mm/memory_failure: let the compiler add the function name
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mempolicy.c
... / ...
CommitLineData
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/slab.h>
77#include <linux/string.h>
78#include <linux/export.h>
79#include <linux/nsproxy.h>
80#include <linux/interrupt.h>
81#include <linux/init.h>
82#include <linux/compat.h>
83#include <linux/swap.h>
84#include <linux/seq_file.h>
85#include <linux/proc_fs.h>
86#include <linux/migrate.h>
87#include <linux/ksm.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91#include <linux/ctype.h>
92#include <linux/mm_inline.h>
93
94#include <asm/tlbflush.h>
95#include <asm/uaccess.h>
96#include <linux/random.h>
97
98#include "internal.h"
99
100/* Internal flags */
101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103
104static struct kmem_cache *policy_cache;
105static struct kmem_cache *sn_cache;
106
107/* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109enum zone_type policy_zone = 0;
110
111/*
112 * run-time system-wide default policy => local allocation
113 */
114static struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118};
119
120static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
130 *
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138} mpol_ops[MPOL_MAX];
139
140/* Check that the nodemask contains at least one populated zone */
141static int is_valid_nodemask(const nodemask_t *nodemask)
142{
143 int nd, k;
144
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
147
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
152 }
153 }
154
155 return 0;
156}
157
158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159{
160 return pol->flags & MPOL_MODE_FLAGS;
161}
162
163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
165{
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
169}
170
171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172{
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
177}
178
179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180{
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
188}
189
190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191{
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
196}
197
198/*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */
207static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209{
210 int ret;
211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
233 }
234
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
240}
241
242/*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
248{
249 struct mempolicy *policy;
250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
258 }
259 VM_BUG_ON(!nodes);
260
261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
265 */
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
271 }
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282}
283
284/* Slow path of a mpol destructor. */
285void __mpol_put(struct mempolicy *p)
286{
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290}
291
292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
294{
295}
296
297/*
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305{
306 nodemask_t tmp;
307
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
326 }
327
328 if (nodes_empty(tmp))
329 tmp = *nodes;
330
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
337
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
344 }
345}
346
347static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
350{
351 nodemask_t tmp;
352
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
355
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
369 }
370}
371
372/*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
390{
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
402
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
409
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411}
412
413/*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
422{
423 mpol_rebind_policy(tsk->mempolicy, new, step);
424}
425
426/*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */
431
432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433{
434 struct vm_area_struct *vma;
435
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
440}
441
442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
445 },
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
449 },
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
453 },
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
457 },
458};
459
460static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
462
463/* Scan through pages checking if pages follow certain conditions. */
464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
468{
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
477
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
483 /*
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
501}
502
503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
507{
508 pmd_t *pmd;
509 unsigned long next;
510
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
522}
523
524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
528{
529 pud_t *pud;
530 unsigned long next;
531
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
542}
543
544static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
548{
549 pgd_t *pgd;
550 unsigned long next;
551
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
562}
563
564/*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569static struct vm_area_struct *
570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
572{
573 int err;
574 struct vm_area_struct *first, *vma, *prev;
575
576
577 first = find_vma(mm, start);
578 if (!first)
579 return ERR_PTR(-EFAULT);
580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
587 }
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
593
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err) {
601 first = ERR_PTR(err);
602 break;
603 }
604 }
605 prev = vma;
606 }
607 return first;
608}
609
610/* Step 2: apply policy to a range and do splits. */
611static int mbind_range(struct mm_struct *mm, unsigned long start,
612 unsigned long end, struct mempolicy *new_pol)
613{
614 struct vm_area_struct *next;
615 struct vm_area_struct *prev;
616 struct vm_area_struct *vma;
617 int err = 0;
618 pgoff_t pgoff;
619 unsigned long vmstart;
620 unsigned long vmend;
621
622 vma = find_vma(mm, start);
623 if (!vma || vma->vm_start > start)
624 return -EFAULT;
625
626 prev = vma->vm_prev;
627 if (start > vma->vm_start)
628 prev = vma;
629
630 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
631 next = vma->vm_next;
632 vmstart = max(start, vma->vm_start);
633 vmend = min(end, vma->vm_end);
634
635 if (mpol_equal(vma_policy(vma), new_pol))
636 continue;
637
638 pgoff = vma->vm_pgoff +
639 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
640 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
641 vma->anon_vma, vma->vm_file, pgoff,
642 new_pol);
643 if (prev) {
644 vma = prev;
645 next = vma->vm_next;
646 continue;
647 }
648 if (vma->vm_start != vmstart) {
649 err = split_vma(vma->vm_mm, vma, vmstart, 1);
650 if (err)
651 goto out;
652 }
653 if (vma->vm_end != vmend) {
654 err = split_vma(vma->vm_mm, vma, vmend, 0);
655 if (err)
656 goto out;
657 }
658
659 /*
660 * Apply policy to a single VMA. The reference counting of
661 * policy for vma_policy linkages has already been handled by
662 * vma_merge and split_vma as necessary. If this is a shared
663 * policy then ->set_policy will increment the reference count
664 * for an sp node.
665 */
666 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
667 vma->vm_start, vma->vm_end, vma->vm_pgoff,
668 vma->vm_ops, vma->vm_file,
669 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
670 if (vma->vm_ops && vma->vm_ops->set_policy) {
671 err = vma->vm_ops->set_policy(vma, new_pol);
672 if (err)
673 goto out;
674 }
675 }
676
677 out:
678 return err;
679}
680
681/*
682 * Update task->flags PF_MEMPOLICY bit: set iff non-default
683 * mempolicy. Allows more rapid checking of this (combined perhaps
684 * with other PF_* flag bits) on memory allocation hot code paths.
685 *
686 * If called from outside this file, the task 'p' should -only- be
687 * a newly forked child not yet visible on the task list, because
688 * manipulating the task flags of a visible task is not safe.
689 *
690 * The above limitation is why this routine has the funny name
691 * mpol_fix_fork_child_flag().
692 *
693 * It is also safe to call this with a task pointer of current,
694 * which the static wrapper mpol_set_task_struct_flag() does,
695 * for use within this file.
696 */
697
698void mpol_fix_fork_child_flag(struct task_struct *p)
699{
700 if (p->mempolicy)
701 p->flags |= PF_MEMPOLICY;
702 else
703 p->flags &= ~PF_MEMPOLICY;
704}
705
706static void mpol_set_task_struct_flag(void)
707{
708 mpol_fix_fork_child_flag(current);
709}
710
711/* Set the process memory policy */
712static long do_set_mempolicy(unsigned short mode, unsigned short flags,
713 nodemask_t *nodes)
714{
715 struct mempolicy *new, *old;
716 struct mm_struct *mm = current->mm;
717 NODEMASK_SCRATCH(scratch);
718 int ret;
719
720 if (!scratch)
721 return -ENOMEM;
722
723 new = mpol_new(mode, flags, nodes);
724 if (IS_ERR(new)) {
725 ret = PTR_ERR(new);
726 goto out;
727 }
728 /*
729 * prevent changing our mempolicy while show_numa_maps()
730 * is using it.
731 * Note: do_set_mempolicy() can be called at init time
732 * with no 'mm'.
733 */
734 if (mm)
735 down_write(&mm->mmap_sem);
736 task_lock(current);
737 ret = mpol_set_nodemask(new, nodes, scratch);
738 if (ret) {
739 task_unlock(current);
740 if (mm)
741 up_write(&mm->mmap_sem);
742 mpol_put(new);
743 goto out;
744 }
745 old = current->mempolicy;
746 current->mempolicy = new;
747 mpol_set_task_struct_flag();
748 if (new && new->mode == MPOL_INTERLEAVE &&
749 nodes_weight(new->v.nodes))
750 current->il_next = first_node(new->v.nodes);
751 task_unlock(current);
752 if (mm)
753 up_write(&mm->mmap_sem);
754
755 mpol_put(old);
756 ret = 0;
757out:
758 NODEMASK_SCRATCH_FREE(scratch);
759 return ret;
760}
761
762/*
763 * Return nodemask for policy for get_mempolicy() query
764 *
765 * Called with task's alloc_lock held
766 */
767static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
768{
769 nodes_clear(*nodes);
770 if (p == &default_policy)
771 return;
772
773 switch (p->mode) {
774 case MPOL_BIND:
775 /* Fall through */
776 case MPOL_INTERLEAVE:
777 *nodes = p->v.nodes;
778 break;
779 case MPOL_PREFERRED:
780 if (!(p->flags & MPOL_F_LOCAL))
781 node_set(p->v.preferred_node, *nodes);
782 /* else return empty node mask for local allocation */
783 break;
784 default:
785 BUG();
786 }
787}
788
789static int lookup_node(struct mm_struct *mm, unsigned long addr)
790{
791 struct page *p;
792 int err;
793
794 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
795 if (err >= 0) {
796 err = page_to_nid(p);
797 put_page(p);
798 }
799 return err;
800}
801
802/* Retrieve NUMA policy */
803static long do_get_mempolicy(int *policy, nodemask_t *nmask,
804 unsigned long addr, unsigned long flags)
805{
806 int err;
807 struct mm_struct *mm = current->mm;
808 struct vm_area_struct *vma = NULL;
809 struct mempolicy *pol = current->mempolicy;
810
811 if (flags &
812 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
813 return -EINVAL;
814
815 if (flags & MPOL_F_MEMS_ALLOWED) {
816 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
817 return -EINVAL;
818 *policy = 0; /* just so it's initialized */
819 task_lock(current);
820 *nmask = cpuset_current_mems_allowed;
821 task_unlock(current);
822 return 0;
823 }
824
825 if (flags & MPOL_F_ADDR) {
826 /*
827 * Do NOT fall back to task policy if the
828 * vma/shared policy at addr is NULL. We
829 * want to return MPOL_DEFAULT in this case.
830 */
831 down_read(&mm->mmap_sem);
832 vma = find_vma_intersection(mm, addr, addr+1);
833 if (!vma) {
834 up_read(&mm->mmap_sem);
835 return -EFAULT;
836 }
837 if (vma->vm_ops && vma->vm_ops->get_policy)
838 pol = vma->vm_ops->get_policy(vma, addr);
839 else
840 pol = vma->vm_policy;
841 } else if (addr)
842 return -EINVAL;
843
844 if (!pol)
845 pol = &default_policy; /* indicates default behavior */
846
847 if (flags & MPOL_F_NODE) {
848 if (flags & MPOL_F_ADDR) {
849 err = lookup_node(mm, addr);
850 if (err < 0)
851 goto out;
852 *policy = err;
853 } else if (pol == current->mempolicy &&
854 pol->mode == MPOL_INTERLEAVE) {
855 *policy = current->il_next;
856 } else {
857 err = -EINVAL;
858 goto out;
859 }
860 } else {
861 *policy = pol == &default_policy ? MPOL_DEFAULT :
862 pol->mode;
863 /*
864 * Internal mempolicy flags must be masked off before exposing
865 * the policy to userspace.
866 */
867 *policy |= (pol->flags & MPOL_MODE_FLAGS);
868 }
869
870 if (vma) {
871 up_read(&current->mm->mmap_sem);
872 vma = NULL;
873 }
874
875 err = 0;
876 if (nmask) {
877 if (mpol_store_user_nodemask(pol)) {
878 *nmask = pol->w.user_nodemask;
879 } else {
880 task_lock(current);
881 get_policy_nodemask(pol, nmask);
882 task_unlock(current);
883 }
884 }
885
886 out:
887 mpol_cond_put(pol);
888 if (vma)
889 up_read(&current->mm->mmap_sem);
890 return err;
891}
892
893#ifdef CONFIG_MIGRATION
894/*
895 * page migration
896 */
897static void migrate_page_add(struct page *page, struct list_head *pagelist,
898 unsigned long flags)
899{
900 /*
901 * Avoid migrating a page that is shared with others.
902 */
903 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
904 if (!isolate_lru_page(page)) {
905 list_add_tail(&page->lru, pagelist);
906 inc_zone_page_state(page, NR_ISOLATED_ANON +
907 page_is_file_cache(page));
908 }
909 }
910}
911
912static struct page *new_node_page(struct page *page, unsigned long node, int **x)
913{
914 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
915}
916
917/*
918 * Migrate pages from one node to a target node.
919 * Returns error or the number of pages not migrated.
920 */
921static int migrate_to_node(struct mm_struct *mm, int source, int dest,
922 int flags)
923{
924 nodemask_t nmask;
925 LIST_HEAD(pagelist);
926 int err = 0;
927 struct vm_area_struct *vma;
928
929 nodes_clear(nmask);
930 node_set(source, nmask);
931
932 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
933 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
934 if (IS_ERR(vma))
935 return PTR_ERR(vma);
936
937 if (!list_empty(&pagelist)) {
938 err = migrate_pages(&pagelist, new_node_page, dest,
939 false, MIGRATE_SYNC);
940 if (err)
941 putback_lru_pages(&pagelist);
942 }
943
944 return err;
945}
946
947/*
948 * Move pages between the two nodesets so as to preserve the physical
949 * layout as much as possible.
950 *
951 * Returns the number of page that could not be moved.
952 */
953int do_migrate_pages(struct mm_struct *mm,
954 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
955{
956 int busy = 0;
957 int err;
958 nodemask_t tmp;
959
960 err = migrate_prep();
961 if (err)
962 return err;
963
964 down_read(&mm->mmap_sem);
965
966 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
967 if (err)
968 goto out;
969
970 /*
971 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
972 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
973 * bit in 'tmp', and return that <source, dest> pair for migration.
974 * The pair of nodemasks 'to' and 'from' define the map.
975 *
976 * If no pair of bits is found that way, fallback to picking some
977 * pair of 'source' and 'dest' bits that are not the same. If the
978 * 'source' and 'dest' bits are the same, this represents a node
979 * that will be migrating to itself, so no pages need move.
980 *
981 * If no bits are left in 'tmp', or if all remaining bits left
982 * in 'tmp' correspond to the same bit in 'to', return false
983 * (nothing left to migrate).
984 *
985 * This lets us pick a pair of nodes to migrate between, such that
986 * if possible the dest node is not already occupied by some other
987 * source node, minimizing the risk of overloading the memory on a
988 * node that would happen if we migrated incoming memory to a node
989 * before migrating outgoing memory source that same node.
990 *
991 * A single scan of tmp is sufficient. As we go, we remember the
992 * most recent <s, d> pair that moved (s != d). If we find a pair
993 * that not only moved, but what's better, moved to an empty slot
994 * (d is not set in tmp), then we break out then, with that pair.
995 * Otherwise when we finish scanning from_tmp, we at least have the
996 * most recent <s, d> pair that moved. If we get all the way through
997 * the scan of tmp without finding any node that moved, much less
998 * moved to an empty node, then there is nothing left worth migrating.
999 */
1000
1001 tmp = *from_nodes;
1002 while (!nodes_empty(tmp)) {
1003 int s,d;
1004 int source = -1;
1005 int dest = 0;
1006
1007 for_each_node_mask(s, tmp) {
1008 d = node_remap(s, *from_nodes, *to_nodes);
1009 if (s == d)
1010 continue;
1011
1012 source = s; /* Node moved. Memorize */
1013 dest = d;
1014
1015 /* dest not in remaining from nodes? */
1016 if (!node_isset(dest, tmp))
1017 break;
1018 }
1019 if (source == -1)
1020 break;
1021
1022 node_clear(source, tmp);
1023 err = migrate_to_node(mm, source, dest, flags);
1024 if (err > 0)
1025 busy += err;
1026 if (err < 0)
1027 break;
1028 }
1029out:
1030 up_read(&mm->mmap_sem);
1031 if (err < 0)
1032 return err;
1033 return busy;
1034
1035}
1036
1037/*
1038 * Allocate a new page for page migration based on vma policy.
1039 * Start assuming that page is mapped by vma pointed to by @private.
1040 * Search forward from there, if not. N.B., this assumes that the
1041 * list of pages handed to migrate_pages()--which is how we get here--
1042 * is in virtual address order.
1043 */
1044static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1045{
1046 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1047 unsigned long uninitialized_var(address);
1048
1049 while (vma) {
1050 address = page_address_in_vma(page, vma);
1051 if (address != -EFAULT)
1052 break;
1053 vma = vma->vm_next;
1054 }
1055
1056 /*
1057 * if !vma, alloc_page_vma() will use task or system default policy
1058 */
1059 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1060}
1061#else
1062
1063static void migrate_page_add(struct page *page, struct list_head *pagelist,
1064 unsigned long flags)
1065{
1066}
1067
1068int do_migrate_pages(struct mm_struct *mm,
1069 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1070{
1071 return -ENOSYS;
1072}
1073
1074static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1075{
1076 return NULL;
1077}
1078#endif
1079
1080static long do_mbind(unsigned long start, unsigned long len,
1081 unsigned short mode, unsigned short mode_flags,
1082 nodemask_t *nmask, unsigned long flags)
1083{
1084 struct vm_area_struct *vma;
1085 struct mm_struct *mm = current->mm;
1086 struct mempolicy *new;
1087 unsigned long end;
1088 int err;
1089 LIST_HEAD(pagelist);
1090
1091 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1092 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1093 return -EINVAL;
1094 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1095 return -EPERM;
1096
1097 if (start & ~PAGE_MASK)
1098 return -EINVAL;
1099
1100 if (mode == MPOL_DEFAULT)
1101 flags &= ~MPOL_MF_STRICT;
1102
1103 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1104 end = start + len;
1105
1106 if (end < start)
1107 return -EINVAL;
1108 if (end == start)
1109 return 0;
1110
1111 new = mpol_new(mode, mode_flags, nmask);
1112 if (IS_ERR(new))
1113 return PTR_ERR(new);
1114
1115 /*
1116 * If we are using the default policy then operation
1117 * on discontinuous address spaces is okay after all
1118 */
1119 if (!new)
1120 flags |= MPOL_MF_DISCONTIG_OK;
1121
1122 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1123 start, start + len, mode, mode_flags,
1124 nmask ? nodes_addr(*nmask)[0] : -1);
1125
1126 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1127
1128 err = migrate_prep();
1129 if (err)
1130 goto mpol_out;
1131 }
1132 {
1133 NODEMASK_SCRATCH(scratch);
1134 if (scratch) {
1135 down_write(&mm->mmap_sem);
1136 task_lock(current);
1137 err = mpol_set_nodemask(new, nmask, scratch);
1138 task_unlock(current);
1139 if (err)
1140 up_write(&mm->mmap_sem);
1141 } else
1142 err = -ENOMEM;
1143 NODEMASK_SCRATCH_FREE(scratch);
1144 }
1145 if (err)
1146 goto mpol_out;
1147
1148 vma = check_range(mm, start, end, nmask,
1149 flags | MPOL_MF_INVERT, &pagelist);
1150
1151 err = PTR_ERR(vma);
1152 if (!IS_ERR(vma)) {
1153 int nr_failed = 0;
1154
1155 err = mbind_range(mm, start, end, new);
1156
1157 if (!list_empty(&pagelist)) {
1158 nr_failed = migrate_pages(&pagelist, new_vma_page,
1159 (unsigned long)vma,
1160 false, true);
1161 if (nr_failed)
1162 putback_lru_pages(&pagelist);
1163 }
1164
1165 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1166 err = -EIO;
1167 } else
1168 putback_lru_pages(&pagelist);
1169
1170 up_write(&mm->mmap_sem);
1171 mpol_out:
1172 mpol_put(new);
1173 return err;
1174}
1175
1176/*
1177 * User space interface with variable sized bitmaps for nodelists.
1178 */
1179
1180/* Copy a node mask from user space. */
1181static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1182 unsigned long maxnode)
1183{
1184 unsigned long k;
1185 unsigned long nlongs;
1186 unsigned long endmask;
1187
1188 --maxnode;
1189 nodes_clear(*nodes);
1190 if (maxnode == 0 || !nmask)
1191 return 0;
1192 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1193 return -EINVAL;
1194
1195 nlongs = BITS_TO_LONGS(maxnode);
1196 if ((maxnode % BITS_PER_LONG) == 0)
1197 endmask = ~0UL;
1198 else
1199 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1200
1201 /* When the user specified more nodes than supported just check
1202 if the non supported part is all zero. */
1203 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1204 if (nlongs > PAGE_SIZE/sizeof(long))
1205 return -EINVAL;
1206 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1207 unsigned long t;
1208 if (get_user(t, nmask + k))
1209 return -EFAULT;
1210 if (k == nlongs - 1) {
1211 if (t & endmask)
1212 return -EINVAL;
1213 } else if (t)
1214 return -EINVAL;
1215 }
1216 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1217 endmask = ~0UL;
1218 }
1219
1220 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1221 return -EFAULT;
1222 nodes_addr(*nodes)[nlongs-1] &= endmask;
1223 return 0;
1224}
1225
1226/* Copy a kernel node mask to user space */
1227static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1228 nodemask_t *nodes)
1229{
1230 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1231 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1232
1233 if (copy > nbytes) {
1234 if (copy > PAGE_SIZE)
1235 return -EINVAL;
1236 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1237 return -EFAULT;
1238 copy = nbytes;
1239 }
1240 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1241}
1242
1243SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1244 unsigned long, mode, unsigned long __user *, nmask,
1245 unsigned long, maxnode, unsigned, flags)
1246{
1247 nodemask_t nodes;
1248 int err;
1249 unsigned short mode_flags;
1250
1251 mode_flags = mode & MPOL_MODE_FLAGS;
1252 mode &= ~MPOL_MODE_FLAGS;
1253 if (mode >= MPOL_MAX)
1254 return -EINVAL;
1255 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1256 (mode_flags & MPOL_F_RELATIVE_NODES))
1257 return -EINVAL;
1258 err = get_nodes(&nodes, nmask, maxnode);
1259 if (err)
1260 return err;
1261 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1262}
1263
1264/* Set the process memory policy */
1265SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1266 unsigned long, maxnode)
1267{
1268 int err;
1269 nodemask_t nodes;
1270 unsigned short flags;
1271
1272 flags = mode & MPOL_MODE_FLAGS;
1273 mode &= ~MPOL_MODE_FLAGS;
1274 if ((unsigned int)mode >= MPOL_MAX)
1275 return -EINVAL;
1276 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1277 return -EINVAL;
1278 err = get_nodes(&nodes, nmask, maxnode);
1279 if (err)
1280 return err;
1281 return do_set_mempolicy(mode, flags, &nodes);
1282}
1283
1284SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1285 const unsigned long __user *, old_nodes,
1286 const unsigned long __user *, new_nodes)
1287{
1288 const struct cred *cred = current_cred(), *tcred;
1289 struct mm_struct *mm = NULL;
1290 struct task_struct *task;
1291 nodemask_t task_nodes;
1292 int err;
1293 nodemask_t *old;
1294 nodemask_t *new;
1295 NODEMASK_SCRATCH(scratch);
1296
1297 if (!scratch)
1298 return -ENOMEM;
1299
1300 old = &scratch->mask1;
1301 new = &scratch->mask2;
1302
1303 err = get_nodes(old, old_nodes, maxnode);
1304 if (err)
1305 goto out;
1306
1307 err = get_nodes(new, new_nodes, maxnode);
1308 if (err)
1309 goto out;
1310
1311 /* Find the mm_struct */
1312 rcu_read_lock();
1313 task = pid ? find_task_by_vpid(pid) : current;
1314 if (!task) {
1315 rcu_read_unlock();
1316 err = -ESRCH;
1317 goto out;
1318 }
1319 get_task_struct(task);
1320
1321 err = -EINVAL;
1322
1323 /*
1324 * Check if this process has the right to modify the specified
1325 * process. The right exists if the process has administrative
1326 * capabilities, superuser privileges or the same
1327 * userid as the target process.
1328 */
1329 tcred = __task_cred(task);
1330 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1331 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1332 !capable(CAP_SYS_NICE)) {
1333 rcu_read_unlock();
1334 err = -EPERM;
1335 goto out_put;
1336 }
1337 rcu_read_unlock();
1338
1339 task_nodes = cpuset_mems_allowed(task);
1340 /* Is the user allowed to access the target nodes? */
1341 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1342 err = -EPERM;
1343 goto out_put;
1344 }
1345
1346 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1347 err = -EINVAL;
1348 goto out_put;
1349 }
1350
1351 err = security_task_movememory(task);
1352 if (err)
1353 goto out_put;
1354
1355 mm = get_task_mm(task);
1356 put_task_struct(task);
1357
1358 if (!mm) {
1359 err = -EINVAL;
1360 goto out;
1361 }
1362
1363 err = do_migrate_pages(mm, old, new,
1364 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1365
1366 mmput(mm);
1367out:
1368 NODEMASK_SCRATCH_FREE(scratch);
1369
1370 return err;
1371
1372out_put:
1373 put_task_struct(task);
1374 goto out;
1375
1376}
1377
1378
1379/* Retrieve NUMA policy */
1380SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1381 unsigned long __user *, nmask, unsigned long, maxnode,
1382 unsigned long, addr, unsigned long, flags)
1383{
1384 int err;
1385 int uninitialized_var(pval);
1386 nodemask_t nodes;
1387
1388 if (nmask != NULL && maxnode < MAX_NUMNODES)
1389 return -EINVAL;
1390
1391 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1392
1393 if (err)
1394 return err;
1395
1396 if (policy && put_user(pval, policy))
1397 return -EFAULT;
1398
1399 if (nmask)
1400 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1401
1402 return err;
1403}
1404
1405#ifdef CONFIG_COMPAT
1406
1407asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1408 compat_ulong_t __user *nmask,
1409 compat_ulong_t maxnode,
1410 compat_ulong_t addr, compat_ulong_t flags)
1411{
1412 long err;
1413 unsigned long __user *nm = NULL;
1414 unsigned long nr_bits, alloc_size;
1415 DECLARE_BITMAP(bm, MAX_NUMNODES);
1416
1417 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1418 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1419
1420 if (nmask)
1421 nm = compat_alloc_user_space(alloc_size);
1422
1423 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1424
1425 if (!err && nmask) {
1426 unsigned long copy_size;
1427 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1428 err = copy_from_user(bm, nm, copy_size);
1429 /* ensure entire bitmap is zeroed */
1430 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1431 err |= compat_put_bitmap(nmask, bm, nr_bits);
1432 }
1433
1434 return err;
1435}
1436
1437asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1438 compat_ulong_t maxnode)
1439{
1440 long err = 0;
1441 unsigned long __user *nm = NULL;
1442 unsigned long nr_bits, alloc_size;
1443 DECLARE_BITMAP(bm, MAX_NUMNODES);
1444
1445 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1446 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1447
1448 if (nmask) {
1449 err = compat_get_bitmap(bm, nmask, nr_bits);
1450 nm = compat_alloc_user_space(alloc_size);
1451 err |= copy_to_user(nm, bm, alloc_size);
1452 }
1453
1454 if (err)
1455 return -EFAULT;
1456
1457 return sys_set_mempolicy(mode, nm, nr_bits+1);
1458}
1459
1460asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1461 compat_ulong_t mode, compat_ulong_t __user *nmask,
1462 compat_ulong_t maxnode, compat_ulong_t flags)
1463{
1464 long err = 0;
1465 unsigned long __user *nm = NULL;
1466 unsigned long nr_bits, alloc_size;
1467 nodemask_t bm;
1468
1469 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1470 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1471
1472 if (nmask) {
1473 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1474 nm = compat_alloc_user_space(alloc_size);
1475 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1476 }
1477
1478 if (err)
1479 return -EFAULT;
1480
1481 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1482}
1483
1484#endif
1485
1486/*
1487 * get_vma_policy(@task, @vma, @addr)
1488 * @task - task for fallback if vma policy == default
1489 * @vma - virtual memory area whose policy is sought
1490 * @addr - address in @vma for shared policy lookup
1491 *
1492 * Returns effective policy for a VMA at specified address.
1493 * Falls back to @task or system default policy, as necessary.
1494 * Current or other task's task mempolicy and non-shared vma policies
1495 * are protected by the task's mmap_sem, which must be held for read by
1496 * the caller.
1497 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1498 * count--added by the get_policy() vm_op, as appropriate--to protect against
1499 * freeing by another task. It is the caller's responsibility to free the
1500 * extra reference for shared policies.
1501 */
1502struct mempolicy *get_vma_policy(struct task_struct *task,
1503 struct vm_area_struct *vma, unsigned long addr)
1504{
1505 struct mempolicy *pol = task->mempolicy;
1506
1507 if (vma) {
1508 if (vma->vm_ops && vma->vm_ops->get_policy) {
1509 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1510 addr);
1511 if (vpol)
1512 pol = vpol;
1513 } else if (vma->vm_policy)
1514 pol = vma->vm_policy;
1515 }
1516 if (!pol)
1517 pol = &default_policy;
1518 return pol;
1519}
1520
1521/*
1522 * Return a nodemask representing a mempolicy for filtering nodes for
1523 * page allocation
1524 */
1525static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1526{
1527 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1528 if (unlikely(policy->mode == MPOL_BIND) &&
1529 gfp_zone(gfp) >= policy_zone &&
1530 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1531 return &policy->v.nodes;
1532
1533 return NULL;
1534}
1535
1536/* Return a zonelist indicated by gfp for node representing a mempolicy */
1537static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1538 int nd)
1539{
1540 switch (policy->mode) {
1541 case MPOL_PREFERRED:
1542 if (!(policy->flags & MPOL_F_LOCAL))
1543 nd = policy->v.preferred_node;
1544 break;
1545 case MPOL_BIND:
1546 /*
1547 * Normally, MPOL_BIND allocations are node-local within the
1548 * allowed nodemask. However, if __GFP_THISNODE is set and the
1549 * current node isn't part of the mask, we use the zonelist for
1550 * the first node in the mask instead.
1551 */
1552 if (unlikely(gfp & __GFP_THISNODE) &&
1553 unlikely(!node_isset(nd, policy->v.nodes)))
1554 nd = first_node(policy->v.nodes);
1555 break;
1556 default:
1557 BUG();
1558 }
1559 return node_zonelist(nd, gfp);
1560}
1561
1562/* Do dynamic interleaving for a process */
1563static unsigned interleave_nodes(struct mempolicy *policy)
1564{
1565 unsigned nid, next;
1566 struct task_struct *me = current;
1567
1568 nid = me->il_next;
1569 next = next_node(nid, policy->v.nodes);
1570 if (next >= MAX_NUMNODES)
1571 next = first_node(policy->v.nodes);
1572 if (next < MAX_NUMNODES)
1573 me->il_next = next;
1574 return nid;
1575}
1576
1577/*
1578 * Depending on the memory policy provide a node from which to allocate the
1579 * next slab entry.
1580 * @policy must be protected by freeing by the caller. If @policy is
1581 * the current task's mempolicy, this protection is implicit, as only the
1582 * task can change it's policy. The system default policy requires no
1583 * such protection.
1584 */
1585unsigned slab_node(struct mempolicy *policy)
1586{
1587 if (!policy || policy->flags & MPOL_F_LOCAL)
1588 return numa_node_id();
1589
1590 switch (policy->mode) {
1591 case MPOL_PREFERRED:
1592 /*
1593 * handled MPOL_F_LOCAL above
1594 */
1595 return policy->v.preferred_node;
1596
1597 case MPOL_INTERLEAVE:
1598 return interleave_nodes(policy);
1599
1600 case MPOL_BIND: {
1601 /*
1602 * Follow bind policy behavior and start allocation at the
1603 * first node.
1604 */
1605 struct zonelist *zonelist;
1606 struct zone *zone;
1607 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1608 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1609 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1610 &policy->v.nodes,
1611 &zone);
1612 return zone ? zone->node : numa_node_id();
1613 }
1614
1615 default:
1616 BUG();
1617 }
1618}
1619
1620/* Do static interleaving for a VMA with known offset. */
1621static unsigned offset_il_node(struct mempolicy *pol,
1622 struct vm_area_struct *vma, unsigned long off)
1623{
1624 unsigned nnodes = nodes_weight(pol->v.nodes);
1625 unsigned target;
1626 int c;
1627 int nid = -1;
1628
1629 if (!nnodes)
1630 return numa_node_id();
1631 target = (unsigned int)off % nnodes;
1632 c = 0;
1633 do {
1634 nid = next_node(nid, pol->v.nodes);
1635 c++;
1636 } while (c <= target);
1637 return nid;
1638}
1639
1640/* Determine a node number for interleave */
1641static inline unsigned interleave_nid(struct mempolicy *pol,
1642 struct vm_area_struct *vma, unsigned long addr, int shift)
1643{
1644 if (vma) {
1645 unsigned long off;
1646
1647 /*
1648 * for small pages, there is no difference between
1649 * shift and PAGE_SHIFT, so the bit-shift is safe.
1650 * for huge pages, since vm_pgoff is in units of small
1651 * pages, we need to shift off the always 0 bits to get
1652 * a useful offset.
1653 */
1654 BUG_ON(shift < PAGE_SHIFT);
1655 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1656 off += (addr - vma->vm_start) >> shift;
1657 return offset_il_node(pol, vma, off);
1658 } else
1659 return interleave_nodes(pol);
1660}
1661
1662/*
1663 * Return the bit number of a random bit set in the nodemask.
1664 * (returns -1 if nodemask is empty)
1665 */
1666int node_random(const nodemask_t *maskp)
1667{
1668 int w, bit = -1;
1669
1670 w = nodes_weight(*maskp);
1671 if (w)
1672 bit = bitmap_ord_to_pos(maskp->bits,
1673 get_random_int() % w, MAX_NUMNODES);
1674 return bit;
1675}
1676
1677#ifdef CONFIG_HUGETLBFS
1678/*
1679 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1680 * @vma = virtual memory area whose policy is sought
1681 * @addr = address in @vma for shared policy lookup and interleave policy
1682 * @gfp_flags = for requested zone
1683 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1684 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1685 *
1686 * Returns a zonelist suitable for a huge page allocation and a pointer
1687 * to the struct mempolicy for conditional unref after allocation.
1688 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1689 * @nodemask for filtering the zonelist.
1690 *
1691 * Must be protected by get_mems_allowed()
1692 */
1693struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1694 gfp_t gfp_flags, struct mempolicy **mpol,
1695 nodemask_t **nodemask)
1696{
1697 struct zonelist *zl;
1698
1699 *mpol = get_vma_policy(current, vma, addr);
1700 *nodemask = NULL; /* assume !MPOL_BIND */
1701
1702 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1703 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1704 huge_page_shift(hstate_vma(vma))), gfp_flags);
1705 } else {
1706 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1707 if ((*mpol)->mode == MPOL_BIND)
1708 *nodemask = &(*mpol)->v.nodes;
1709 }
1710 return zl;
1711}
1712
1713/*
1714 * init_nodemask_of_mempolicy
1715 *
1716 * If the current task's mempolicy is "default" [NULL], return 'false'
1717 * to indicate default policy. Otherwise, extract the policy nodemask
1718 * for 'bind' or 'interleave' policy into the argument nodemask, or
1719 * initialize the argument nodemask to contain the single node for
1720 * 'preferred' or 'local' policy and return 'true' to indicate presence
1721 * of non-default mempolicy.
1722 *
1723 * We don't bother with reference counting the mempolicy [mpol_get/put]
1724 * because the current task is examining it's own mempolicy and a task's
1725 * mempolicy is only ever changed by the task itself.
1726 *
1727 * N.B., it is the caller's responsibility to free a returned nodemask.
1728 */
1729bool init_nodemask_of_mempolicy(nodemask_t *mask)
1730{
1731 struct mempolicy *mempolicy;
1732 int nid;
1733
1734 if (!(mask && current->mempolicy))
1735 return false;
1736
1737 task_lock(current);
1738 mempolicy = current->mempolicy;
1739 switch (mempolicy->mode) {
1740 case MPOL_PREFERRED:
1741 if (mempolicy->flags & MPOL_F_LOCAL)
1742 nid = numa_node_id();
1743 else
1744 nid = mempolicy->v.preferred_node;
1745 init_nodemask_of_node(mask, nid);
1746 break;
1747
1748 case MPOL_BIND:
1749 /* Fall through */
1750 case MPOL_INTERLEAVE:
1751 *mask = mempolicy->v.nodes;
1752 break;
1753
1754 default:
1755 BUG();
1756 }
1757 task_unlock(current);
1758
1759 return true;
1760}
1761#endif
1762
1763/*
1764 * mempolicy_nodemask_intersects
1765 *
1766 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1767 * policy. Otherwise, check for intersection between mask and the policy
1768 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1769 * policy, always return true since it may allocate elsewhere on fallback.
1770 *
1771 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1772 */
1773bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1774 const nodemask_t *mask)
1775{
1776 struct mempolicy *mempolicy;
1777 bool ret = true;
1778
1779 if (!mask)
1780 return ret;
1781 task_lock(tsk);
1782 mempolicy = tsk->mempolicy;
1783 if (!mempolicy)
1784 goto out;
1785
1786 switch (mempolicy->mode) {
1787 case MPOL_PREFERRED:
1788 /*
1789 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1790 * allocate from, they may fallback to other nodes when oom.
1791 * Thus, it's possible for tsk to have allocated memory from
1792 * nodes in mask.
1793 */
1794 break;
1795 case MPOL_BIND:
1796 case MPOL_INTERLEAVE:
1797 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1798 break;
1799 default:
1800 BUG();
1801 }
1802out:
1803 task_unlock(tsk);
1804 return ret;
1805}
1806
1807/* Allocate a page in interleaved policy.
1808 Own path because it needs to do special accounting. */
1809static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1810 unsigned nid)
1811{
1812 struct zonelist *zl;
1813 struct page *page;
1814
1815 zl = node_zonelist(nid, gfp);
1816 page = __alloc_pages(gfp, order, zl);
1817 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1818 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1819 return page;
1820}
1821
1822/**
1823 * alloc_pages_vma - Allocate a page for a VMA.
1824 *
1825 * @gfp:
1826 * %GFP_USER user allocation.
1827 * %GFP_KERNEL kernel allocations,
1828 * %GFP_HIGHMEM highmem/user allocations,
1829 * %GFP_FS allocation should not call back into a file system.
1830 * %GFP_ATOMIC don't sleep.
1831 *
1832 * @order:Order of the GFP allocation.
1833 * @vma: Pointer to VMA or NULL if not available.
1834 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1835 *
1836 * This function allocates a page from the kernel page pool and applies
1837 * a NUMA policy associated with the VMA or the current process.
1838 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1839 * mm_struct of the VMA to prevent it from going away. Should be used for
1840 * all allocations for pages that will be mapped into
1841 * user space. Returns NULL when no page can be allocated.
1842 *
1843 * Should be called with the mm_sem of the vma hold.
1844 */
1845struct page *
1846alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1847 unsigned long addr, int node)
1848{
1849 struct mempolicy *pol;
1850 struct zonelist *zl;
1851 struct page *page;
1852 unsigned int cpuset_mems_cookie;
1853
1854retry_cpuset:
1855 pol = get_vma_policy(current, vma, addr);
1856 cpuset_mems_cookie = get_mems_allowed();
1857
1858 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1859 unsigned nid;
1860
1861 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1862 mpol_cond_put(pol);
1863 page = alloc_page_interleave(gfp, order, nid);
1864 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1865 goto retry_cpuset;
1866
1867 return page;
1868 }
1869 zl = policy_zonelist(gfp, pol, node);
1870 if (unlikely(mpol_needs_cond_ref(pol))) {
1871 /*
1872 * slow path: ref counted shared policy
1873 */
1874 struct page *page = __alloc_pages_nodemask(gfp, order,
1875 zl, policy_nodemask(gfp, pol));
1876 __mpol_put(pol);
1877 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1878 goto retry_cpuset;
1879 return page;
1880 }
1881 /*
1882 * fast path: default or task policy
1883 */
1884 page = __alloc_pages_nodemask(gfp, order, zl,
1885 policy_nodemask(gfp, pol));
1886 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1887 goto retry_cpuset;
1888 return page;
1889}
1890
1891/**
1892 * alloc_pages_current - Allocate pages.
1893 *
1894 * @gfp:
1895 * %GFP_USER user allocation,
1896 * %GFP_KERNEL kernel allocation,
1897 * %GFP_HIGHMEM highmem allocation,
1898 * %GFP_FS don't call back into a file system.
1899 * %GFP_ATOMIC don't sleep.
1900 * @order: Power of two of allocation size in pages. 0 is a single page.
1901 *
1902 * Allocate a page from the kernel page pool. When not in
1903 * interrupt context and apply the current process NUMA policy.
1904 * Returns NULL when no page can be allocated.
1905 *
1906 * Don't call cpuset_update_task_memory_state() unless
1907 * 1) it's ok to take cpuset_sem (can WAIT), and
1908 * 2) allocating for current task (not interrupt).
1909 */
1910struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1911{
1912 struct mempolicy *pol = current->mempolicy;
1913 struct page *page;
1914 unsigned int cpuset_mems_cookie;
1915
1916 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1917 pol = &default_policy;
1918
1919retry_cpuset:
1920 cpuset_mems_cookie = get_mems_allowed();
1921
1922 /*
1923 * No reference counting needed for current->mempolicy
1924 * nor system default_policy
1925 */
1926 if (pol->mode == MPOL_INTERLEAVE)
1927 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1928 else
1929 page = __alloc_pages_nodemask(gfp, order,
1930 policy_zonelist(gfp, pol, numa_node_id()),
1931 policy_nodemask(gfp, pol));
1932
1933 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1934 goto retry_cpuset;
1935
1936 return page;
1937}
1938EXPORT_SYMBOL(alloc_pages_current);
1939
1940/*
1941 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1942 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1943 * with the mems_allowed returned by cpuset_mems_allowed(). This
1944 * keeps mempolicies cpuset relative after its cpuset moves. See
1945 * further kernel/cpuset.c update_nodemask().
1946 *
1947 * current's mempolicy may be rebinded by the other task(the task that changes
1948 * cpuset's mems), so we needn't do rebind work for current task.
1949 */
1950
1951/* Slow path of a mempolicy duplicate */
1952struct mempolicy *__mpol_dup(struct mempolicy *old)
1953{
1954 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1955
1956 if (!new)
1957 return ERR_PTR(-ENOMEM);
1958
1959 /* task's mempolicy is protected by alloc_lock */
1960 if (old == current->mempolicy) {
1961 task_lock(current);
1962 *new = *old;
1963 task_unlock(current);
1964 } else
1965 *new = *old;
1966
1967 rcu_read_lock();
1968 if (current_cpuset_is_being_rebound()) {
1969 nodemask_t mems = cpuset_mems_allowed(current);
1970 if (new->flags & MPOL_F_REBINDING)
1971 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1972 else
1973 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1974 }
1975 rcu_read_unlock();
1976 atomic_set(&new->refcnt, 1);
1977 return new;
1978}
1979
1980/*
1981 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1982 * eliminate the * MPOL_F_* flags that require conditional ref and
1983 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1984 * after return. Use the returned value.
1985 *
1986 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1987 * policy lookup, even if the policy needs/has extra ref on lookup.
1988 * shmem_readahead needs this.
1989 */
1990struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1991 struct mempolicy *frompol)
1992{
1993 if (!mpol_needs_cond_ref(frompol))
1994 return frompol;
1995
1996 *tompol = *frompol;
1997 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1998 __mpol_put(frompol);
1999 return tompol;
2000}
2001
2002/* Slow path of a mempolicy comparison */
2003bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2004{
2005 if (!a || !b)
2006 return false;
2007 if (a->mode != b->mode)
2008 return false;
2009 if (a->flags != b->flags)
2010 return false;
2011 if (mpol_store_user_nodemask(a))
2012 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2013 return false;
2014
2015 switch (a->mode) {
2016 case MPOL_BIND:
2017 /* Fall through */
2018 case MPOL_INTERLEAVE:
2019 return !!nodes_equal(a->v.nodes, b->v.nodes);
2020 case MPOL_PREFERRED:
2021 return a->v.preferred_node == b->v.preferred_node;
2022 default:
2023 BUG();
2024 return false;
2025 }
2026}
2027
2028/*
2029 * Shared memory backing store policy support.
2030 *
2031 * Remember policies even when nobody has shared memory mapped.
2032 * The policies are kept in Red-Black tree linked from the inode.
2033 * They are protected by the sp->lock spinlock, which should be held
2034 * for any accesses to the tree.
2035 */
2036
2037/* lookup first element intersecting start-end */
2038/* Caller holds sp->lock */
2039static struct sp_node *
2040sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2041{
2042 struct rb_node *n = sp->root.rb_node;
2043
2044 while (n) {
2045 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2046
2047 if (start >= p->end)
2048 n = n->rb_right;
2049 else if (end <= p->start)
2050 n = n->rb_left;
2051 else
2052 break;
2053 }
2054 if (!n)
2055 return NULL;
2056 for (;;) {
2057 struct sp_node *w = NULL;
2058 struct rb_node *prev = rb_prev(n);
2059 if (!prev)
2060 break;
2061 w = rb_entry(prev, struct sp_node, nd);
2062 if (w->end <= start)
2063 break;
2064 n = prev;
2065 }
2066 return rb_entry(n, struct sp_node, nd);
2067}
2068
2069/* Insert a new shared policy into the list. */
2070/* Caller holds sp->lock */
2071static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2072{
2073 struct rb_node **p = &sp->root.rb_node;
2074 struct rb_node *parent = NULL;
2075 struct sp_node *nd;
2076
2077 while (*p) {
2078 parent = *p;
2079 nd = rb_entry(parent, struct sp_node, nd);
2080 if (new->start < nd->start)
2081 p = &(*p)->rb_left;
2082 else if (new->end > nd->end)
2083 p = &(*p)->rb_right;
2084 else
2085 BUG();
2086 }
2087 rb_link_node(&new->nd, parent, p);
2088 rb_insert_color(&new->nd, &sp->root);
2089 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2090 new->policy ? new->policy->mode : 0);
2091}
2092
2093/* Find shared policy intersecting idx */
2094struct mempolicy *
2095mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2096{
2097 struct mempolicy *pol = NULL;
2098 struct sp_node *sn;
2099
2100 if (!sp->root.rb_node)
2101 return NULL;
2102 spin_lock(&sp->lock);
2103 sn = sp_lookup(sp, idx, idx+1);
2104 if (sn) {
2105 mpol_get(sn->policy);
2106 pol = sn->policy;
2107 }
2108 spin_unlock(&sp->lock);
2109 return pol;
2110}
2111
2112static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2113{
2114 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2115 rb_erase(&n->nd, &sp->root);
2116 mpol_put(n->policy);
2117 kmem_cache_free(sn_cache, n);
2118}
2119
2120static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2121 struct mempolicy *pol)
2122{
2123 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2124
2125 if (!n)
2126 return NULL;
2127 n->start = start;
2128 n->end = end;
2129 mpol_get(pol);
2130 pol->flags |= MPOL_F_SHARED; /* for unref */
2131 n->policy = pol;
2132 return n;
2133}
2134
2135/* Replace a policy range. */
2136static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2137 unsigned long end, struct sp_node *new)
2138{
2139 struct sp_node *n, *new2 = NULL;
2140
2141restart:
2142 spin_lock(&sp->lock);
2143 n = sp_lookup(sp, start, end);
2144 /* Take care of old policies in the same range. */
2145 while (n && n->start < end) {
2146 struct rb_node *next = rb_next(&n->nd);
2147 if (n->start >= start) {
2148 if (n->end <= end)
2149 sp_delete(sp, n);
2150 else
2151 n->start = end;
2152 } else {
2153 /* Old policy spanning whole new range. */
2154 if (n->end > end) {
2155 if (!new2) {
2156 spin_unlock(&sp->lock);
2157 new2 = sp_alloc(end, n->end, n->policy);
2158 if (!new2)
2159 return -ENOMEM;
2160 goto restart;
2161 }
2162 n->end = start;
2163 sp_insert(sp, new2);
2164 new2 = NULL;
2165 break;
2166 } else
2167 n->end = start;
2168 }
2169 if (!next)
2170 break;
2171 n = rb_entry(next, struct sp_node, nd);
2172 }
2173 if (new)
2174 sp_insert(sp, new);
2175 spin_unlock(&sp->lock);
2176 if (new2) {
2177 mpol_put(new2->policy);
2178 kmem_cache_free(sn_cache, new2);
2179 }
2180 return 0;
2181}
2182
2183/**
2184 * mpol_shared_policy_init - initialize shared policy for inode
2185 * @sp: pointer to inode shared policy
2186 * @mpol: struct mempolicy to install
2187 *
2188 * Install non-NULL @mpol in inode's shared policy rb-tree.
2189 * On entry, the current task has a reference on a non-NULL @mpol.
2190 * This must be released on exit.
2191 * This is called at get_inode() calls and we can use GFP_KERNEL.
2192 */
2193void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2194{
2195 int ret;
2196
2197 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2198 spin_lock_init(&sp->lock);
2199
2200 if (mpol) {
2201 struct vm_area_struct pvma;
2202 struct mempolicy *new;
2203 NODEMASK_SCRATCH(scratch);
2204
2205 if (!scratch)
2206 goto put_mpol;
2207 /* contextualize the tmpfs mount point mempolicy */
2208 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2209 if (IS_ERR(new))
2210 goto free_scratch; /* no valid nodemask intersection */
2211
2212 task_lock(current);
2213 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2214 task_unlock(current);
2215 if (ret)
2216 goto put_new;
2217
2218 /* Create pseudo-vma that contains just the policy */
2219 memset(&pvma, 0, sizeof(struct vm_area_struct));
2220 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2221 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2222
2223put_new:
2224 mpol_put(new); /* drop initial ref */
2225free_scratch:
2226 NODEMASK_SCRATCH_FREE(scratch);
2227put_mpol:
2228 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2229 }
2230}
2231
2232int mpol_set_shared_policy(struct shared_policy *info,
2233 struct vm_area_struct *vma, struct mempolicy *npol)
2234{
2235 int err;
2236 struct sp_node *new = NULL;
2237 unsigned long sz = vma_pages(vma);
2238
2239 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2240 vma->vm_pgoff,
2241 sz, npol ? npol->mode : -1,
2242 npol ? npol->flags : -1,
2243 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2244
2245 if (npol) {
2246 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2247 if (!new)
2248 return -ENOMEM;
2249 }
2250 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2251 if (err && new)
2252 kmem_cache_free(sn_cache, new);
2253 return err;
2254}
2255
2256/* Free a backing policy store on inode delete. */
2257void mpol_free_shared_policy(struct shared_policy *p)
2258{
2259 struct sp_node *n;
2260 struct rb_node *next;
2261
2262 if (!p->root.rb_node)
2263 return;
2264 spin_lock(&p->lock);
2265 next = rb_first(&p->root);
2266 while (next) {
2267 n = rb_entry(next, struct sp_node, nd);
2268 next = rb_next(&n->nd);
2269 rb_erase(&n->nd, &p->root);
2270 mpol_put(n->policy);
2271 kmem_cache_free(sn_cache, n);
2272 }
2273 spin_unlock(&p->lock);
2274}
2275
2276/* assumes fs == KERNEL_DS */
2277void __init numa_policy_init(void)
2278{
2279 nodemask_t interleave_nodes;
2280 unsigned long largest = 0;
2281 int nid, prefer = 0;
2282
2283 policy_cache = kmem_cache_create("numa_policy",
2284 sizeof(struct mempolicy),
2285 0, SLAB_PANIC, NULL);
2286
2287 sn_cache = kmem_cache_create("shared_policy_node",
2288 sizeof(struct sp_node),
2289 0, SLAB_PANIC, NULL);
2290
2291 /*
2292 * Set interleaving policy for system init. Interleaving is only
2293 * enabled across suitably sized nodes (default is >= 16MB), or
2294 * fall back to the largest node if they're all smaller.
2295 */
2296 nodes_clear(interleave_nodes);
2297 for_each_node_state(nid, N_HIGH_MEMORY) {
2298 unsigned long total_pages = node_present_pages(nid);
2299
2300 /* Preserve the largest node */
2301 if (largest < total_pages) {
2302 largest = total_pages;
2303 prefer = nid;
2304 }
2305
2306 /* Interleave this node? */
2307 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2308 node_set(nid, interleave_nodes);
2309 }
2310
2311 /* All too small, use the largest */
2312 if (unlikely(nodes_empty(interleave_nodes)))
2313 node_set(prefer, interleave_nodes);
2314
2315 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2316 printk("numa_policy_init: interleaving failed\n");
2317}
2318
2319/* Reset policy of current process to default */
2320void numa_default_policy(void)
2321{
2322 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2323}
2324
2325/*
2326 * Parse and format mempolicy from/to strings
2327 */
2328
2329/*
2330 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2331 * Used only for mpol_parse_str() and mpol_to_str()
2332 */
2333#define MPOL_LOCAL MPOL_MAX
2334static const char * const policy_modes[] =
2335{
2336 [MPOL_DEFAULT] = "default",
2337 [MPOL_PREFERRED] = "prefer",
2338 [MPOL_BIND] = "bind",
2339 [MPOL_INTERLEAVE] = "interleave",
2340 [MPOL_LOCAL] = "local"
2341};
2342
2343
2344#ifdef CONFIG_TMPFS
2345/**
2346 * mpol_parse_str - parse string to mempolicy
2347 * @str: string containing mempolicy to parse
2348 * @mpol: pointer to struct mempolicy pointer, returned on success.
2349 * @no_context: flag whether to "contextualize" the mempolicy
2350 *
2351 * Format of input:
2352 * <mode>[=<flags>][:<nodelist>]
2353 *
2354 * if @no_context is true, save the input nodemask in w.user_nodemask in
2355 * the returned mempolicy. This will be used to "clone" the mempolicy in
2356 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2357 * mount option. Note that if 'static' or 'relative' mode flags were
2358 * specified, the input nodemask will already have been saved. Saving
2359 * it again is redundant, but safe.
2360 *
2361 * On success, returns 0, else 1
2362 */
2363int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2364{
2365 struct mempolicy *new = NULL;
2366 unsigned short mode;
2367 unsigned short uninitialized_var(mode_flags);
2368 nodemask_t nodes;
2369 char *nodelist = strchr(str, ':');
2370 char *flags = strchr(str, '=');
2371 int err = 1;
2372
2373 if (nodelist) {
2374 /* NUL-terminate mode or flags string */
2375 *nodelist++ = '\0';
2376 if (nodelist_parse(nodelist, nodes))
2377 goto out;
2378 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2379 goto out;
2380 } else
2381 nodes_clear(nodes);
2382
2383 if (flags)
2384 *flags++ = '\0'; /* terminate mode string */
2385
2386 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2387 if (!strcmp(str, policy_modes[mode])) {
2388 break;
2389 }
2390 }
2391 if (mode > MPOL_LOCAL)
2392 goto out;
2393
2394 switch (mode) {
2395 case MPOL_PREFERRED:
2396 /*
2397 * Insist on a nodelist of one node only
2398 */
2399 if (nodelist) {
2400 char *rest = nodelist;
2401 while (isdigit(*rest))
2402 rest++;
2403 if (*rest)
2404 goto out;
2405 }
2406 break;
2407 case MPOL_INTERLEAVE:
2408 /*
2409 * Default to online nodes with memory if no nodelist
2410 */
2411 if (!nodelist)
2412 nodes = node_states[N_HIGH_MEMORY];
2413 break;
2414 case MPOL_LOCAL:
2415 /*
2416 * Don't allow a nodelist; mpol_new() checks flags
2417 */
2418 if (nodelist)
2419 goto out;
2420 mode = MPOL_PREFERRED;
2421 break;
2422 case MPOL_DEFAULT:
2423 /*
2424 * Insist on a empty nodelist
2425 */
2426 if (!nodelist)
2427 err = 0;
2428 goto out;
2429 case MPOL_BIND:
2430 /*
2431 * Insist on a nodelist
2432 */
2433 if (!nodelist)
2434 goto out;
2435 }
2436
2437 mode_flags = 0;
2438 if (flags) {
2439 /*
2440 * Currently, we only support two mutually exclusive
2441 * mode flags.
2442 */
2443 if (!strcmp(flags, "static"))
2444 mode_flags |= MPOL_F_STATIC_NODES;
2445 else if (!strcmp(flags, "relative"))
2446 mode_flags |= MPOL_F_RELATIVE_NODES;
2447 else
2448 goto out;
2449 }
2450
2451 new = mpol_new(mode, mode_flags, &nodes);
2452 if (IS_ERR(new))
2453 goto out;
2454
2455 if (no_context) {
2456 /* save for contextualization */
2457 new->w.user_nodemask = nodes;
2458 } else {
2459 int ret;
2460 NODEMASK_SCRATCH(scratch);
2461 if (scratch) {
2462 task_lock(current);
2463 ret = mpol_set_nodemask(new, &nodes, scratch);
2464 task_unlock(current);
2465 } else
2466 ret = -ENOMEM;
2467 NODEMASK_SCRATCH_FREE(scratch);
2468 if (ret) {
2469 mpol_put(new);
2470 goto out;
2471 }
2472 }
2473 err = 0;
2474
2475out:
2476 /* Restore string for error message */
2477 if (nodelist)
2478 *--nodelist = ':';
2479 if (flags)
2480 *--flags = '=';
2481 if (!err)
2482 *mpol = new;
2483 return err;
2484}
2485#endif /* CONFIG_TMPFS */
2486
2487/**
2488 * mpol_to_str - format a mempolicy structure for printing
2489 * @buffer: to contain formatted mempolicy string
2490 * @maxlen: length of @buffer
2491 * @pol: pointer to mempolicy to be formatted
2492 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2493 *
2494 * Convert a mempolicy into a string.
2495 * Returns the number of characters in buffer (if positive)
2496 * or an error (negative)
2497 */
2498int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2499{
2500 char *p = buffer;
2501 int l;
2502 nodemask_t nodes;
2503 unsigned short mode;
2504 unsigned short flags = pol ? pol->flags : 0;
2505
2506 /*
2507 * Sanity check: room for longest mode, flag and some nodes
2508 */
2509 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2510
2511 if (!pol || pol == &default_policy)
2512 mode = MPOL_DEFAULT;
2513 else
2514 mode = pol->mode;
2515
2516 switch (mode) {
2517 case MPOL_DEFAULT:
2518 nodes_clear(nodes);
2519 break;
2520
2521 case MPOL_PREFERRED:
2522 nodes_clear(nodes);
2523 if (flags & MPOL_F_LOCAL)
2524 mode = MPOL_LOCAL; /* pseudo-policy */
2525 else
2526 node_set(pol->v.preferred_node, nodes);
2527 break;
2528
2529 case MPOL_BIND:
2530 /* Fall through */
2531 case MPOL_INTERLEAVE:
2532 if (no_context)
2533 nodes = pol->w.user_nodemask;
2534 else
2535 nodes = pol->v.nodes;
2536 break;
2537
2538 default:
2539 BUG();
2540 }
2541
2542 l = strlen(policy_modes[mode]);
2543 if (buffer + maxlen < p + l + 1)
2544 return -ENOSPC;
2545
2546 strcpy(p, policy_modes[mode]);
2547 p += l;
2548
2549 if (flags & MPOL_MODE_FLAGS) {
2550 if (buffer + maxlen < p + 2)
2551 return -ENOSPC;
2552 *p++ = '=';
2553
2554 /*
2555 * Currently, the only defined flags are mutually exclusive
2556 */
2557 if (flags & MPOL_F_STATIC_NODES)
2558 p += snprintf(p, buffer + maxlen - p, "static");
2559 else if (flags & MPOL_F_RELATIVE_NODES)
2560 p += snprintf(p, buffer + maxlen - p, "relative");
2561 }
2562
2563 if (!nodes_empty(nodes)) {
2564 if (buffer + maxlen < p + 2)
2565 return -ENOSPC;
2566 *p++ = ':';
2567 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2568 }
2569 return p - buffer;
2570}