ethtool: move EXPORT_SYMBOL(ethtool_op_set_tx_csum) to correct place
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/hash.h>
83#include <linux/slab.h>
84#include <linux/sched.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <net/net_namespace.h>
99#include <net/sock.h>
100#include <linux/rtnetlink.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/stat.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <net/xfrm.h>
108#include <linux/highmem.h>
109#include <linux/init.h>
110#include <linux/kmod.h>
111#include <linux/module.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
115#include <net/wext.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <linux/ipv6.h>
127#include <linux/in.h>
128#include <linux/jhash.h>
129#include <linux/random.h>
130#include <trace/events/napi.h>
131#include <trace/events/net.h>
132#include <trace/events/skb.h>
133#include <linux/pci.h>
134#include <linux/inetdevice.h>
135#include <linux/cpu_rmap.h>
136
137#include "net-sysfs.h"
138
139/* Instead of increasing this, you should create a hash table. */
140#define MAX_GRO_SKBS 8
141
142/* This should be increased if a protocol with a bigger head is added. */
143#define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145/*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173#define PTYPE_HASH_SIZE (16)
174#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176static DEFINE_SPINLOCK(ptype_lock);
177static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178static struct list_head ptype_all __read_mostly; /* Taps */
179
180/*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199DEFINE_RWLOCK(dev_base_lock);
200EXPORT_SYMBOL(dev_base_lock);
201
202static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203{
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206}
207
208static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209{
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211}
212
213static inline void rps_lock(struct softnet_data *sd)
214{
215#ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217#endif
218}
219
220static inline void rps_unlock(struct softnet_data *sd)
221{
222#ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224#endif
225}
226
227/* Device list insertion */
228static int list_netdevice(struct net_device *dev)
229{
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240 return 0;
241}
242
243/* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
245 */
246static void unlist_netdevice(struct net_device *dev)
247{
248 ASSERT_RTNL();
249
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
256}
257
258/*
259 * Our notifier list
260 */
261
262static RAW_NOTIFIER_HEAD(netdev_chain);
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272#ifdef CONFIG_LOCKDEP
273/*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
294
295static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
312
313static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315
316static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317{
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
322 return i;
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
325}
326
327static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329{
330 int i;
331
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
335}
336
337static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338{
339 int i;
340
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
345}
346#else
347static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
349{
350}
351static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352{
353}
354#endif
355
356/*******************************************************************************
357
358 Protocol management and registration routines
359
360*******************************************************************************/
361
362/*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378static inline struct list_head *ptype_head(const struct packet_type *pt)
379{
380 if (pt->type == htons(ETH_P_ALL))
381 return &ptype_all;
382 else
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384}
385
386/**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399void dev_add_pack(struct packet_type *pt)
400{
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406}
407EXPORT_SYMBOL(dev_add_pack);
408
409/**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422void __dev_remove_pack(struct packet_type *pt)
423{
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437out:
438 spin_unlock(&ptype_lock);
439}
440EXPORT_SYMBOL(__dev_remove_pack);
441
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459}
460EXPORT_SYMBOL(dev_remove_pack);
461
462/******************************************************************************
463
464 Device Boot-time Settings Routines
465
466*******************************************************************************/
467
468/* Boot time configuration table */
469static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471/**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480static int netdev_boot_setup_add(char *name, struct ifmap *map)
481{
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496}
497
498/**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507int netdev_boot_setup_check(struct net_device *dev)
508{
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523}
524EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527/**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537unsigned long netdev_boot_base(const char *prefix, int unit)
538{
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556}
557
558/*
559 * Saves at boot time configured settings for any netdevice.
560 */
561int __init netdev_boot_setup(char *str)
562{
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583}
584
585__setup("netdev=", netdev_boot_setup);
586
587/*******************************************************************************
588
589 Device Interface Subroutines
590
591*******************************************************************************/
592
593/**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605struct net_device *__dev_get_by_name(struct net *net, const char *name)
606{
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616}
617EXPORT_SYMBOL(__dev_get_by_name);
618
619/**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632{
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642}
643EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645/**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657struct net_device *dev_get_by_name(struct net *net, const char *name)
658{
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667}
668EXPORT_SYMBOL(dev_get_by_name);
669
670/**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683{
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693}
694EXPORT_SYMBOL(__dev_get_by_index);
695
696/**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708{
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718}
719EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722/**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733struct net_device *dev_get_by_index(struct net *net, int ifindex)
734{
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743}
744EXPORT_SYMBOL(dev_get_by_index);
745
746/**
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
757 *
758 */
759
760struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 const char *ha)
762{
763 struct net_device *dev;
764
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773
774struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775{
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784}
785EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788{
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800}
801EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803/**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816{
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827}
828EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830/**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838int dev_valid_name(const char *name)
839{
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853}
854EXPORT_SYMBOL(dev_valid_name);
855
856/**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872{
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920}
921
922/**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936int dev_alloc_name(struct net_device *dev, const char *name)
937{
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948}
949EXPORT_SYMBOL(dev_alloc_name);
950
951static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952{
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969}
970
971/**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979int dev_change_name(struct net_device *dev, const char *newname)
980{
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036}
1037
1038/**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047{
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067}
1068
1069
1070/**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076void netdev_features_change(struct net_device *dev)
1077{
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079}
1080EXPORT_SYMBOL(netdev_features_change);
1081
1082/**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090void netdev_state_change(struct net_device *dev)
1091{
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096}
1097EXPORT_SYMBOL(netdev_state_change);
1098
1099int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100{
1101 return call_netdevice_notifiers(event, dev);
1102}
1103EXPORT_SYMBOL(netdev_bonding_change);
1104
1105/**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115void dev_load(struct net *net, const char *name)
1116{
1117 struct net_device *dev;
1118
1119 rcu_read_lock();
1120 dev = dev_get_by_name_rcu(net, name);
1121 rcu_read_unlock();
1122
1123 if (!dev && capable(CAP_NET_ADMIN))
1124 request_module("%s", name);
1125}
1126EXPORT_SYMBOL(dev_load);
1127
1128static int __dev_open(struct net_device *dev)
1129{
1130 const struct net_device_ops *ops = dev->netdev_ops;
1131 int ret;
1132
1133 ASSERT_RTNL();
1134
1135 /*
1136 * Is it even present?
1137 */
1138 if (!netif_device_present(dev))
1139 return -ENODEV;
1140
1141 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1142 ret = notifier_to_errno(ret);
1143 if (ret)
1144 return ret;
1145
1146 /*
1147 * Call device private open method
1148 */
1149 set_bit(__LINK_STATE_START, &dev->state);
1150
1151 if (ops->ndo_validate_addr)
1152 ret = ops->ndo_validate_addr(dev);
1153
1154 if (!ret && ops->ndo_open)
1155 ret = ops->ndo_open(dev);
1156
1157 /*
1158 * If it went open OK then:
1159 */
1160
1161 if (ret)
1162 clear_bit(__LINK_STATE_START, &dev->state);
1163 else {
1164 /*
1165 * Set the flags.
1166 */
1167 dev->flags |= IFF_UP;
1168
1169 /*
1170 * Enable NET_DMA
1171 */
1172 net_dmaengine_get();
1173
1174 /*
1175 * Initialize multicasting status
1176 */
1177 dev_set_rx_mode(dev);
1178
1179 /*
1180 * Wakeup transmit queue engine
1181 */
1182 dev_activate(dev);
1183 }
1184
1185 return ret;
1186}
1187
1188/**
1189 * dev_open - prepare an interface for use.
1190 * @dev: device to open
1191 *
1192 * Takes a device from down to up state. The device's private open
1193 * function is invoked and then the multicast lists are loaded. Finally
1194 * the device is moved into the up state and a %NETDEV_UP message is
1195 * sent to the netdev notifier chain.
1196 *
1197 * Calling this function on an active interface is a nop. On a failure
1198 * a negative errno code is returned.
1199 */
1200int dev_open(struct net_device *dev)
1201{
1202 int ret;
1203
1204 /*
1205 * Is it already up?
1206 */
1207 if (dev->flags & IFF_UP)
1208 return 0;
1209
1210 /*
1211 * Open device
1212 */
1213 ret = __dev_open(dev);
1214 if (ret < 0)
1215 return ret;
1216
1217 /*
1218 * ... and announce new interface.
1219 */
1220 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1221 call_netdevice_notifiers(NETDEV_UP, dev);
1222
1223 return ret;
1224}
1225EXPORT_SYMBOL(dev_open);
1226
1227static int __dev_close_many(struct list_head *head)
1228{
1229 struct net_device *dev;
1230
1231 ASSERT_RTNL();
1232 might_sleep();
1233
1234 list_for_each_entry(dev, head, unreg_list) {
1235 /*
1236 * Tell people we are going down, so that they can
1237 * prepare to death, when device is still operating.
1238 */
1239 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1240
1241 clear_bit(__LINK_STATE_START, &dev->state);
1242
1243 /* Synchronize to scheduled poll. We cannot touch poll list, it
1244 * can be even on different cpu. So just clear netif_running().
1245 *
1246 * dev->stop() will invoke napi_disable() on all of it's
1247 * napi_struct instances on this device.
1248 */
1249 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250 }
1251
1252 dev_deactivate_many(head);
1253
1254 list_for_each_entry(dev, head, unreg_list) {
1255 const struct net_device_ops *ops = dev->netdev_ops;
1256
1257 /*
1258 * Call the device specific close. This cannot fail.
1259 * Only if device is UP
1260 *
1261 * We allow it to be called even after a DETACH hot-plug
1262 * event.
1263 */
1264 if (ops->ndo_stop)
1265 ops->ndo_stop(dev);
1266
1267 /*
1268 * Device is now down.
1269 */
1270
1271 dev->flags &= ~IFF_UP;
1272
1273 /*
1274 * Shutdown NET_DMA
1275 */
1276 net_dmaengine_put();
1277 }
1278
1279 return 0;
1280}
1281
1282static int __dev_close(struct net_device *dev)
1283{
1284 LIST_HEAD(single);
1285
1286 list_add(&dev->unreg_list, &single);
1287 return __dev_close_many(&single);
1288}
1289
1290static int dev_close_many(struct list_head *head)
1291{
1292 struct net_device *dev, *tmp;
1293 LIST_HEAD(tmp_list);
1294
1295 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1296 if (!(dev->flags & IFF_UP))
1297 list_move(&dev->unreg_list, &tmp_list);
1298
1299 __dev_close_many(head);
1300
1301 /*
1302 * Tell people we are down
1303 */
1304 list_for_each_entry(dev, head, unreg_list) {
1305 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1306 call_netdevice_notifiers(NETDEV_DOWN, dev);
1307 }
1308
1309 /* rollback_registered_many needs the complete original list */
1310 list_splice(&tmp_list, head);
1311 return 0;
1312}
1313
1314/**
1315 * dev_close - shutdown an interface.
1316 * @dev: device to shutdown
1317 *
1318 * This function moves an active device into down state. A
1319 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1320 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1321 * chain.
1322 */
1323int dev_close(struct net_device *dev)
1324{
1325 LIST_HEAD(single);
1326
1327 list_add(&dev->unreg_list, &single);
1328 dev_close_many(&single);
1329
1330 return 0;
1331}
1332EXPORT_SYMBOL(dev_close);
1333
1334
1335/**
1336 * dev_disable_lro - disable Large Receive Offload on a device
1337 * @dev: device
1338 *
1339 * Disable Large Receive Offload (LRO) on a net device. Must be
1340 * called under RTNL. This is needed if received packets may be
1341 * forwarded to another interface.
1342 */
1343void dev_disable_lro(struct net_device *dev)
1344{
1345 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1346 dev->ethtool_ops->set_flags) {
1347 u32 flags = dev->ethtool_ops->get_flags(dev);
1348 if (flags & ETH_FLAG_LRO) {
1349 flags &= ~ETH_FLAG_LRO;
1350 dev->ethtool_ops->set_flags(dev, flags);
1351 }
1352 }
1353 WARN_ON(dev->features & NETIF_F_LRO);
1354}
1355EXPORT_SYMBOL(dev_disable_lro);
1356
1357
1358static int dev_boot_phase = 1;
1359
1360/*
1361 * Device change register/unregister. These are not inline or static
1362 * as we export them to the world.
1363 */
1364
1365/**
1366 * register_netdevice_notifier - register a network notifier block
1367 * @nb: notifier
1368 *
1369 * Register a notifier to be called when network device events occur.
1370 * The notifier passed is linked into the kernel structures and must
1371 * not be reused until it has been unregistered. A negative errno code
1372 * is returned on a failure.
1373 *
1374 * When registered all registration and up events are replayed
1375 * to the new notifier to allow device to have a race free
1376 * view of the network device list.
1377 */
1378
1379int register_netdevice_notifier(struct notifier_block *nb)
1380{
1381 struct net_device *dev;
1382 struct net_device *last;
1383 struct net *net;
1384 int err;
1385
1386 rtnl_lock();
1387 err = raw_notifier_chain_register(&netdev_chain, nb);
1388 if (err)
1389 goto unlock;
1390 if (dev_boot_phase)
1391 goto unlock;
1392 for_each_net(net) {
1393 for_each_netdev(net, dev) {
1394 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1395 err = notifier_to_errno(err);
1396 if (err)
1397 goto rollback;
1398
1399 if (!(dev->flags & IFF_UP))
1400 continue;
1401
1402 nb->notifier_call(nb, NETDEV_UP, dev);
1403 }
1404 }
1405
1406unlock:
1407 rtnl_unlock();
1408 return err;
1409
1410rollback:
1411 last = dev;
1412 for_each_net(net) {
1413 for_each_netdev(net, dev) {
1414 if (dev == last)
1415 break;
1416
1417 if (dev->flags & IFF_UP) {
1418 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1419 nb->notifier_call(nb, NETDEV_DOWN, dev);
1420 }
1421 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1422 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1423 }
1424 }
1425
1426 raw_notifier_chain_unregister(&netdev_chain, nb);
1427 goto unlock;
1428}
1429EXPORT_SYMBOL(register_netdevice_notifier);
1430
1431/**
1432 * unregister_netdevice_notifier - unregister a network notifier block
1433 * @nb: notifier
1434 *
1435 * Unregister a notifier previously registered by
1436 * register_netdevice_notifier(). The notifier is unlinked into the
1437 * kernel structures and may then be reused. A negative errno code
1438 * is returned on a failure.
1439 */
1440
1441int unregister_netdevice_notifier(struct notifier_block *nb)
1442{
1443 int err;
1444
1445 rtnl_lock();
1446 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1447 rtnl_unlock();
1448 return err;
1449}
1450EXPORT_SYMBOL(unregister_netdevice_notifier);
1451
1452/**
1453 * call_netdevice_notifiers - call all network notifier blocks
1454 * @val: value passed unmodified to notifier function
1455 * @dev: net_device pointer passed unmodified to notifier function
1456 *
1457 * Call all network notifier blocks. Parameters and return value
1458 * are as for raw_notifier_call_chain().
1459 */
1460
1461int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1462{
1463 ASSERT_RTNL();
1464 return raw_notifier_call_chain(&netdev_chain, val, dev);
1465}
1466
1467/* When > 0 there are consumers of rx skb time stamps */
1468static atomic_t netstamp_needed = ATOMIC_INIT(0);
1469
1470void net_enable_timestamp(void)
1471{
1472 atomic_inc(&netstamp_needed);
1473}
1474EXPORT_SYMBOL(net_enable_timestamp);
1475
1476void net_disable_timestamp(void)
1477{
1478 atomic_dec(&netstamp_needed);
1479}
1480EXPORT_SYMBOL(net_disable_timestamp);
1481
1482static inline void net_timestamp_set(struct sk_buff *skb)
1483{
1484 if (atomic_read(&netstamp_needed))
1485 __net_timestamp(skb);
1486 else
1487 skb->tstamp.tv64 = 0;
1488}
1489
1490static inline void net_timestamp_check(struct sk_buff *skb)
1491{
1492 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1493 __net_timestamp(skb);
1494}
1495
1496/**
1497 * dev_forward_skb - loopback an skb to another netif
1498 *
1499 * @dev: destination network device
1500 * @skb: buffer to forward
1501 *
1502 * return values:
1503 * NET_RX_SUCCESS (no congestion)
1504 * NET_RX_DROP (packet was dropped, but freed)
1505 *
1506 * dev_forward_skb can be used for injecting an skb from the
1507 * start_xmit function of one device into the receive queue
1508 * of another device.
1509 *
1510 * The receiving device may be in another namespace, so
1511 * we have to clear all information in the skb that could
1512 * impact namespace isolation.
1513 */
1514int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1515{
1516 skb_orphan(skb);
1517 nf_reset(skb);
1518
1519 if (unlikely(!(dev->flags & IFF_UP) ||
1520 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1521 atomic_long_inc(&dev->rx_dropped);
1522 kfree_skb(skb);
1523 return NET_RX_DROP;
1524 }
1525 skb_set_dev(skb, dev);
1526 skb->tstamp.tv64 = 0;
1527 skb->pkt_type = PACKET_HOST;
1528 skb->protocol = eth_type_trans(skb, dev);
1529 return netif_rx(skb);
1530}
1531EXPORT_SYMBOL_GPL(dev_forward_skb);
1532
1533static inline int deliver_skb(struct sk_buff *skb,
1534 struct packet_type *pt_prev,
1535 struct net_device *orig_dev)
1536{
1537 atomic_inc(&skb->users);
1538 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1539}
1540
1541/*
1542 * Support routine. Sends outgoing frames to any network
1543 * taps currently in use.
1544 */
1545
1546static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1547{
1548 struct packet_type *ptype;
1549 struct sk_buff *skb2 = NULL;
1550 struct packet_type *pt_prev = NULL;
1551
1552 rcu_read_lock();
1553 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1554 /* Never send packets back to the socket
1555 * they originated from - MvS (miquels@drinkel.ow.org)
1556 */
1557 if ((ptype->dev == dev || !ptype->dev) &&
1558 (ptype->af_packet_priv == NULL ||
1559 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1560 if (pt_prev) {
1561 deliver_skb(skb2, pt_prev, skb->dev);
1562 pt_prev = ptype;
1563 continue;
1564 }
1565
1566 skb2 = skb_clone(skb, GFP_ATOMIC);
1567 if (!skb2)
1568 break;
1569
1570 net_timestamp_set(skb2);
1571
1572 /* skb->nh should be correctly
1573 set by sender, so that the second statement is
1574 just protection against buggy protocols.
1575 */
1576 skb_reset_mac_header(skb2);
1577
1578 if (skb_network_header(skb2) < skb2->data ||
1579 skb2->network_header > skb2->tail) {
1580 if (net_ratelimit())
1581 printk(KERN_CRIT "protocol %04x is "
1582 "buggy, dev %s\n",
1583 ntohs(skb2->protocol),
1584 dev->name);
1585 skb_reset_network_header(skb2);
1586 }
1587
1588 skb2->transport_header = skb2->network_header;
1589 skb2->pkt_type = PACKET_OUTGOING;
1590 pt_prev = ptype;
1591 }
1592 }
1593 if (pt_prev)
1594 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1595 rcu_read_unlock();
1596}
1597
1598/* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1599 * @dev: Network device
1600 * @txq: number of queues available
1601 *
1602 * If real_num_tx_queues is changed the tc mappings may no longer be
1603 * valid. To resolve this verify the tc mapping remains valid and if
1604 * not NULL the mapping. With no priorities mapping to this
1605 * offset/count pair it will no longer be used. In the worst case TC0
1606 * is invalid nothing can be done so disable priority mappings. If is
1607 * expected that drivers will fix this mapping if they can before
1608 * calling netif_set_real_num_tx_queues.
1609 */
1610static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1611{
1612 int i;
1613 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1614
1615 /* If TC0 is invalidated disable TC mapping */
1616 if (tc->offset + tc->count > txq) {
1617 pr_warning("Number of in use tx queues changed "
1618 "invalidating tc mappings. Priority "
1619 "traffic classification disabled!\n");
1620 dev->num_tc = 0;
1621 return;
1622 }
1623
1624 /* Invalidated prio to tc mappings set to TC0 */
1625 for (i = 1; i < TC_BITMASK + 1; i++) {
1626 int q = netdev_get_prio_tc_map(dev, i);
1627
1628 tc = &dev->tc_to_txq[q];
1629 if (tc->offset + tc->count > txq) {
1630 pr_warning("Number of in use tx queues "
1631 "changed. Priority %i to tc "
1632 "mapping %i is no longer valid "
1633 "setting map to 0\n",
1634 i, q);
1635 netdev_set_prio_tc_map(dev, i, 0);
1636 }
1637 }
1638}
1639
1640/*
1641 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1642 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1643 */
1644int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1645{
1646 int rc;
1647
1648 if (txq < 1 || txq > dev->num_tx_queues)
1649 return -EINVAL;
1650
1651 if (dev->reg_state == NETREG_REGISTERED ||
1652 dev->reg_state == NETREG_UNREGISTERING) {
1653 ASSERT_RTNL();
1654
1655 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1656 txq);
1657 if (rc)
1658 return rc;
1659
1660 if (dev->num_tc)
1661 netif_setup_tc(dev, txq);
1662
1663 if (txq < dev->real_num_tx_queues)
1664 qdisc_reset_all_tx_gt(dev, txq);
1665 }
1666
1667 dev->real_num_tx_queues = txq;
1668 return 0;
1669}
1670EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1671
1672#ifdef CONFIG_RPS
1673/**
1674 * netif_set_real_num_rx_queues - set actual number of RX queues used
1675 * @dev: Network device
1676 * @rxq: Actual number of RX queues
1677 *
1678 * This must be called either with the rtnl_lock held or before
1679 * registration of the net device. Returns 0 on success, or a
1680 * negative error code. If called before registration, it always
1681 * succeeds.
1682 */
1683int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1684{
1685 int rc;
1686
1687 if (rxq < 1 || rxq > dev->num_rx_queues)
1688 return -EINVAL;
1689
1690 if (dev->reg_state == NETREG_REGISTERED) {
1691 ASSERT_RTNL();
1692
1693 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1694 rxq);
1695 if (rc)
1696 return rc;
1697 }
1698
1699 dev->real_num_rx_queues = rxq;
1700 return 0;
1701}
1702EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1703#endif
1704
1705static inline void __netif_reschedule(struct Qdisc *q)
1706{
1707 struct softnet_data *sd;
1708 unsigned long flags;
1709
1710 local_irq_save(flags);
1711 sd = &__get_cpu_var(softnet_data);
1712 q->next_sched = NULL;
1713 *sd->output_queue_tailp = q;
1714 sd->output_queue_tailp = &q->next_sched;
1715 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1716 local_irq_restore(flags);
1717}
1718
1719void __netif_schedule(struct Qdisc *q)
1720{
1721 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1722 __netif_reschedule(q);
1723}
1724EXPORT_SYMBOL(__netif_schedule);
1725
1726void dev_kfree_skb_irq(struct sk_buff *skb)
1727{
1728 if (atomic_dec_and_test(&skb->users)) {
1729 struct softnet_data *sd;
1730 unsigned long flags;
1731
1732 local_irq_save(flags);
1733 sd = &__get_cpu_var(softnet_data);
1734 skb->next = sd->completion_queue;
1735 sd->completion_queue = skb;
1736 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1737 local_irq_restore(flags);
1738 }
1739}
1740EXPORT_SYMBOL(dev_kfree_skb_irq);
1741
1742void dev_kfree_skb_any(struct sk_buff *skb)
1743{
1744 if (in_irq() || irqs_disabled())
1745 dev_kfree_skb_irq(skb);
1746 else
1747 dev_kfree_skb(skb);
1748}
1749EXPORT_SYMBOL(dev_kfree_skb_any);
1750
1751
1752/**
1753 * netif_device_detach - mark device as removed
1754 * @dev: network device
1755 *
1756 * Mark device as removed from system and therefore no longer available.
1757 */
1758void netif_device_detach(struct net_device *dev)
1759{
1760 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1761 netif_running(dev)) {
1762 netif_tx_stop_all_queues(dev);
1763 }
1764}
1765EXPORT_SYMBOL(netif_device_detach);
1766
1767/**
1768 * netif_device_attach - mark device as attached
1769 * @dev: network device
1770 *
1771 * Mark device as attached from system and restart if needed.
1772 */
1773void netif_device_attach(struct net_device *dev)
1774{
1775 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1776 netif_running(dev)) {
1777 netif_tx_wake_all_queues(dev);
1778 __netdev_watchdog_up(dev);
1779 }
1780}
1781EXPORT_SYMBOL(netif_device_attach);
1782
1783/**
1784 * skb_dev_set -- assign a new device to a buffer
1785 * @skb: buffer for the new device
1786 * @dev: network device
1787 *
1788 * If an skb is owned by a device already, we have to reset
1789 * all data private to the namespace a device belongs to
1790 * before assigning it a new device.
1791 */
1792#ifdef CONFIG_NET_NS
1793void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1794{
1795 skb_dst_drop(skb);
1796 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1797 secpath_reset(skb);
1798 nf_reset(skb);
1799 skb_init_secmark(skb);
1800 skb->mark = 0;
1801 skb->priority = 0;
1802 skb->nf_trace = 0;
1803 skb->ipvs_property = 0;
1804#ifdef CONFIG_NET_SCHED
1805 skb->tc_index = 0;
1806#endif
1807 }
1808 skb->dev = dev;
1809}
1810EXPORT_SYMBOL(skb_set_dev);
1811#endif /* CONFIG_NET_NS */
1812
1813/*
1814 * Invalidate hardware checksum when packet is to be mangled, and
1815 * complete checksum manually on outgoing path.
1816 */
1817int skb_checksum_help(struct sk_buff *skb)
1818{
1819 __wsum csum;
1820 int ret = 0, offset;
1821
1822 if (skb->ip_summed == CHECKSUM_COMPLETE)
1823 goto out_set_summed;
1824
1825 if (unlikely(skb_shinfo(skb)->gso_size)) {
1826 /* Let GSO fix up the checksum. */
1827 goto out_set_summed;
1828 }
1829
1830 offset = skb_checksum_start_offset(skb);
1831 BUG_ON(offset >= skb_headlen(skb));
1832 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1833
1834 offset += skb->csum_offset;
1835 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1836
1837 if (skb_cloned(skb) &&
1838 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1839 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1840 if (ret)
1841 goto out;
1842 }
1843
1844 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1845out_set_summed:
1846 skb->ip_summed = CHECKSUM_NONE;
1847out:
1848 return ret;
1849}
1850EXPORT_SYMBOL(skb_checksum_help);
1851
1852/**
1853 * skb_gso_segment - Perform segmentation on skb.
1854 * @skb: buffer to segment
1855 * @features: features for the output path (see dev->features)
1856 *
1857 * This function segments the given skb and returns a list of segments.
1858 *
1859 * It may return NULL if the skb requires no segmentation. This is
1860 * only possible when GSO is used for verifying header integrity.
1861 */
1862struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1863{
1864 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1865 struct packet_type *ptype;
1866 __be16 type = skb->protocol;
1867 int vlan_depth = ETH_HLEN;
1868 int err;
1869
1870 while (type == htons(ETH_P_8021Q)) {
1871 struct vlan_hdr *vh;
1872
1873 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1874 return ERR_PTR(-EINVAL);
1875
1876 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1877 type = vh->h_vlan_encapsulated_proto;
1878 vlan_depth += VLAN_HLEN;
1879 }
1880
1881 skb_reset_mac_header(skb);
1882 skb->mac_len = skb->network_header - skb->mac_header;
1883 __skb_pull(skb, skb->mac_len);
1884
1885 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1886 struct net_device *dev = skb->dev;
1887 struct ethtool_drvinfo info = {};
1888
1889 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1890 dev->ethtool_ops->get_drvinfo(dev, &info);
1891
1892 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1893 info.driver, dev ? dev->features : 0L,
1894 skb->sk ? skb->sk->sk_route_caps : 0L,
1895 skb->len, skb->data_len, skb->ip_summed);
1896
1897 if (skb_header_cloned(skb) &&
1898 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1899 return ERR_PTR(err);
1900 }
1901
1902 rcu_read_lock();
1903 list_for_each_entry_rcu(ptype,
1904 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1905 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1906 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1907 err = ptype->gso_send_check(skb);
1908 segs = ERR_PTR(err);
1909 if (err || skb_gso_ok(skb, features))
1910 break;
1911 __skb_push(skb, (skb->data -
1912 skb_network_header(skb)));
1913 }
1914 segs = ptype->gso_segment(skb, features);
1915 break;
1916 }
1917 }
1918 rcu_read_unlock();
1919
1920 __skb_push(skb, skb->data - skb_mac_header(skb));
1921
1922 return segs;
1923}
1924EXPORT_SYMBOL(skb_gso_segment);
1925
1926/* Take action when hardware reception checksum errors are detected. */
1927#ifdef CONFIG_BUG
1928void netdev_rx_csum_fault(struct net_device *dev)
1929{
1930 if (net_ratelimit()) {
1931 printk(KERN_ERR "%s: hw csum failure.\n",
1932 dev ? dev->name : "<unknown>");
1933 dump_stack();
1934 }
1935}
1936EXPORT_SYMBOL(netdev_rx_csum_fault);
1937#endif
1938
1939/* Actually, we should eliminate this check as soon as we know, that:
1940 * 1. IOMMU is present and allows to map all the memory.
1941 * 2. No high memory really exists on this machine.
1942 */
1943
1944static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1945{
1946#ifdef CONFIG_HIGHMEM
1947 int i;
1948 if (!(dev->features & NETIF_F_HIGHDMA)) {
1949 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1950 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1951 return 1;
1952 }
1953
1954 if (PCI_DMA_BUS_IS_PHYS) {
1955 struct device *pdev = dev->dev.parent;
1956
1957 if (!pdev)
1958 return 0;
1959 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1960 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1961 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1962 return 1;
1963 }
1964 }
1965#endif
1966 return 0;
1967}
1968
1969struct dev_gso_cb {
1970 void (*destructor)(struct sk_buff *skb);
1971};
1972
1973#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1974
1975static void dev_gso_skb_destructor(struct sk_buff *skb)
1976{
1977 struct dev_gso_cb *cb;
1978
1979 do {
1980 struct sk_buff *nskb = skb->next;
1981
1982 skb->next = nskb->next;
1983 nskb->next = NULL;
1984 kfree_skb(nskb);
1985 } while (skb->next);
1986
1987 cb = DEV_GSO_CB(skb);
1988 if (cb->destructor)
1989 cb->destructor(skb);
1990}
1991
1992/**
1993 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1994 * @skb: buffer to segment
1995 * @features: device features as applicable to this skb
1996 *
1997 * This function segments the given skb and stores the list of segments
1998 * in skb->next.
1999 */
2000static int dev_gso_segment(struct sk_buff *skb, int features)
2001{
2002 struct sk_buff *segs;
2003
2004 segs = skb_gso_segment(skb, features);
2005
2006 /* Verifying header integrity only. */
2007 if (!segs)
2008 return 0;
2009
2010 if (IS_ERR(segs))
2011 return PTR_ERR(segs);
2012
2013 skb->next = segs;
2014 DEV_GSO_CB(skb)->destructor = skb->destructor;
2015 skb->destructor = dev_gso_skb_destructor;
2016
2017 return 0;
2018}
2019
2020/*
2021 * Try to orphan skb early, right before transmission by the device.
2022 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2023 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2024 */
2025static inline void skb_orphan_try(struct sk_buff *skb)
2026{
2027 struct sock *sk = skb->sk;
2028
2029 if (sk && !skb_shinfo(skb)->tx_flags) {
2030 /* skb_tx_hash() wont be able to get sk.
2031 * We copy sk_hash into skb->rxhash
2032 */
2033 if (!skb->rxhash)
2034 skb->rxhash = sk->sk_hash;
2035 skb_orphan(skb);
2036 }
2037}
2038
2039static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2040{
2041 return ((features & NETIF_F_GEN_CSUM) ||
2042 ((features & NETIF_F_V4_CSUM) &&
2043 protocol == htons(ETH_P_IP)) ||
2044 ((features & NETIF_F_V6_CSUM) &&
2045 protocol == htons(ETH_P_IPV6)) ||
2046 ((features & NETIF_F_FCOE_CRC) &&
2047 protocol == htons(ETH_P_FCOE)));
2048}
2049
2050static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2051{
2052 if (!can_checksum_protocol(features, protocol)) {
2053 features &= ~NETIF_F_ALL_CSUM;
2054 features &= ~NETIF_F_SG;
2055 } else if (illegal_highdma(skb->dev, skb)) {
2056 features &= ~NETIF_F_SG;
2057 }
2058
2059 return features;
2060}
2061
2062u32 netif_skb_features(struct sk_buff *skb)
2063{
2064 __be16 protocol = skb->protocol;
2065 u32 features = skb->dev->features;
2066
2067 if (protocol == htons(ETH_P_8021Q)) {
2068 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2069 protocol = veh->h_vlan_encapsulated_proto;
2070 } else if (!vlan_tx_tag_present(skb)) {
2071 return harmonize_features(skb, protocol, features);
2072 }
2073
2074 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2075
2076 if (protocol != htons(ETH_P_8021Q)) {
2077 return harmonize_features(skb, protocol, features);
2078 } else {
2079 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2080 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2081 return harmonize_features(skb, protocol, features);
2082 }
2083}
2084EXPORT_SYMBOL(netif_skb_features);
2085
2086/*
2087 * Returns true if either:
2088 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2089 * 2. skb is fragmented and the device does not support SG, or if
2090 * at least one of fragments is in highmem and device does not
2091 * support DMA from it.
2092 */
2093static inline int skb_needs_linearize(struct sk_buff *skb,
2094 int features)
2095{
2096 return skb_is_nonlinear(skb) &&
2097 ((skb_has_frag_list(skb) &&
2098 !(features & NETIF_F_FRAGLIST)) ||
2099 (skb_shinfo(skb)->nr_frags &&
2100 !(features & NETIF_F_SG)));
2101}
2102
2103int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2104 struct netdev_queue *txq)
2105{
2106 const struct net_device_ops *ops = dev->netdev_ops;
2107 int rc = NETDEV_TX_OK;
2108
2109 if (likely(!skb->next)) {
2110 u32 features;
2111
2112 /*
2113 * If device doesnt need skb->dst, release it right now while
2114 * its hot in this cpu cache
2115 */
2116 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2117 skb_dst_drop(skb);
2118
2119 if (!list_empty(&ptype_all))
2120 dev_queue_xmit_nit(skb, dev);
2121
2122 skb_orphan_try(skb);
2123
2124 features = netif_skb_features(skb);
2125
2126 if (vlan_tx_tag_present(skb) &&
2127 !(features & NETIF_F_HW_VLAN_TX)) {
2128 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2129 if (unlikely(!skb))
2130 goto out;
2131
2132 skb->vlan_tci = 0;
2133 }
2134
2135 if (netif_needs_gso(skb, features)) {
2136 if (unlikely(dev_gso_segment(skb, features)))
2137 goto out_kfree_skb;
2138 if (skb->next)
2139 goto gso;
2140 } else {
2141 if (skb_needs_linearize(skb, features) &&
2142 __skb_linearize(skb))
2143 goto out_kfree_skb;
2144
2145 /* If packet is not checksummed and device does not
2146 * support checksumming for this protocol, complete
2147 * checksumming here.
2148 */
2149 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2150 skb_set_transport_header(skb,
2151 skb_checksum_start_offset(skb));
2152 if (!(features & NETIF_F_ALL_CSUM) &&
2153 skb_checksum_help(skb))
2154 goto out_kfree_skb;
2155 }
2156 }
2157
2158 rc = ops->ndo_start_xmit(skb, dev);
2159 trace_net_dev_xmit(skb, rc);
2160 if (rc == NETDEV_TX_OK)
2161 txq_trans_update(txq);
2162 return rc;
2163 }
2164
2165gso:
2166 do {
2167 struct sk_buff *nskb = skb->next;
2168
2169 skb->next = nskb->next;
2170 nskb->next = NULL;
2171
2172 /*
2173 * If device doesnt need nskb->dst, release it right now while
2174 * its hot in this cpu cache
2175 */
2176 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2177 skb_dst_drop(nskb);
2178
2179 rc = ops->ndo_start_xmit(nskb, dev);
2180 trace_net_dev_xmit(nskb, rc);
2181 if (unlikely(rc != NETDEV_TX_OK)) {
2182 if (rc & ~NETDEV_TX_MASK)
2183 goto out_kfree_gso_skb;
2184 nskb->next = skb->next;
2185 skb->next = nskb;
2186 return rc;
2187 }
2188 txq_trans_update(txq);
2189 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2190 return NETDEV_TX_BUSY;
2191 } while (skb->next);
2192
2193out_kfree_gso_skb:
2194 if (likely(skb->next == NULL))
2195 skb->destructor = DEV_GSO_CB(skb)->destructor;
2196out_kfree_skb:
2197 kfree_skb(skb);
2198out:
2199 return rc;
2200}
2201
2202static u32 hashrnd __read_mostly;
2203
2204/*
2205 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2206 * to be used as a distribution range.
2207 */
2208u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2209 unsigned int num_tx_queues)
2210{
2211 u32 hash;
2212 u16 qoffset = 0;
2213 u16 qcount = num_tx_queues;
2214
2215 if (skb_rx_queue_recorded(skb)) {
2216 hash = skb_get_rx_queue(skb);
2217 while (unlikely(hash >= num_tx_queues))
2218 hash -= num_tx_queues;
2219 return hash;
2220 }
2221
2222 if (dev->num_tc) {
2223 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2224 qoffset = dev->tc_to_txq[tc].offset;
2225 qcount = dev->tc_to_txq[tc].count;
2226 }
2227
2228 if (skb->sk && skb->sk->sk_hash)
2229 hash = skb->sk->sk_hash;
2230 else
2231 hash = (__force u16) skb->protocol ^ skb->rxhash;
2232 hash = jhash_1word(hash, hashrnd);
2233
2234 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2235}
2236EXPORT_SYMBOL(__skb_tx_hash);
2237
2238static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2239{
2240 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2241 if (net_ratelimit()) {
2242 pr_warning("%s selects TX queue %d, but "
2243 "real number of TX queues is %d\n",
2244 dev->name, queue_index, dev->real_num_tx_queues);
2245 }
2246 return 0;
2247 }
2248 return queue_index;
2249}
2250
2251static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2252{
2253#ifdef CONFIG_XPS
2254 struct xps_dev_maps *dev_maps;
2255 struct xps_map *map;
2256 int queue_index = -1;
2257
2258 rcu_read_lock();
2259 dev_maps = rcu_dereference(dev->xps_maps);
2260 if (dev_maps) {
2261 map = rcu_dereference(
2262 dev_maps->cpu_map[raw_smp_processor_id()]);
2263 if (map) {
2264 if (map->len == 1)
2265 queue_index = map->queues[0];
2266 else {
2267 u32 hash;
2268 if (skb->sk && skb->sk->sk_hash)
2269 hash = skb->sk->sk_hash;
2270 else
2271 hash = (__force u16) skb->protocol ^
2272 skb->rxhash;
2273 hash = jhash_1word(hash, hashrnd);
2274 queue_index = map->queues[
2275 ((u64)hash * map->len) >> 32];
2276 }
2277 if (unlikely(queue_index >= dev->real_num_tx_queues))
2278 queue_index = -1;
2279 }
2280 }
2281 rcu_read_unlock();
2282
2283 return queue_index;
2284#else
2285 return -1;
2286#endif
2287}
2288
2289static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2290 struct sk_buff *skb)
2291{
2292 int queue_index;
2293 const struct net_device_ops *ops = dev->netdev_ops;
2294
2295 if (dev->real_num_tx_queues == 1)
2296 queue_index = 0;
2297 else if (ops->ndo_select_queue) {
2298 queue_index = ops->ndo_select_queue(dev, skb);
2299 queue_index = dev_cap_txqueue(dev, queue_index);
2300 } else {
2301 struct sock *sk = skb->sk;
2302 queue_index = sk_tx_queue_get(sk);
2303
2304 if (queue_index < 0 || skb->ooo_okay ||
2305 queue_index >= dev->real_num_tx_queues) {
2306 int old_index = queue_index;
2307
2308 queue_index = get_xps_queue(dev, skb);
2309 if (queue_index < 0)
2310 queue_index = skb_tx_hash(dev, skb);
2311
2312 if (queue_index != old_index && sk) {
2313 struct dst_entry *dst =
2314 rcu_dereference_check(sk->sk_dst_cache, 1);
2315
2316 if (dst && skb_dst(skb) == dst)
2317 sk_tx_queue_set(sk, queue_index);
2318 }
2319 }
2320 }
2321
2322 skb_set_queue_mapping(skb, queue_index);
2323 return netdev_get_tx_queue(dev, queue_index);
2324}
2325
2326static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2327 struct net_device *dev,
2328 struct netdev_queue *txq)
2329{
2330 spinlock_t *root_lock = qdisc_lock(q);
2331 bool contended;
2332 int rc;
2333
2334 qdisc_skb_cb(skb)->pkt_len = skb->len;
2335 qdisc_calculate_pkt_len(skb, q);
2336 /*
2337 * Heuristic to force contended enqueues to serialize on a
2338 * separate lock before trying to get qdisc main lock.
2339 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2340 * and dequeue packets faster.
2341 */
2342 contended = qdisc_is_running(q);
2343 if (unlikely(contended))
2344 spin_lock(&q->busylock);
2345
2346 spin_lock(root_lock);
2347 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2348 kfree_skb(skb);
2349 rc = NET_XMIT_DROP;
2350 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2351 qdisc_run_begin(q)) {
2352 /*
2353 * This is a work-conserving queue; there are no old skbs
2354 * waiting to be sent out; and the qdisc is not running -
2355 * xmit the skb directly.
2356 */
2357 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2358 skb_dst_force(skb);
2359
2360 qdisc_bstats_update(q, skb);
2361
2362 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2363 if (unlikely(contended)) {
2364 spin_unlock(&q->busylock);
2365 contended = false;
2366 }
2367 __qdisc_run(q);
2368 } else
2369 qdisc_run_end(q);
2370
2371 rc = NET_XMIT_SUCCESS;
2372 } else {
2373 skb_dst_force(skb);
2374 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2375 if (qdisc_run_begin(q)) {
2376 if (unlikely(contended)) {
2377 spin_unlock(&q->busylock);
2378 contended = false;
2379 }
2380 __qdisc_run(q);
2381 }
2382 }
2383 spin_unlock(root_lock);
2384 if (unlikely(contended))
2385 spin_unlock(&q->busylock);
2386 return rc;
2387}
2388
2389static DEFINE_PER_CPU(int, xmit_recursion);
2390#define RECURSION_LIMIT 10
2391
2392/**
2393 * dev_queue_xmit - transmit a buffer
2394 * @skb: buffer to transmit
2395 *
2396 * Queue a buffer for transmission to a network device. The caller must
2397 * have set the device and priority and built the buffer before calling
2398 * this function. The function can be called from an interrupt.
2399 *
2400 * A negative errno code is returned on a failure. A success does not
2401 * guarantee the frame will be transmitted as it may be dropped due
2402 * to congestion or traffic shaping.
2403 *
2404 * -----------------------------------------------------------------------------------
2405 * I notice this method can also return errors from the queue disciplines,
2406 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2407 * be positive.
2408 *
2409 * Regardless of the return value, the skb is consumed, so it is currently
2410 * difficult to retry a send to this method. (You can bump the ref count
2411 * before sending to hold a reference for retry if you are careful.)
2412 *
2413 * When calling this method, interrupts MUST be enabled. This is because
2414 * the BH enable code must have IRQs enabled so that it will not deadlock.
2415 * --BLG
2416 */
2417int dev_queue_xmit(struct sk_buff *skb)
2418{
2419 struct net_device *dev = skb->dev;
2420 struct netdev_queue *txq;
2421 struct Qdisc *q;
2422 int rc = -ENOMEM;
2423
2424 /* Disable soft irqs for various locks below. Also
2425 * stops preemption for RCU.
2426 */
2427 rcu_read_lock_bh();
2428
2429 txq = dev_pick_tx(dev, skb);
2430 q = rcu_dereference_bh(txq->qdisc);
2431
2432#ifdef CONFIG_NET_CLS_ACT
2433 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2434#endif
2435 trace_net_dev_queue(skb);
2436 if (q->enqueue) {
2437 rc = __dev_xmit_skb(skb, q, dev, txq);
2438 goto out;
2439 }
2440
2441 /* The device has no queue. Common case for software devices:
2442 loopback, all the sorts of tunnels...
2443
2444 Really, it is unlikely that netif_tx_lock protection is necessary
2445 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2446 counters.)
2447 However, it is possible, that they rely on protection
2448 made by us here.
2449
2450 Check this and shot the lock. It is not prone from deadlocks.
2451 Either shot noqueue qdisc, it is even simpler 8)
2452 */
2453 if (dev->flags & IFF_UP) {
2454 int cpu = smp_processor_id(); /* ok because BHs are off */
2455
2456 if (txq->xmit_lock_owner != cpu) {
2457
2458 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2459 goto recursion_alert;
2460
2461 HARD_TX_LOCK(dev, txq, cpu);
2462
2463 if (!netif_tx_queue_stopped(txq)) {
2464 __this_cpu_inc(xmit_recursion);
2465 rc = dev_hard_start_xmit(skb, dev, txq);
2466 __this_cpu_dec(xmit_recursion);
2467 if (dev_xmit_complete(rc)) {
2468 HARD_TX_UNLOCK(dev, txq);
2469 goto out;
2470 }
2471 }
2472 HARD_TX_UNLOCK(dev, txq);
2473 if (net_ratelimit())
2474 printk(KERN_CRIT "Virtual device %s asks to "
2475 "queue packet!\n", dev->name);
2476 } else {
2477 /* Recursion is detected! It is possible,
2478 * unfortunately
2479 */
2480recursion_alert:
2481 if (net_ratelimit())
2482 printk(KERN_CRIT "Dead loop on virtual device "
2483 "%s, fix it urgently!\n", dev->name);
2484 }
2485 }
2486
2487 rc = -ENETDOWN;
2488 rcu_read_unlock_bh();
2489
2490 kfree_skb(skb);
2491 return rc;
2492out:
2493 rcu_read_unlock_bh();
2494 return rc;
2495}
2496EXPORT_SYMBOL(dev_queue_xmit);
2497
2498
2499/*=======================================================================
2500 Receiver routines
2501 =======================================================================*/
2502
2503int netdev_max_backlog __read_mostly = 1000;
2504int netdev_tstamp_prequeue __read_mostly = 1;
2505int netdev_budget __read_mostly = 300;
2506int weight_p __read_mostly = 64; /* old backlog weight */
2507
2508/* Called with irq disabled */
2509static inline void ____napi_schedule(struct softnet_data *sd,
2510 struct napi_struct *napi)
2511{
2512 list_add_tail(&napi->poll_list, &sd->poll_list);
2513 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2514}
2515
2516/*
2517 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2518 * and src/dst port numbers. Returns a non-zero hash number on success
2519 * and 0 on failure.
2520 */
2521__u32 __skb_get_rxhash(struct sk_buff *skb)
2522{
2523 int nhoff, hash = 0, poff;
2524 struct ipv6hdr *ip6;
2525 struct iphdr *ip;
2526 u8 ip_proto;
2527 u32 addr1, addr2, ihl;
2528 union {
2529 u32 v32;
2530 u16 v16[2];
2531 } ports;
2532
2533 nhoff = skb_network_offset(skb);
2534
2535 switch (skb->protocol) {
2536 case __constant_htons(ETH_P_IP):
2537 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2538 goto done;
2539
2540 ip = (struct iphdr *) (skb->data + nhoff);
2541 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2542 ip_proto = 0;
2543 else
2544 ip_proto = ip->protocol;
2545 addr1 = (__force u32) ip->saddr;
2546 addr2 = (__force u32) ip->daddr;
2547 ihl = ip->ihl;
2548 break;
2549 case __constant_htons(ETH_P_IPV6):
2550 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2551 goto done;
2552
2553 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2554 ip_proto = ip6->nexthdr;
2555 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2556 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2557 ihl = (40 >> 2);
2558 break;
2559 default:
2560 goto done;
2561 }
2562
2563 ports.v32 = 0;
2564 poff = proto_ports_offset(ip_proto);
2565 if (poff >= 0) {
2566 nhoff += ihl * 4 + poff;
2567 if (pskb_may_pull(skb, nhoff + 4)) {
2568 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2569 if (ports.v16[1] < ports.v16[0])
2570 swap(ports.v16[0], ports.v16[1]);
2571 }
2572 }
2573
2574 /* get a consistent hash (same value on both flow directions) */
2575 if (addr2 < addr1)
2576 swap(addr1, addr2);
2577
2578 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2579 if (!hash)
2580 hash = 1;
2581
2582done:
2583 return hash;
2584}
2585EXPORT_SYMBOL(__skb_get_rxhash);
2586
2587#ifdef CONFIG_RPS
2588
2589/* One global table that all flow-based protocols share. */
2590struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2591EXPORT_SYMBOL(rps_sock_flow_table);
2592
2593static struct rps_dev_flow *
2594set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2595 struct rps_dev_flow *rflow, u16 next_cpu)
2596{
2597 u16 tcpu;
2598
2599 tcpu = rflow->cpu = next_cpu;
2600 if (tcpu != RPS_NO_CPU) {
2601#ifdef CONFIG_RFS_ACCEL
2602 struct netdev_rx_queue *rxqueue;
2603 struct rps_dev_flow_table *flow_table;
2604 struct rps_dev_flow *old_rflow;
2605 u32 flow_id;
2606 u16 rxq_index;
2607 int rc;
2608
2609 /* Should we steer this flow to a different hardware queue? */
2610 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap)
2611 goto out;
2612 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2613 if (rxq_index == skb_get_rx_queue(skb))
2614 goto out;
2615
2616 rxqueue = dev->_rx + rxq_index;
2617 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2618 if (!flow_table)
2619 goto out;
2620 flow_id = skb->rxhash & flow_table->mask;
2621 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2622 rxq_index, flow_id);
2623 if (rc < 0)
2624 goto out;
2625 old_rflow = rflow;
2626 rflow = &flow_table->flows[flow_id];
2627 rflow->cpu = next_cpu;
2628 rflow->filter = rc;
2629 if (old_rflow->filter == rflow->filter)
2630 old_rflow->filter = RPS_NO_FILTER;
2631 out:
2632#endif
2633 rflow->last_qtail =
2634 per_cpu(softnet_data, tcpu).input_queue_head;
2635 }
2636
2637 return rflow;
2638}
2639
2640/*
2641 * get_rps_cpu is called from netif_receive_skb and returns the target
2642 * CPU from the RPS map of the receiving queue for a given skb.
2643 * rcu_read_lock must be held on entry.
2644 */
2645static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2646 struct rps_dev_flow **rflowp)
2647{
2648 struct netdev_rx_queue *rxqueue;
2649 struct rps_map *map;
2650 struct rps_dev_flow_table *flow_table;
2651 struct rps_sock_flow_table *sock_flow_table;
2652 int cpu = -1;
2653 u16 tcpu;
2654
2655 if (skb_rx_queue_recorded(skb)) {
2656 u16 index = skb_get_rx_queue(skb);
2657 if (unlikely(index >= dev->real_num_rx_queues)) {
2658 WARN_ONCE(dev->real_num_rx_queues > 1,
2659 "%s received packet on queue %u, but number "
2660 "of RX queues is %u\n",
2661 dev->name, index, dev->real_num_rx_queues);
2662 goto done;
2663 }
2664 rxqueue = dev->_rx + index;
2665 } else
2666 rxqueue = dev->_rx;
2667
2668 map = rcu_dereference(rxqueue->rps_map);
2669 if (map) {
2670 if (map->len == 1 &&
2671 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2672 tcpu = map->cpus[0];
2673 if (cpu_online(tcpu))
2674 cpu = tcpu;
2675 goto done;
2676 }
2677 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2678 goto done;
2679 }
2680
2681 skb_reset_network_header(skb);
2682 if (!skb_get_rxhash(skb))
2683 goto done;
2684
2685 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2686 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2687 if (flow_table && sock_flow_table) {
2688 u16 next_cpu;
2689 struct rps_dev_flow *rflow;
2690
2691 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2692 tcpu = rflow->cpu;
2693
2694 next_cpu = sock_flow_table->ents[skb->rxhash &
2695 sock_flow_table->mask];
2696
2697 /*
2698 * If the desired CPU (where last recvmsg was done) is
2699 * different from current CPU (one in the rx-queue flow
2700 * table entry), switch if one of the following holds:
2701 * - Current CPU is unset (equal to RPS_NO_CPU).
2702 * - Current CPU is offline.
2703 * - The current CPU's queue tail has advanced beyond the
2704 * last packet that was enqueued using this table entry.
2705 * This guarantees that all previous packets for the flow
2706 * have been dequeued, thus preserving in order delivery.
2707 */
2708 if (unlikely(tcpu != next_cpu) &&
2709 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2710 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2711 rflow->last_qtail)) >= 0))
2712 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2713
2714 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2715 *rflowp = rflow;
2716 cpu = tcpu;
2717 goto done;
2718 }
2719 }
2720
2721 if (map) {
2722 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2723
2724 if (cpu_online(tcpu)) {
2725 cpu = tcpu;
2726 goto done;
2727 }
2728 }
2729
2730done:
2731 return cpu;
2732}
2733
2734#ifdef CONFIG_RFS_ACCEL
2735
2736/**
2737 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2738 * @dev: Device on which the filter was set
2739 * @rxq_index: RX queue index
2740 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2741 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2742 *
2743 * Drivers that implement ndo_rx_flow_steer() should periodically call
2744 * this function for each installed filter and remove the filters for
2745 * which it returns %true.
2746 */
2747bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2748 u32 flow_id, u16 filter_id)
2749{
2750 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2751 struct rps_dev_flow_table *flow_table;
2752 struct rps_dev_flow *rflow;
2753 bool expire = true;
2754 int cpu;
2755
2756 rcu_read_lock();
2757 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2758 if (flow_table && flow_id <= flow_table->mask) {
2759 rflow = &flow_table->flows[flow_id];
2760 cpu = ACCESS_ONCE(rflow->cpu);
2761 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2762 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2763 rflow->last_qtail) <
2764 (int)(10 * flow_table->mask)))
2765 expire = false;
2766 }
2767 rcu_read_unlock();
2768 return expire;
2769}
2770EXPORT_SYMBOL(rps_may_expire_flow);
2771
2772#endif /* CONFIG_RFS_ACCEL */
2773
2774/* Called from hardirq (IPI) context */
2775static void rps_trigger_softirq(void *data)
2776{
2777 struct softnet_data *sd = data;
2778
2779 ____napi_schedule(sd, &sd->backlog);
2780 sd->received_rps++;
2781}
2782
2783#endif /* CONFIG_RPS */
2784
2785/*
2786 * Check if this softnet_data structure is another cpu one
2787 * If yes, queue it to our IPI list and return 1
2788 * If no, return 0
2789 */
2790static int rps_ipi_queued(struct softnet_data *sd)
2791{
2792#ifdef CONFIG_RPS
2793 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2794
2795 if (sd != mysd) {
2796 sd->rps_ipi_next = mysd->rps_ipi_list;
2797 mysd->rps_ipi_list = sd;
2798
2799 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2800 return 1;
2801 }
2802#endif /* CONFIG_RPS */
2803 return 0;
2804}
2805
2806/*
2807 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2808 * queue (may be a remote CPU queue).
2809 */
2810static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2811 unsigned int *qtail)
2812{
2813 struct softnet_data *sd;
2814 unsigned long flags;
2815
2816 sd = &per_cpu(softnet_data, cpu);
2817
2818 local_irq_save(flags);
2819
2820 rps_lock(sd);
2821 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2822 if (skb_queue_len(&sd->input_pkt_queue)) {
2823enqueue:
2824 __skb_queue_tail(&sd->input_pkt_queue, skb);
2825 input_queue_tail_incr_save(sd, qtail);
2826 rps_unlock(sd);
2827 local_irq_restore(flags);
2828 return NET_RX_SUCCESS;
2829 }
2830
2831 /* Schedule NAPI for backlog device
2832 * We can use non atomic operation since we own the queue lock
2833 */
2834 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2835 if (!rps_ipi_queued(sd))
2836 ____napi_schedule(sd, &sd->backlog);
2837 }
2838 goto enqueue;
2839 }
2840
2841 sd->dropped++;
2842 rps_unlock(sd);
2843
2844 local_irq_restore(flags);
2845
2846 atomic_long_inc(&skb->dev->rx_dropped);
2847 kfree_skb(skb);
2848 return NET_RX_DROP;
2849}
2850
2851/**
2852 * netif_rx - post buffer to the network code
2853 * @skb: buffer to post
2854 *
2855 * This function receives a packet from a device driver and queues it for
2856 * the upper (protocol) levels to process. It always succeeds. The buffer
2857 * may be dropped during processing for congestion control or by the
2858 * protocol layers.
2859 *
2860 * return values:
2861 * NET_RX_SUCCESS (no congestion)
2862 * NET_RX_DROP (packet was dropped)
2863 *
2864 */
2865
2866int netif_rx(struct sk_buff *skb)
2867{
2868 int ret;
2869
2870 /* if netpoll wants it, pretend we never saw it */
2871 if (netpoll_rx(skb))
2872 return NET_RX_DROP;
2873
2874 if (netdev_tstamp_prequeue)
2875 net_timestamp_check(skb);
2876
2877 trace_netif_rx(skb);
2878#ifdef CONFIG_RPS
2879 {
2880 struct rps_dev_flow voidflow, *rflow = &voidflow;
2881 int cpu;
2882
2883 preempt_disable();
2884 rcu_read_lock();
2885
2886 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2887 if (cpu < 0)
2888 cpu = smp_processor_id();
2889
2890 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2891
2892 rcu_read_unlock();
2893 preempt_enable();
2894 }
2895#else
2896 {
2897 unsigned int qtail;
2898 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2899 put_cpu();
2900 }
2901#endif
2902 return ret;
2903}
2904EXPORT_SYMBOL(netif_rx);
2905
2906int netif_rx_ni(struct sk_buff *skb)
2907{
2908 int err;
2909
2910 preempt_disable();
2911 err = netif_rx(skb);
2912 if (local_softirq_pending())
2913 do_softirq();
2914 preempt_enable();
2915
2916 return err;
2917}
2918EXPORT_SYMBOL(netif_rx_ni);
2919
2920static void net_tx_action(struct softirq_action *h)
2921{
2922 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2923
2924 if (sd->completion_queue) {
2925 struct sk_buff *clist;
2926
2927 local_irq_disable();
2928 clist = sd->completion_queue;
2929 sd->completion_queue = NULL;
2930 local_irq_enable();
2931
2932 while (clist) {
2933 struct sk_buff *skb = clist;
2934 clist = clist->next;
2935
2936 WARN_ON(atomic_read(&skb->users));
2937 trace_kfree_skb(skb, net_tx_action);
2938 __kfree_skb(skb);
2939 }
2940 }
2941
2942 if (sd->output_queue) {
2943 struct Qdisc *head;
2944
2945 local_irq_disable();
2946 head = sd->output_queue;
2947 sd->output_queue = NULL;
2948 sd->output_queue_tailp = &sd->output_queue;
2949 local_irq_enable();
2950
2951 while (head) {
2952 struct Qdisc *q = head;
2953 spinlock_t *root_lock;
2954
2955 head = head->next_sched;
2956
2957 root_lock = qdisc_lock(q);
2958 if (spin_trylock(root_lock)) {
2959 smp_mb__before_clear_bit();
2960 clear_bit(__QDISC_STATE_SCHED,
2961 &q->state);
2962 qdisc_run(q);
2963 spin_unlock(root_lock);
2964 } else {
2965 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2966 &q->state)) {
2967 __netif_reschedule(q);
2968 } else {
2969 smp_mb__before_clear_bit();
2970 clear_bit(__QDISC_STATE_SCHED,
2971 &q->state);
2972 }
2973 }
2974 }
2975 }
2976}
2977
2978#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2979 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2980/* This hook is defined here for ATM LANE */
2981int (*br_fdb_test_addr_hook)(struct net_device *dev,
2982 unsigned char *addr) __read_mostly;
2983EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2984#endif
2985
2986#ifdef CONFIG_NET_CLS_ACT
2987/* TODO: Maybe we should just force sch_ingress to be compiled in
2988 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2989 * a compare and 2 stores extra right now if we dont have it on
2990 * but have CONFIG_NET_CLS_ACT
2991 * NOTE: This doesnt stop any functionality; if you dont have
2992 * the ingress scheduler, you just cant add policies on ingress.
2993 *
2994 */
2995static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2996{
2997 struct net_device *dev = skb->dev;
2998 u32 ttl = G_TC_RTTL(skb->tc_verd);
2999 int result = TC_ACT_OK;
3000 struct Qdisc *q;
3001
3002 if (unlikely(MAX_RED_LOOP < ttl++)) {
3003 if (net_ratelimit())
3004 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3005 skb->skb_iif, dev->ifindex);
3006 return TC_ACT_SHOT;
3007 }
3008
3009 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3010 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3011
3012 q = rxq->qdisc;
3013 if (q != &noop_qdisc) {
3014 spin_lock(qdisc_lock(q));
3015 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3016 result = qdisc_enqueue_root(skb, q);
3017 spin_unlock(qdisc_lock(q));
3018 }
3019
3020 return result;
3021}
3022
3023static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3024 struct packet_type **pt_prev,
3025 int *ret, struct net_device *orig_dev)
3026{
3027 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3028
3029 if (!rxq || rxq->qdisc == &noop_qdisc)
3030 goto out;
3031
3032 if (*pt_prev) {
3033 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3034 *pt_prev = NULL;
3035 }
3036
3037 switch (ing_filter(skb, rxq)) {
3038 case TC_ACT_SHOT:
3039 case TC_ACT_STOLEN:
3040 kfree_skb(skb);
3041 return NULL;
3042 }
3043
3044out:
3045 skb->tc_verd = 0;
3046 return skb;
3047}
3048#endif
3049
3050/**
3051 * netdev_rx_handler_register - register receive handler
3052 * @dev: device to register a handler for
3053 * @rx_handler: receive handler to register
3054 * @rx_handler_data: data pointer that is used by rx handler
3055 *
3056 * Register a receive hander for a device. This handler will then be
3057 * called from __netif_receive_skb. A negative errno code is returned
3058 * on a failure.
3059 *
3060 * The caller must hold the rtnl_mutex.
3061 */
3062int netdev_rx_handler_register(struct net_device *dev,
3063 rx_handler_func_t *rx_handler,
3064 void *rx_handler_data)
3065{
3066 ASSERT_RTNL();
3067
3068 if (dev->rx_handler)
3069 return -EBUSY;
3070
3071 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3072 rcu_assign_pointer(dev->rx_handler, rx_handler);
3073
3074 return 0;
3075}
3076EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3077
3078/**
3079 * netdev_rx_handler_unregister - unregister receive handler
3080 * @dev: device to unregister a handler from
3081 *
3082 * Unregister a receive hander from a device.
3083 *
3084 * The caller must hold the rtnl_mutex.
3085 */
3086void netdev_rx_handler_unregister(struct net_device *dev)
3087{
3088
3089 ASSERT_RTNL();
3090 rcu_assign_pointer(dev->rx_handler, NULL);
3091 rcu_assign_pointer(dev->rx_handler_data, NULL);
3092}
3093EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3094
3095static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
3096 struct net_device *master)
3097{
3098 if (skb->pkt_type == PACKET_HOST) {
3099 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
3100
3101 memcpy(dest, master->dev_addr, ETH_ALEN);
3102 }
3103}
3104
3105/* On bonding slaves other than the currently active slave, suppress
3106 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
3107 * ARP on active-backup slaves with arp_validate enabled.
3108 */
3109static int __skb_bond_should_drop(struct sk_buff *skb,
3110 struct net_device *master)
3111{
3112 struct net_device *dev = skb->dev;
3113
3114 if (master->priv_flags & IFF_MASTER_ARPMON)
3115 dev->last_rx = jiffies;
3116
3117 if ((master->priv_flags & IFF_MASTER_ALB) &&
3118 (master->priv_flags & IFF_BRIDGE_PORT)) {
3119 /* Do address unmangle. The local destination address
3120 * will be always the one master has. Provides the right
3121 * functionality in a bridge.
3122 */
3123 skb_bond_set_mac_by_master(skb, master);
3124 }
3125
3126 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
3127 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
3128 skb->protocol == __cpu_to_be16(ETH_P_ARP))
3129 return 0;
3130
3131 if (master->priv_flags & IFF_MASTER_ALB) {
3132 if (skb->pkt_type != PACKET_BROADCAST &&
3133 skb->pkt_type != PACKET_MULTICAST)
3134 return 0;
3135 }
3136 if (master->priv_flags & IFF_MASTER_8023AD &&
3137 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
3138 return 0;
3139
3140 return 1;
3141 }
3142 return 0;
3143}
3144
3145static int __netif_receive_skb(struct sk_buff *skb)
3146{
3147 struct packet_type *ptype, *pt_prev;
3148 rx_handler_func_t *rx_handler;
3149 struct net_device *orig_dev;
3150 struct net_device *null_or_orig;
3151 struct net_device *orig_or_bond;
3152 int ret = NET_RX_DROP;
3153 __be16 type;
3154
3155 if (!netdev_tstamp_prequeue)
3156 net_timestamp_check(skb);
3157
3158 trace_netif_receive_skb(skb);
3159
3160 /* if we've gotten here through NAPI, check netpoll */
3161 if (netpoll_receive_skb(skb))
3162 return NET_RX_DROP;
3163
3164 if (!skb->skb_iif)
3165 skb->skb_iif = skb->dev->ifindex;
3166
3167 /*
3168 * bonding note: skbs received on inactive slaves should only
3169 * be delivered to pkt handlers that are exact matches. Also
3170 * the deliver_no_wcard flag will be set. If packet handlers
3171 * are sensitive to duplicate packets these skbs will need to
3172 * be dropped at the handler.
3173 */
3174 null_or_orig = NULL;
3175 orig_dev = skb->dev;
3176 if (skb->deliver_no_wcard)
3177 null_or_orig = orig_dev;
3178 else if (netif_is_bond_slave(orig_dev)) {
3179 struct net_device *bond_master = ACCESS_ONCE(orig_dev->master);
3180
3181 if (likely(bond_master)) {
3182 if (__skb_bond_should_drop(skb, bond_master)) {
3183 skb->deliver_no_wcard = 1;
3184 /* deliver only exact match */
3185 null_or_orig = orig_dev;
3186 } else
3187 skb->dev = bond_master;
3188 }
3189 }
3190
3191 __this_cpu_inc(softnet_data.processed);
3192 skb_reset_network_header(skb);
3193 skb_reset_transport_header(skb);
3194 skb->mac_len = skb->network_header - skb->mac_header;
3195
3196 pt_prev = NULL;
3197
3198 rcu_read_lock();
3199
3200#ifdef CONFIG_NET_CLS_ACT
3201 if (skb->tc_verd & TC_NCLS) {
3202 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3203 goto ncls;
3204 }
3205#endif
3206
3207 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3208 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3209 ptype->dev == orig_dev) {
3210 if (pt_prev)
3211 ret = deliver_skb(skb, pt_prev, orig_dev);
3212 pt_prev = ptype;
3213 }
3214 }
3215
3216#ifdef CONFIG_NET_CLS_ACT
3217 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3218 if (!skb)
3219 goto out;
3220ncls:
3221#endif
3222
3223 /* Handle special case of bridge or macvlan */
3224 rx_handler = rcu_dereference(skb->dev->rx_handler);
3225 if (rx_handler) {
3226 if (pt_prev) {
3227 ret = deliver_skb(skb, pt_prev, orig_dev);
3228 pt_prev = NULL;
3229 }
3230 skb = rx_handler(skb);
3231 if (!skb)
3232 goto out;
3233 }
3234
3235 if (vlan_tx_tag_present(skb)) {
3236 if (pt_prev) {
3237 ret = deliver_skb(skb, pt_prev, orig_dev);
3238 pt_prev = NULL;
3239 }
3240 if (vlan_hwaccel_do_receive(&skb)) {
3241 ret = __netif_receive_skb(skb);
3242 goto out;
3243 } else if (unlikely(!skb))
3244 goto out;
3245 }
3246
3247 /*
3248 * Make sure frames received on VLAN interfaces stacked on
3249 * bonding interfaces still make their way to any base bonding
3250 * device that may have registered for a specific ptype. The
3251 * handler may have to adjust skb->dev and orig_dev.
3252 */
3253 orig_or_bond = orig_dev;
3254 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3255 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3256 orig_or_bond = vlan_dev_real_dev(skb->dev);
3257 }
3258
3259 type = skb->protocol;
3260 list_for_each_entry_rcu(ptype,
3261 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3262 if (ptype->type == type && (ptype->dev == null_or_orig ||
3263 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3264 ptype->dev == orig_or_bond)) {
3265 if (pt_prev)
3266 ret = deliver_skb(skb, pt_prev, orig_dev);
3267 pt_prev = ptype;
3268 }
3269 }
3270
3271 if (pt_prev) {
3272 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3273 } else {
3274 atomic_long_inc(&skb->dev->rx_dropped);
3275 kfree_skb(skb);
3276 /* Jamal, now you will not able to escape explaining
3277 * me how you were going to use this. :-)
3278 */
3279 ret = NET_RX_DROP;
3280 }
3281
3282out:
3283 rcu_read_unlock();
3284 return ret;
3285}
3286
3287/**
3288 * netif_receive_skb - process receive buffer from network
3289 * @skb: buffer to process
3290 *
3291 * netif_receive_skb() is the main receive data processing function.
3292 * It always succeeds. The buffer may be dropped during processing
3293 * for congestion control or by the protocol layers.
3294 *
3295 * This function may only be called from softirq context and interrupts
3296 * should be enabled.
3297 *
3298 * Return values (usually ignored):
3299 * NET_RX_SUCCESS: no congestion
3300 * NET_RX_DROP: packet was dropped
3301 */
3302int netif_receive_skb(struct sk_buff *skb)
3303{
3304 if (netdev_tstamp_prequeue)
3305 net_timestamp_check(skb);
3306
3307 if (skb_defer_rx_timestamp(skb))
3308 return NET_RX_SUCCESS;
3309
3310#ifdef CONFIG_RPS
3311 {
3312 struct rps_dev_flow voidflow, *rflow = &voidflow;
3313 int cpu, ret;
3314
3315 rcu_read_lock();
3316
3317 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3318
3319 if (cpu >= 0) {
3320 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3321 rcu_read_unlock();
3322 } else {
3323 rcu_read_unlock();
3324 ret = __netif_receive_skb(skb);
3325 }
3326
3327 return ret;
3328 }
3329#else
3330 return __netif_receive_skb(skb);
3331#endif
3332}
3333EXPORT_SYMBOL(netif_receive_skb);
3334
3335/* Network device is going away, flush any packets still pending
3336 * Called with irqs disabled.
3337 */
3338static void flush_backlog(void *arg)
3339{
3340 struct net_device *dev = arg;
3341 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3342 struct sk_buff *skb, *tmp;
3343
3344 rps_lock(sd);
3345 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3346 if (skb->dev == dev) {
3347 __skb_unlink(skb, &sd->input_pkt_queue);
3348 kfree_skb(skb);
3349 input_queue_head_incr(sd);
3350 }
3351 }
3352 rps_unlock(sd);
3353
3354 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3355 if (skb->dev == dev) {
3356 __skb_unlink(skb, &sd->process_queue);
3357 kfree_skb(skb);
3358 input_queue_head_incr(sd);
3359 }
3360 }
3361}
3362
3363static int napi_gro_complete(struct sk_buff *skb)
3364{
3365 struct packet_type *ptype;
3366 __be16 type = skb->protocol;
3367 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3368 int err = -ENOENT;
3369
3370 if (NAPI_GRO_CB(skb)->count == 1) {
3371 skb_shinfo(skb)->gso_size = 0;
3372 goto out;
3373 }
3374
3375 rcu_read_lock();
3376 list_for_each_entry_rcu(ptype, head, list) {
3377 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3378 continue;
3379
3380 err = ptype->gro_complete(skb);
3381 break;
3382 }
3383 rcu_read_unlock();
3384
3385 if (err) {
3386 WARN_ON(&ptype->list == head);
3387 kfree_skb(skb);
3388 return NET_RX_SUCCESS;
3389 }
3390
3391out:
3392 return netif_receive_skb(skb);
3393}
3394
3395inline void napi_gro_flush(struct napi_struct *napi)
3396{
3397 struct sk_buff *skb, *next;
3398
3399 for (skb = napi->gro_list; skb; skb = next) {
3400 next = skb->next;
3401 skb->next = NULL;
3402 napi_gro_complete(skb);
3403 }
3404
3405 napi->gro_count = 0;
3406 napi->gro_list = NULL;
3407}
3408EXPORT_SYMBOL(napi_gro_flush);
3409
3410enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3411{
3412 struct sk_buff **pp = NULL;
3413 struct packet_type *ptype;
3414 __be16 type = skb->protocol;
3415 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3416 int same_flow;
3417 int mac_len;
3418 enum gro_result ret;
3419
3420 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3421 goto normal;
3422
3423 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3424 goto normal;
3425
3426 rcu_read_lock();
3427 list_for_each_entry_rcu(ptype, head, list) {
3428 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3429 continue;
3430
3431 skb_set_network_header(skb, skb_gro_offset(skb));
3432 mac_len = skb->network_header - skb->mac_header;
3433 skb->mac_len = mac_len;
3434 NAPI_GRO_CB(skb)->same_flow = 0;
3435 NAPI_GRO_CB(skb)->flush = 0;
3436 NAPI_GRO_CB(skb)->free = 0;
3437
3438 pp = ptype->gro_receive(&napi->gro_list, skb);
3439 break;
3440 }
3441 rcu_read_unlock();
3442
3443 if (&ptype->list == head)
3444 goto normal;
3445
3446 same_flow = NAPI_GRO_CB(skb)->same_flow;
3447 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3448
3449 if (pp) {
3450 struct sk_buff *nskb = *pp;
3451
3452 *pp = nskb->next;
3453 nskb->next = NULL;
3454 napi_gro_complete(nskb);
3455 napi->gro_count--;
3456 }
3457
3458 if (same_flow)
3459 goto ok;
3460
3461 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3462 goto normal;
3463
3464 napi->gro_count++;
3465 NAPI_GRO_CB(skb)->count = 1;
3466 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3467 skb->next = napi->gro_list;
3468 napi->gro_list = skb;
3469 ret = GRO_HELD;
3470
3471pull:
3472 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3473 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3474
3475 BUG_ON(skb->end - skb->tail < grow);
3476
3477 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3478
3479 skb->tail += grow;
3480 skb->data_len -= grow;
3481
3482 skb_shinfo(skb)->frags[0].page_offset += grow;
3483 skb_shinfo(skb)->frags[0].size -= grow;
3484
3485 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3486 put_page(skb_shinfo(skb)->frags[0].page);
3487 memmove(skb_shinfo(skb)->frags,
3488 skb_shinfo(skb)->frags + 1,
3489 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3490 }
3491 }
3492
3493ok:
3494 return ret;
3495
3496normal:
3497 ret = GRO_NORMAL;
3498 goto pull;
3499}
3500EXPORT_SYMBOL(dev_gro_receive);
3501
3502static inline gro_result_t
3503__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3504{
3505 struct sk_buff *p;
3506
3507 for (p = napi->gro_list; p; p = p->next) {
3508 unsigned long diffs;
3509
3510 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3511 diffs |= p->vlan_tci ^ skb->vlan_tci;
3512 diffs |= compare_ether_header(skb_mac_header(p),
3513 skb_gro_mac_header(skb));
3514 NAPI_GRO_CB(p)->same_flow = !diffs;
3515 NAPI_GRO_CB(p)->flush = 0;
3516 }
3517
3518 return dev_gro_receive(napi, skb);
3519}
3520
3521gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3522{
3523 switch (ret) {
3524 case GRO_NORMAL:
3525 if (netif_receive_skb(skb))
3526 ret = GRO_DROP;
3527 break;
3528
3529 case GRO_DROP:
3530 case GRO_MERGED_FREE:
3531 kfree_skb(skb);
3532 break;
3533
3534 case GRO_HELD:
3535 case GRO_MERGED:
3536 break;
3537 }
3538
3539 return ret;
3540}
3541EXPORT_SYMBOL(napi_skb_finish);
3542
3543void skb_gro_reset_offset(struct sk_buff *skb)
3544{
3545 NAPI_GRO_CB(skb)->data_offset = 0;
3546 NAPI_GRO_CB(skb)->frag0 = NULL;
3547 NAPI_GRO_CB(skb)->frag0_len = 0;
3548
3549 if (skb->mac_header == skb->tail &&
3550 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3551 NAPI_GRO_CB(skb)->frag0 =
3552 page_address(skb_shinfo(skb)->frags[0].page) +
3553 skb_shinfo(skb)->frags[0].page_offset;
3554 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3555 }
3556}
3557EXPORT_SYMBOL(skb_gro_reset_offset);
3558
3559gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3560{
3561 skb_gro_reset_offset(skb);
3562
3563 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3564}
3565EXPORT_SYMBOL(napi_gro_receive);
3566
3567static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3568{
3569 __skb_pull(skb, skb_headlen(skb));
3570 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3571 skb->vlan_tci = 0;
3572 skb->dev = napi->dev;
3573 skb->skb_iif = 0;
3574
3575 napi->skb = skb;
3576}
3577
3578struct sk_buff *napi_get_frags(struct napi_struct *napi)
3579{
3580 struct sk_buff *skb = napi->skb;
3581
3582 if (!skb) {
3583 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3584 if (skb)
3585 napi->skb = skb;
3586 }
3587 return skb;
3588}
3589EXPORT_SYMBOL(napi_get_frags);
3590
3591gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3592 gro_result_t ret)
3593{
3594 switch (ret) {
3595 case GRO_NORMAL:
3596 case GRO_HELD:
3597 skb->protocol = eth_type_trans(skb, skb->dev);
3598
3599 if (ret == GRO_HELD)
3600 skb_gro_pull(skb, -ETH_HLEN);
3601 else if (netif_receive_skb(skb))
3602 ret = GRO_DROP;
3603 break;
3604
3605 case GRO_DROP:
3606 case GRO_MERGED_FREE:
3607 napi_reuse_skb(napi, skb);
3608 break;
3609
3610 case GRO_MERGED:
3611 break;
3612 }
3613
3614 return ret;
3615}
3616EXPORT_SYMBOL(napi_frags_finish);
3617
3618struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3619{
3620 struct sk_buff *skb = napi->skb;
3621 struct ethhdr *eth;
3622 unsigned int hlen;
3623 unsigned int off;
3624
3625 napi->skb = NULL;
3626
3627 skb_reset_mac_header(skb);
3628 skb_gro_reset_offset(skb);
3629
3630 off = skb_gro_offset(skb);
3631 hlen = off + sizeof(*eth);
3632 eth = skb_gro_header_fast(skb, off);
3633 if (skb_gro_header_hard(skb, hlen)) {
3634 eth = skb_gro_header_slow(skb, hlen, off);
3635 if (unlikely(!eth)) {
3636 napi_reuse_skb(napi, skb);
3637 skb = NULL;
3638 goto out;
3639 }
3640 }
3641
3642 skb_gro_pull(skb, sizeof(*eth));
3643
3644 /*
3645 * This works because the only protocols we care about don't require
3646 * special handling. We'll fix it up properly at the end.
3647 */
3648 skb->protocol = eth->h_proto;
3649
3650out:
3651 return skb;
3652}
3653EXPORT_SYMBOL(napi_frags_skb);
3654
3655gro_result_t napi_gro_frags(struct napi_struct *napi)
3656{
3657 struct sk_buff *skb = napi_frags_skb(napi);
3658
3659 if (!skb)
3660 return GRO_DROP;
3661
3662 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3663}
3664EXPORT_SYMBOL(napi_gro_frags);
3665
3666/*
3667 * net_rps_action sends any pending IPI's for rps.
3668 * Note: called with local irq disabled, but exits with local irq enabled.
3669 */
3670static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3671{
3672#ifdef CONFIG_RPS
3673 struct softnet_data *remsd = sd->rps_ipi_list;
3674
3675 if (remsd) {
3676 sd->rps_ipi_list = NULL;
3677
3678 local_irq_enable();
3679
3680 /* Send pending IPI's to kick RPS processing on remote cpus. */
3681 while (remsd) {
3682 struct softnet_data *next = remsd->rps_ipi_next;
3683
3684 if (cpu_online(remsd->cpu))
3685 __smp_call_function_single(remsd->cpu,
3686 &remsd->csd, 0);
3687 remsd = next;
3688 }
3689 } else
3690#endif
3691 local_irq_enable();
3692}
3693
3694static int process_backlog(struct napi_struct *napi, int quota)
3695{
3696 int work = 0;
3697 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3698
3699#ifdef CONFIG_RPS
3700 /* Check if we have pending ipi, its better to send them now,
3701 * not waiting net_rx_action() end.
3702 */
3703 if (sd->rps_ipi_list) {
3704 local_irq_disable();
3705 net_rps_action_and_irq_enable(sd);
3706 }
3707#endif
3708 napi->weight = weight_p;
3709 local_irq_disable();
3710 while (work < quota) {
3711 struct sk_buff *skb;
3712 unsigned int qlen;
3713
3714 while ((skb = __skb_dequeue(&sd->process_queue))) {
3715 local_irq_enable();
3716 __netif_receive_skb(skb);
3717 local_irq_disable();
3718 input_queue_head_incr(sd);
3719 if (++work >= quota) {
3720 local_irq_enable();
3721 return work;
3722 }
3723 }
3724
3725 rps_lock(sd);
3726 qlen = skb_queue_len(&sd->input_pkt_queue);
3727 if (qlen)
3728 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3729 &sd->process_queue);
3730
3731 if (qlen < quota - work) {
3732 /*
3733 * Inline a custom version of __napi_complete().
3734 * only current cpu owns and manipulates this napi,
3735 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3736 * we can use a plain write instead of clear_bit(),
3737 * and we dont need an smp_mb() memory barrier.
3738 */
3739 list_del(&napi->poll_list);
3740 napi->state = 0;
3741
3742 quota = work + qlen;
3743 }
3744 rps_unlock(sd);
3745 }
3746 local_irq_enable();
3747
3748 return work;
3749}
3750
3751/**
3752 * __napi_schedule - schedule for receive
3753 * @n: entry to schedule
3754 *
3755 * The entry's receive function will be scheduled to run
3756 */
3757void __napi_schedule(struct napi_struct *n)
3758{
3759 unsigned long flags;
3760
3761 local_irq_save(flags);
3762 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3763 local_irq_restore(flags);
3764}
3765EXPORT_SYMBOL(__napi_schedule);
3766
3767void __napi_complete(struct napi_struct *n)
3768{
3769 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3770 BUG_ON(n->gro_list);
3771
3772 list_del(&n->poll_list);
3773 smp_mb__before_clear_bit();
3774 clear_bit(NAPI_STATE_SCHED, &n->state);
3775}
3776EXPORT_SYMBOL(__napi_complete);
3777
3778void napi_complete(struct napi_struct *n)
3779{
3780 unsigned long flags;
3781
3782 /*
3783 * don't let napi dequeue from the cpu poll list
3784 * just in case its running on a different cpu
3785 */
3786 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3787 return;
3788
3789 napi_gro_flush(n);
3790 local_irq_save(flags);
3791 __napi_complete(n);
3792 local_irq_restore(flags);
3793}
3794EXPORT_SYMBOL(napi_complete);
3795
3796void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3797 int (*poll)(struct napi_struct *, int), int weight)
3798{
3799 INIT_LIST_HEAD(&napi->poll_list);
3800 napi->gro_count = 0;
3801 napi->gro_list = NULL;
3802 napi->skb = NULL;
3803 napi->poll = poll;
3804 napi->weight = weight;
3805 list_add(&napi->dev_list, &dev->napi_list);
3806 napi->dev = dev;
3807#ifdef CONFIG_NETPOLL
3808 spin_lock_init(&napi->poll_lock);
3809 napi->poll_owner = -1;
3810#endif
3811 set_bit(NAPI_STATE_SCHED, &napi->state);
3812}
3813EXPORT_SYMBOL(netif_napi_add);
3814
3815void netif_napi_del(struct napi_struct *napi)
3816{
3817 struct sk_buff *skb, *next;
3818
3819 list_del_init(&napi->dev_list);
3820 napi_free_frags(napi);
3821
3822 for (skb = napi->gro_list; skb; skb = next) {
3823 next = skb->next;
3824 skb->next = NULL;
3825 kfree_skb(skb);
3826 }
3827
3828 napi->gro_list = NULL;
3829 napi->gro_count = 0;
3830}
3831EXPORT_SYMBOL(netif_napi_del);
3832
3833static void net_rx_action(struct softirq_action *h)
3834{
3835 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3836 unsigned long time_limit = jiffies + 2;
3837 int budget = netdev_budget;
3838 void *have;
3839
3840 local_irq_disable();
3841
3842 while (!list_empty(&sd->poll_list)) {
3843 struct napi_struct *n;
3844 int work, weight;
3845
3846 /* If softirq window is exhuasted then punt.
3847 * Allow this to run for 2 jiffies since which will allow
3848 * an average latency of 1.5/HZ.
3849 */
3850 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3851 goto softnet_break;
3852
3853 local_irq_enable();
3854
3855 /* Even though interrupts have been re-enabled, this
3856 * access is safe because interrupts can only add new
3857 * entries to the tail of this list, and only ->poll()
3858 * calls can remove this head entry from the list.
3859 */
3860 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3861
3862 have = netpoll_poll_lock(n);
3863
3864 weight = n->weight;
3865
3866 /* This NAPI_STATE_SCHED test is for avoiding a race
3867 * with netpoll's poll_napi(). Only the entity which
3868 * obtains the lock and sees NAPI_STATE_SCHED set will
3869 * actually make the ->poll() call. Therefore we avoid
3870 * accidently calling ->poll() when NAPI is not scheduled.
3871 */
3872 work = 0;
3873 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3874 work = n->poll(n, weight);
3875 trace_napi_poll(n);
3876 }
3877
3878 WARN_ON_ONCE(work > weight);
3879
3880 budget -= work;
3881
3882 local_irq_disable();
3883
3884 /* Drivers must not modify the NAPI state if they
3885 * consume the entire weight. In such cases this code
3886 * still "owns" the NAPI instance and therefore can
3887 * move the instance around on the list at-will.
3888 */
3889 if (unlikely(work == weight)) {
3890 if (unlikely(napi_disable_pending(n))) {
3891 local_irq_enable();
3892 napi_complete(n);
3893 local_irq_disable();
3894 } else
3895 list_move_tail(&n->poll_list, &sd->poll_list);
3896 }
3897
3898 netpoll_poll_unlock(have);
3899 }
3900out:
3901 net_rps_action_and_irq_enable(sd);
3902
3903#ifdef CONFIG_NET_DMA
3904 /*
3905 * There may not be any more sk_buffs coming right now, so push
3906 * any pending DMA copies to hardware
3907 */
3908 dma_issue_pending_all();
3909#endif
3910
3911 return;
3912
3913softnet_break:
3914 sd->time_squeeze++;
3915 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3916 goto out;
3917}
3918
3919static gifconf_func_t *gifconf_list[NPROTO];
3920
3921/**
3922 * register_gifconf - register a SIOCGIF handler
3923 * @family: Address family
3924 * @gifconf: Function handler
3925 *
3926 * Register protocol dependent address dumping routines. The handler
3927 * that is passed must not be freed or reused until it has been replaced
3928 * by another handler.
3929 */
3930int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3931{
3932 if (family >= NPROTO)
3933 return -EINVAL;
3934 gifconf_list[family] = gifconf;
3935 return 0;
3936}
3937EXPORT_SYMBOL(register_gifconf);
3938
3939
3940/*
3941 * Map an interface index to its name (SIOCGIFNAME)
3942 */
3943
3944/*
3945 * We need this ioctl for efficient implementation of the
3946 * if_indextoname() function required by the IPv6 API. Without
3947 * it, we would have to search all the interfaces to find a
3948 * match. --pb
3949 */
3950
3951static int dev_ifname(struct net *net, struct ifreq __user *arg)
3952{
3953 struct net_device *dev;
3954 struct ifreq ifr;
3955
3956 /*
3957 * Fetch the caller's info block.
3958 */
3959
3960 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3961 return -EFAULT;
3962
3963 rcu_read_lock();
3964 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3965 if (!dev) {
3966 rcu_read_unlock();
3967 return -ENODEV;
3968 }
3969
3970 strcpy(ifr.ifr_name, dev->name);
3971 rcu_read_unlock();
3972
3973 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3974 return -EFAULT;
3975 return 0;
3976}
3977
3978/*
3979 * Perform a SIOCGIFCONF call. This structure will change
3980 * size eventually, and there is nothing I can do about it.
3981 * Thus we will need a 'compatibility mode'.
3982 */
3983
3984static int dev_ifconf(struct net *net, char __user *arg)
3985{
3986 struct ifconf ifc;
3987 struct net_device *dev;
3988 char __user *pos;
3989 int len;
3990 int total;
3991 int i;
3992
3993 /*
3994 * Fetch the caller's info block.
3995 */
3996
3997 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3998 return -EFAULT;
3999
4000 pos = ifc.ifc_buf;
4001 len = ifc.ifc_len;
4002
4003 /*
4004 * Loop over the interfaces, and write an info block for each.
4005 */
4006
4007 total = 0;
4008 for_each_netdev(net, dev) {
4009 for (i = 0; i < NPROTO; i++) {
4010 if (gifconf_list[i]) {
4011 int done;
4012 if (!pos)
4013 done = gifconf_list[i](dev, NULL, 0);
4014 else
4015 done = gifconf_list[i](dev, pos + total,
4016 len - total);
4017 if (done < 0)
4018 return -EFAULT;
4019 total += done;
4020 }
4021 }
4022 }
4023
4024 /*
4025 * All done. Write the updated control block back to the caller.
4026 */
4027 ifc.ifc_len = total;
4028
4029 /*
4030 * Both BSD and Solaris return 0 here, so we do too.
4031 */
4032 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4033}
4034
4035#ifdef CONFIG_PROC_FS
4036/*
4037 * This is invoked by the /proc filesystem handler to display a device
4038 * in detail.
4039 */
4040void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4041 __acquires(RCU)
4042{
4043 struct net *net = seq_file_net(seq);
4044 loff_t off;
4045 struct net_device *dev;
4046
4047 rcu_read_lock();
4048 if (!*pos)
4049 return SEQ_START_TOKEN;
4050
4051 off = 1;
4052 for_each_netdev_rcu(net, dev)
4053 if (off++ == *pos)
4054 return dev;
4055
4056 return NULL;
4057}
4058
4059void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4060{
4061 struct net_device *dev = v;
4062
4063 if (v == SEQ_START_TOKEN)
4064 dev = first_net_device_rcu(seq_file_net(seq));
4065 else
4066 dev = next_net_device_rcu(dev);
4067
4068 ++*pos;
4069 return dev;
4070}
4071
4072void dev_seq_stop(struct seq_file *seq, void *v)
4073 __releases(RCU)
4074{
4075 rcu_read_unlock();
4076}
4077
4078static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4079{
4080 struct rtnl_link_stats64 temp;
4081 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4082
4083 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4084 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4085 dev->name, stats->rx_bytes, stats->rx_packets,
4086 stats->rx_errors,
4087 stats->rx_dropped + stats->rx_missed_errors,
4088 stats->rx_fifo_errors,
4089 stats->rx_length_errors + stats->rx_over_errors +
4090 stats->rx_crc_errors + stats->rx_frame_errors,
4091 stats->rx_compressed, stats->multicast,
4092 stats->tx_bytes, stats->tx_packets,
4093 stats->tx_errors, stats->tx_dropped,
4094 stats->tx_fifo_errors, stats->collisions,
4095 stats->tx_carrier_errors +
4096 stats->tx_aborted_errors +
4097 stats->tx_window_errors +
4098 stats->tx_heartbeat_errors,
4099 stats->tx_compressed);
4100}
4101
4102/*
4103 * Called from the PROCfs module. This now uses the new arbitrary sized
4104 * /proc/net interface to create /proc/net/dev
4105 */
4106static int dev_seq_show(struct seq_file *seq, void *v)
4107{
4108 if (v == SEQ_START_TOKEN)
4109 seq_puts(seq, "Inter-| Receive "
4110 " | Transmit\n"
4111 " face |bytes packets errs drop fifo frame "
4112 "compressed multicast|bytes packets errs "
4113 "drop fifo colls carrier compressed\n");
4114 else
4115 dev_seq_printf_stats(seq, v);
4116 return 0;
4117}
4118
4119static struct softnet_data *softnet_get_online(loff_t *pos)
4120{
4121 struct softnet_data *sd = NULL;
4122
4123 while (*pos < nr_cpu_ids)
4124 if (cpu_online(*pos)) {
4125 sd = &per_cpu(softnet_data, *pos);
4126 break;
4127 } else
4128 ++*pos;
4129 return sd;
4130}
4131
4132static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4133{
4134 return softnet_get_online(pos);
4135}
4136
4137static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4138{
4139 ++*pos;
4140 return softnet_get_online(pos);
4141}
4142
4143static void softnet_seq_stop(struct seq_file *seq, void *v)
4144{
4145}
4146
4147static int softnet_seq_show(struct seq_file *seq, void *v)
4148{
4149 struct softnet_data *sd = v;
4150
4151 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4152 sd->processed, sd->dropped, sd->time_squeeze, 0,
4153 0, 0, 0, 0, /* was fastroute */
4154 sd->cpu_collision, sd->received_rps);
4155 return 0;
4156}
4157
4158static const struct seq_operations dev_seq_ops = {
4159 .start = dev_seq_start,
4160 .next = dev_seq_next,
4161 .stop = dev_seq_stop,
4162 .show = dev_seq_show,
4163};
4164
4165static int dev_seq_open(struct inode *inode, struct file *file)
4166{
4167 return seq_open_net(inode, file, &dev_seq_ops,
4168 sizeof(struct seq_net_private));
4169}
4170
4171static const struct file_operations dev_seq_fops = {
4172 .owner = THIS_MODULE,
4173 .open = dev_seq_open,
4174 .read = seq_read,
4175 .llseek = seq_lseek,
4176 .release = seq_release_net,
4177};
4178
4179static const struct seq_operations softnet_seq_ops = {
4180 .start = softnet_seq_start,
4181 .next = softnet_seq_next,
4182 .stop = softnet_seq_stop,
4183 .show = softnet_seq_show,
4184};
4185
4186static int softnet_seq_open(struct inode *inode, struct file *file)
4187{
4188 return seq_open(file, &softnet_seq_ops);
4189}
4190
4191static const struct file_operations softnet_seq_fops = {
4192 .owner = THIS_MODULE,
4193 .open = softnet_seq_open,
4194 .read = seq_read,
4195 .llseek = seq_lseek,
4196 .release = seq_release,
4197};
4198
4199static void *ptype_get_idx(loff_t pos)
4200{
4201 struct packet_type *pt = NULL;
4202 loff_t i = 0;
4203 int t;
4204
4205 list_for_each_entry_rcu(pt, &ptype_all, list) {
4206 if (i == pos)
4207 return pt;
4208 ++i;
4209 }
4210
4211 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4212 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4213 if (i == pos)
4214 return pt;
4215 ++i;
4216 }
4217 }
4218 return NULL;
4219}
4220
4221static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4222 __acquires(RCU)
4223{
4224 rcu_read_lock();
4225 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4226}
4227
4228static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4229{
4230 struct packet_type *pt;
4231 struct list_head *nxt;
4232 int hash;
4233
4234 ++*pos;
4235 if (v == SEQ_START_TOKEN)
4236 return ptype_get_idx(0);
4237
4238 pt = v;
4239 nxt = pt->list.next;
4240 if (pt->type == htons(ETH_P_ALL)) {
4241 if (nxt != &ptype_all)
4242 goto found;
4243 hash = 0;
4244 nxt = ptype_base[0].next;
4245 } else
4246 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4247
4248 while (nxt == &ptype_base[hash]) {
4249 if (++hash >= PTYPE_HASH_SIZE)
4250 return NULL;
4251 nxt = ptype_base[hash].next;
4252 }
4253found:
4254 return list_entry(nxt, struct packet_type, list);
4255}
4256
4257static void ptype_seq_stop(struct seq_file *seq, void *v)
4258 __releases(RCU)
4259{
4260 rcu_read_unlock();
4261}
4262
4263static int ptype_seq_show(struct seq_file *seq, void *v)
4264{
4265 struct packet_type *pt = v;
4266
4267 if (v == SEQ_START_TOKEN)
4268 seq_puts(seq, "Type Device Function\n");
4269 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4270 if (pt->type == htons(ETH_P_ALL))
4271 seq_puts(seq, "ALL ");
4272 else
4273 seq_printf(seq, "%04x", ntohs(pt->type));
4274
4275 seq_printf(seq, " %-8s %pF\n",
4276 pt->dev ? pt->dev->name : "", pt->func);
4277 }
4278
4279 return 0;
4280}
4281
4282static const struct seq_operations ptype_seq_ops = {
4283 .start = ptype_seq_start,
4284 .next = ptype_seq_next,
4285 .stop = ptype_seq_stop,
4286 .show = ptype_seq_show,
4287};
4288
4289static int ptype_seq_open(struct inode *inode, struct file *file)
4290{
4291 return seq_open_net(inode, file, &ptype_seq_ops,
4292 sizeof(struct seq_net_private));
4293}
4294
4295static const struct file_operations ptype_seq_fops = {
4296 .owner = THIS_MODULE,
4297 .open = ptype_seq_open,
4298 .read = seq_read,
4299 .llseek = seq_lseek,
4300 .release = seq_release_net,
4301};
4302
4303
4304static int __net_init dev_proc_net_init(struct net *net)
4305{
4306 int rc = -ENOMEM;
4307
4308 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4309 goto out;
4310 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4311 goto out_dev;
4312 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4313 goto out_softnet;
4314
4315 if (wext_proc_init(net))
4316 goto out_ptype;
4317 rc = 0;
4318out:
4319 return rc;
4320out_ptype:
4321 proc_net_remove(net, "ptype");
4322out_softnet:
4323 proc_net_remove(net, "softnet_stat");
4324out_dev:
4325 proc_net_remove(net, "dev");
4326 goto out;
4327}
4328
4329static void __net_exit dev_proc_net_exit(struct net *net)
4330{
4331 wext_proc_exit(net);
4332
4333 proc_net_remove(net, "ptype");
4334 proc_net_remove(net, "softnet_stat");
4335 proc_net_remove(net, "dev");
4336}
4337
4338static struct pernet_operations __net_initdata dev_proc_ops = {
4339 .init = dev_proc_net_init,
4340 .exit = dev_proc_net_exit,
4341};
4342
4343static int __init dev_proc_init(void)
4344{
4345 return register_pernet_subsys(&dev_proc_ops);
4346}
4347#else
4348#define dev_proc_init() 0
4349#endif /* CONFIG_PROC_FS */
4350
4351
4352/**
4353 * netdev_set_master - set up master pointer
4354 * @slave: slave device
4355 * @master: new master device
4356 *
4357 * Changes the master device of the slave. Pass %NULL to break the
4358 * bonding. The caller must hold the RTNL semaphore. On a failure
4359 * a negative errno code is returned. On success the reference counts
4360 * are adjusted and the function returns zero.
4361 */
4362int netdev_set_master(struct net_device *slave, struct net_device *master)
4363{
4364 struct net_device *old = slave->master;
4365
4366 ASSERT_RTNL();
4367
4368 if (master) {
4369 if (old)
4370 return -EBUSY;
4371 dev_hold(master);
4372 }
4373
4374 slave->master = master;
4375
4376 if (old) {
4377 synchronize_net();
4378 dev_put(old);
4379 }
4380 return 0;
4381}
4382EXPORT_SYMBOL(netdev_set_master);
4383
4384/**
4385 * netdev_set_bond_master - set up bonding master/slave pair
4386 * @slave: slave device
4387 * @master: new master device
4388 *
4389 * Changes the master device of the slave. Pass %NULL to break the
4390 * bonding. The caller must hold the RTNL semaphore. On a failure
4391 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4392 * to the routing socket and the function returns zero.
4393 */
4394int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4395{
4396 int err;
4397
4398 ASSERT_RTNL();
4399
4400 err = netdev_set_master(slave, master);
4401 if (err)
4402 return err;
4403 if (master)
4404 slave->flags |= IFF_SLAVE;
4405 else
4406 slave->flags &= ~IFF_SLAVE;
4407
4408 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4409 return 0;
4410}
4411EXPORT_SYMBOL(netdev_set_bond_master);
4412
4413static void dev_change_rx_flags(struct net_device *dev, int flags)
4414{
4415 const struct net_device_ops *ops = dev->netdev_ops;
4416
4417 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4418 ops->ndo_change_rx_flags(dev, flags);
4419}
4420
4421static int __dev_set_promiscuity(struct net_device *dev, int inc)
4422{
4423 unsigned short old_flags = dev->flags;
4424 uid_t uid;
4425 gid_t gid;
4426
4427 ASSERT_RTNL();
4428
4429 dev->flags |= IFF_PROMISC;
4430 dev->promiscuity += inc;
4431 if (dev->promiscuity == 0) {
4432 /*
4433 * Avoid overflow.
4434 * If inc causes overflow, untouch promisc and return error.
4435 */
4436 if (inc < 0)
4437 dev->flags &= ~IFF_PROMISC;
4438 else {
4439 dev->promiscuity -= inc;
4440 printk(KERN_WARNING "%s: promiscuity touches roof, "
4441 "set promiscuity failed, promiscuity feature "
4442 "of device might be broken.\n", dev->name);
4443 return -EOVERFLOW;
4444 }
4445 }
4446 if (dev->flags != old_flags) {
4447 printk(KERN_INFO "device %s %s promiscuous mode\n",
4448 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4449 "left");
4450 if (audit_enabled) {
4451 current_uid_gid(&uid, &gid);
4452 audit_log(current->audit_context, GFP_ATOMIC,
4453 AUDIT_ANOM_PROMISCUOUS,
4454 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4455 dev->name, (dev->flags & IFF_PROMISC),
4456 (old_flags & IFF_PROMISC),
4457 audit_get_loginuid(current),
4458 uid, gid,
4459 audit_get_sessionid(current));
4460 }
4461
4462 dev_change_rx_flags(dev, IFF_PROMISC);
4463 }
4464 return 0;
4465}
4466
4467/**
4468 * dev_set_promiscuity - update promiscuity count on a device
4469 * @dev: device
4470 * @inc: modifier
4471 *
4472 * Add or remove promiscuity from a device. While the count in the device
4473 * remains above zero the interface remains promiscuous. Once it hits zero
4474 * the device reverts back to normal filtering operation. A negative inc
4475 * value is used to drop promiscuity on the device.
4476 * Return 0 if successful or a negative errno code on error.
4477 */
4478int dev_set_promiscuity(struct net_device *dev, int inc)
4479{
4480 unsigned short old_flags = dev->flags;
4481 int err;
4482
4483 err = __dev_set_promiscuity(dev, inc);
4484 if (err < 0)
4485 return err;
4486 if (dev->flags != old_flags)
4487 dev_set_rx_mode(dev);
4488 return err;
4489}
4490EXPORT_SYMBOL(dev_set_promiscuity);
4491
4492/**
4493 * dev_set_allmulti - update allmulti count on a device
4494 * @dev: device
4495 * @inc: modifier
4496 *
4497 * Add or remove reception of all multicast frames to a device. While the
4498 * count in the device remains above zero the interface remains listening
4499 * to all interfaces. Once it hits zero the device reverts back to normal
4500 * filtering operation. A negative @inc value is used to drop the counter
4501 * when releasing a resource needing all multicasts.
4502 * Return 0 if successful or a negative errno code on error.
4503 */
4504
4505int dev_set_allmulti(struct net_device *dev, int inc)
4506{
4507 unsigned short old_flags = dev->flags;
4508
4509 ASSERT_RTNL();
4510
4511 dev->flags |= IFF_ALLMULTI;
4512 dev->allmulti += inc;
4513 if (dev->allmulti == 0) {
4514 /*
4515 * Avoid overflow.
4516 * If inc causes overflow, untouch allmulti and return error.
4517 */
4518 if (inc < 0)
4519 dev->flags &= ~IFF_ALLMULTI;
4520 else {
4521 dev->allmulti -= inc;
4522 printk(KERN_WARNING "%s: allmulti touches roof, "
4523 "set allmulti failed, allmulti feature of "
4524 "device might be broken.\n", dev->name);
4525 return -EOVERFLOW;
4526 }
4527 }
4528 if (dev->flags ^ old_flags) {
4529 dev_change_rx_flags(dev, IFF_ALLMULTI);
4530 dev_set_rx_mode(dev);
4531 }
4532 return 0;
4533}
4534EXPORT_SYMBOL(dev_set_allmulti);
4535
4536/*
4537 * Upload unicast and multicast address lists to device and
4538 * configure RX filtering. When the device doesn't support unicast
4539 * filtering it is put in promiscuous mode while unicast addresses
4540 * are present.
4541 */
4542void __dev_set_rx_mode(struct net_device *dev)
4543{
4544 const struct net_device_ops *ops = dev->netdev_ops;
4545
4546 /* dev_open will call this function so the list will stay sane. */
4547 if (!(dev->flags&IFF_UP))
4548 return;
4549
4550 if (!netif_device_present(dev))
4551 return;
4552
4553 if (ops->ndo_set_rx_mode)
4554 ops->ndo_set_rx_mode(dev);
4555 else {
4556 /* Unicast addresses changes may only happen under the rtnl,
4557 * therefore calling __dev_set_promiscuity here is safe.
4558 */
4559 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4560 __dev_set_promiscuity(dev, 1);
4561 dev->uc_promisc = 1;
4562 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4563 __dev_set_promiscuity(dev, -1);
4564 dev->uc_promisc = 0;
4565 }
4566
4567 if (ops->ndo_set_multicast_list)
4568 ops->ndo_set_multicast_list(dev);
4569 }
4570}
4571
4572void dev_set_rx_mode(struct net_device *dev)
4573{
4574 netif_addr_lock_bh(dev);
4575 __dev_set_rx_mode(dev);
4576 netif_addr_unlock_bh(dev);
4577}
4578
4579/**
4580 * dev_get_flags - get flags reported to userspace
4581 * @dev: device
4582 *
4583 * Get the combination of flag bits exported through APIs to userspace.
4584 */
4585unsigned dev_get_flags(const struct net_device *dev)
4586{
4587 unsigned flags;
4588
4589 flags = (dev->flags & ~(IFF_PROMISC |
4590 IFF_ALLMULTI |
4591 IFF_RUNNING |
4592 IFF_LOWER_UP |
4593 IFF_DORMANT)) |
4594 (dev->gflags & (IFF_PROMISC |
4595 IFF_ALLMULTI));
4596
4597 if (netif_running(dev)) {
4598 if (netif_oper_up(dev))
4599 flags |= IFF_RUNNING;
4600 if (netif_carrier_ok(dev))
4601 flags |= IFF_LOWER_UP;
4602 if (netif_dormant(dev))
4603 flags |= IFF_DORMANT;
4604 }
4605
4606 return flags;
4607}
4608EXPORT_SYMBOL(dev_get_flags);
4609
4610int __dev_change_flags(struct net_device *dev, unsigned int flags)
4611{
4612 int old_flags = dev->flags;
4613 int ret;
4614
4615 ASSERT_RTNL();
4616
4617 /*
4618 * Set the flags on our device.
4619 */
4620
4621 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4622 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4623 IFF_AUTOMEDIA)) |
4624 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4625 IFF_ALLMULTI));
4626
4627 /*
4628 * Load in the correct multicast list now the flags have changed.
4629 */
4630
4631 if ((old_flags ^ flags) & IFF_MULTICAST)
4632 dev_change_rx_flags(dev, IFF_MULTICAST);
4633
4634 dev_set_rx_mode(dev);
4635
4636 /*
4637 * Have we downed the interface. We handle IFF_UP ourselves
4638 * according to user attempts to set it, rather than blindly
4639 * setting it.
4640 */
4641
4642 ret = 0;
4643 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4644 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4645
4646 if (!ret)
4647 dev_set_rx_mode(dev);
4648 }
4649
4650 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4651 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4652
4653 dev->gflags ^= IFF_PROMISC;
4654 dev_set_promiscuity(dev, inc);
4655 }
4656
4657 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4658 is important. Some (broken) drivers set IFF_PROMISC, when
4659 IFF_ALLMULTI is requested not asking us and not reporting.
4660 */
4661 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4662 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4663
4664 dev->gflags ^= IFF_ALLMULTI;
4665 dev_set_allmulti(dev, inc);
4666 }
4667
4668 return ret;
4669}
4670
4671void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4672{
4673 unsigned int changes = dev->flags ^ old_flags;
4674
4675 if (changes & IFF_UP) {
4676 if (dev->flags & IFF_UP)
4677 call_netdevice_notifiers(NETDEV_UP, dev);
4678 else
4679 call_netdevice_notifiers(NETDEV_DOWN, dev);
4680 }
4681
4682 if (dev->flags & IFF_UP &&
4683 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4684 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4685}
4686
4687/**
4688 * dev_change_flags - change device settings
4689 * @dev: device
4690 * @flags: device state flags
4691 *
4692 * Change settings on device based state flags. The flags are
4693 * in the userspace exported format.
4694 */
4695int dev_change_flags(struct net_device *dev, unsigned flags)
4696{
4697 int ret, changes;
4698 int old_flags = dev->flags;
4699
4700 ret = __dev_change_flags(dev, flags);
4701 if (ret < 0)
4702 return ret;
4703
4704 changes = old_flags ^ dev->flags;
4705 if (changes)
4706 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4707
4708 __dev_notify_flags(dev, old_flags);
4709 return ret;
4710}
4711EXPORT_SYMBOL(dev_change_flags);
4712
4713/**
4714 * dev_set_mtu - Change maximum transfer unit
4715 * @dev: device
4716 * @new_mtu: new transfer unit
4717 *
4718 * Change the maximum transfer size of the network device.
4719 */
4720int dev_set_mtu(struct net_device *dev, int new_mtu)
4721{
4722 const struct net_device_ops *ops = dev->netdev_ops;
4723 int err;
4724
4725 if (new_mtu == dev->mtu)
4726 return 0;
4727
4728 /* MTU must be positive. */
4729 if (new_mtu < 0)
4730 return -EINVAL;
4731
4732 if (!netif_device_present(dev))
4733 return -ENODEV;
4734
4735 err = 0;
4736 if (ops->ndo_change_mtu)
4737 err = ops->ndo_change_mtu(dev, new_mtu);
4738 else
4739 dev->mtu = new_mtu;
4740
4741 if (!err && dev->flags & IFF_UP)
4742 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4743 return err;
4744}
4745EXPORT_SYMBOL(dev_set_mtu);
4746
4747/**
4748 * dev_set_group - Change group this device belongs to
4749 * @dev: device
4750 * @new_group: group this device should belong to
4751 */
4752void dev_set_group(struct net_device *dev, int new_group)
4753{
4754 dev->group = new_group;
4755}
4756EXPORT_SYMBOL(dev_set_group);
4757
4758/**
4759 * dev_set_mac_address - Change Media Access Control Address
4760 * @dev: device
4761 * @sa: new address
4762 *
4763 * Change the hardware (MAC) address of the device
4764 */
4765int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4766{
4767 const struct net_device_ops *ops = dev->netdev_ops;
4768 int err;
4769
4770 if (!ops->ndo_set_mac_address)
4771 return -EOPNOTSUPP;
4772 if (sa->sa_family != dev->type)
4773 return -EINVAL;
4774 if (!netif_device_present(dev))
4775 return -ENODEV;
4776 err = ops->ndo_set_mac_address(dev, sa);
4777 if (!err)
4778 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4779 return err;
4780}
4781EXPORT_SYMBOL(dev_set_mac_address);
4782
4783/*
4784 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4785 */
4786static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4787{
4788 int err;
4789 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4790
4791 if (!dev)
4792 return -ENODEV;
4793
4794 switch (cmd) {
4795 case SIOCGIFFLAGS: /* Get interface flags */
4796 ifr->ifr_flags = (short) dev_get_flags(dev);
4797 return 0;
4798
4799 case SIOCGIFMETRIC: /* Get the metric on the interface
4800 (currently unused) */
4801 ifr->ifr_metric = 0;
4802 return 0;
4803
4804 case SIOCGIFMTU: /* Get the MTU of a device */
4805 ifr->ifr_mtu = dev->mtu;
4806 return 0;
4807
4808 case SIOCGIFHWADDR:
4809 if (!dev->addr_len)
4810 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4811 else
4812 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4813 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4814 ifr->ifr_hwaddr.sa_family = dev->type;
4815 return 0;
4816
4817 case SIOCGIFSLAVE:
4818 err = -EINVAL;
4819 break;
4820
4821 case SIOCGIFMAP:
4822 ifr->ifr_map.mem_start = dev->mem_start;
4823 ifr->ifr_map.mem_end = dev->mem_end;
4824 ifr->ifr_map.base_addr = dev->base_addr;
4825 ifr->ifr_map.irq = dev->irq;
4826 ifr->ifr_map.dma = dev->dma;
4827 ifr->ifr_map.port = dev->if_port;
4828 return 0;
4829
4830 case SIOCGIFINDEX:
4831 ifr->ifr_ifindex = dev->ifindex;
4832 return 0;
4833
4834 case SIOCGIFTXQLEN:
4835 ifr->ifr_qlen = dev->tx_queue_len;
4836 return 0;
4837
4838 default:
4839 /* dev_ioctl() should ensure this case
4840 * is never reached
4841 */
4842 WARN_ON(1);
4843 err = -EINVAL;
4844 break;
4845
4846 }
4847 return err;
4848}
4849
4850/*
4851 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4852 */
4853static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4854{
4855 int err;
4856 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4857 const struct net_device_ops *ops;
4858
4859 if (!dev)
4860 return -ENODEV;
4861
4862 ops = dev->netdev_ops;
4863
4864 switch (cmd) {
4865 case SIOCSIFFLAGS: /* Set interface flags */
4866 return dev_change_flags(dev, ifr->ifr_flags);
4867
4868 case SIOCSIFMETRIC: /* Set the metric on the interface
4869 (currently unused) */
4870 return -EOPNOTSUPP;
4871
4872 case SIOCSIFMTU: /* Set the MTU of a device */
4873 return dev_set_mtu(dev, ifr->ifr_mtu);
4874
4875 case SIOCSIFHWADDR:
4876 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4877
4878 case SIOCSIFHWBROADCAST:
4879 if (ifr->ifr_hwaddr.sa_family != dev->type)
4880 return -EINVAL;
4881 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4882 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4883 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4884 return 0;
4885
4886 case SIOCSIFMAP:
4887 if (ops->ndo_set_config) {
4888 if (!netif_device_present(dev))
4889 return -ENODEV;
4890 return ops->ndo_set_config(dev, &ifr->ifr_map);
4891 }
4892 return -EOPNOTSUPP;
4893
4894 case SIOCADDMULTI:
4895 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4896 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4897 return -EINVAL;
4898 if (!netif_device_present(dev))
4899 return -ENODEV;
4900 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4901
4902 case SIOCDELMULTI:
4903 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4904 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4905 return -EINVAL;
4906 if (!netif_device_present(dev))
4907 return -ENODEV;
4908 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4909
4910 case SIOCSIFTXQLEN:
4911 if (ifr->ifr_qlen < 0)
4912 return -EINVAL;
4913 dev->tx_queue_len = ifr->ifr_qlen;
4914 return 0;
4915
4916 case SIOCSIFNAME:
4917 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4918 return dev_change_name(dev, ifr->ifr_newname);
4919
4920 /*
4921 * Unknown or private ioctl
4922 */
4923 default:
4924 if ((cmd >= SIOCDEVPRIVATE &&
4925 cmd <= SIOCDEVPRIVATE + 15) ||
4926 cmd == SIOCBONDENSLAVE ||
4927 cmd == SIOCBONDRELEASE ||
4928 cmd == SIOCBONDSETHWADDR ||
4929 cmd == SIOCBONDSLAVEINFOQUERY ||
4930 cmd == SIOCBONDINFOQUERY ||
4931 cmd == SIOCBONDCHANGEACTIVE ||
4932 cmd == SIOCGMIIPHY ||
4933 cmd == SIOCGMIIREG ||
4934 cmd == SIOCSMIIREG ||
4935 cmd == SIOCBRADDIF ||
4936 cmd == SIOCBRDELIF ||
4937 cmd == SIOCSHWTSTAMP ||
4938 cmd == SIOCWANDEV) {
4939 err = -EOPNOTSUPP;
4940 if (ops->ndo_do_ioctl) {
4941 if (netif_device_present(dev))
4942 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4943 else
4944 err = -ENODEV;
4945 }
4946 } else
4947 err = -EINVAL;
4948
4949 }
4950 return err;
4951}
4952
4953/*
4954 * This function handles all "interface"-type I/O control requests. The actual
4955 * 'doing' part of this is dev_ifsioc above.
4956 */
4957
4958/**
4959 * dev_ioctl - network device ioctl
4960 * @net: the applicable net namespace
4961 * @cmd: command to issue
4962 * @arg: pointer to a struct ifreq in user space
4963 *
4964 * Issue ioctl functions to devices. This is normally called by the
4965 * user space syscall interfaces but can sometimes be useful for
4966 * other purposes. The return value is the return from the syscall if
4967 * positive or a negative errno code on error.
4968 */
4969
4970int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4971{
4972 struct ifreq ifr;
4973 int ret;
4974 char *colon;
4975
4976 /* One special case: SIOCGIFCONF takes ifconf argument
4977 and requires shared lock, because it sleeps writing
4978 to user space.
4979 */
4980
4981 if (cmd == SIOCGIFCONF) {
4982 rtnl_lock();
4983 ret = dev_ifconf(net, (char __user *) arg);
4984 rtnl_unlock();
4985 return ret;
4986 }
4987 if (cmd == SIOCGIFNAME)
4988 return dev_ifname(net, (struct ifreq __user *)arg);
4989
4990 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4991 return -EFAULT;
4992
4993 ifr.ifr_name[IFNAMSIZ-1] = 0;
4994
4995 colon = strchr(ifr.ifr_name, ':');
4996 if (colon)
4997 *colon = 0;
4998
4999 /*
5000 * See which interface the caller is talking about.
5001 */
5002
5003 switch (cmd) {
5004 /*
5005 * These ioctl calls:
5006 * - can be done by all.
5007 * - atomic and do not require locking.
5008 * - return a value
5009 */
5010 case SIOCGIFFLAGS:
5011 case SIOCGIFMETRIC:
5012 case SIOCGIFMTU:
5013 case SIOCGIFHWADDR:
5014 case SIOCGIFSLAVE:
5015 case SIOCGIFMAP:
5016 case SIOCGIFINDEX:
5017 case SIOCGIFTXQLEN:
5018 dev_load(net, ifr.ifr_name);
5019 rcu_read_lock();
5020 ret = dev_ifsioc_locked(net, &ifr, cmd);
5021 rcu_read_unlock();
5022 if (!ret) {
5023 if (colon)
5024 *colon = ':';
5025 if (copy_to_user(arg, &ifr,
5026 sizeof(struct ifreq)))
5027 ret = -EFAULT;
5028 }
5029 return ret;
5030
5031 case SIOCETHTOOL:
5032 dev_load(net, ifr.ifr_name);
5033 rtnl_lock();
5034 ret = dev_ethtool(net, &ifr);
5035 rtnl_unlock();
5036 if (!ret) {
5037 if (colon)
5038 *colon = ':';
5039 if (copy_to_user(arg, &ifr,
5040 sizeof(struct ifreq)))
5041 ret = -EFAULT;
5042 }
5043 return ret;
5044
5045 /*
5046 * These ioctl calls:
5047 * - require superuser power.
5048 * - require strict serialization.
5049 * - return a value
5050 */
5051 case SIOCGMIIPHY:
5052 case SIOCGMIIREG:
5053 case SIOCSIFNAME:
5054 if (!capable(CAP_NET_ADMIN))
5055 return -EPERM;
5056 dev_load(net, ifr.ifr_name);
5057 rtnl_lock();
5058 ret = dev_ifsioc(net, &ifr, cmd);
5059 rtnl_unlock();
5060 if (!ret) {
5061 if (colon)
5062 *colon = ':';
5063 if (copy_to_user(arg, &ifr,
5064 sizeof(struct ifreq)))
5065 ret = -EFAULT;
5066 }
5067 return ret;
5068
5069 /*
5070 * These ioctl calls:
5071 * - require superuser power.
5072 * - require strict serialization.
5073 * - do not return a value
5074 */
5075 case SIOCSIFFLAGS:
5076 case SIOCSIFMETRIC:
5077 case SIOCSIFMTU:
5078 case SIOCSIFMAP:
5079 case SIOCSIFHWADDR:
5080 case SIOCSIFSLAVE:
5081 case SIOCADDMULTI:
5082 case SIOCDELMULTI:
5083 case SIOCSIFHWBROADCAST:
5084 case SIOCSIFTXQLEN:
5085 case SIOCSMIIREG:
5086 case SIOCBONDENSLAVE:
5087 case SIOCBONDRELEASE:
5088 case SIOCBONDSETHWADDR:
5089 case SIOCBONDCHANGEACTIVE:
5090 case SIOCBRADDIF:
5091 case SIOCBRDELIF:
5092 case SIOCSHWTSTAMP:
5093 if (!capable(CAP_NET_ADMIN))
5094 return -EPERM;
5095 /* fall through */
5096 case SIOCBONDSLAVEINFOQUERY:
5097 case SIOCBONDINFOQUERY:
5098 dev_load(net, ifr.ifr_name);
5099 rtnl_lock();
5100 ret = dev_ifsioc(net, &ifr, cmd);
5101 rtnl_unlock();
5102 return ret;
5103
5104 case SIOCGIFMEM:
5105 /* Get the per device memory space. We can add this but
5106 * currently do not support it */
5107 case SIOCSIFMEM:
5108 /* Set the per device memory buffer space.
5109 * Not applicable in our case */
5110 case SIOCSIFLINK:
5111 return -EINVAL;
5112
5113 /*
5114 * Unknown or private ioctl.
5115 */
5116 default:
5117 if (cmd == SIOCWANDEV ||
5118 (cmd >= SIOCDEVPRIVATE &&
5119 cmd <= SIOCDEVPRIVATE + 15)) {
5120 dev_load(net, ifr.ifr_name);
5121 rtnl_lock();
5122 ret = dev_ifsioc(net, &ifr, cmd);
5123 rtnl_unlock();
5124 if (!ret && copy_to_user(arg, &ifr,
5125 sizeof(struct ifreq)))
5126 ret = -EFAULT;
5127 return ret;
5128 }
5129 /* Take care of Wireless Extensions */
5130 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5131 return wext_handle_ioctl(net, &ifr, cmd, arg);
5132 return -EINVAL;
5133 }
5134}
5135
5136
5137/**
5138 * dev_new_index - allocate an ifindex
5139 * @net: the applicable net namespace
5140 *
5141 * Returns a suitable unique value for a new device interface
5142 * number. The caller must hold the rtnl semaphore or the
5143 * dev_base_lock to be sure it remains unique.
5144 */
5145static int dev_new_index(struct net *net)
5146{
5147 static int ifindex;
5148 for (;;) {
5149 if (++ifindex <= 0)
5150 ifindex = 1;
5151 if (!__dev_get_by_index(net, ifindex))
5152 return ifindex;
5153 }
5154}
5155
5156/* Delayed registration/unregisteration */
5157static LIST_HEAD(net_todo_list);
5158
5159static void net_set_todo(struct net_device *dev)
5160{
5161 list_add_tail(&dev->todo_list, &net_todo_list);
5162}
5163
5164static void rollback_registered_many(struct list_head *head)
5165{
5166 struct net_device *dev, *tmp;
5167
5168 BUG_ON(dev_boot_phase);
5169 ASSERT_RTNL();
5170
5171 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5172 /* Some devices call without registering
5173 * for initialization unwind. Remove those
5174 * devices and proceed with the remaining.
5175 */
5176 if (dev->reg_state == NETREG_UNINITIALIZED) {
5177 pr_debug("unregister_netdevice: device %s/%p never "
5178 "was registered\n", dev->name, dev);
5179
5180 WARN_ON(1);
5181 list_del(&dev->unreg_list);
5182 continue;
5183 }
5184
5185 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5186 }
5187
5188 /* If device is running, close it first. */
5189 dev_close_many(head);
5190
5191 list_for_each_entry(dev, head, unreg_list) {
5192 /* And unlink it from device chain. */
5193 unlist_netdevice(dev);
5194
5195 dev->reg_state = NETREG_UNREGISTERING;
5196 }
5197
5198 synchronize_net();
5199
5200 list_for_each_entry(dev, head, unreg_list) {
5201 /* Shutdown queueing discipline. */
5202 dev_shutdown(dev);
5203
5204
5205 /* Notify protocols, that we are about to destroy
5206 this device. They should clean all the things.
5207 */
5208 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5209
5210 if (!dev->rtnl_link_ops ||
5211 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5212 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5213
5214 /*
5215 * Flush the unicast and multicast chains
5216 */
5217 dev_uc_flush(dev);
5218 dev_mc_flush(dev);
5219
5220 if (dev->netdev_ops->ndo_uninit)
5221 dev->netdev_ops->ndo_uninit(dev);
5222
5223 /* Notifier chain MUST detach us from master device. */
5224 WARN_ON(dev->master);
5225
5226 /* Remove entries from kobject tree */
5227 netdev_unregister_kobject(dev);
5228 }
5229
5230 /* Process any work delayed until the end of the batch */
5231 dev = list_first_entry(head, struct net_device, unreg_list);
5232 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5233
5234 rcu_barrier();
5235
5236 list_for_each_entry(dev, head, unreg_list)
5237 dev_put(dev);
5238}
5239
5240static void rollback_registered(struct net_device *dev)
5241{
5242 LIST_HEAD(single);
5243
5244 list_add(&dev->unreg_list, &single);
5245 rollback_registered_many(&single);
5246}
5247
5248u32 netdev_fix_features(struct net_device *dev, u32 features)
5249{
5250 /* Fix illegal checksum combinations */
5251 if ((features & NETIF_F_HW_CSUM) &&
5252 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5253 netdev_info(dev, "mixed HW and IP checksum settings.\n");
5254 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5255 }
5256
5257 if ((features & NETIF_F_NO_CSUM) &&
5258 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5259 netdev_info(dev, "mixed no checksumming and other settings.\n");
5260 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5261 }
5262
5263 /* Fix illegal SG+CSUM combinations. */
5264 if ((features & NETIF_F_SG) &&
5265 !(features & NETIF_F_ALL_CSUM)) {
5266 netdev_info(dev,
5267 "Dropping NETIF_F_SG since no checksum feature.\n");
5268 features &= ~NETIF_F_SG;
5269 }
5270
5271 /* TSO requires that SG is present as well. */
5272 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5273 netdev_info(dev, "Dropping NETIF_F_TSO since no SG feature.\n");
5274 features &= ~NETIF_F_TSO;
5275 }
5276
5277 /* UFO needs SG and checksumming */
5278 if (features & NETIF_F_UFO) {
5279 /* maybe split UFO into V4 and V6? */
5280 if (!((features & NETIF_F_GEN_CSUM) ||
5281 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5282 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5283 netdev_info(dev,
5284 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5285 features &= ~NETIF_F_UFO;
5286 }
5287
5288 if (!(features & NETIF_F_SG)) {
5289 netdev_info(dev,
5290 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5291 features &= ~NETIF_F_UFO;
5292 }
5293 }
5294
5295 return features;
5296}
5297EXPORT_SYMBOL(netdev_fix_features);
5298
5299/**
5300 * netif_stacked_transfer_operstate - transfer operstate
5301 * @rootdev: the root or lower level device to transfer state from
5302 * @dev: the device to transfer operstate to
5303 *
5304 * Transfer operational state from root to device. This is normally
5305 * called when a stacking relationship exists between the root
5306 * device and the device(a leaf device).
5307 */
5308void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5309 struct net_device *dev)
5310{
5311 if (rootdev->operstate == IF_OPER_DORMANT)
5312 netif_dormant_on(dev);
5313 else
5314 netif_dormant_off(dev);
5315
5316 if (netif_carrier_ok(rootdev)) {
5317 if (!netif_carrier_ok(dev))
5318 netif_carrier_on(dev);
5319 } else {
5320 if (netif_carrier_ok(dev))
5321 netif_carrier_off(dev);
5322 }
5323}
5324EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5325
5326#ifdef CONFIG_RPS
5327static int netif_alloc_rx_queues(struct net_device *dev)
5328{
5329 unsigned int i, count = dev->num_rx_queues;
5330 struct netdev_rx_queue *rx;
5331
5332 BUG_ON(count < 1);
5333
5334 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5335 if (!rx) {
5336 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5337 return -ENOMEM;
5338 }
5339 dev->_rx = rx;
5340
5341 for (i = 0; i < count; i++)
5342 rx[i].dev = dev;
5343 return 0;
5344}
5345#endif
5346
5347static void netdev_init_one_queue(struct net_device *dev,
5348 struct netdev_queue *queue, void *_unused)
5349{
5350 /* Initialize queue lock */
5351 spin_lock_init(&queue->_xmit_lock);
5352 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5353 queue->xmit_lock_owner = -1;
5354 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5355 queue->dev = dev;
5356}
5357
5358static int netif_alloc_netdev_queues(struct net_device *dev)
5359{
5360 unsigned int count = dev->num_tx_queues;
5361 struct netdev_queue *tx;
5362
5363 BUG_ON(count < 1);
5364
5365 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5366 if (!tx) {
5367 pr_err("netdev: Unable to allocate %u tx queues.\n",
5368 count);
5369 return -ENOMEM;
5370 }
5371 dev->_tx = tx;
5372
5373 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5374 spin_lock_init(&dev->tx_global_lock);
5375
5376 return 0;
5377}
5378
5379/**
5380 * register_netdevice - register a network device
5381 * @dev: device to register
5382 *
5383 * Take a completed network device structure and add it to the kernel
5384 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5385 * chain. 0 is returned on success. A negative errno code is returned
5386 * on a failure to set up the device, or if the name is a duplicate.
5387 *
5388 * Callers must hold the rtnl semaphore. You may want
5389 * register_netdev() instead of this.
5390 *
5391 * BUGS:
5392 * The locking appears insufficient to guarantee two parallel registers
5393 * will not get the same name.
5394 */
5395
5396int register_netdevice(struct net_device *dev)
5397{
5398 int ret;
5399 struct net *net = dev_net(dev);
5400
5401 BUG_ON(dev_boot_phase);
5402 ASSERT_RTNL();
5403
5404 might_sleep();
5405
5406 /* When net_device's are persistent, this will be fatal. */
5407 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5408 BUG_ON(!net);
5409
5410 spin_lock_init(&dev->addr_list_lock);
5411 netdev_set_addr_lockdep_class(dev);
5412
5413 dev->iflink = -1;
5414
5415 /* Init, if this function is available */
5416 if (dev->netdev_ops->ndo_init) {
5417 ret = dev->netdev_ops->ndo_init(dev);
5418 if (ret) {
5419 if (ret > 0)
5420 ret = -EIO;
5421 goto out;
5422 }
5423 }
5424
5425 ret = dev_get_valid_name(dev, dev->name, 0);
5426 if (ret)
5427 goto err_uninit;
5428
5429 dev->ifindex = dev_new_index(net);
5430 if (dev->iflink == -1)
5431 dev->iflink = dev->ifindex;
5432
5433 dev->features = netdev_fix_features(dev, dev->features);
5434
5435 /* Enable software GSO if SG is supported. */
5436 if (dev->features & NETIF_F_SG)
5437 dev->features |= NETIF_F_GSO;
5438
5439 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5440 * vlan_dev_init() will do the dev->features check, so these features
5441 * are enabled only if supported by underlying device.
5442 */
5443 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5444
5445 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5446 ret = notifier_to_errno(ret);
5447 if (ret)
5448 goto err_uninit;
5449
5450 ret = netdev_register_kobject(dev);
5451 if (ret)
5452 goto err_uninit;
5453 dev->reg_state = NETREG_REGISTERED;
5454
5455 /*
5456 * Default initial state at registry is that the
5457 * device is present.
5458 */
5459
5460 set_bit(__LINK_STATE_PRESENT, &dev->state);
5461
5462 dev_init_scheduler(dev);
5463 dev_hold(dev);
5464 list_netdevice(dev);
5465
5466 /* Notify protocols, that a new device appeared. */
5467 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5468 ret = notifier_to_errno(ret);
5469 if (ret) {
5470 rollback_registered(dev);
5471 dev->reg_state = NETREG_UNREGISTERED;
5472 }
5473 /*
5474 * Prevent userspace races by waiting until the network
5475 * device is fully setup before sending notifications.
5476 */
5477 if (!dev->rtnl_link_ops ||
5478 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5479 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5480
5481out:
5482 return ret;
5483
5484err_uninit:
5485 if (dev->netdev_ops->ndo_uninit)
5486 dev->netdev_ops->ndo_uninit(dev);
5487 goto out;
5488}
5489EXPORT_SYMBOL(register_netdevice);
5490
5491/**
5492 * init_dummy_netdev - init a dummy network device for NAPI
5493 * @dev: device to init
5494 *
5495 * This takes a network device structure and initialize the minimum
5496 * amount of fields so it can be used to schedule NAPI polls without
5497 * registering a full blown interface. This is to be used by drivers
5498 * that need to tie several hardware interfaces to a single NAPI
5499 * poll scheduler due to HW limitations.
5500 */
5501int init_dummy_netdev(struct net_device *dev)
5502{
5503 /* Clear everything. Note we don't initialize spinlocks
5504 * are they aren't supposed to be taken by any of the
5505 * NAPI code and this dummy netdev is supposed to be
5506 * only ever used for NAPI polls
5507 */
5508 memset(dev, 0, sizeof(struct net_device));
5509
5510 /* make sure we BUG if trying to hit standard
5511 * register/unregister code path
5512 */
5513 dev->reg_state = NETREG_DUMMY;
5514
5515 /* NAPI wants this */
5516 INIT_LIST_HEAD(&dev->napi_list);
5517
5518 /* a dummy interface is started by default */
5519 set_bit(__LINK_STATE_PRESENT, &dev->state);
5520 set_bit(__LINK_STATE_START, &dev->state);
5521
5522 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5523 * because users of this 'device' dont need to change
5524 * its refcount.
5525 */
5526
5527 return 0;
5528}
5529EXPORT_SYMBOL_GPL(init_dummy_netdev);
5530
5531
5532/**
5533 * register_netdev - register a network device
5534 * @dev: device to register
5535 *
5536 * Take a completed network device structure and add it to the kernel
5537 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5538 * chain. 0 is returned on success. A negative errno code is returned
5539 * on a failure to set up the device, or if the name is a duplicate.
5540 *
5541 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5542 * and expands the device name if you passed a format string to
5543 * alloc_netdev.
5544 */
5545int register_netdev(struct net_device *dev)
5546{
5547 int err;
5548
5549 rtnl_lock();
5550
5551 /*
5552 * If the name is a format string the caller wants us to do a
5553 * name allocation.
5554 */
5555 if (strchr(dev->name, '%')) {
5556 err = dev_alloc_name(dev, dev->name);
5557 if (err < 0)
5558 goto out;
5559 }
5560
5561 err = register_netdevice(dev);
5562out:
5563 rtnl_unlock();
5564 return err;
5565}
5566EXPORT_SYMBOL(register_netdev);
5567
5568int netdev_refcnt_read(const struct net_device *dev)
5569{
5570 int i, refcnt = 0;
5571
5572 for_each_possible_cpu(i)
5573 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5574 return refcnt;
5575}
5576EXPORT_SYMBOL(netdev_refcnt_read);
5577
5578/*
5579 * netdev_wait_allrefs - wait until all references are gone.
5580 *
5581 * This is called when unregistering network devices.
5582 *
5583 * Any protocol or device that holds a reference should register
5584 * for netdevice notification, and cleanup and put back the
5585 * reference if they receive an UNREGISTER event.
5586 * We can get stuck here if buggy protocols don't correctly
5587 * call dev_put.
5588 */
5589static void netdev_wait_allrefs(struct net_device *dev)
5590{
5591 unsigned long rebroadcast_time, warning_time;
5592 int refcnt;
5593
5594 linkwatch_forget_dev(dev);
5595
5596 rebroadcast_time = warning_time = jiffies;
5597 refcnt = netdev_refcnt_read(dev);
5598
5599 while (refcnt != 0) {
5600 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5601 rtnl_lock();
5602
5603 /* Rebroadcast unregister notification */
5604 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5605 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5606 * should have already handle it the first time */
5607
5608 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5609 &dev->state)) {
5610 /* We must not have linkwatch events
5611 * pending on unregister. If this
5612 * happens, we simply run the queue
5613 * unscheduled, resulting in a noop
5614 * for this device.
5615 */
5616 linkwatch_run_queue();
5617 }
5618
5619 __rtnl_unlock();
5620
5621 rebroadcast_time = jiffies;
5622 }
5623
5624 msleep(250);
5625
5626 refcnt = netdev_refcnt_read(dev);
5627
5628 if (time_after(jiffies, warning_time + 10 * HZ)) {
5629 printk(KERN_EMERG "unregister_netdevice: "
5630 "waiting for %s to become free. Usage "
5631 "count = %d\n",
5632 dev->name, refcnt);
5633 warning_time = jiffies;
5634 }
5635 }
5636}
5637
5638/* The sequence is:
5639 *
5640 * rtnl_lock();
5641 * ...
5642 * register_netdevice(x1);
5643 * register_netdevice(x2);
5644 * ...
5645 * unregister_netdevice(y1);
5646 * unregister_netdevice(y2);
5647 * ...
5648 * rtnl_unlock();
5649 * free_netdev(y1);
5650 * free_netdev(y2);
5651 *
5652 * We are invoked by rtnl_unlock().
5653 * This allows us to deal with problems:
5654 * 1) We can delete sysfs objects which invoke hotplug
5655 * without deadlocking with linkwatch via keventd.
5656 * 2) Since we run with the RTNL semaphore not held, we can sleep
5657 * safely in order to wait for the netdev refcnt to drop to zero.
5658 *
5659 * We must not return until all unregister events added during
5660 * the interval the lock was held have been completed.
5661 */
5662void netdev_run_todo(void)
5663{
5664 struct list_head list;
5665
5666 /* Snapshot list, allow later requests */
5667 list_replace_init(&net_todo_list, &list);
5668
5669 __rtnl_unlock();
5670
5671 while (!list_empty(&list)) {
5672 struct net_device *dev
5673 = list_first_entry(&list, struct net_device, todo_list);
5674 list_del(&dev->todo_list);
5675
5676 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5677 printk(KERN_ERR "network todo '%s' but state %d\n",
5678 dev->name, dev->reg_state);
5679 dump_stack();
5680 continue;
5681 }
5682
5683 dev->reg_state = NETREG_UNREGISTERED;
5684
5685 on_each_cpu(flush_backlog, dev, 1);
5686
5687 netdev_wait_allrefs(dev);
5688
5689 /* paranoia */
5690 BUG_ON(netdev_refcnt_read(dev));
5691 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5692 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5693 WARN_ON(dev->dn_ptr);
5694
5695 if (dev->destructor)
5696 dev->destructor(dev);
5697
5698 /* Free network device */
5699 kobject_put(&dev->dev.kobj);
5700 }
5701}
5702
5703/* Convert net_device_stats to rtnl_link_stats64. They have the same
5704 * fields in the same order, with only the type differing.
5705 */
5706static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5707 const struct net_device_stats *netdev_stats)
5708{
5709#if BITS_PER_LONG == 64
5710 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5711 memcpy(stats64, netdev_stats, sizeof(*stats64));
5712#else
5713 size_t i, n = sizeof(*stats64) / sizeof(u64);
5714 const unsigned long *src = (const unsigned long *)netdev_stats;
5715 u64 *dst = (u64 *)stats64;
5716
5717 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5718 sizeof(*stats64) / sizeof(u64));
5719 for (i = 0; i < n; i++)
5720 dst[i] = src[i];
5721#endif
5722}
5723
5724/**
5725 * dev_get_stats - get network device statistics
5726 * @dev: device to get statistics from
5727 * @storage: place to store stats
5728 *
5729 * Get network statistics from device. Return @storage.
5730 * The device driver may provide its own method by setting
5731 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5732 * otherwise the internal statistics structure is used.
5733 */
5734struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5735 struct rtnl_link_stats64 *storage)
5736{
5737 const struct net_device_ops *ops = dev->netdev_ops;
5738
5739 if (ops->ndo_get_stats64) {
5740 memset(storage, 0, sizeof(*storage));
5741 ops->ndo_get_stats64(dev, storage);
5742 } else if (ops->ndo_get_stats) {
5743 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5744 } else {
5745 netdev_stats_to_stats64(storage, &dev->stats);
5746 }
5747 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5748 return storage;
5749}
5750EXPORT_SYMBOL(dev_get_stats);
5751
5752struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5753{
5754 struct netdev_queue *queue = dev_ingress_queue(dev);
5755
5756#ifdef CONFIG_NET_CLS_ACT
5757 if (queue)
5758 return queue;
5759 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5760 if (!queue)
5761 return NULL;
5762 netdev_init_one_queue(dev, queue, NULL);
5763 queue->qdisc = &noop_qdisc;
5764 queue->qdisc_sleeping = &noop_qdisc;
5765 rcu_assign_pointer(dev->ingress_queue, queue);
5766#endif
5767 return queue;
5768}
5769
5770/**
5771 * alloc_netdev_mqs - allocate network device
5772 * @sizeof_priv: size of private data to allocate space for
5773 * @name: device name format string
5774 * @setup: callback to initialize device
5775 * @txqs: the number of TX subqueues to allocate
5776 * @rxqs: the number of RX subqueues to allocate
5777 *
5778 * Allocates a struct net_device with private data area for driver use
5779 * and performs basic initialization. Also allocates subquue structs
5780 * for each queue on the device.
5781 */
5782struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5783 void (*setup)(struct net_device *),
5784 unsigned int txqs, unsigned int rxqs)
5785{
5786 struct net_device *dev;
5787 size_t alloc_size;
5788 struct net_device *p;
5789
5790 BUG_ON(strlen(name) >= sizeof(dev->name));
5791
5792 if (txqs < 1) {
5793 pr_err("alloc_netdev: Unable to allocate device "
5794 "with zero queues.\n");
5795 return NULL;
5796 }
5797
5798#ifdef CONFIG_RPS
5799 if (rxqs < 1) {
5800 pr_err("alloc_netdev: Unable to allocate device "
5801 "with zero RX queues.\n");
5802 return NULL;
5803 }
5804#endif
5805
5806 alloc_size = sizeof(struct net_device);
5807 if (sizeof_priv) {
5808 /* ensure 32-byte alignment of private area */
5809 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5810 alloc_size += sizeof_priv;
5811 }
5812 /* ensure 32-byte alignment of whole construct */
5813 alloc_size += NETDEV_ALIGN - 1;
5814
5815 p = kzalloc(alloc_size, GFP_KERNEL);
5816 if (!p) {
5817 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5818 return NULL;
5819 }
5820
5821 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5822 dev->padded = (char *)dev - (char *)p;
5823
5824 dev->pcpu_refcnt = alloc_percpu(int);
5825 if (!dev->pcpu_refcnt)
5826 goto free_p;
5827
5828 if (dev_addr_init(dev))
5829 goto free_pcpu;
5830
5831 dev_mc_init(dev);
5832 dev_uc_init(dev);
5833
5834 dev_net_set(dev, &init_net);
5835
5836 dev->gso_max_size = GSO_MAX_SIZE;
5837
5838 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5839 dev->ethtool_ntuple_list.count = 0;
5840 INIT_LIST_HEAD(&dev->napi_list);
5841 INIT_LIST_HEAD(&dev->unreg_list);
5842 INIT_LIST_HEAD(&dev->link_watch_list);
5843 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5844 setup(dev);
5845
5846 dev->num_tx_queues = txqs;
5847 dev->real_num_tx_queues = txqs;
5848 if (netif_alloc_netdev_queues(dev))
5849 goto free_all;
5850
5851#ifdef CONFIG_RPS
5852 dev->num_rx_queues = rxqs;
5853 dev->real_num_rx_queues = rxqs;
5854 if (netif_alloc_rx_queues(dev))
5855 goto free_all;
5856#endif
5857
5858 strcpy(dev->name, name);
5859 dev->group = INIT_NETDEV_GROUP;
5860 return dev;
5861
5862free_all:
5863 free_netdev(dev);
5864 return NULL;
5865
5866free_pcpu:
5867 free_percpu(dev->pcpu_refcnt);
5868 kfree(dev->_tx);
5869#ifdef CONFIG_RPS
5870 kfree(dev->_rx);
5871#endif
5872
5873free_p:
5874 kfree(p);
5875 return NULL;
5876}
5877EXPORT_SYMBOL(alloc_netdev_mqs);
5878
5879/**
5880 * free_netdev - free network device
5881 * @dev: device
5882 *
5883 * This function does the last stage of destroying an allocated device
5884 * interface. The reference to the device object is released.
5885 * If this is the last reference then it will be freed.
5886 */
5887void free_netdev(struct net_device *dev)
5888{
5889 struct napi_struct *p, *n;
5890
5891 release_net(dev_net(dev));
5892
5893 kfree(dev->_tx);
5894#ifdef CONFIG_RPS
5895 kfree(dev->_rx);
5896#endif
5897
5898 kfree(rcu_dereference_raw(dev->ingress_queue));
5899
5900 /* Flush device addresses */
5901 dev_addr_flush(dev);
5902
5903 /* Clear ethtool n-tuple list */
5904 ethtool_ntuple_flush(dev);
5905
5906 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5907 netif_napi_del(p);
5908
5909 free_percpu(dev->pcpu_refcnt);
5910 dev->pcpu_refcnt = NULL;
5911
5912 /* Compatibility with error handling in drivers */
5913 if (dev->reg_state == NETREG_UNINITIALIZED) {
5914 kfree((char *)dev - dev->padded);
5915 return;
5916 }
5917
5918 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5919 dev->reg_state = NETREG_RELEASED;
5920
5921 /* will free via device release */
5922 put_device(&dev->dev);
5923}
5924EXPORT_SYMBOL(free_netdev);
5925
5926/**
5927 * synchronize_net - Synchronize with packet receive processing
5928 *
5929 * Wait for packets currently being received to be done.
5930 * Does not block later packets from starting.
5931 */
5932void synchronize_net(void)
5933{
5934 might_sleep();
5935 synchronize_rcu();
5936}
5937EXPORT_SYMBOL(synchronize_net);
5938
5939/**
5940 * unregister_netdevice_queue - remove device from the kernel
5941 * @dev: device
5942 * @head: list
5943 *
5944 * This function shuts down a device interface and removes it
5945 * from the kernel tables.
5946 * If head not NULL, device is queued to be unregistered later.
5947 *
5948 * Callers must hold the rtnl semaphore. You may want
5949 * unregister_netdev() instead of this.
5950 */
5951
5952void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5953{
5954 ASSERT_RTNL();
5955
5956 if (head) {
5957 list_move_tail(&dev->unreg_list, head);
5958 } else {
5959 rollback_registered(dev);
5960 /* Finish processing unregister after unlock */
5961 net_set_todo(dev);
5962 }
5963}
5964EXPORT_SYMBOL(unregister_netdevice_queue);
5965
5966/**
5967 * unregister_netdevice_many - unregister many devices
5968 * @head: list of devices
5969 */
5970void unregister_netdevice_many(struct list_head *head)
5971{
5972 struct net_device *dev;
5973
5974 if (!list_empty(head)) {
5975 rollback_registered_many(head);
5976 list_for_each_entry(dev, head, unreg_list)
5977 net_set_todo(dev);
5978 }
5979}
5980EXPORT_SYMBOL(unregister_netdevice_many);
5981
5982/**
5983 * unregister_netdev - remove device from the kernel
5984 * @dev: device
5985 *
5986 * This function shuts down a device interface and removes it
5987 * from the kernel tables.
5988 *
5989 * This is just a wrapper for unregister_netdevice that takes
5990 * the rtnl semaphore. In general you want to use this and not
5991 * unregister_netdevice.
5992 */
5993void unregister_netdev(struct net_device *dev)
5994{
5995 rtnl_lock();
5996 unregister_netdevice(dev);
5997 rtnl_unlock();
5998}
5999EXPORT_SYMBOL(unregister_netdev);
6000
6001/**
6002 * dev_change_net_namespace - move device to different nethost namespace
6003 * @dev: device
6004 * @net: network namespace
6005 * @pat: If not NULL name pattern to try if the current device name
6006 * is already taken in the destination network namespace.
6007 *
6008 * This function shuts down a device interface and moves it
6009 * to a new network namespace. On success 0 is returned, on
6010 * a failure a netagive errno code is returned.
6011 *
6012 * Callers must hold the rtnl semaphore.
6013 */
6014
6015int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6016{
6017 int err;
6018
6019 ASSERT_RTNL();
6020
6021 /* Don't allow namespace local devices to be moved. */
6022 err = -EINVAL;
6023 if (dev->features & NETIF_F_NETNS_LOCAL)
6024 goto out;
6025
6026 /* Ensure the device has been registrered */
6027 err = -EINVAL;
6028 if (dev->reg_state != NETREG_REGISTERED)
6029 goto out;
6030
6031 /* Get out if there is nothing todo */
6032 err = 0;
6033 if (net_eq(dev_net(dev), net))
6034 goto out;
6035
6036 /* Pick the destination device name, and ensure
6037 * we can use it in the destination network namespace.
6038 */
6039 err = -EEXIST;
6040 if (__dev_get_by_name(net, dev->name)) {
6041 /* We get here if we can't use the current device name */
6042 if (!pat)
6043 goto out;
6044 if (dev_get_valid_name(dev, pat, 1))
6045 goto out;
6046 }
6047
6048 /*
6049 * And now a mini version of register_netdevice unregister_netdevice.
6050 */
6051
6052 /* If device is running close it first. */
6053 dev_close(dev);
6054
6055 /* And unlink it from device chain */
6056 err = -ENODEV;
6057 unlist_netdevice(dev);
6058
6059 synchronize_net();
6060
6061 /* Shutdown queueing discipline. */
6062 dev_shutdown(dev);
6063
6064 /* Notify protocols, that we are about to destroy
6065 this device. They should clean all the things.
6066
6067 Note that dev->reg_state stays at NETREG_REGISTERED.
6068 This is wanted because this way 8021q and macvlan know
6069 the device is just moving and can keep their slaves up.
6070 */
6071 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6072 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6073
6074 /*
6075 * Flush the unicast and multicast chains
6076 */
6077 dev_uc_flush(dev);
6078 dev_mc_flush(dev);
6079
6080 /* Actually switch the network namespace */
6081 dev_net_set(dev, net);
6082
6083 /* If there is an ifindex conflict assign a new one */
6084 if (__dev_get_by_index(net, dev->ifindex)) {
6085 int iflink = (dev->iflink == dev->ifindex);
6086 dev->ifindex = dev_new_index(net);
6087 if (iflink)
6088 dev->iflink = dev->ifindex;
6089 }
6090
6091 /* Fixup kobjects */
6092 err = device_rename(&dev->dev, dev->name);
6093 WARN_ON(err);
6094
6095 /* Add the device back in the hashes */
6096 list_netdevice(dev);
6097
6098 /* Notify protocols, that a new device appeared. */
6099 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6100
6101 /*
6102 * Prevent userspace races by waiting until the network
6103 * device is fully setup before sending notifications.
6104 */
6105 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6106
6107 synchronize_net();
6108 err = 0;
6109out:
6110 return err;
6111}
6112EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6113
6114static int dev_cpu_callback(struct notifier_block *nfb,
6115 unsigned long action,
6116 void *ocpu)
6117{
6118 struct sk_buff **list_skb;
6119 struct sk_buff *skb;
6120 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6121 struct softnet_data *sd, *oldsd;
6122
6123 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6124 return NOTIFY_OK;
6125
6126 local_irq_disable();
6127 cpu = smp_processor_id();
6128 sd = &per_cpu(softnet_data, cpu);
6129 oldsd = &per_cpu(softnet_data, oldcpu);
6130
6131 /* Find end of our completion_queue. */
6132 list_skb = &sd->completion_queue;
6133 while (*list_skb)
6134 list_skb = &(*list_skb)->next;
6135 /* Append completion queue from offline CPU. */
6136 *list_skb = oldsd->completion_queue;
6137 oldsd->completion_queue = NULL;
6138
6139 /* Append output queue from offline CPU. */
6140 if (oldsd->output_queue) {
6141 *sd->output_queue_tailp = oldsd->output_queue;
6142 sd->output_queue_tailp = oldsd->output_queue_tailp;
6143 oldsd->output_queue = NULL;
6144 oldsd->output_queue_tailp = &oldsd->output_queue;
6145 }
6146
6147 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6148 local_irq_enable();
6149
6150 /* Process offline CPU's input_pkt_queue */
6151 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6152 netif_rx(skb);
6153 input_queue_head_incr(oldsd);
6154 }
6155 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6156 netif_rx(skb);
6157 input_queue_head_incr(oldsd);
6158 }
6159
6160 return NOTIFY_OK;
6161}
6162
6163
6164/**
6165 * netdev_increment_features - increment feature set by one
6166 * @all: current feature set
6167 * @one: new feature set
6168 * @mask: mask feature set
6169 *
6170 * Computes a new feature set after adding a device with feature set
6171 * @one to the master device with current feature set @all. Will not
6172 * enable anything that is off in @mask. Returns the new feature set.
6173 */
6174u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6175{
6176 /* If device needs checksumming, downgrade to it. */
6177 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6178 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6179 else if (mask & NETIF_F_ALL_CSUM) {
6180 /* If one device supports v4/v6 checksumming, set for all. */
6181 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6182 !(all & NETIF_F_GEN_CSUM)) {
6183 all &= ~NETIF_F_ALL_CSUM;
6184 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6185 }
6186
6187 /* If one device supports hw checksumming, set for all. */
6188 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6189 all &= ~NETIF_F_ALL_CSUM;
6190 all |= NETIF_F_HW_CSUM;
6191 }
6192 }
6193
6194 one |= NETIF_F_ALL_CSUM;
6195
6196 one |= all & NETIF_F_ONE_FOR_ALL;
6197 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6198 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6199
6200 return all;
6201}
6202EXPORT_SYMBOL(netdev_increment_features);
6203
6204static struct hlist_head *netdev_create_hash(void)
6205{
6206 int i;
6207 struct hlist_head *hash;
6208
6209 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6210 if (hash != NULL)
6211 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6212 INIT_HLIST_HEAD(&hash[i]);
6213
6214 return hash;
6215}
6216
6217/* Initialize per network namespace state */
6218static int __net_init netdev_init(struct net *net)
6219{
6220 INIT_LIST_HEAD(&net->dev_base_head);
6221
6222 net->dev_name_head = netdev_create_hash();
6223 if (net->dev_name_head == NULL)
6224 goto err_name;
6225
6226 net->dev_index_head = netdev_create_hash();
6227 if (net->dev_index_head == NULL)
6228 goto err_idx;
6229
6230 return 0;
6231
6232err_idx:
6233 kfree(net->dev_name_head);
6234err_name:
6235 return -ENOMEM;
6236}
6237
6238/**
6239 * netdev_drivername - network driver for the device
6240 * @dev: network device
6241 * @buffer: buffer for resulting name
6242 * @len: size of buffer
6243 *
6244 * Determine network driver for device.
6245 */
6246char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6247{
6248 const struct device_driver *driver;
6249 const struct device *parent;
6250
6251 if (len <= 0 || !buffer)
6252 return buffer;
6253 buffer[0] = 0;
6254
6255 parent = dev->dev.parent;
6256
6257 if (!parent)
6258 return buffer;
6259
6260 driver = parent->driver;
6261 if (driver && driver->name)
6262 strlcpy(buffer, driver->name, len);
6263 return buffer;
6264}
6265
6266static int __netdev_printk(const char *level, const struct net_device *dev,
6267 struct va_format *vaf)
6268{
6269 int r;
6270
6271 if (dev && dev->dev.parent)
6272 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6273 netdev_name(dev), vaf);
6274 else if (dev)
6275 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6276 else
6277 r = printk("%s(NULL net_device): %pV", level, vaf);
6278
6279 return r;
6280}
6281
6282int netdev_printk(const char *level, const struct net_device *dev,
6283 const char *format, ...)
6284{
6285 struct va_format vaf;
6286 va_list args;
6287 int r;
6288
6289 va_start(args, format);
6290
6291 vaf.fmt = format;
6292 vaf.va = &args;
6293
6294 r = __netdev_printk(level, dev, &vaf);
6295 va_end(args);
6296
6297 return r;
6298}
6299EXPORT_SYMBOL(netdev_printk);
6300
6301#define define_netdev_printk_level(func, level) \
6302int func(const struct net_device *dev, const char *fmt, ...) \
6303{ \
6304 int r; \
6305 struct va_format vaf; \
6306 va_list args; \
6307 \
6308 va_start(args, fmt); \
6309 \
6310 vaf.fmt = fmt; \
6311 vaf.va = &args; \
6312 \
6313 r = __netdev_printk(level, dev, &vaf); \
6314 va_end(args); \
6315 \
6316 return r; \
6317} \
6318EXPORT_SYMBOL(func);
6319
6320define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6321define_netdev_printk_level(netdev_alert, KERN_ALERT);
6322define_netdev_printk_level(netdev_crit, KERN_CRIT);
6323define_netdev_printk_level(netdev_err, KERN_ERR);
6324define_netdev_printk_level(netdev_warn, KERN_WARNING);
6325define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6326define_netdev_printk_level(netdev_info, KERN_INFO);
6327
6328static void __net_exit netdev_exit(struct net *net)
6329{
6330 kfree(net->dev_name_head);
6331 kfree(net->dev_index_head);
6332}
6333
6334static struct pernet_operations __net_initdata netdev_net_ops = {
6335 .init = netdev_init,
6336 .exit = netdev_exit,
6337};
6338
6339static void __net_exit default_device_exit(struct net *net)
6340{
6341 struct net_device *dev, *aux;
6342 /*
6343 * Push all migratable network devices back to the
6344 * initial network namespace
6345 */
6346 rtnl_lock();
6347 for_each_netdev_safe(net, dev, aux) {
6348 int err;
6349 char fb_name[IFNAMSIZ];
6350
6351 /* Ignore unmoveable devices (i.e. loopback) */
6352 if (dev->features & NETIF_F_NETNS_LOCAL)
6353 continue;
6354
6355 /* Leave virtual devices for the generic cleanup */
6356 if (dev->rtnl_link_ops)
6357 continue;
6358
6359 /* Push remaing network devices to init_net */
6360 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6361 err = dev_change_net_namespace(dev, &init_net, fb_name);
6362 if (err) {
6363 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6364 __func__, dev->name, err);
6365 BUG();
6366 }
6367 }
6368 rtnl_unlock();
6369}
6370
6371static void __net_exit default_device_exit_batch(struct list_head *net_list)
6372{
6373 /* At exit all network devices most be removed from a network
6374 * namespace. Do this in the reverse order of registration.
6375 * Do this across as many network namespaces as possible to
6376 * improve batching efficiency.
6377 */
6378 struct net_device *dev;
6379 struct net *net;
6380 LIST_HEAD(dev_kill_list);
6381
6382 rtnl_lock();
6383 list_for_each_entry(net, net_list, exit_list) {
6384 for_each_netdev_reverse(net, dev) {
6385 if (dev->rtnl_link_ops)
6386 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6387 else
6388 unregister_netdevice_queue(dev, &dev_kill_list);
6389 }
6390 }
6391 unregister_netdevice_many(&dev_kill_list);
6392 rtnl_unlock();
6393}
6394
6395static struct pernet_operations __net_initdata default_device_ops = {
6396 .exit = default_device_exit,
6397 .exit_batch = default_device_exit_batch,
6398};
6399
6400/*
6401 * Initialize the DEV module. At boot time this walks the device list and
6402 * unhooks any devices that fail to initialise (normally hardware not
6403 * present) and leaves us with a valid list of present and active devices.
6404 *
6405 */
6406
6407/*
6408 * This is called single threaded during boot, so no need
6409 * to take the rtnl semaphore.
6410 */
6411static int __init net_dev_init(void)
6412{
6413 int i, rc = -ENOMEM;
6414
6415 BUG_ON(!dev_boot_phase);
6416
6417 if (dev_proc_init())
6418 goto out;
6419
6420 if (netdev_kobject_init())
6421 goto out;
6422
6423 INIT_LIST_HEAD(&ptype_all);
6424 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6425 INIT_LIST_HEAD(&ptype_base[i]);
6426
6427 if (register_pernet_subsys(&netdev_net_ops))
6428 goto out;
6429
6430 /*
6431 * Initialise the packet receive queues.
6432 */
6433
6434 for_each_possible_cpu(i) {
6435 struct softnet_data *sd = &per_cpu(softnet_data, i);
6436
6437 memset(sd, 0, sizeof(*sd));
6438 skb_queue_head_init(&sd->input_pkt_queue);
6439 skb_queue_head_init(&sd->process_queue);
6440 sd->completion_queue = NULL;
6441 INIT_LIST_HEAD(&sd->poll_list);
6442 sd->output_queue = NULL;
6443 sd->output_queue_tailp = &sd->output_queue;
6444#ifdef CONFIG_RPS
6445 sd->csd.func = rps_trigger_softirq;
6446 sd->csd.info = sd;
6447 sd->csd.flags = 0;
6448 sd->cpu = i;
6449#endif
6450
6451 sd->backlog.poll = process_backlog;
6452 sd->backlog.weight = weight_p;
6453 sd->backlog.gro_list = NULL;
6454 sd->backlog.gro_count = 0;
6455 }
6456
6457 dev_boot_phase = 0;
6458
6459 /* The loopback device is special if any other network devices
6460 * is present in a network namespace the loopback device must
6461 * be present. Since we now dynamically allocate and free the
6462 * loopback device ensure this invariant is maintained by
6463 * keeping the loopback device as the first device on the
6464 * list of network devices. Ensuring the loopback devices
6465 * is the first device that appears and the last network device
6466 * that disappears.
6467 */
6468 if (register_pernet_device(&loopback_net_ops))
6469 goto out;
6470
6471 if (register_pernet_device(&default_device_ops))
6472 goto out;
6473
6474 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6475 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6476
6477 hotcpu_notifier(dev_cpu_callback, 0);
6478 dst_init();
6479 dev_mcast_init();
6480 rc = 0;
6481out:
6482 return rc;
6483}
6484
6485subsys_initcall(net_dev_init);
6486
6487static int __init initialize_hashrnd(void)
6488{
6489 get_random_bytes(&hashrnd, sizeof(hashrnd));
6490 return 0;
6491}
6492
6493late_initcall_sync(initialize_hashrnd);
6494