_DMA
1968 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1969 tp->ucopy.dma_chan = NULL;
1970
1971 if (tp->ucopy.pinned_list) {
1972 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1973 tp->ucopy.pinned_list = NULL;
1974 }
1975#endif
1976
1977 /* According to UNIX98, msg_name/msg_namelen are ignored
1978 * on connected socket. I was just happy when found this 8) --ANK
1979 */
1980
1981 /* Clean up data we have read: This will do ACK frames. */
1982 tcp_cleanup_rbuf(sk, copied);
1983
1984 release_sock(sk);
1985
1986 if (copied > 0)
1987 uid_stat_tcp_rcv(current_uid(), copied);
1988 return copied;
1989
1990out:
1991 release_sock(sk);
1992 return err;
1993
1994recv_urg:
1995 err = tcp_recv_urg(sk, msg, len, flags);
1996 if (err > 0)
1997 uid_stat_tcp_rcv(current_uid(), err);
1998 goto out;
1999
2000recv_sndq:
2001 err = tcp_peek_sndq(sk, msg, len);
2002 goto out;
2003}
2004EXPORT_SYMBOL(tcp_recvmsg);
2005
2006void tcp_set_state(struct sock *sk, int state)
2007{
2008 int oldstate = sk->sk_state;
2009
2010 switch (state) {
2011 case TCP_ESTABLISHED:
2012 if (oldstate != TCP_ESTABLISHED)
2013 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2014 break;
2015
2016 case TCP_CLOSE:
2017 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2018 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2019
2020 sk->sk_prot->unhash(sk);
2021 if (inet_csk(sk)->icsk_bind_hash &&
2022 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2023 inet_put_port(sk);
2024 /* fall through */
2025 default:
2026 if (oldstate == TCP_ESTABLISHED)
2027 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2028 }
2029
2030 /* Change state AFTER socket is unhashed to avoid closed
2031 * socket sitting in hash tables.
2032 */
2033 sk->sk_state = state;
2034
2035#ifdef STATE_TRACE
2036 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2037#endif
2038}
2039EXPORT_SYMBOL_GPL(tcp_set_state);
2040
2041/*
2042 * State processing on a close. This implements the state shift for
2043 * sending our FIN frame. Note that we only send a FIN for some
2044 * states. A shutdown() may have already sent the FIN, or we may be
2045 * closed.
2046 */
2047
2048static const unsigned char new_state[16] = {
2049 /* current state: new state: action: */
2050 /* (Invalid) */ TCP_CLOSE,
2051 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2052 /* TCP_SYN_SENT */ TCP_CLOSE,
2053 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2054 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
2055 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
2056 /* TCP_TIME_WAIT */ TCP_CLOSE,
2057 /* TCP_CLOSE */ TCP_CLOSE,
2058 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
2059 /* TCP_LAST_ACK */ TCP_LAST_ACK,
2060 /* TCP_LISTEN */ TCP_CLOSE,
2061 /* TCP_CLOSING */ TCP_CLOSING,
2062};
2063
2064static int tcp_close_state(struct sock *sk)
2065{
2066 int next = (int)new_state[sk->sk_state];
2067 int ns = next & TCP_STATE_MASK;
2068
2069 tcp_set_state(sk, ns);
2070
2071 return next & TCP_ACTION_FIN;
2072}
2073
2074/*
2075 * Shutdown the sending side of a connection. Much like close except
2076 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2077 */
2078
2079void tcp_shutdown(struct sock *sk, int how)
2080{
2081 /* We need to grab some memory, and put together a FIN,
2082 * and then put it into the queue to be sent.
2083 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2084 */
2085 if (!(how & SEND_SHUTDOWN))
2086 return;
2087
2088 /* If we've already sent a FIN, or it's a closed state, skip this. */
2089 if ((1 << sk->sk_state) &
2090 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2091 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2092 /* Clear out any half completed packets. FIN if needed. */
2093 if (tcp_close_state(sk))
2094 tcp_send_fin(sk);
2095 }
2096}
2097EXPORT_SYMBOL(tcp_shutdown);
2098
2099bool tcp_check_oom(struct sock *sk, int shift)
2100{
2101 bool too_many_orphans, out_of_socket_memory;
2102
2103 too_many_orphans = tcp_too_many_orphans(sk, shift);
2104 out_of_socket_memory = tcp_out_of_memory(sk);
2105
2106 if (too_many_orphans)
2107 net_info_ratelimited("too many orphaned sockets\n");
2108 if (out_of_socket_memory)
2109 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2110 return too_many_orphans || out_of_socket_memory;
2111}
2112
2113void tcp_close(struct sock *sk, long timeout)
2114{
2115 struct sk_buff *skb;
2116 int data_was_unread = 0;
2117 int state;
2118
2119 lock_sock(sk);
2120 sk->sk_shutdown = SHUTDOWN_MASK;
2121
2122 if (sk->sk_state == TCP_LISTEN) {
2123 tcp_set_state(sk, TCP_CLOSE);
2124
2125 /* Special case. */
2126 inet_csk_listen_stop(sk);
2127
2128 goto adjudge_to_death;
2129 }
2130
2131 /* We need to flush the recv. buffs. We do this only on the
2132 * descriptor close, not protocol-sourced closes, because the
2133 * reader process may not have drained the data yet!
2134 */
2135 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2136 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2137 tcp_hdr(skb)->fin;
2138 data_was_unread += len;
2139 __kfree_skb(skb);
2140 }
2141
2142 sk_mem_reclaim(sk);
2143
2144 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2145 if (sk->sk_state == TCP_CLOSE)
2146 goto adjudge_to_death;
2147
2148 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2149 * data was lost. To witness the awful effects of the old behavior of
2150 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2151 * GET in an FTP client, suspend the process, wait for the client to
2152 * advertise a zero window, then kill -9 the FTP client, wheee...
2153 * Note: timeout is always zero in such a case.
2154 */
2155 if (unlikely(tcp_sk(sk)->repair)) {
2156 sk->sk_prot->disconnect(sk, 0);
2157 } else if (data_was_unread) {
2158 /* Unread data was tossed, zap the connection. */
2159 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2160 tcp_set_state(sk, TCP_CLOSE);
2161 tcp_send_active_reset(sk, sk->sk_allocation);
2162 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2163 /* Check zero linger _after_ checking for unread data. */
2164 sk->sk_prot->disconnect(sk, 0);
2165 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2166 } else if (tcp_close_state(sk)) {
2167 /* We FIN if the application ate all the data before
2168 * zapping the connection.
2169 */
2170
2171 /* RED-PEN. Formally speaking, we have broken TCP state
2172 * machine. State transitions:
2173 *
2174 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2175 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2176 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2177 *
2178 * are legal only when FIN has been sent (i.e. in window),
2179 * rather than queued out of window. Purists blame.
2180 *
2181 * F.e. "RFC state" is ESTABLISHED,
2182 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2183 *
2184 * The visible declinations are that sometimes
2185 * we enter time-wait state, when it is not required really
2186 * (harmless), do not send active resets, when they are
2187 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2188 * they look as CLOSING or LAST_ACK for Linux)
2189 * Probably, I missed some more holelets.
2190 * --ANK
2191 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2192 * in a single packet! (May consider it later but will
2193 * probably need API support or TCP_CORK SYN-ACK until
2194 * data is written and socket is closed.)
2195 */
2196 tcp_send_fin(sk);
2197 }
2198
2199 sk_stream_wait_close(sk, timeout);
2200
2201adjudge_to_death:
2202 state = sk->sk_state;
2203 sock_hold(sk);
2204 sock_orphan(sk);
2205
2206 /* It is the last release_sock in its life. It will remove backlog. */
2207 release_sock(sk);
2208
2209
2210 /* Now socket is owned by kernel and we acquire BH lock
2211 to finish close. No need to check for user refs.
2212 */
2213 local_bh_disable();
2214 bh_lock_sock(sk);
2215 WARN_ON(sock_owned_by_user(sk));
2216
2217 percpu_counter_inc(sk->sk_prot->orphan_count);
2218
2219 /* Have we already been destroyed by a softirq or backlog? */
2220 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2221 goto out;
2222
2223 /* This is a (useful) BSD violating of the RFC. There is a
2224 * problem with TCP as specified in that the other end could
2225 * keep a socket open forever with no application left this end.
2226 * We use a 3 minute timeout (about the same as BSD) then kill
2227 * our end. If they send after that then tough - BUT: long enough
2228 * that we won't make the old 4*rto = almost no time - whoops
2229 * reset mistake.
2230 *
2231 * Nope, it was not mistake. It is really desired behaviour
2232 * f.e. on http servers, when such sockets are useless, but
2233 * consume significant resources. Let's do it with special
2234 * linger2 option. --ANK
2235 */
2236
2237 if (sk->sk_state == TCP_FIN_WAIT2) {
2238 struct tcp_sock *tp = tcp_sk(sk);
2239 if (tp->linger2 < 0) {
2240 tcp_set_state(sk, TCP_CLOSE);
2241 tcp_send_active_reset(sk, GFP_ATOMIC);
2242 NET_INC_STATS_BH(sock_net(sk),
2243 LINUX_MIB_TCPABORTONLINGER);
2244 } else {
2245 const int tmo = tcp_fin_time(sk);
2246
2247 if (tmo > TCP_TIMEWAIT_LEN) {
2248 inet_csk_reset_keepalive_timer(sk,
2249 tmo - TCP_TIMEWAIT_LEN);
2250 } else {
2251 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2252 goto out;
2253 }
2254 }
2255 }
2256 if (sk->sk_state != TCP_CLOSE) {
2257 sk_mem_reclaim(sk);
2258 if (tcp_check_oom(sk, 0)) {
2259 tcp_set_state(sk, TCP_CLOSE);
2260 tcp_send_active_reset(sk, GFP_ATOMIC);
2261 NET_INC_STATS_BH(sock_net(sk),
2262 LINUX_MIB_TCPABORTONMEMORY);
2263 }
2264 }
2265
2266 if (sk->sk_state == TCP_CLOSE) {
2267 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2268 /* We could get here with a non-NULL req if the socket is
2269 * aborted (e.g., closed with unread data) before 3WHS
2270 * finishes.
2271 */
2272 if (req != NULL)
2273 reqsk_fastopen_remove(sk, req, false);
2274 inet_csk_destroy_sock(sk);
2275 }
2276 /* Otherwise, socket is reprieved until protocol close. */
2277
2278out:
2279 bh_unlock_sock(sk);
2280 local_bh_enable();
2281 sock_put(sk);
2282}
2283EXPORT_SYMBOL(tcp_close);
2284
2285/* These states need RST on ABORT according to RFC793 */
2286
2287static inline bool tcp_need_reset(int state)
2288{
2289 return (1 << state) &
2290 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2291 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2292}
2293
2294int tcp_disconnect(struct sock *sk, int flags)
2295{
2296 struct inet_sock *inet = inet_sk(sk);
2297 struct inet_connection_sock *icsk = inet_csk(sk);
2298 struct tcp_sock *tp = tcp_sk(sk);
2299 int err = 0;
2300 int old_state = sk->sk_state;
2301
2302 if (old_state != TCP_CLOSE)
2303 tcp_set_state(sk, TCP_CLOSE);
2304
2305 /* ABORT function of RFC793 */
2306 if (old_state == TCP_LISTEN) {
2307 inet_csk_listen_stop(sk);
2308 } else if (unlikely(tp->repair)) {
2309 sk->sk_err = ECONNABORTED;
2310 } else if (tcp_need_reset(old_state) ||
2311 (tp->snd_nxt != tp->write_seq &&
2312 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2313 /* The last check adjusts for discrepancy of Linux wrt. RFC
2314 * states
2315 */
2316 tcp_send_active_reset(sk, gfp_any());
2317 sk->sk_err = ECONNRESET;
2318 } else if (old_state == TCP_SYN_SENT)
2319 sk->sk_err = ECONNRESET;
2320
2321 tcp_clear_xmit_timers(sk);
2322 __skb_queue_purge(&sk->sk_receive_queue);
2323 tcp_write_queue_purge(sk);
2324 __skb_queue_purge(&tp->out_of_order_queue);
2325#ifdef CONFIG_NET_DMA
2326 __skb_queue_purge(&sk->sk_async_wait_queue);
2327#endif
2328
2329 inet->inet_dport = 0;
2330
2331 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2332 inet_reset_saddr(sk);
2333
2334 sk->sk_shutdown = 0;
2335 sock_reset_flag(sk, SOCK_DONE);
2336 tp->srtt = 0;
2337 if ((tp->write_seq += tp->max_window + 2) == 0)
2338 tp->write_seq = 1;
2339 icsk->icsk_backoff = 0;
2340 tp->snd_cwnd = 2;
2341 icsk->icsk_probes_out = 0;
2342 tp->packets_out = 0;
2343 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2344 tp->snd_cwnd_cnt = 0;
2345 tp->window_clamp = 0;
2346 tcp_set_ca_state(sk, TCP_CA_Open);
2347 tcp_clear_retrans(tp);
2348 inet_csk_delack_init(sk);
2349 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2350 * issue in __tcp_select_window()
2351 */
2352 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2353 tcp_init_send_head(sk);
2354 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2355 __sk_dst_reset(sk);
2356 dst_release(sk->sk_rx_dst);
2357 sk->sk_rx_dst = NULL;
2358
2359 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2360
2361 sk->sk_error_report(sk);
2362 return err;
2363}
2364EXPORT_SYMBOL(tcp_disconnect);
2365
2366void tcp_sock_destruct(struct sock *sk)
2367{
2368 inet_sock_destruct(sk);
2369
2370 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2371}
2372
2373static inline bool tcp_can_repair_sock(const struct sock *sk)
2374{
2375 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2376 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2377}
2378
2379static int tcp_repair_options_est(struct tcp_sock *tp,
2380 struct tcp_repair_opt __user *optbuf, unsigned int len)
2381{
2382 struct tcp_repair_opt opt;
2383
2384 while (len >= sizeof(opt)) {
2385 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2386 return -EFAULT;
2387
2388 optbuf++;
2389 len -= sizeof(opt);
2390
2391 switch (opt.opt_code) {
2392 case TCPOPT_MSS:
2393 tp->rx_opt.mss_clamp = opt.opt_val;
2394 break;
2395 case TCPOPT_WINDOW:
2396 {
2397 u16 snd_wscale = opt.opt_val & 0xFFFF;
2398 u16 rcv_wscale = opt.opt_val >> 16;
2399
2400 if (snd_wscale > 14 || rcv_wscale > 14)
2401 return -EFBIG;
2402
2403 tp->rx_opt.snd_wscale = snd_wscale;
2404 tp->rx_opt.rcv_wscale = rcv_wscale;
2405 tp->rx_opt.wscale_ok = 1;
2406 }
2407 break;
2408 case TCPOPT_SACK_PERM:
2409 if (opt.opt_val != 0)
2410 return -EINVAL;
2411
2412 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2413 if (sysctl_tcp_fack)
2414 tcp_enable_fack(tp);
2415 break;
2416 case TCPOPT_TIMESTAMP:
2417 if (opt.opt_val != 0)
2418 return -EINVAL;
2419
2420 tp->rx_opt.tstamp_ok = 1;
2421 break;
2422 }
2423 }
2424
2425 return 0;
2426}
2427
2428/*
2429 * Socket option code for TCP.
2430 */
2431static int do_tcp_setsockopt(struct sock *sk, int level,
2432 int optname, char __user *optval, unsigned int optlen)
2433{
2434 struct tcp_sock *tp = tcp_sk(sk);
2435 struct inet_connection_sock *icsk = inet_csk(sk);
2436 int val;
2437 int err = 0;
2438
2439 /* These are data/string values, all the others are ints */
2440 switch (optname) {
2441 case TCP_CONGESTION: {
2442 char name[TCP_CA_NAME_MAX];
2443
2444 if (optlen < 1)
2445 return -EINVAL;
2446
2447 val = strncpy_from_user(name, optval,
2448 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2449 if (val < 0)
2450 return -EFAULT;
2451 name[val] = 0;
2452
2453 lock_sock(sk);
2454 err = tcp_set_congestion_control(sk, name);
2455 release_sock(sk);
2456 return err;
2457 }
2458 default:
2459 /* fallthru */
2460 break;
2461 }
2462
2463 if (optlen < sizeof(int))
2464 return -EINVAL;
2465
2466 if (get_user(val, (int __user *)optval))
2467 return -EFAULT;
2468
2469 lock_sock(sk);
2470
2471 switch (optname) {
2472 case TCP_MAXSEG:
2473 /* Values greater than interface MTU won't take effect. However
2474 * at the point when this call is done we typically don't yet
2475 * know which interface is going to be used */
2476 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2477 err = -EINVAL;
2478 break;
2479 }
2480 tp->rx_opt.user_mss = val;
2481 break;
2482
2483 case TCP_NODELAY:
2484 if (val) {
2485 /* TCP_NODELAY is weaker than TCP_CORK, so that
2486 * this option on corked socket is remembered, but
2487 * it is not activated until cork is cleared.
2488 *
2489 * However, when TCP_NODELAY is set we make
2490 * an explicit push, which overrides even TCP_CORK
2491 * for currently queued segments.
2492 */
2493 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2494 tcp_push_pending_frames(sk);
2495 } else {
2496 tp->nonagle &= ~TCP_NAGLE_OFF;
2497 }
2498 break;
2499
2500 case TCP_THIN_LINEAR_TIMEOUTS:
2501 if (val < 0 || val > 1)
2502 err = -EINVAL;
2503 else
2504 tp->thin_lto = val;
2505 break;
2506
2507 case TCP_THIN_DUPACK:
2508 if (val < 0 || val > 1)
2509 err = -EINVAL;
2510 else {
2511 tp->thin_dupack = val;
2512 if (tp->thin_dupack)
2513 tcp_disable_early_retrans(tp);
2514 }
2515 break;
2516
2517 case TCP_REPAIR:
2518 if (!tcp_can_repair_sock(sk))
2519 err = -EPERM;
2520 else if (val == 1) {
2521 tp->repair = 1;
2522 sk->sk_reuse = SK_FORCE_REUSE;
2523 tp->repair_queue = TCP_NO_QUEUE;
2524 } else if (val == 0) {
2525 tp->repair = 0;
2526 sk->sk_reuse = SK_NO_REUSE;
2527 tcp_send_window_probe(sk);
2528 } else
2529 err = -EINVAL;
2530
2531 break;
2532
2533 case TCP_REPAIR_QUEUE:
2534 if (!tp->repair)
2535 err = -EPERM;
2536 else if (val < TCP_QUEUES_NR)
2537 tp->repair_queue = val;
2538 else
2539 err = -EINVAL;
2540 break;
2541
2542 case TCP_QUEUE_SEQ:
2543 if (sk->sk_state != TCP_CLOSE)
2544 err = -EPERM;
2545 else if (tp->repair_queue == TCP_SEND_QUEUE)
2546 tp->write_seq = val;
2547 else if (tp->repair_queue == TCP_RECV_QUEUE)
2548 tp->rcv_nxt = val;
2549 else
2550 err = -EINVAL;
2551 break;
2552
2553 case TCP_REPAIR_OPTIONS:
2554 if (!tp->repair)
2555 err = -EINVAL;
2556 else if (sk->sk_state == TCP_ESTABLISHED)
2557 err = tcp_repair_options_est(tp,
2558 (struct tcp_repair_opt __user *)optval,
2559 optlen);
2560 else
2561 err = -EPERM;
2562 break;
2563
2564 case TCP_CORK:
2565 /* When set indicates to always queue non-full frames.
2566 * Later the user clears this option and we transmit
2567 * any pending partial frames in the queue. This is
2568 * meant to be used alongside sendfile() to get properly
2569 * filled frames when the user (for example) must write
2570 * out headers with a write() call first and then use
2571 * sendfile to send out the data parts.
2572 *
2573 * TCP_CORK can be set together with TCP_NODELAY and it is
2574 * stronger than TCP_NODELAY.
2575 */
2576 if (val) {
2577 tp->nonagle |= TCP_NAGLE_CORK;
2578 } else {
2579 tp->nonagle &= ~TCP_NAGLE_CORK;
2580 if (tp->nonagle&TCP_NAGLE_OFF)
2581 tp->nonagle |= TCP_NAGLE_PUSH;
2582 tcp_push_pending_frames(sk);
2583 }
2584 break;
2585
2586 case TCP_KEEPIDLE:
2587 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2588 err = -EINVAL;
2589 else {
2590 tp->keepalive_time = val * HZ;
2591 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2592 !((1 << sk->sk_state) &
2593 (TCPF_CLOSE | TCPF_LISTEN))) {
2594 u32 elapsed = keepalive_time_elapsed(tp);
2595 if (tp->keepalive_time > elapsed)
2596 elapsed = tp->keepalive_time - elapsed;
2597 else
2598 elapsed = 0;
2599 inet_csk_reset_keepalive_timer(sk, elapsed);
2600 }
2601 }
2602 break;
2603 case TCP_KEEPINTVL:
2604 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2605 err = -EINVAL;
2606 else
2607 tp->keepalive_intvl = val * HZ;
2608 break;
2609 case TCP_KEEPCNT:
2610 if (val < 1 || val > MAX_TCP_KEEPCNT)
2611 err = -EINVAL;
2612 else
2613 tp->keepalive_probes = val;
2614 break;
2615 case TCP_SYNCNT:
2616 if (val < 1 || val > MAX_TCP_SYNCNT)
2617 err = -EINVAL;
2618 else
2619 icsk->icsk_syn_retries = val;
2620 break;
2621
2622 case TCP_LINGER2:
2623 if (val < 0)
2624 tp->linger2 = -1;
2625 else if (val > sysctl_tcp_fin_timeout / HZ)
2626 tp->linger2 = 0;
2627 else
2628 tp->linger2 = val * HZ;
2629 break;
2630
2631 case TCP_DEFER_ACCEPT:
2632 /* Translate value in seconds to number of retransmits */
2633 icsk->icsk_accept_queue.rskq_defer_accept =
2634 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2635 sysctl_tcp_rto_max / HZ);
2636 break;
2637
2638 case TCP_WINDOW_CLAMP:
2639 if (!val) {
2640 if (sk->sk_state != TCP_CLOSE) {
2641 err = -EINVAL;
2642 break;
2643 }
2644 tp->window_clamp = 0;
2645 } else
2646 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2647 SOCK_MIN_RCVBUF / 2 : val;
2648 break;
2649
2650 case TCP_QUICKACK:
2651 if (!val) {
2652 icsk->icsk_ack.pingpong = 1;
2653 } else {
2654 icsk->icsk_ack.pingpong = 0;
2655 if ((1 << sk->sk_state) &
2656 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2657 inet_csk_ack_scheduled(sk)) {
2658 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2659 tcp_cleanup_rbuf(sk, 1);
2660 if (!(val & 1))
2661 icsk->icsk_ack.pingpong = 1;
2662 }
2663 }
2664 break;
2665
2666#ifdef CONFIG_TCP_MD5SIG
2667 case TCP_MD5SIG:
2668 /* Read the IP->Key mappings from userspace */
2669 err = tp->af_specific->md5_parse(sk, optval, optlen);
2670 break;
2671#endif
2672 case TCP_USER_TIMEOUT:
2673 /* Cap the max timeout in ms TCP will retry/retrans
2674 * before giving up and aborting (ETIMEDOUT) a connection.
2675 */
2676 if (val < 0)
2677 err = -EINVAL;
2678 else
2679 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2680 break;
2681
2682 case TCP_FASTOPEN:
2683 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2684 TCPF_LISTEN)))
2685 err = fastopen_init_queue(sk, val);
2686 else
2687 err = -EINVAL;
2688 break;
2689 case TCP_TIMESTAMP:
2690 if (!tp->repair)
2691 err = -EPERM;
2692 else
2693 tp->tsoffset = val - tcp_time_stamp;
2694 break;
2695 default:
2696 err = -ENOPROTOOPT;
2697 break;
2698 }
2699
2700 release_sock(sk);
2701 return err;
2702}
2703
2704int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2705 unsigned int optlen)
2706{
2707 const struct inet_connection_sock *icsk = inet_csk(sk);
2708
2709 if (level != SOL_TCP)
2710 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2711 optval, optlen);
2712 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2713}
2714EXPORT_SYMBOL(tcp_setsockopt);
2715
2716#ifdef CONFIG_COMPAT
2717int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2718 char __user *optval, unsigned int optlen)
2719{
2720 if (level != SOL_TCP)
2721 return inet_csk_compat_setsockopt(sk, level, optname,
2722 optval, optlen);
2723 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2724}
2725EXPORT_SYMBOL(compat_tcp_setsockopt);
2726#endif
2727
2728/* Return information about state of tcp endpoint in API format. */
2729void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2730{
2731 const struct tcp_sock *tp = tcp_sk(sk);
2732 const struct inet_connection_sock *icsk = inet_csk(sk);
2733 u32 now = tcp_time_stamp;
2734
2735 memset(info, 0, sizeof(*info));
2736
2737 info->tcpi_state = sk->sk_state;
2738 info->tcpi_ca_state = icsk->icsk_ca_state;
2739 info->tcpi_retransmits = icsk->icsk_retransmits;
2740 info->tcpi_probes = icsk->icsk_probes_out;
2741 info->tcpi_backoff = icsk->icsk_backoff;
2742
2743 if (tp->rx_opt.tstamp_ok)
2744 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2745 if (tcp_is_sack(tp))
2746 info->tcpi_options |= TCPI_OPT_SACK;
2747 if (tp->rx_opt.wscale_ok) {
2748 info->tcpi_options |= TCPI_OPT_WSCALE;
2749 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2750 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2751 }
2752
2753 if (tp->ecn_flags & TCP_ECN_OK)
2754 info->tcpi_options |= TCPI_OPT_ECN;
2755 if (tp->ecn_flags & TCP_ECN_SEEN)
2756 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2757 if (tp->syn_data_acked)
2758 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2759
2760 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2761 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2762 info->tcpi_snd_mss = tp->mss_cache;
2763 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2764
2765 if (sk->sk_state == TCP_LISTEN) {
2766 info->tcpi_unacked = sk->sk_ack_backlog;
2767 info->tcpi_sacked = sk->sk_max_ack_backlog;
2768 } else {
2769 info->tcpi_unacked = tp->packets_out;
2770 info->tcpi_sacked = tp->sacked_out;
2771 }
2772 info->tcpi_lost = tp->lost_out;
2773 info->tcpi_retrans = tp->retrans_out;
2774 info->tcpi_fackets = tp->fackets_out;
2775
2776 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2777 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2778 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2779
2780 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2781 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2782 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2783 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2784 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2785 info->tcpi_snd_cwnd = tp->snd_cwnd;
2786 info->tcpi_advmss = tp->advmss;
2787 info->tcpi_reordering = tp->reordering;
2788
2789 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2790 info->tcpi_rcv_space = tp->rcvq_space.space;
2791
2792 info->tcpi_total_retrans = tp->total_retrans;
2793}
2794EXPORT_SYMBOL_GPL(tcp_get_info);
2795
2796static int do_tcp_getsockopt(struct sock *sk, int level,
2797 int optname, char __user *optval, int __user *optlen)
2798{
2799 struct inet_connection_sock *icsk = inet_csk(sk);
2800 struct tcp_sock *tp = tcp_sk(sk);
2801 int val, len;
2802
2803 if (get_user(len, optlen))
2804 return -EFAULT;
2805
2806 len = min_t(unsigned int, len, sizeof(int));
2807
2808 if (len < 0)
2809 return -EINVAL;
2810
2811 switch (optname) {
2812 case TCP_MAXSEG:
2813 val = tp->mss_cache;
2814 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2815 val = tp->rx_opt.user_mss;
2816 if (tp->repair)
2817 val = tp->rx_opt.mss_clamp;
2818 break;
2819 case TCP_NODELAY:
2820 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2821 break;
2822 case TCP_CORK:
2823 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2824 break;
2825 case TCP_KEEPIDLE:
2826 val = keepalive_time_when(tp) / HZ;
2827 break;
2828 case TCP_KEEPINTVL:
2829 val = keepalive_intvl_when(tp) / HZ;
2830 break;
2831 case TCP_KEEPCNT:
2832 val = keepalive_probes(tp);
2833 break;
2834 case TCP_SYNCNT:
2835 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2836 break;
2837 case TCP_LINGER2:
2838 val = tp->linger2;
2839 if (val >= 0)
2840 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2841 break;
2842 case TCP_DEFER_ACCEPT:
2843 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2844 TCP_TIMEOUT_INIT / HZ, sysctl_tcp_rto_max / HZ);
2845 break;
2846 case TCP_WINDOW_CLAMP:
2847 val = tp->window_clamp;
2848 break;
2849 case TCP_INFO: {
2850 struct tcp_info info;
2851
2852 if (get_user(len, optlen))
2853 return -EFAULT;
2854
2855 tcp_get_info(sk, &info);
2856
2857 len = min_t(unsigned int, len, sizeof(info));
2858 if (put_user(len, optlen))
2859 return -EFAULT;
2860 if (copy_to_user(optval, &info, len))
2861 return -EFAULT;
2862 return 0;
2863 }
2864 case TCP_QUICKACK:
2865 val = !icsk->icsk_ack.pingpong;
2866 break;
2867
2868 case TCP_CONGESTION:
2869 if (get_user(len, optlen))
2870 return -EFAULT;
2871 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2872 if (put_user(len, optlen))
2873 return -EFAULT;
2874 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2875 return -EFAULT;
2876 return 0;
2877
2878 case TCP_THIN_LINEAR_TIMEOUTS:
2879 val = tp->thin_lto;
2880 break;
2881 case TCP_THIN_DUPACK:
2882 val = tp->thin_dupack;
2883 break;
2884
2885 case TCP_REPAIR:
2886 val = tp->repair;
2887 break;
2888
2889 case TCP_REPAIR_QUEUE:
2890 if (tp->repair)
2891 val = tp->repair_queue;
2892 else
2893 return -EINVAL;
2894 break;
2895
2896 case TCP_QUEUE_SEQ:
2897 if (tp->repair_queue == TCP_SEND_QUEUE)
2898 val = tp->write_seq;
2899 else if (tp->repair_queue == TCP_RECV_QUEUE)
2900 val = tp->rcv_nxt;
2901 else
2902 return -EINVAL;
2903 break;
2904
2905 case TCP_USER_TIMEOUT:
2906 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2907 break;
2908 case TCP_TIMESTAMP:
2909 val = tcp_time_stamp + tp->tsoffset;
2910 break;
2911 default:
2912 return -ENOPROTOOPT;
2913 }
2914
2915 if (put_user(len, optlen))
2916 return -EFAULT;
2917 if (copy_to_user(optval, &val, len))
2918 return -EFAULT;
2919 return 0;
2920}
2921
2922int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2923 int __user *optlen)
2924{
2925 struct inet_connection_sock *icsk = inet_csk(sk);
2926
2927 if (level != SOL_TCP)
2928 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2929 optval, optlen);
2930 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2931}
2932EXPORT_SYMBOL(tcp_getsockopt);
2933
2934#ifdef CONFIG_COMPAT
2935int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2936 char __user *optval, int __user *optlen)
2937{
2938 if (level != SOL_TCP)
2939 return inet_csk_compat_getsockopt(sk, level, optname,
2940 optval, optlen);
2941 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2942}
2943EXPORT_SYMBOL(compat_tcp_getsockopt);
2944#endif
2945
2946struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2947 netdev_features_t features)
2948{
2949 struct sk_buff *segs = ERR_PTR(-EINVAL);
2950 unsigned int sum_truesize = 0;
2951 struct tcphdr *th;
2952 unsigned int thlen;
2953 unsigned int seq;
2954 __be32 delta;
2955 unsigned int oldlen;
2956 unsigned int mss;
2957 struct sk_buff *gso_skb = skb;
2958 __sum16 newcheck;
2959 bool ooo_okay, copy_destructor;
2960
2961 if (!pskb_may_pull(skb, sizeof(*th)))
2962 goto out;
2963
2964 th = tcp_hdr(skb);
2965 thlen = th->doff * 4;
2966 if (thlen < sizeof(*th))
2967 goto out;
2968
2969 if (!pskb_may_pull(skb, thlen))
2970 goto out;
2971
2972 oldlen = (u16)~skb->len;
2973 __skb_pull(skb, thlen);
2974
2975 mss = skb_shinfo(skb)->gso_size;
2976 if (unlikely(skb->len <= mss))
2977 goto out;
2978
2979 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2980 /* Packet is from an untrusted source, reset gso_segs. */
2981 int type = skb_shinfo(skb)->gso_type;
2982
2983 if (unlikely(type &
2984 ~(SKB_GSO_TCPV4 |
2985 SKB_GSO_DODGY |
2986 SKB_GSO_TCP_ECN |
2987 SKB_GSO_TCPV6 |
2988 SKB_GSO_GRE |
2989 SKB_GSO_UDP_TUNNEL |
2990 0) ||
2991 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2992 goto out;
2993
2994 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2995
2996 segs = NULL;
2997 goto out;
2998 }
2999
3000 copy_destructor = gso_skb->destructor == tcp_wfree;
3001 ooo_okay = gso_skb->ooo_okay;
3002 /* All segments but the first should have ooo_okay cleared */
3003 skb->ooo_okay = 0;
3004
3005 segs = skb_segment(skb, features);
3006 if (IS_ERR(segs))
3007 goto out;
3008
3009 /* Only first segment might have ooo_okay set */
3010 segs->ooo_okay = ooo_okay;
3011
3012 delta = htonl(oldlen + (thlen + mss));
3013
3014 skb = segs;
3015 th = tcp_hdr(skb);
3016 seq = ntohl(th->seq);
3017
3018 newcheck = ~csum_fold((__force __wsum)((__force u32)th->check +
3019 (__force u32)delta));
3020
3021 do {
3022 th->fin = th->psh = 0;
3023 th->check = newcheck;
3024
3025 if (skb->ip_summed != CHECKSUM_PARTIAL)
3026 th->check =
3027 csum_fold(csum_partial(skb_transport_header(skb),
3028 thlen, skb->csum));
3029
3030 seq += mss;
3031 if (copy_destructor) {
3032 skb->destructor = gso_skb->destructor;
3033 skb->sk = gso_skb->sk;
3034 sum_truesize += skb->truesize;
3035 }
3036 skb = skb->next;
3037 th = tcp_hdr(skb);
3038
3039 th->seq = htonl(seq);
3040 th->cwr = 0;
3041 } while (skb->next);
3042
3043 /* Following permits TCP Small Queues to work well with GSO :
3044 * The callback to TCP stack will be called at the time last frag
3045 * is freed at TX completion, and not right now when gso_skb
3046 * is freed by GSO engine
3047 */
3048 if (copy_destructor) {
3049 swap(gso_skb->sk, skb->sk);
3050 swap(gso_skb->destructor, skb->destructor);
3051 sum_truesize += skb->truesize;
3052 atomic_add(sum_truesize - gso_skb->truesize,
3053 &skb->sk->sk_wmem_alloc);
3054 }
3055
3056 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3057 skb->data_len);
3058 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3059 (__force u32)delta));
3060 if (skb->ip_summed != CHECKSUM_PARTIAL)
3061 th->check = csum_fold(csum_partial(skb_transport_header(skb),
3062 thlen, skb->csum));
3063
3064out:
3065 return segs;
3066}
3067EXPORT_SYMBOL(tcp_tso_segment);
3068
3069struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3070{
3071 struct sk_buff **pp = NULL;
3072 struct sk_buff *p;
3073 struct tcphdr *th;
3074 struct tcphdr *th2;
3075 unsigned int len;
3076 unsigned int thlen;
3077 __be32 flags;
3078 unsigned int mss = 1;
3079 unsigned int hlen;
3080 unsigned int off;
3081 int flush = 1;
3082 int i;
3083
3084 off = skb_gro_offset(skb);
3085 hlen = off + sizeof(*th);
3086 th = skb_gro_header_fast(skb, off);
3087 if (skb_gro_header_hard(skb, hlen)) {
3088 th = skb_gro_header_slow(skb, hlen, off);
3089 if (unlikely(!th))
3090 goto out;
3091 }
3092
3093 thlen = th->doff * 4;
3094 if (thlen < sizeof(*th))
3095 goto out;
3096
3097 hlen = off + thlen;
3098 if (skb_gro_header_hard(skb, hlen)) {
3099 th = skb_gro_header_slow(skb, hlen, off);
3100 if (unlikely(!th))
3101 goto out;
3102 }
3103
3104 skb_gro_pull(skb, thlen);
3105
3106 len = skb_gro_len(skb);
3107 flags = tcp_flag_word(th);
3108
3109 for (; (p = *head); head = &p->next) {
3110 if (!NAPI_GRO_CB(p)->same_flow)
3111 continue;
3112
3113 th2 = tcp_hdr(p);
3114
3115 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3116 NAPI_GRO_CB(p)->same_flow = 0;
3117 continue;
3118 }
3119
3120 goto found;
3121 }
3122
3123 goto out_check_final;
3124
3125found:
3126 flush = NAPI_GRO_CB(p)->flush;
3127 flush |= (__force int)(flags & TCP_FLAG_CWR);
3128 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3129 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3130 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3131 for (i = sizeof(*th); i < thlen; i += 4)
3132 flush |= *(u32 *)((u8 *)th + i) ^
3133 *(u32 *)((u8 *)th2 + i);
3134
3135 mss = skb_shinfo(p)->gso_size;
3136
3137 flush |= (len - 1) >= mss;
3138 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3139
3140 if (flush || skb_gro_receive(head, skb)) {
3141 mss = 1;
3142 goto out_check_final;
3143 }
3144
3145 p = *head;
3146 th2 = tcp_hdr(p);
3147 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3148
3149out_check_final:
3150 flush = len < mss;
3151 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3152 TCP_FLAG_RST | TCP_FLAG_SYN |
3153 TCP_FLAG_FIN));
3154
3155 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3156 pp = head;
3157
3158out:
3159 NAPI_GRO_CB(skb)->flush |= flush;
3160
3161 return pp;
3162}
3163EXPORT_SYMBOL(tcp_gro_receive);
3164
3165int tcp_gro_complete(struct sk_buff *skb)
3166{
3167 struct tcphdr *th = tcp_hdr(skb);
3168
3169 skb->csum_start = skb_transport_header(skb) - skb->head;
3170 skb->csum_offset = offsetof(struct tcphdr, check);
3171 skb->ip_summed = CHECKSUM_PARTIAL;
3172
3173 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3174
3175 if (th->cwr)
3176 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3177
3178 return 0;
3179}
3180EXPORT_SYMBOL(tcp_gro_complete);
3181
3182#ifdef CONFIG_TCP_MD5SIG
3183static unsigned long tcp_md5sig_users;
3184static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3185static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3186
3187static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3188{
3189 int cpu;
3190
3191 for_each_possible_cpu(cpu) {
3192 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3193
3194 if (p->md5_desc.tfm)
3195 crypto_free_hash(p->md5_desc.tfm);
3196 }
3197 free_percpu(pool);
3198}
3199
3200void tcp_free_md5sig_pool(void)
3201{
3202 struct tcp_md5sig_pool __percpu *pool = NULL;
3203
3204 spin_lock_bh(&tcp_md5sig_pool_lock);
3205 if (--tcp_md5sig_users == 0) {
3206 pool = tcp_md5sig_pool;
3207 tcp_md5sig_pool = NULL;
3208 }
3209 spin_unlock_bh(&tcp_md5sig_pool_lock);
3210 if (pool)
3211 __tcp_free_md5sig_pool(pool);
3212}
3213EXPORT_SYMBOL(tcp_free_md5sig_pool);
3214
3215static struct tcp_md5sig_pool __percpu *
3216__tcp_alloc_md5sig_pool(struct sock *sk)
3217{
3218 int cpu;
3219 struct tcp_md5sig_pool __percpu *pool;
3220
3221 pool = alloc_percpu(struct tcp_md5sig_pool);
3222 if (!pool)
3223 return NULL;
3224
3225 for_each_possible_cpu(cpu) {
3226 struct crypto_hash *hash;
3227
3228 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3229 if (IS_ERR_OR_NULL(hash))
3230 goto out_free;
3231
3232 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3233 }
3234 return pool;
3235out_free:
3236 __tcp_free_md5sig_pool(pool);
3237 return NULL;
3238}
3239
3240struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3241{
3242 struct tcp_md5sig_pool __percpu *pool;
3243 bool alloc = false;
3244
3245retry:
3246 spin_lock_bh(&tcp_md5sig_pool_lock);
3247 pool = tcp_md5sig_pool;
3248 if (tcp_md5sig_users++ == 0) {
3249 alloc = true;
3250 spin_unlock_bh(&tcp_md5sig_pool_lock);
3251 } else if (!pool) {
3252 tcp_md5sig_users--;
3253 spin_unlock_bh(&tcp_md5sig_pool_lock);
3254 cpu_relax();
3255 goto retry;
3256 } else
3257 spin_unlock_bh(&tcp_md5sig_pool_lock);
3258
3259 if (alloc) {
3260 /* we cannot hold spinlock here because this may sleep. */
3261 struct tcp_md5sig_pool __percpu *p;
3262
3263 p = __tcp_alloc_md5sig_pool(sk);
3264 spin_lock_bh(&tcp_md5sig_pool_lock);
3265 if (!p) {
3266 tcp_md5sig_users--;
3267 spin_unlock_bh(&tcp_md5sig_pool_lock);
3268 return NULL;
3269 }
3270 pool = tcp_md5sig_pool;
3271 if (pool) {
3272 /* oops, it has already been assigned. */
3273 spin_unlock_bh(&tcp_md5sig_pool_lock);
3274 __tcp_free_md5sig_pool(p);
3275 } else {
3276 tcp_md5sig_pool = pool = p;
3277 spin_unlock_bh(&tcp_md5sig_pool_lock);
3278 }
3279 }
3280 return pool;
3281}
3282EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3283
3284
3285/**
3286 * tcp_get_md5sig_pool - get md5sig_pool for this user
3287 *
3288 * We use percpu structure, so if we succeed, we exit with preemption
3289 * and BH disabled, to make sure another thread or softirq handling
3290 * wont try to get same context.
3291 */
3292struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3293{
3294 struct tcp_md5sig_pool __percpu *p;
3295
3296 local_bh_disable();
3297
3298 spin_lock(&tcp_md5sig_pool_lock);
3299 p = tcp_md5sig_pool;
3300 if (p)
3301 tcp_md5sig_users++;
3302 spin_unlock(&tcp_md5sig_pool_lock);
3303
3304 if (p)
3305 return this_cpu_ptr(p);
3306
3307 local_bh_enable();
3308 return NULL;
3309}
3310EXPORT_SYMBOL(tcp_get_md5sig_pool);
3311
3312void tcp_put_md5sig_pool(void)
3313{
3314 local_bh_enable();
3315 tcp_free_md5sig_pool();
3316}
3317EXPORT_SYMBOL(tcp_put_md5sig_pool);
3318
3319int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3320 const struct tcphdr *th)
3321{
3322 struct scatterlist sg;
3323 struct tcphdr hdr;
3324 int err;
3325
3326 /* We are not allowed to change tcphdr, make a local copy */
3327 memcpy(&hdr, th, sizeof(hdr));
3328 hdr.check = 0;
3329
3330 /* options aren't included in the hash */
3331 sg_init_one(&sg, &hdr, sizeof(hdr));
3332 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3333 return err;
3334}
3335EXPORT_SYMBOL(tcp_md5_hash_header);
3336
3337int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3338 const struct sk_buff *skb, unsigned int header_len)
3339{
3340 struct scatterlist sg;
3341 const struct tcphdr *tp = tcp_hdr(skb);
3342 struct hash_desc *desc = &hp->md5_desc;
3343 unsigned int i;
3344 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3345 skb_headlen(skb) - header_len : 0;
3346 const struct skb_shared_info *shi = skb_shinfo(skb);
3347 struct sk_buff *frag_iter;
3348
3349 sg_init_table(&sg, 1);
3350
3351 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3352 if (crypto_hash_update(desc, &sg, head_data_len))
3353 return 1;
3354
3355 for (i = 0; i < shi->nr_frags; ++i) {
3356 const struct skb_frag_struct *f = &shi->frags[i];
3357 unsigned int offset = f->page_offset;
3358 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3359
3360 sg_set_page(&sg, page, skb_frag_size(f),
3361 offset_in_page(offset));
3362 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3363 return 1;
3364 }
3365
3366 skb_walk_frags(skb, frag_iter)
3367 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3368 return 1;
3369
3370 return 0;
3371}
3372EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3373
3374int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3375{
3376 struct scatterlist sg;
3377
3378 sg_init_one(&sg, key->key, key->keylen);
3379 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3380}
3381EXPORT_SYMBOL(tcp_md5_hash_key);
3382
3383#endif
3384
3385void tcp_done(struct sock *sk)
3386{
3387 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3388
3389 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3390 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3391
3392 tcp_set_state(sk, TCP_CLOSE);
3393 tcp_clear_xmit_timers(sk);
3394 if (req != NULL)
3395 reqsk_fastopen_remove(sk, req, false);
3396
3397 sk->sk_shutdown = SHUTDOWN_MASK;
3398
3399 if (!sock_flag(sk, SOCK_DEAD))
3400 sk->sk_state_change(sk);
3401 else
3402 inet_csk_destroy_sock(sk);
3403}
3404EXPORT_SYMBOL_GPL(tcp_done);
3405
3406extern struct tcp_congestion_ops tcp_reno;
3407
3408static __initdata unsigned long thash_entries;
3409static int __init set_thash_entries(char *str)
3410{
3411 ssize_t ret;
3412
3413 if (!str)
3414 return 0;
3415
3416 ret = kstrtoul(str, 0, &thash_entries);
3417 if (ret)
3418 return 0;
3419
3420 return 1;
3421}
3422__setup("thash_entries=", set_thash_entries);
3423
3424void tcp_init_mem(struct net *net)
3425{
3426 unsigned long limit = nr_free_buffer_pages() / 8;
3427 limit = max(limit, 128UL);
3428 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3429 net->ipv4.sysctl_tcp_mem[1] = limit;
3430 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3431}
3432
3433void __init tcp_init(void)
3434{
3435 struct sk_buff *skb = NULL;
3436 unsigned long limit;
3437 int max_rshare, max_wshare, cnt;
3438 unsigned int i;
3439
3440 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3441
3442 percpu_counter_init(&tcp_sockets_allocated, 0);
3443 percpu_counter_init(&tcp_orphan_count, 0);
3444 tcp_hashinfo.bind_bucket_cachep =
3445 kmem_cache_create("tcp_bind_bucket",
3446 sizeof(struct inet_bind_bucket), 0,
3447 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3448
3449 /* Size and allocate the main established and bind bucket
3450 * hash tables.
3451 *
3452 * The methodology is similar to that of the buffer cache.
3453 */
3454 tcp_hashinfo.ehash =
3455 alloc_large_system_hash("TCP established",
3456 sizeof(struct inet_ehash_bucket),
3457 thash_entries,
3458 17, /* one slot per 128 KB of memory */
3459 0,
3460 NULL,
3461 &tcp_hashinfo.ehash_mask,
3462 0,
3463 thash_entries ? 0 : 512 * 1024);
3464 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3465 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3466 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3467 }
3468 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3469 panic("TCP: failed to alloc ehash_locks");
3470 tcp_hashinfo.bhash =
3471 alloc_large_system_hash("TCP bind",
3472 sizeof(struct inet_bind_hashbucket),
3473 tcp_hashinfo.ehash_mask + 1,
3474 17, /* one slot per 128 KB of memory */
3475 0,
3476 &tcp_hashinfo.bhash_size,
3477 NULL,
3478 0,
3479 64 * 1024);
3480 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3481 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3482 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3483 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3484 }
3485
3486
3487 cnt = tcp_hashinfo.ehash_mask + 1;
3488
3489 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3490 sysctl_tcp_max_orphans = cnt / 2;
3491 sysctl_max_syn_backlog = max(128, cnt / 256);
3492
3493 tcp_init_mem(&init_net);
3494 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3495 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3496 max_wshare = min(4UL*1024*1024, limit);
3497 max_rshare = min(6UL*1024*1024, limit);
3498
3499 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3500 sysctl_tcp_wmem[1] = 16*1024;
3501 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3502
3503 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3504 sysctl_tcp_rmem[1] = 87380;
3505 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3506
3507 pr_info("Hash tables configured (established %u bind %u)\n",
3508 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3509
3510 tcp_metrics_init();
3511
3512 tcp_register_congestion_control(&tcp_reno);
3513
3514 tcp_tasklet_init();
3515}
3516
3517static int tcp_is_local(struct net *net, __be32 addr) {
3518 struct rtable *rt;
3519 struct flowi4 fl4 = { .daddr = addr };
3520 rt = ip_route_output_key(net, &fl4);
3521 if (IS_ERR_OR_NULL(rt))
3522 return 0;
3523 return rt->dst.dev && (rt->dst.dev->flags & IFF_LOOPBACK);
3524}
3525
3526#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3527static int tcp_is_local6(struct net *net, struct in6_addr *addr) {
3528 struct rt6_info *rt6 = rt6_lookup(net, addr, addr, 0, 0);
3529 return rt6 && rt6->dst.dev && (rt6->dst.dev->flags & IFF_LOOPBACK);
3530}
3531#endif
3532
3533/*
3534 * tcp_nuke_addr - destroy all sockets on the given local address
3535 * if local address is the unspecified address (0.0.0.0 or ::), destroy all
3536 * sockets with local addresses that are not configured.
3537 */
3538int tcp_nuke_addr(struct net *net, struct sockaddr *addr)
3539{
3540 int family = addr->sa_family;
3541 unsigned int bucket;
3542
3543 struct in_addr *in;
3544#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3545 struct in6_addr *in6 = NULL ;
3546#endif
3547 if (family == AF_INET) {
3548 in = &((struct sockaddr_in *)addr)->sin_addr;
3549#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3550 } else if (family == AF_INET6) {
3551 in6 = &((struct sockaddr_in6 *)addr)->sin6_addr;
3552#endif
3553 } else {
3554 return -EAFNOSUPPORT;
3555 }
3556
3557 for (bucket = 0; bucket < tcp_hashinfo.ehash_mask; bucket++) {
3558 struct hlist_nulls_node *node;
3559 struct sock *sk;
3560 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, bucket);
3561
3562restart:
3563 spin_lock_bh(lock);
3564 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[bucket].chain) {
3565 struct inet_sock *inet = inet_sk(sk);
3566
3567 if (sysctl_ip_dynaddr && sk->sk_state == TCP_SYN_SENT)
3568 continue;
3569 if (sock_flag(sk, SOCK_DEAD))
3570 continue;
3571
3572 if (family == AF_INET) {
3573 __be32 s4 = inet->inet_rcv_saddr;
3574 if (s4 == LOOPBACK4_IPV6)
3575 continue;
3576
3577 if (in->s_addr != s4 &&
3578 !(in->s_addr == INADDR_ANY &&
3579 !tcp_is_local(net, s4)))
3580 continue;
3581 }
3582
3583#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3584 if (family == AF_INET6) {
3585 struct in6_addr *s6;
3586 if (!inet->pinet6)
3587 continue;
3588
3589 s6 = &inet->pinet6->rcv_saddr;
3590 if (ipv6_addr_type(s6) == IPV6_ADDR_MAPPED)
3591 continue;
3592
3593 if (!ipv6_addr_equal(in6, s6) &&
3594 !(ipv6_addr_equal(in6, &in6addr_any) &&
3595 !tcp_is_local6(net, s6)))
3596 continue;
3597 }
3598#endif
3599
3600 sock_hold(sk);
3601 spin_unlock_bh(lock);
3602
3603 local_bh_disable();
3604 bh_lock_sock(sk);
3605 sk->sk_err = ETIMEDOUT;
3606 sk->sk_error_report(sk);
3607
3608 tcp_done(sk);
3609 bh_unlock_sock(sk);
3610 local_bh_enable();
3611 sock_put(sk);
3612
3613 goto restart;
3614 }
3615 spin_unlock_bh(lock);
3616 }
3617
3618 return 0;
3619}