futex: Update futex_wait_setup comments about locking
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / futex.c
... / ...
CommitLineData
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
57#include <linux/signal.h>
58#include <linux/module.h>
59#include <linux/magic.h>
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
63#include <asm/futex.h>
64
65#include "rtmutex_common.h"
66
67int __read_mostly futex_cmpxchg_enabled;
68
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71/*
72 * Futex flags used to encode options to functions and preserve them across
73 * restarts.
74 */
75#define FLAGS_SHARED 0x01
76#define FLAGS_CLOCKRT 0x02
77#define FLAGS_HAS_TIMEOUT 0x04
78
79/*
80 * Priority Inheritance state:
81 */
82struct futex_pi_state {
83 /*
84 * list of 'owned' pi_state instances - these have to be
85 * cleaned up in do_exit() if the task exits prematurely:
86 */
87 struct list_head list;
88
89 /*
90 * The PI object:
91 */
92 struct rt_mutex pi_mutex;
93
94 struct task_struct *owner;
95 atomic_t refcount;
96
97 union futex_key key;
98};
99
100/**
101 * struct futex_q - The hashed futex queue entry, one per waiting task
102 * @list: priority-sorted list of tasks waiting on this futex
103 * @task: the task waiting on the futex
104 * @lock_ptr: the hash bucket lock
105 * @key: the key the futex is hashed on
106 * @pi_state: optional priority inheritance state
107 * @rt_waiter: rt_waiter storage for use with requeue_pi
108 * @requeue_pi_key: the requeue_pi target futex key
109 * @bitset: bitset for the optional bitmasked wakeup
110 *
111 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
112 * we can wake only the relevant ones (hashed queues may be shared).
113 *
114 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
115 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116 * The order of wakeup is always to make the first condition true, then
117 * the second.
118 *
119 * PI futexes are typically woken before they are removed from the hash list via
120 * the rt_mutex code. See unqueue_me_pi().
121 */
122struct futex_q {
123 struct plist_node list;
124
125 struct task_struct *task;
126 spinlock_t *lock_ptr;
127 union futex_key key;
128 struct futex_pi_state *pi_state;
129 struct rt_mutex_waiter *rt_waiter;
130 union futex_key *requeue_pi_key;
131 u32 bitset;
132};
133
134static const struct futex_q futex_q_init = {
135 /* list gets initialized in queue_me()*/
136 .key = FUTEX_KEY_INIT,
137 .bitset = FUTEX_BITSET_MATCH_ANY
138};
139
140/*
141 * Hash buckets are shared by all the futex_keys that hash to the same
142 * location. Each key may have multiple futex_q structures, one for each task
143 * waiting on a futex.
144 */
145struct futex_hash_bucket {
146 spinlock_t lock;
147 struct plist_head chain;
148};
149
150static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
151
152/*
153 * We hash on the keys returned from get_futex_key (see below).
154 */
155static struct futex_hash_bucket *hash_futex(union futex_key *key)
156{
157 u32 hash = jhash2((u32*)&key->both.word,
158 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159 key->both.offset);
160 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
161}
162
163/*
164 * Return 1 if two futex_keys are equal, 0 otherwise.
165 */
166static inline int match_futex(union futex_key *key1, union futex_key *key2)
167{
168 return (key1 && key2
169 && key1->both.word == key2->both.word
170 && key1->both.ptr == key2->both.ptr
171 && key1->both.offset == key2->both.offset);
172}
173
174/*
175 * Take a reference to the resource addressed by a key.
176 * Can be called while holding spinlocks.
177 *
178 */
179static void get_futex_key_refs(union futex_key *key)
180{
181 if (!key->both.ptr)
182 return;
183
184 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185 case FUT_OFF_INODE:
186 ihold(key->shared.inode);
187 break;
188 case FUT_OFF_MMSHARED:
189 atomic_inc(&key->private.mm->mm_count);
190 break;
191 }
192}
193
194/*
195 * Drop a reference to the resource addressed by a key.
196 * The hash bucket spinlock must not be held.
197 */
198static void drop_futex_key_refs(union futex_key *key)
199{
200 if (!key->both.ptr) {
201 /* If we're here then we tried to put a key we failed to get */
202 WARN_ON_ONCE(1);
203 return;
204 }
205
206 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207 case FUT_OFF_INODE:
208 iput(key->shared.inode);
209 break;
210 case FUT_OFF_MMSHARED:
211 mmdrop(key->private.mm);
212 break;
213 }
214}
215
216/**
217 * get_futex_key() - Get parameters which are the keys for a futex
218 * @uaddr: virtual address of the futex
219 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220 * @key: address where result is stored.
221 *
222 * Returns a negative error code or 0
223 * The key words are stored in *key on success.
224 *
225 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
226 * offset_within_page). For private mappings, it's (uaddr, current->mm).
227 * We can usually work out the index without swapping in the page.
228 *
229 * lock_page() might sleep, the caller should not hold a spinlock.
230 */
231static int
232get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
233{
234 unsigned long address = (unsigned long)uaddr;
235 struct mm_struct *mm = current->mm;
236 struct page *page, *page_head;
237 int err;
238
239 /*
240 * The futex address must be "naturally" aligned.
241 */
242 key->both.offset = address % PAGE_SIZE;
243 if (unlikely((address % sizeof(u32)) != 0))
244 return -EINVAL;
245 address -= key->both.offset;
246
247 /*
248 * PROCESS_PRIVATE futexes are fast.
249 * As the mm cannot disappear under us and the 'key' only needs
250 * virtual address, we dont even have to find the underlying vma.
251 * Note : We do have to check 'uaddr' is a valid user address,
252 * but access_ok() should be faster than find_vma()
253 */
254 if (!fshared) {
255 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
256 return -EFAULT;
257 key->private.mm = mm;
258 key->private.address = address;
259 get_futex_key_refs(key);
260 return 0;
261 }
262
263again:
264 err = get_user_pages_fast(address, 1, 1, &page);
265 if (err < 0)
266 return err;
267
268#ifdef CONFIG_TRANSPARENT_HUGEPAGE
269 page_head = page;
270 if (unlikely(PageTail(page))) {
271 put_page(page);
272 /* serialize against __split_huge_page_splitting() */
273 local_irq_disable();
274 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
275 page_head = compound_head(page);
276 /*
277 * page_head is valid pointer but we must pin
278 * it before taking the PG_lock and/or
279 * PG_compound_lock. The moment we re-enable
280 * irqs __split_huge_page_splitting() can
281 * return and the head page can be freed from
282 * under us. We can't take the PG_lock and/or
283 * PG_compound_lock on a page that could be
284 * freed from under us.
285 */
286 if (page != page_head) {
287 get_page(page_head);
288 put_page(page);
289 }
290 local_irq_enable();
291 } else {
292 local_irq_enable();
293 goto again;
294 }
295 }
296#else
297 page_head = compound_head(page);
298 if (page != page_head) {
299 get_page(page_head);
300 put_page(page);
301 }
302#endif
303
304 lock_page(page_head);
305 if (!page_head->mapping) {
306 unlock_page(page_head);
307 put_page(page_head);
308 goto again;
309 }
310
311 /*
312 * Private mappings are handled in a simple way.
313 *
314 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
315 * it's a read-only handle, it's expected that futexes attach to
316 * the object not the particular process.
317 */
318 if (PageAnon(page_head)) {
319 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
320 key->private.mm = mm;
321 key->private.address = address;
322 } else {
323 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
324 key->shared.inode = page_head->mapping->host;
325 key->shared.pgoff = page_head->index;
326 }
327
328 get_futex_key_refs(key);
329
330 unlock_page(page_head);
331 put_page(page_head);
332 return 0;
333}
334
335static inline void put_futex_key(union futex_key *key)
336{
337 drop_futex_key_refs(key);
338}
339
340/**
341 * fault_in_user_writeable() - Fault in user address and verify RW access
342 * @uaddr: pointer to faulting user space address
343 *
344 * Slow path to fixup the fault we just took in the atomic write
345 * access to @uaddr.
346 *
347 * We have no generic implementation of a non-destructive write to the
348 * user address. We know that we faulted in the atomic pagefault
349 * disabled section so we can as well avoid the #PF overhead by
350 * calling get_user_pages() right away.
351 */
352static int fault_in_user_writeable(u32 __user *uaddr)
353{
354 struct mm_struct *mm = current->mm;
355 int ret;
356
357 down_read(&mm->mmap_sem);
358 ret = get_user_pages(current, mm, (unsigned long)uaddr,
359 1, 1, 0, NULL, NULL);
360 up_read(&mm->mmap_sem);
361
362 return ret < 0 ? ret : 0;
363}
364
365/**
366 * futex_top_waiter() - Return the highest priority waiter on a futex
367 * @hb: the hash bucket the futex_q's reside in
368 * @key: the futex key (to distinguish it from other futex futex_q's)
369 *
370 * Must be called with the hb lock held.
371 */
372static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
373 union futex_key *key)
374{
375 struct futex_q *this;
376
377 plist_for_each_entry(this, &hb->chain, list) {
378 if (match_futex(&this->key, key))
379 return this;
380 }
381 return NULL;
382}
383
384static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
385{
386 u32 curval;
387
388 pagefault_disable();
389 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
390 pagefault_enable();
391
392 return curval;
393}
394
395static int get_futex_value_locked(u32 *dest, u32 __user *from)
396{
397 int ret;
398
399 pagefault_disable();
400 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
401 pagefault_enable();
402
403 return ret ? -EFAULT : 0;
404}
405
406
407/*
408 * PI code:
409 */
410static int refill_pi_state_cache(void)
411{
412 struct futex_pi_state *pi_state;
413
414 if (likely(current->pi_state_cache))
415 return 0;
416
417 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
418
419 if (!pi_state)
420 return -ENOMEM;
421
422 INIT_LIST_HEAD(&pi_state->list);
423 /* pi_mutex gets initialized later */
424 pi_state->owner = NULL;
425 atomic_set(&pi_state->refcount, 1);
426 pi_state->key = FUTEX_KEY_INIT;
427
428 current->pi_state_cache = pi_state;
429
430 return 0;
431}
432
433static struct futex_pi_state * alloc_pi_state(void)
434{
435 struct futex_pi_state *pi_state = current->pi_state_cache;
436
437 WARN_ON(!pi_state);
438 current->pi_state_cache = NULL;
439
440 return pi_state;
441}
442
443static void free_pi_state(struct futex_pi_state *pi_state)
444{
445 if (!atomic_dec_and_test(&pi_state->refcount))
446 return;
447
448 /*
449 * If pi_state->owner is NULL, the owner is most probably dying
450 * and has cleaned up the pi_state already
451 */
452 if (pi_state->owner) {
453 raw_spin_lock_irq(&pi_state->owner->pi_lock);
454 list_del_init(&pi_state->list);
455 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
456
457 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
458 }
459
460 if (current->pi_state_cache)
461 kfree(pi_state);
462 else {
463 /*
464 * pi_state->list is already empty.
465 * clear pi_state->owner.
466 * refcount is at 0 - put it back to 1.
467 */
468 pi_state->owner = NULL;
469 atomic_set(&pi_state->refcount, 1);
470 current->pi_state_cache = pi_state;
471 }
472}
473
474/*
475 * Look up the task based on what TID userspace gave us.
476 * We dont trust it.
477 */
478static struct task_struct * futex_find_get_task(pid_t pid)
479{
480 struct task_struct *p;
481
482 rcu_read_lock();
483 p = find_task_by_vpid(pid);
484 if (p)
485 get_task_struct(p);
486
487 rcu_read_unlock();
488
489 return p;
490}
491
492/*
493 * This task is holding PI mutexes at exit time => bad.
494 * Kernel cleans up PI-state, but userspace is likely hosed.
495 * (Robust-futex cleanup is separate and might save the day for userspace.)
496 */
497void exit_pi_state_list(struct task_struct *curr)
498{
499 struct list_head *next, *head = &curr->pi_state_list;
500 struct futex_pi_state *pi_state;
501 struct futex_hash_bucket *hb;
502 union futex_key key = FUTEX_KEY_INIT;
503
504 if (!futex_cmpxchg_enabled)
505 return;
506 /*
507 * We are a ZOMBIE and nobody can enqueue itself on
508 * pi_state_list anymore, but we have to be careful
509 * versus waiters unqueueing themselves:
510 */
511 raw_spin_lock_irq(&curr->pi_lock);
512 while (!list_empty(head)) {
513
514 next = head->next;
515 pi_state = list_entry(next, struct futex_pi_state, list);
516 key = pi_state->key;
517 hb = hash_futex(&key);
518 raw_spin_unlock_irq(&curr->pi_lock);
519
520 spin_lock(&hb->lock);
521
522 raw_spin_lock_irq(&curr->pi_lock);
523 /*
524 * We dropped the pi-lock, so re-check whether this
525 * task still owns the PI-state:
526 */
527 if (head->next != next) {
528 spin_unlock(&hb->lock);
529 continue;
530 }
531
532 WARN_ON(pi_state->owner != curr);
533 WARN_ON(list_empty(&pi_state->list));
534 list_del_init(&pi_state->list);
535 pi_state->owner = NULL;
536 raw_spin_unlock_irq(&curr->pi_lock);
537
538 rt_mutex_unlock(&pi_state->pi_mutex);
539
540 spin_unlock(&hb->lock);
541
542 raw_spin_lock_irq(&curr->pi_lock);
543 }
544 raw_spin_unlock_irq(&curr->pi_lock);
545}
546
547static int
548lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
549 union futex_key *key, struct futex_pi_state **ps)
550{
551 struct futex_pi_state *pi_state = NULL;
552 struct futex_q *this, *next;
553 struct plist_head *head;
554 struct task_struct *p;
555 pid_t pid = uval & FUTEX_TID_MASK;
556
557 head = &hb->chain;
558
559 plist_for_each_entry_safe(this, next, head, list) {
560 if (match_futex(&this->key, key)) {
561 /*
562 * Another waiter already exists - bump up
563 * the refcount and return its pi_state:
564 */
565 pi_state = this->pi_state;
566 /*
567 * Userspace might have messed up non-PI and PI futexes
568 */
569 if (unlikely(!pi_state))
570 return -EINVAL;
571
572 WARN_ON(!atomic_read(&pi_state->refcount));
573
574 /*
575 * When pi_state->owner is NULL then the owner died
576 * and another waiter is on the fly. pi_state->owner
577 * is fixed up by the task which acquires
578 * pi_state->rt_mutex.
579 *
580 * We do not check for pid == 0 which can happen when
581 * the owner died and robust_list_exit() cleared the
582 * TID.
583 */
584 if (pid && pi_state->owner) {
585 /*
586 * Bail out if user space manipulated the
587 * futex value.
588 */
589 if (pid != task_pid_vnr(pi_state->owner))
590 return -EINVAL;
591 }
592
593 atomic_inc(&pi_state->refcount);
594 *ps = pi_state;
595
596 return 0;
597 }
598 }
599
600 /*
601 * We are the first waiter - try to look up the real owner and attach
602 * the new pi_state to it, but bail out when TID = 0
603 */
604 if (!pid)
605 return -ESRCH;
606 p = futex_find_get_task(pid);
607 if (!p)
608 return -ESRCH;
609
610 /*
611 * We need to look at the task state flags to figure out,
612 * whether the task is exiting. To protect against the do_exit
613 * change of the task flags, we do this protected by
614 * p->pi_lock:
615 */
616 raw_spin_lock_irq(&p->pi_lock);
617 if (unlikely(p->flags & PF_EXITING)) {
618 /*
619 * The task is on the way out. When PF_EXITPIDONE is
620 * set, we know that the task has finished the
621 * cleanup:
622 */
623 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
624
625 raw_spin_unlock_irq(&p->pi_lock);
626 put_task_struct(p);
627 return ret;
628 }
629
630 pi_state = alloc_pi_state();
631
632 /*
633 * Initialize the pi_mutex in locked state and make 'p'
634 * the owner of it:
635 */
636 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
637
638 /* Store the key for possible exit cleanups: */
639 pi_state->key = *key;
640
641 WARN_ON(!list_empty(&pi_state->list));
642 list_add(&pi_state->list, &p->pi_state_list);
643 pi_state->owner = p;
644 raw_spin_unlock_irq(&p->pi_lock);
645
646 put_task_struct(p);
647
648 *ps = pi_state;
649
650 return 0;
651}
652
653/**
654 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
655 * @uaddr: the pi futex user address
656 * @hb: the pi futex hash bucket
657 * @key: the futex key associated with uaddr and hb
658 * @ps: the pi_state pointer where we store the result of the
659 * lookup
660 * @task: the task to perform the atomic lock work for. This will
661 * be "current" except in the case of requeue pi.
662 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
663 *
664 * Returns:
665 * 0 - ready to wait
666 * 1 - acquired the lock
667 * <0 - error
668 *
669 * The hb->lock and futex_key refs shall be held by the caller.
670 */
671static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
672 union futex_key *key,
673 struct futex_pi_state **ps,
674 struct task_struct *task, int set_waiters)
675{
676 int lock_taken, ret, ownerdied = 0;
677 u32 uval, newval, curval;
678
679retry:
680 ret = lock_taken = 0;
681
682 /*
683 * To avoid races, we attempt to take the lock here again
684 * (by doing a 0 -> TID atomic cmpxchg), while holding all
685 * the locks. It will most likely not succeed.
686 */
687 newval = task_pid_vnr(task);
688 if (set_waiters)
689 newval |= FUTEX_WAITERS;
690
691 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
692
693 if (unlikely(curval == -EFAULT))
694 return -EFAULT;
695
696 /*
697 * Detect deadlocks.
698 */
699 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
700 return -EDEADLK;
701
702 /*
703 * Surprise - we got the lock. Just return to userspace:
704 */
705 if (unlikely(!curval))
706 return 1;
707
708 uval = curval;
709
710 /*
711 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
712 * to wake at the next unlock.
713 */
714 newval = curval | FUTEX_WAITERS;
715
716 /*
717 * There are two cases, where a futex might have no owner (the
718 * owner TID is 0): OWNER_DIED. We take over the futex in this
719 * case. We also do an unconditional take over, when the owner
720 * of the futex died.
721 *
722 * This is safe as we are protected by the hash bucket lock !
723 */
724 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
725 /* Keep the OWNER_DIED bit */
726 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
727 ownerdied = 0;
728 lock_taken = 1;
729 }
730
731 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
732
733 if (unlikely(curval == -EFAULT))
734 return -EFAULT;
735 if (unlikely(curval != uval))
736 goto retry;
737
738 /*
739 * We took the lock due to owner died take over.
740 */
741 if (unlikely(lock_taken))
742 return 1;
743
744 /*
745 * We dont have the lock. Look up the PI state (or create it if
746 * we are the first waiter):
747 */
748 ret = lookup_pi_state(uval, hb, key, ps);
749
750 if (unlikely(ret)) {
751 switch (ret) {
752 case -ESRCH:
753 /*
754 * No owner found for this futex. Check if the
755 * OWNER_DIED bit is set to figure out whether
756 * this is a robust futex or not.
757 */
758 if (get_futex_value_locked(&curval, uaddr))
759 return -EFAULT;
760
761 /*
762 * We simply start over in case of a robust
763 * futex. The code above will take the futex
764 * and return happy.
765 */
766 if (curval & FUTEX_OWNER_DIED) {
767 ownerdied = 1;
768 goto retry;
769 }
770 default:
771 break;
772 }
773 }
774
775 return ret;
776}
777
778/*
779 * The hash bucket lock must be held when this is called.
780 * Afterwards, the futex_q must not be accessed.
781 */
782static void wake_futex(struct futex_q *q)
783{
784 struct task_struct *p = q->task;
785
786 /*
787 * We set q->lock_ptr = NULL _before_ we wake up the task. If
788 * a non-futex wake up happens on another CPU then the task
789 * might exit and p would dereference a non-existing task
790 * struct. Prevent this by holding a reference on p across the
791 * wake up.
792 */
793 get_task_struct(p);
794
795 plist_del(&q->list, &q->list.plist);
796 /*
797 * The waiting task can free the futex_q as soon as
798 * q->lock_ptr = NULL is written, without taking any locks. A
799 * memory barrier is required here to prevent the following
800 * store to lock_ptr from getting ahead of the plist_del.
801 */
802 smp_wmb();
803 q->lock_ptr = NULL;
804
805 wake_up_state(p, TASK_NORMAL);
806 put_task_struct(p);
807}
808
809static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
810{
811 struct task_struct *new_owner;
812 struct futex_pi_state *pi_state = this->pi_state;
813 u32 curval, newval;
814
815 if (!pi_state)
816 return -EINVAL;
817
818 /*
819 * If current does not own the pi_state then the futex is
820 * inconsistent and user space fiddled with the futex value.
821 */
822 if (pi_state->owner != current)
823 return -EINVAL;
824
825 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
826 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
827
828 /*
829 * It is possible that the next waiter (the one that brought
830 * this owner to the kernel) timed out and is no longer
831 * waiting on the lock.
832 */
833 if (!new_owner)
834 new_owner = this->task;
835
836 /*
837 * We pass it to the next owner. (The WAITERS bit is always
838 * kept enabled while there is PI state around. We must also
839 * preserve the owner died bit.)
840 */
841 if (!(uval & FUTEX_OWNER_DIED)) {
842 int ret = 0;
843
844 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
845
846 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
847
848 if (curval == -EFAULT)
849 ret = -EFAULT;
850 else if (curval != uval)
851 ret = -EINVAL;
852 if (ret) {
853 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
854 return ret;
855 }
856 }
857
858 raw_spin_lock_irq(&pi_state->owner->pi_lock);
859 WARN_ON(list_empty(&pi_state->list));
860 list_del_init(&pi_state->list);
861 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
862
863 raw_spin_lock_irq(&new_owner->pi_lock);
864 WARN_ON(!list_empty(&pi_state->list));
865 list_add(&pi_state->list, &new_owner->pi_state_list);
866 pi_state->owner = new_owner;
867 raw_spin_unlock_irq(&new_owner->pi_lock);
868
869 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
870 rt_mutex_unlock(&pi_state->pi_mutex);
871
872 return 0;
873}
874
875static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
876{
877 u32 oldval;
878
879 /*
880 * There is no waiter, so we unlock the futex. The owner died
881 * bit has not to be preserved here. We are the owner:
882 */
883 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
884
885 if (oldval == -EFAULT)
886 return oldval;
887 if (oldval != uval)
888 return -EAGAIN;
889
890 return 0;
891}
892
893/*
894 * Express the locking dependencies for lockdep:
895 */
896static inline void
897double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
898{
899 if (hb1 <= hb2) {
900 spin_lock(&hb1->lock);
901 if (hb1 < hb2)
902 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
903 } else { /* hb1 > hb2 */
904 spin_lock(&hb2->lock);
905 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
906 }
907}
908
909static inline void
910double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
911{
912 spin_unlock(&hb1->lock);
913 if (hb1 != hb2)
914 spin_unlock(&hb2->lock);
915}
916
917/*
918 * Wake up waiters matching bitset queued on this futex (uaddr).
919 */
920static int
921futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
922{
923 struct futex_hash_bucket *hb;
924 struct futex_q *this, *next;
925 struct plist_head *head;
926 union futex_key key = FUTEX_KEY_INIT;
927 int ret;
928
929 if (!bitset)
930 return -EINVAL;
931
932 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
933 if (unlikely(ret != 0))
934 goto out;
935
936 hb = hash_futex(&key);
937 spin_lock(&hb->lock);
938 head = &hb->chain;
939
940 plist_for_each_entry_safe(this, next, head, list) {
941 if (match_futex (&this->key, &key)) {
942 if (this->pi_state || this->rt_waiter) {
943 ret = -EINVAL;
944 break;
945 }
946
947 /* Check if one of the bits is set in both bitsets */
948 if (!(this->bitset & bitset))
949 continue;
950
951 wake_futex(this);
952 if (++ret >= nr_wake)
953 break;
954 }
955 }
956
957 spin_unlock(&hb->lock);
958 put_futex_key(&key);
959out:
960 return ret;
961}
962
963/*
964 * Wake up all waiters hashed on the physical page that is mapped
965 * to this virtual address:
966 */
967static int
968futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
969 int nr_wake, int nr_wake2, int op)
970{
971 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
972 struct futex_hash_bucket *hb1, *hb2;
973 struct plist_head *head;
974 struct futex_q *this, *next;
975 int ret, op_ret;
976
977retry:
978 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
979 if (unlikely(ret != 0))
980 goto out;
981 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
982 if (unlikely(ret != 0))
983 goto out_put_key1;
984
985 hb1 = hash_futex(&key1);
986 hb2 = hash_futex(&key2);
987
988retry_private:
989 double_lock_hb(hb1, hb2);
990 op_ret = futex_atomic_op_inuser(op, uaddr2);
991 if (unlikely(op_ret < 0)) {
992
993 double_unlock_hb(hb1, hb2);
994
995#ifndef CONFIG_MMU
996 /*
997 * we don't get EFAULT from MMU faults if we don't have an MMU,
998 * but we might get them from range checking
999 */
1000 ret = op_ret;
1001 goto out_put_keys;
1002#endif
1003
1004 if (unlikely(op_ret != -EFAULT)) {
1005 ret = op_ret;
1006 goto out_put_keys;
1007 }
1008
1009 ret = fault_in_user_writeable(uaddr2);
1010 if (ret)
1011 goto out_put_keys;
1012
1013 if (!(flags & FLAGS_SHARED))
1014 goto retry_private;
1015
1016 put_futex_key(&key2);
1017 put_futex_key(&key1);
1018 goto retry;
1019 }
1020
1021 head = &hb1->chain;
1022
1023 plist_for_each_entry_safe(this, next, head, list) {
1024 if (match_futex (&this->key, &key1)) {
1025 wake_futex(this);
1026 if (++ret >= nr_wake)
1027 break;
1028 }
1029 }
1030
1031 if (op_ret > 0) {
1032 head = &hb2->chain;
1033
1034 op_ret = 0;
1035 plist_for_each_entry_safe(this, next, head, list) {
1036 if (match_futex (&this->key, &key2)) {
1037 wake_futex(this);
1038 if (++op_ret >= nr_wake2)
1039 break;
1040 }
1041 }
1042 ret += op_ret;
1043 }
1044
1045 double_unlock_hb(hb1, hb2);
1046out_put_keys:
1047 put_futex_key(&key2);
1048out_put_key1:
1049 put_futex_key(&key1);
1050out:
1051 return ret;
1052}
1053
1054/**
1055 * requeue_futex() - Requeue a futex_q from one hb to another
1056 * @q: the futex_q to requeue
1057 * @hb1: the source hash_bucket
1058 * @hb2: the target hash_bucket
1059 * @key2: the new key for the requeued futex_q
1060 */
1061static inline
1062void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1063 struct futex_hash_bucket *hb2, union futex_key *key2)
1064{
1065
1066 /*
1067 * If key1 and key2 hash to the same bucket, no need to
1068 * requeue.
1069 */
1070 if (likely(&hb1->chain != &hb2->chain)) {
1071 plist_del(&q->list, &hb1->chain);
1072 plist_add(&q->list, &hb2->chain);
1073 q->lock_ptr = &hb2->lock;
1074#ifdef CONFIG_DEBUG_PI_LIST
1075 q->list.plist.spinlock = &hb2->lock;
1076#endif
1077 }
1078 get_futex_key_refs(key2);
1079 q->key = *key2;
1080}
1081
1082/**
1083 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1084 * @q: the futex_q
1085 * @key: the key of the requeue target futex
1086 * @hb: the hash_bucket of the requeue target futex
1087 *
1088 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1089 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1090 * to the requeue target futex so the waiter can detect the wakeup on the right
1091 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1092 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1093 * to protect access to the pi_state to fixup the owner later. Must be called
1094 * with both q->lock_ptr and hb->lock held.
1095 */
1096static inline
1097void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1098 struct futex_hash_bucket *hb)
1099{
1100 get_futex_key_refs(key);
1101 q->key = *key;
1102
1103 WARN_ON(plist_node_empty(&q->list));
1104 plist_del(&q->list, &q->list.plist);
1105
1106 WARN_ON(!q->rt_waiter);
1107 q->rt_waiter = NULL;
1108
1109 q->lock_ptr = &hb->lock;
1110#ifdef CONFIG_DEBUG_PI_LIST
1111 q->list.plist.spinlock = &hb->lock;
1112#endif
1113
1114 wake_up_state(q->task, TASK_NORMAL);
1115}
1116
1117/**
1118 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1119 * @pifutex: the user address of the to futex
1120 * @hb1: the from futex hash bucket, must be locked by the caller
1121 * @hb2: the to futex hash bucket, must be locked by the caller
1122 * @key1: the from futex key
1123 * @key2: the to futex key
1124 * @ps: address to store the pi_state pointer
1125 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1126 *
1127 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1128 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1129 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1130 * hb1 and hb2 must be held by the caller.
1131 *
1132 * Returns:
1133 * 0 - failed to acquire the lock atomicly
1134 * 1 - acquired the lock
1135 * <0 - error
1136 */
1137static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1138 struct futex_hash_bucket *hb1,
1139 struct futex_hash_bucket *hb2,
1140 union futex_key *key1, union futex_key *key2,
1141 struct futex_pi_state **ps, int set_waiters)
1142{
1143 struct futex_q *top_waiter = NULL;
1144 u32 curval;
1145 int ret;
1146
1147 if (get_futex_value_locked(&curval, pifutex))
1148 return -EFAULT;
1149
1150 /*
1151 * Find the top_waiter and determine if there are additional waiters.
1152 * If the caller intends to requeue more than 1 waiter to pifutex,
1153 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1154 * as we have means to handle the possible fault. If not, don't set
1155 * the bit unecessarily as it will force the subsequent unlock to enter
1156 * the kernel.
1157 */
1158 top_waiter = futex_top_waiter(hb1, key1);
1159
1160 /* There are no waiters, nothing for us to do. */
1161 if (!top_waiter)
1162 return 0;
1163
1164 /* Ensure we requeue to the expected futex. */
1165 if (!match_futex(top_waiter->requeue_pi_key, key2))
1166 return -EINVAL;
1167
1168 /*
1169 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1170 * the contended case or if set_waiters is 1. The pi_state is returned
1171 * in ps in contended cases.
1172 */
1173 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1174 set_waiters);
1175 if (ret == 1)
1176 requeue_pi_wake_futex(top_waiter, key2, hb2);
1177
1178 return ret;
1179}
1180
1181/**
1182 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1183 * @uaddr1: source futex user address
1184 * @flags: futex flags (FLAGS_SHARED, etc.)
1185 * @uaddr2: target futex user address
1186 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1187 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1188 * @cmpval: @uaddr1 expected value (or %NULL)
1189 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1190 * pi futex (pi to pi requeue is not supported)
1191 *
1192 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1193 * uaddr2 atomically on behalf of the top waiter.
1194 *
1195 * Returns:
1196 * >=0 - on success, the number of tasks requeued or woken
1197 * <0 - on error
1198 */
1199static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1200 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1201 u32 *cmpval, int requeue_pi)
1202{
1203 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1204 int drop_count = 0, task_count = 0, ret;
1205 struct futex_pi_state *pi_state = NULL;
1206 struct futex_hash_bucket *hb1, *hb2;
1207 struct plist_head *head1;
1208 struct futex_q *this, *next;
1209 u32 curval2;
1210
1211 if (requeue_pi) {
1212 /*
1213 * requeue_pi requires a pi_state, try to allocate it now
1214 * without any locks in case it fails.
1215 */
1216 if (refill_pi_state_cache())
1217 return -ENOMEM;
1218 /*
1219 * requeue_pi must wake as many tasks as it can, up to nr_wake
1220 * + nr_requeue, since it acquires the rt_mutex prior to
1221 * returning to userspace, so as to not leave the rt_mutex with
1222 * waiters and no owner. However, second and third wake-ups
1223 * cannot be predicted as they involve race conditions with the
1224 * first wake and a fault while looking up the pi_state. Both
1225 * pthread_cond_signal() and pthread_cond_broadcast() should
1226 * use nr_wake=1.
1227 */
1228 if (nr_wake != 1)
1229 return -EINVAL;
1230 }
1231
1232retry:
1233 if (pi_state != NULL) {
1234 /*
1235 * We will have to lookup the pi_state again, so free this one
1236 * to keep the accounting correct.
1237 */
1238 free_pi_state(pi_state);
1239 pi_state = NULL;
1240 }
1241
1242 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
1243 if (unlikely(ret != 0))
1244 goto out;
1245 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
1246 if (unlikely(ret != 0))
1247 goto out_put_key1;
1248
1249 hb1 = hash_futex(&key1);
1250 hb2 = hash_futex(&key2);
1251
1252retry_private:
1253 double_lock_hb(hb1, hb2);
1254
1255 if (likely(cmpval != NULL)) {
1256 u32 curval;
1257
1258 ret = get_futex_value_locked(&curval, uaddr1);
1259
1260 if (unlikely(ret)) {
1261 double_unlock_hb(hb1, hb2);
1262
1263 ret = get_user(curval, uaddr1);
1264 if (ret)
1265 goto out_put_keys;
1266
1267 if (!(flags & FLAGS_SHARED))
1268 goto retry_private;
1269
1270 put_futex_key(&key2);
1271 put_futex_key(&key1);
1272 goto retry;
1273 }
1274 if (curval != *cmpval) {
1275 ret = -EAGAIN;
1276 goto out_unlock;
1277 }
1278 }
1279
1280 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1281 /*
1282 * Attempt to acquire uaddr2 and wake the top waiter. If we
1283 * intend to requeue waiters, force setting the FUTEX_WAITERS
1284 * bit. We force this here where we are able to easily handle
1285 * faults rather in the requeue loop below.
1286 */
1287 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1288 &key2, &pi_state, nr_requeue);
1289
1290 /*
1291 * At this point the top_waiter has either taken uaddr2 or is
1292 * waiting on it. If the former, then the pi_state will not
1293 * exist yet, look it up one more time to ensure we have a
1294 * reference to it.
1295 */
1296 if (ret == 1) {
1297 WARN_ON(pi_state);
1298 drop_count++;
1299 task_count++;
1300 ret = get_futex_value_locked(&curval2, uaddr2);
1301 if (!ret)
1302 ret = lookup_pi_state(curval2, hb2, &key2,
1303 &pi_state);
1304 }
1305
1306 switch (ret) {
1307 case 0:
1308 break;
1309 case -EFAULT:
1310 double_unlock_hb(hb1, hb2);
1311 put_futex_key(&key2);
1312 put_futex_key(&key1);
1313 ret = fault_in_user_writeable(uaddr2);
1314 if (!ret)
1315 goto retry;
1316 goto out;
1317 case -EAGAIN:
1318 /* The owner was exiting, try again. */
1319 double_unlock_hb(hb1, hb2);
1320 put_futex_key(&key2);
1321 put_futex_key(&key1);
1322 cond_resched();
1323 goto retry;
1324 default:
1325 goto out_unlock;
1326 }
1327 }
1328
1329 head1 = &hb1->chain;
1330 plist_for_each_entry_safe(this, next, head1, list) {
1331 if (task_count - nr_wake >= nr_requeue)
1332 break;
1333
1334 if (!match_futex(&this->key, &key1))
1335 continue;
1336
1337 /*
1338 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1339 * be paired with each other and no other futex ops.
1340 */
1341 if ((requeue_pi && !this->rt_waiter) ||
1342 (!requeue_pi && this->rt_waiter)) {
1343 ret = -EINVAL;
1344 break;
1345 }
1346
1347 /*
1348 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1349 * lock, we already woke the top_waiter. If not, it will be
1350 * woken by futex_unlock_pi().
1351 */
1352 if (++task_count <= nr_wake && !requeue_pi) {
1353 wake_futex(this);
1354 continue;
1355 }
1356
1357 /* Ensure we requeue to the expected futex for requeue_pi. */
1358 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1359 ret = -EINVAL;
1360 break;
1361 }
1362
1363 /*
1364 * Requeue nr_requeue waiters and possibly one more in the case
1365 * of requeue_pi if we couldn't acquire the lock atomically.
1366 */
1367 if (requeue_pi) {
1368 /* Prepare the waiter to take the rt_mutex. */
1369 atomic_inc(&pi_state->refcount);
1370 this->pi_state = pi_state;
1371 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1372 this->rt_waiter,
1373 this->task, 1);
1374 if (ret == 1) {
1375 /* We got the lock. */
1376 requeue_pi_wake_futex(this, &key2, hb2);
1377 drop_count++;
1378 continue;
1379 } else if (ret) {
1380 /* -EDEADLK */
1381 this->pi_state = NULL;
1382 free_pi_state(pi_state);
1383 goto out_unlock;
1384 }
1385 }
1386 requeue_futex(this, hb1, hb2, &key2);
1387 drop_count++;
1388 }
1389
1390out_unlock:
1391 double_unlock_hb(hb1, hb2);
1392
1393 /*
1394 * drop_futex_key_refs() must be called outside the spinlocks. During
1395 * the requeue we moved futex_q's from the hash bucket at key1 to the
1396 * one at key2 and updated their key pointer. We no longer need to
1397 * hold the references to key1.
1398 */
1399 while (--drop_count >= 0)
1400 drop_futex_key_refs(&key1);
1401
1402out_put_keys:
1403 put_futex_key(&key2);
1404out_put_key1:
1405 put_futex_key(&key1);
1406out:
1407 if (pi_state != NULL)
1408 free_pi_state(pi_state);
1409 return ret ? ret : task_count;
1410}
1411
1412/* The key must be already stored in q->key. */
1413static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1414 __acquires(&hb->lock)
1415{
1416 struct futex_hash_bucket *hb;
1417
1418 hb = hash_futex(&q->key);
1419 q->lock_ptr = &hb->lock;
1420
1421 spin_lock(&hb->lock);
1422 return hb;
1423}
1424
1425static inline void
1426queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1427 __releases(&hb->lock)
1428{
1429 spin_unlock(&hb->lock);
1430}
1431
1432/**
1433 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1434 * @q: The futex_q to enqueue
1435 * @hb: The destination hash bucket
1436 *
1437 * The hb->lock must be held by the caller, and is released here. A call to
1438 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1439 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1440 * or nothing if the unqueue is done as part of the wake process and the unqueue
1441 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1442 * an example).
1443 */
1444static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1445 __releases(&hb->lock)
1446{
1447 int prio;
1448
1449 /*
1450 * The priority used to register this element is
1451 * - either the real thread-priority for the real-time threads
1452 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1453 * - or MAX_RT_PRIO for non-RT threads.
1454 * Thus, all RT-threads are woken first in priority order, and
1455 * the others are woken last, in FIFO order.
1456 */
1457 prio = min(current->normal_prio, MAX_RT_PRIO);
1458
1459 plist_node_init(&q->list, prio);
1460#ifdef CONFIG_DEBUG_PI_LIST
1461 q->list.plist.spinlock = &hb->lock;
1462#endif
1463 plist_add(&q->list, &hb->chain);
1464 q->task = current;
1465 spin_unlock(&hb->lock);
1466}
1467
1468/**
1469 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1470 * @q: The futex_q to unqueue
1471 *
1472 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1473 * be paired with exactly one earlier call to queue_me().
1474 *
1475 * Returns:
1476 * 1 - if the futex_q was still queued (and we removed unqueued it)
1477 * 0 - if the futex_q was already removed by the waking thread
1478 */
1479static int unqueue_me(struct futex_q *q)
1480{
1481 spinlock_t *lock_ptr;
1482 int ret = 0;
1483
1484 /* In the common case we don't take the spinlock, which is nice. */
1485retry:
1486 lock_ptr = q->lock_ptr;
1487 barrier();
1488 if (lock_ptr != NULL) {
1489 spin_lock(lock_ptr);
1490 /*
1491 * q->lock_ptr can change between reading it and
1492 * spin_lock(), causing us to take the wrong lock. This
1493 * corrects the race condition.
1494 *
1495 * Reasoning goes like this: if we have the wrong lock,
1496 * q->lock_ptr must have changed (maybe several times)
1497 * between reading it and the spin_lock(). It can
1498 * change again after the spin_lock() but only if it was
1499 * already changed before the spin_lock(). It cannot,
1500 * however, change back to the original value. Therefore
1501 * we can detect whether we acquired the correct lock.
1502 */
1503 if (unlikely(lock_ptr != q->lock_ptr)) {
1504 spin_unlock(lock_ptr);
1505 goto retry;
1506 }
1507 WARN_ON(plist_node_empty(&q->list));
1508 plist_del(&q->list, &q->list.plist);
1509
1510 BUG_ON(q->pi_state);
1511
1512 spin_unlock(lock_ptr);
1513 ret = 1;
1514 }
1515
1516 drop_futex_key_refs(&q->key);
1517 return ret;
1518}
1519
1520/*
1521 * PI futexes can not be requeued and must remove themself from the
1522 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1523 * and dropped here.
1524 */
1525static void unqueue_me_pi(struct futex_q *q)
1526 __releases(q->lock_ptr)
1527{
1528 WARN_ON(plist_node_empty(&q->list));
1529 plist_del(&q->list, &q->list.plist);
1530
1531 BUG_ON(!q->pi_state);
1532 free_pi_state(q->pi_state);
1533 q->pi_state = NULL;
1534
1535 spin_unlock(q->lock_ptr);
1536}
1537
1538/*
1539 * Fixup the pi_state owner with the new owner.
1540 *
1541 * Must be called with hash bucket lock held and mm->sem held for non
1542 * private futexes.
1543 */
1544static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1545 struct task_struct *newowner)
1546{
1547 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1548 struct futex_pi_state *pi_state = q->pi_state;
1549 struct task_struct *oldowner = pi_state->owner;
1550 u32 uval, curval, newval;
1551 int ret;
1552
1553 /* Owner died? */
1554 if (!pi_state->owner)
1555 newtid |= FUTEX_OWNER_DIED;
1556
1557 /*
1558 * We are here either because we stole the rtmutex from the
1559 * pending owner or we are the pending owner which failed to
1560 * get the rtmutex. We have to replace the pending owner TID
1561 * in the user space variable. This must be atomic as we have
1562 * to preserve the owner died bit here.
1563 *
1564 * Note: We write the user space value _before_ changing the pi_state
1565 * because we can fault here. Imagine swapped out pages or a fork
1566 * that marked all the anonymous memory readonly for cow.
1567 *
1568 * Modifying pi_state _before_ the user space value would
1569 * leave the pi_state in an inconsistent state when we fault
1570 * here, because we need to drop the hash bucket lock to
1571 * handle the fault. This might be observed in the PID check
1572 * in lookup_pi_state.
1573 */
1574retry:
1575 if (get_futex_value_locked(&uval, uaddr))
1576 goto handle_fault;
1577
1578 while (1) {
1579 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1580
1581 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1582
1583 if (curval == -EFAULT)
1584 goto handle_fault;
1585 if (curval == uval)
1586 break;
1587 uval = curval;
1588 }
1589
1590 /*
1591 * We fixed up user space. Now we need to fix the pi_state
1592 * itself.
1593 */
1594 if (pi_state->owner != NULL) {
1595 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1596 WARN_ON(list_empty(&pi_state->list));
1597 list_del_init(&pi_state->list);
1598 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1599 }
1600
1601 pi_state->owner = newowner;
1602
1603 raw_spin_lock_irq(&newowner->pi_lock);
1604 WARN_ON(!list_empty(&pi_state->list));
1605 list_add(&pi_state->list, &newowner->pi_state_list);
1606 raw_spin_unlock_irq(&newowner->pi_lock);
1607 return 0;
1608
1609 /*
1610 * To handle the page fault we need to drop the hash bucket
1611 * lock here. That gives the other task (either the pending
1612 * owner itself or the task which stole the rtmutex) the
1613 * chance to try the fixup of the pi_state. So once we are
1614 * back from handling the fault we need to check the pi_state
1615 * after reacquiring the hash bucket lock and before trying to
1616 * do another fixup. When the fixup has been done already we
1617 * simply return.
1618 */
1619handle_fault:
1620 spin_unlock(q->lock_ptr);
1621
1622 ret = fault_in_user_writeable(uaddr);
1623
1624 spin_lock(q->lock_ptr);
1625
1626 /*
1627 * Check if someone else fixed it for us:
1628 */
1629 if (pi_state->owner != oldowner)
1630 return 0;
1631
1632 if (ret)
1633 return ret;
1634
1635 goto retry;
1636}
1637
1638static long futex_wait_restart(struct restart_block *restart);
1639
1640/**
1641 * fixup_owner() - Post lock pi_state and corner case management
1642 * @uaddr: user address of the futex
1643 * @q: futex_q (contains pi_state and access to the rt_mutex)
1644 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1645 *
1646 * After attempting to lock an rt_mutex, this function is called to cleanup
1647 * the pi_state owner as well as handle race conditions that may allow us to
1648 * acquire the lock. Must be called with the hb lock held.
1649 *
1650 * Returns:
1651 * 1 - success, lock taken
1652 * 0 - success, lock not taken
1653 * <0 - on error (-EFAULT)
1654 */
1655static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1656{
1657 struct task_struct *owner;
1658 int ret = 0;
1659
1660 if (locked) {
1661 /*
1662 * Got the lock. We might not be the anticipated owner if we
1663 * did a lock-steal - fix up the PI-state in that case:
1664 */
1665 if (q->pi_state->owner != current)
1666 ret = fixup_pi_state_owner(uaddr, q, current);
1667 goto out;
1668 }
1669
1670 /*
1671 * Catch the rare case, where the lock was released when we were on the
1672 * way back before we locked the hash bucket.
1673 */
1674 if (q->pi_state->owner == current) {
1675 /*
1676 * Try to get the rt_mutex now. This might fail as some other
1677 * task acquired the rt_mutex after we removed ourself from the
1678 * rt_mutex waiters list.
1679 */
1680 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1681 locked = 1;
1682 goto out;
1683 }
1684
1685 /*
1686 * pi_state is incorrect, some other task did a lock steal and
1687 * we returned due to timeout or signal without taking the
1688 * rt_mutex. Too late. We can access the rt_mutex_owner without
1689 * locking, as the other task is now blocked on the hash bucket
1690 * lock. Fix the state up.
1691 */
1692 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1693 ret = fixup_pi_state_owner(uaddr, q, owner);
1694 goto out;
1695 }
1696
1697 /*
1698 * Paranoia check. If we did not take the lock, then we should not be
1699 * the owner, nor the pending owner, of the rt_mutex.
1700 */
1701 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1702 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1703 "pi-state %p\n", ret,
1704 q->pi_state->pi_mutex.owner,
1705 q->pi_state->owner);
1706
1707out:
1708 return ret ? ret : locked;
1709}
1710
1711/**
1712 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1713 * @hb: the futex hash bucket, must be locked by the caller
1714 * @q: the futex_q to queue up on
1715 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1716 */
1717static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1718 struct hrtimer_sleeper *timeout)
1719{
1720 /*
1721 * The task state is guaranteed to be set before another task can
1722 * wake it. set_current_state() is implemented using set_mb() and
1723 * queue_me() calls spin_unlock() upon completion, both serializing
1724 * access to the hash list and forcing another memory barrier.
1725 */
1726 set_current_state(TASK_INTERRUPTIBLE);
1727 queue_me(q, hb);
1728
1729 /* Arm the timer */
1730 if (timeout) {
1731 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1732 if (!hrtimer_active(&timeout->timer))
1733 timeout->task = NULL;
1734 }
1735
1736 /*
1737 * If we have been removed from the hash list, then another task
1738 * has tried to wake us, and we can skip the call to schedule().
1739 */
1740 if (likely(!plist_node_empty(&q->list))) {
1741 /*
1742 * If the timer has already expired, current will already be
1743 * flagged for rescheduling. Only call schedule if there
1744 * is no timeout, or if it has yet to expire.
1745 */
1746 if (!timeout || timeout->task)
1747 schedule();
1748 }
1749 __set_current_state(TASK_RUNNING);
1750}
1751
1752/**
1753 * futex_wait_setup() - Prepare to wait on a futex
1754 * @uaddr: the futex userspace address
1755 * @val: the expected value
1756 * @flags: futex flags (FLAGS_SHARED, etc.)
1757 * @q: the associated futex_q
1758 * @hb: storage for hash_bucket pointer to be returned to caller
1759 *
1760 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1761 * compare it with the expected value. Handle atomic faults internally.
1762 * Return with the hb lock held and a q.key reference on success, and unlocked
1763 * with no q.key reference on failure.
1764 *
1765 * Returns:
1766 * 0 - uaddr contains val and hb has been locked
1767 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1768 */
1769static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1770 struct futex_q *q, struct futex_hash_bucket **hb)
1771{
1772 u32 uval;
1773 int ret;
1774
1775 /*
1776 * Access the page AFTER the hash-bucket is locked.
1777 * Order is important:
1778 *
1779 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1780 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1781 *
1782 * The basic logical guarantee of a futex is that it blocks ONLY
1783 * if cond(var) is known to be true at the time of blocking, for
1784 * any cond. If we locked the hash-bucket after testing *uaddr, that
1785 * would open a race condition where we could block indefinitely with
1786 * cond(var) false, which would violate the guarantee.
1787 *
1788 * On the other hand, we insert q and release the hash-bucket only
1789 * after testing *uaddr. This guarantees that futex_wait() will NOT
1790 * absorb a wakeup if *uaddr does not match the desired values
1791 * while the syscall executes.
1792 */
1793retry:
1794 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
1795 if (unlikely(ret != 0))
1796 return ret;
1797
1798retry_private:
1799 *hb = queue_lock(q);
1800
1801 ret = get_futex_value_locked(&uval, uaddr);
1802
1803 if (ret) {
1804 queue_unlock(q, *hb);
1805
1806 ret = get_user(uval, uaddr);
1807 if (ret)
1808 goto out;
1809
1810 if (!(flags & FLAGS_SHARED))
1811 goto retry_private;
1812
1813 put_futex_key(&q->key);
1814 goto retry;
1815 }
1816
1817 if (uval != val) {
1818 queue_unlock(q, *hb);
1819 ret = -EWOULDBLOCK;
1820 }
1821
1822out:
1823 if (ret)
1824 put_futex_key(&q->key);
1825 return ret;
1826}
1827
1828static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1829 ktime_t *abs_time, u32 bitset)
1830{
1831 struct hrtimer_sleeper timeout, *to = NULL;
1832 struct restart_block *restart;
1833 struct futex_hash_bucket *hb;
1834 struct futex_q q = futex_q_init;
1835 int ret;
1836
1837 if (!bitset)
1838 return -EINVAL;
1839 q.bitset = bitset;
1840
1841 if (abs_time) {
1842 to = &timeout;
1843
1844 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1845 CLOCK_REALTIME : CLOCK_MONOTONIC,
1846 HRTIMER_MODE_ABS);
1847 hrtimer_init_sleeper(to, current);
1848 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1849 current->timer_slack_ns);
1850 }
1851
1852retry:
1853 /*
1854 * Prepare to wait on uaddr. On success, holds hb lock and increments
1855 * q.key refs.
1856 */
1857 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1858 if (ret)
1859 goto out;
1860
1861 /* queue_me and wait for wakeup, timeout, or a signal. */
1862 futex_wait_queue_me(hb, &q, to);
1863
1864 /* If we were woken (and unqueued), we succeeded, whatever. */
1865 ret = 0;
1866 /* unqueue_me() drops q.key ref */
1867 if (!unqueue_me(&q))
1868 goto out;
1869 ret = -ETIMEDOUT;
1870 if (to && !to->task)
1871 goto out;
1872
1873 /*
1874 * We expect signal_pending(current), but we might be the
1875 * victim of a spurious wakeup as well.
1876 */
1877 if (!signal_pending(current))
1878 goto retry;
1879
1880 ret = -ERESTARTSYS;
1881 if (!abs_time)
1882 goto out;
1883
1884 restart = &current_thread_info()->restart_block;
1885 restart->fn = futex_wait_restart;
1886 restart->futex.uaddr = uaddr;
1887 restart->futex.val = val;
1888 restart->futex.time = abs_time->tv64;
1889 restart->futex.bitset = bitset;
1890 restart->futex.flags = flags;
1891
1892 ret = -ERESTART_RESTARTBLOCK;
1893
1894out:
1895 if (to) {
1896 hrtimer_cancel(&to->timer);
1897 destroy_hrtimer_on_stack(&to->timer);
1898 }
1899 return ret;
1900}
1901
1902
1903static long futex_wait_restart(struct restart_block *restart)
1904{
1905 u32 __user *uaddr = restart->futex.uaddr;
1906 ktime_t t, *tp = NULL;
1907
1908 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1909 t.tv64 = restart->futex.time;
1910 tp = &t;
1911 }
1912 restart->fn = do_no_restart_syscall;
1913
1914 return (long)futex_wait(uaddr, restart->futex.flags,
1915 restart->futex.val, tp, restart->futex.bitset);
1916}
1917
1918
1919/*
1920 * Userspace tried a 0 -> TID atomic transition of the futex value
1921 * and failed. The kernel side here does the whole locking operation:
1922 * if there are waiters then it will block, it does PI, etc. (Due to
1923 * races the kernel might see a 0 value of the futex too.)
1924 */
1925static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1926 ktime_t *time, int trylock)
1927{
1928 struct hrtimer_sleeper timeout, *to = NULL;
1929 struct futex_hash_bucket *hb;
1930 struct futex_q q = futex_q_init;
1931 int res, ret;
1932
1933 if (refill_pi_state_cache())
1934 return -ENOMEM;
1935
1936 if (time) {
1937 to = &timeout;
1938 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1939 HRTIMER_MODE_ABS);
1940 hrtimer_init_sleeper(to, current);
1941 hrtimer_set_expires(&to->timer, *time);
1942 }
1943
1944retry:
1945 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
1946 if (unlikely(ret != 0))
1947 goto out;
1948
1949retry_private:
1950 hb = queue_lock(&q);
1951
1952 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1953 if (unlikely(ret)) {
1954 switch (ret) {
1955 case 1:
1956 /* We got the lock. */
1957 ret = 0;
1958 goto out_unlock_put_key;
1959 case -EFAULT:
1960 goto uaddr_faulted;
1961 case -EAGAIN:
1962 /*
1963 * Task is exiting and we just wait for the
1964 * exit to complete.
1965 */
1966 queue_unlock(&q, hb);
1967 put_futex_key(&q.key);
1968 cond_resched();
1969 goto retry;
1970 default:
1971 goto out_unlock_put_key;
1972 }
1973 }
1974
1975 /*
1976 * Only actually queue now that the atomic ops are done:
1977 */
1978 queue_me(&q, hb);
1979
1980 WARN_ON(!q.pi_state);
1981 /*
1982 * Block on the PI mutex:
1983 */
1984 if (!trylock)
1985 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1986 else {
1987 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1988 /* Fixup the trylock return value: */
1989 ret = ret ? 0 : -EWOULDBLOCK;
1990 }
1991
1992 spin_lock(q.lock_ptr);
1993 /*
1994 * Fixup the pi_state owner and possibly acquire the lock if we
1995 * haven't already.
1996 */
1997 res = fixup_owner(uaddr, &q, !ret);
1998 /*
1999 * If fixup_owner() returned an error, proprogate that. If it acquired
2000 * the lock, clear our -ETIMEDOUT or -EINTR.
2001 */
2002 if (res)
2003 ret = (res < 0) ? res : 0;
2004
2005 /*
2006 * If fixup_owner() faulted and was unable to handle the fault, unlock
2007 * it and return the fault to userspace.
2008 */
2009 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2010 rt_mutex_unlock(&q.pi_state->pi_mutex);
2011
2012 /* Unqueue and drop the lock */
2013 unqueue_me_pi(&q);
2014
2015 goto out_put_key;
2016
2017out_unlock_put_key:
2018 queue_unlock(&q, hb);
2019
2020out_put_key:
2021 put_futex_key(&q.key);
2022out:
2023 if (to)
2024 destroy_hrtimer_on_stack(&to->timer);
2025 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2026
2027uaddr_faulted:
2028 queue_unlock(&q, hb);
2029
2030 ret = fault_in_user_writeable(uaddr);
2031 if (ret)
2032 goto out_put_key;
2033
2034 if (!(flags & FLAGS_SHARED))
2035 goto retry_private;
2036
2037 put_futex_key(&q.key);
2038 goto retry;
2039}
2040
2041/*
2042 * Userspace attempted a TID -> 0 atomic transition, and failed.
2043 * This is the in-kernel slowpath: we look up the PI state (if any),
2044 * and do the rt-mutex unlock.
2045 */
2046static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2047{
2048 struct futex_hash_bucket *hb;
2049 struct futex_q *this, *next;
2050 u32 uval;
2051 struct plist_head *head;
2052 union futex_key key = FUTEX_KEY_INIT;
2053 int ret;
2054
2055retry:
2056 if (get_user(uval, uaddr))
2057 return -EFAULT;
2058 /*
2059 * We release only a lock we actually own:
2060 */
2061 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2062 return -EPERM;
2063
2064 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
2065 if (unlikely(ret != 0))
2066 goto out;
2067
2068 hb = hash_futex(&key);
2069 spin_lock(&hb->lock);
2070
2071 /*
2072 * To avoid races, try to do the TID -> 0 atomic transition
2073 * again. If it succeeds then we can return without waking
2074 * anyone else up:
2075 */
2076 if (!(uval & FUTEX_OWNER_DIED))
2077 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2078
2079
2080 if (unlikely(uval == -EFAULT))
2081 goto pi_faulted;
2082 /*
2083 * Rare case: we managed to release the lock atomically,
2084 * no need to wake anyone else up:
2085 */
2086 if (unlikely(uval == task_pid_vnr(current)))
2087 goto out_unlock;
2088
2089 /*
2090 * Ok, other tasks may need to be woken up - check waiters
2091 * and do the wakeup if necessary:
2092 */
2093 head = &hb->chain;
2094
2095 plist_for_each_entry_safe(this, next, head, list) {
2096 if (!match_futex (&this->key, &key))
2097 continue;
2098 ret = wake_futex_pi(uaddr, uval, this);
2099 /*
2100 * The atomic access to the futex value
2101 * generated a pagefault, so retry the
2102 * user-access and the wakeup:
2103 */
2104 if (ret == -EFAULT)
2105 goto pi_faulted;
2106 goto out_unlock;
2107 }
2108 /*
2109 * No waiters - kernel unlocks the futex:
2110 */
2111 if (!(uval & FUTEX_OWNER_DIED)) {
2112 ret = unlock_futex_pi(uaddr, uval);
2113 if (ret == -EFAULT)
2114 goto pi_faulted;
2115 }
2116
2117out_unlock:
2118 spin_unlock(&hb->lock);
2119 put_futex_key(&key);
2120
2121out:
2122 return ret;
2123
2124pi_faulted:
2125 spin_unlock(&hb->lock);
2126 put_futex_key(&key);
2127
2128 ret = fault_in_user_writeable(uaddr);
2129 if (!ret)
2130 goto retry;
2131
2132 return ret;
2133}
2134
2135/**
2136 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2137 * @hb: the hash_bucket futex_q was original enqueued on
2138 * @q: the futex_q woken while waiting to be requeued
2139 * @key2: the futex_key of the requeue target futex
2140 * @timeout: the timeout associated with the wait (NULL if none)
2141 *
2142 * Detect if the task was woken on the initial futex as opposed to the requeue
2143 * target futex. If so, determine if it was a timeout or a signal that caused
2144 * the wakeup and return the appropriate error code to the caller. Must be
2145 * called with the hb lock held.
2146 *
2147 * Returns
2148 * 0 - no early wakeup detected
2149 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2150 */
2151static inline
2152int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2153 struct futex_q *q, union futex_key *key2,
2154 struct hrtimer_sleeper *timeout)
2155{
2156 int ret = 0;
2157
2158 /*
2159 * With the hb lock held, we avoid races while we process the wakeup.
2160 * We only need to hold hb (and not hb2) to ensure atomicity as the
2161 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2162 * It can't be requeued from uaddr2 to something else since we don't
2163 * support a PI aware source futex for requeue.
2164 */
2165 if (!match_futex(&q->key, key2)) {
2166 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2167 /*
2168 * We were woken prior to requeue by a timeout or a signal.
2169 * Unqueue the futex_q and determine which it was.
2170 */
2171 plist_del(&q->list, &q->list.plist);
2172
2173 /* Handle spurious wakeups gracefully */
2174 ret = -EWOULDBLOCK;
2175 if (timeout && !timeout->task)
2176 ret = -ETIMEDOUT;
2177 else if (signal_pending(current))
2178 ret = -ERESTARTNOINTR;
2179 }
2180 return ret;
2181}
2182
2183/**
2184 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2185 * @uaddr: the futex we initially wait on (non-pi)
2186 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2187 * the same type, no requeueing from private to shared, etc.
2188 * @val: the expected value of uaddr
2189 * @abs_time: absolute timeout
2190 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2191 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2192 * @uaddr2: the pi futex we will take prior to returning to user-space
2193 *
2194 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2195 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2196 * complete the acquisition of the rt_mutex prior to returning to userspace.
2197 * This ensures the rt_mutex maintains an owner when it has waiters; without
2198 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2199 * need to.
2200 *
2201 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2202 * via the following:
2203 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2204 * 2) wakeup on uaddr2 after a requeue
2205 * 3) signal
2206 * 4) timeout
2207 *
2208 * If 3, cleanup and return -ERESTARTNOINTR.
2209 *
2210 * If 2, we may then block on trying to take the rt_mutex and return via:
2211 * 5) successful lock
2212 * 6) signal
2213 * 7) timeout
2214 * 8) other lock acquisition failure
2215 *
2216 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2217 *
2218 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2219 *
2220 * Returns:
2221 * 0 - On success
2222 * <0 - On error
2223 */
2224static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2225 u32 val, ktime_t *abs_time, u32 bitset,
2226 u32 __user *uaddr2)
2227{
2228 struct hrtimer_sleeper timeout, *to = NULL;
2229 struct rt_mutex_waiter rt_waiter;
2230 struct rt_mutex *pi_mutex = NULL;
2231 struct futex_hash_bucket *hb;
2232 union futex_key key2 = FUTEX_KEY_INIT;
2233 struct futex_q q = futex_q_init;
2234 int res, ret;
2235
2236 if (!bitset)
2237 return -EINVAL;
2238
2239 if (abs_time) {
2240 to = &timeout;
2241 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2242 CLOCK_REALTIME : CLOCK_MONOTONIC,
2243 HRTIMER_MODE_ABS);
2244 hrtimer_init_sleeper(to, current);
2245 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2246 current->timer_slack_ns);
2247 }
2248
2249 /*
2250 * The waiter is allocated on our stack, manipulated by the requeue
2251 * code while we sleep on uaddr.
2252 */
2253 debug_rt_mutex_init_waiter(&rt_waiter);
2254 rt_waiter.task = NULL;
2255
2256 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
2257 if (unlikely(ret != 0))
2258 goto out;
2259
2260 q.bitset = bitset;
2261 q.rt_waiter = &rt_waiter;
2262 q.requeue_pi_key = &key2;
2263
2264 /*
2265 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2266 * count.
2267 */
2268 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2269 if (ret)
2270 goto out_key2;
2271
2272 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2273 futex_wait_queue_me(hb, &q, to);
2274
2275 spin_lock(&hb->lock);
2276 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2277 spin_unlock(&hb->lock);
2278 if (ret)
2279 goto out_put_keys;
2280
2281 /*
2282 * In order for us to be here, we know our q.key == key2, and since
2283 * we took the hb->lock above, we also know that futex_requeue() has
2284 * completed and we no longer have to concern ourselves with a wakeup
2285 * race with the atomic proxy lock acquisition by the requeue code. The
2286 * futex_requeue dropped our key1 reference and incremented our key2
2287 * reference count.
2288 */
2289
2290 /* Check if the requeue code acquired the second futex for us. */
2291 if (!q.rt_waiter) {
2292 /*
2293 * Got the lock. We might not be the anticipated owner if we
2294 * did a lock-steal - fix up the PI-state in that case.
2295 */
2296 if (q.pi_state && (q.pi_state->owner != current)) {
2297 spin_lock(q.lock_ptr);
2298 ret = fixup_pi_state_owner(uaddr2, &q, current);
2299 spin_unlock(q.lock_ptr);
2300 }
2301 } else {
2302 /*
2303 * We have been woken up by futex_unlock_pi(), a timeout, or a
2304 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2305 * the pi_state.
2306 */
2307 WARN_ON(!&q.pi_state);
2308 pi_mutex = &q.pi_state->pi_mutex;
2309 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2310 debug_rt_mutex_free_waiter(&rt_waiter);
2311
2312 spin_lock(q.lock_ptr);
2313 /*
2314 * Fixup the pi_state owner and possibly acquire the lock if we
2315 * haven't already.
2316 */
2317 res = fixup_owner(uaddr2, &q, !ret);
2318 /*
2319 * If fixup_owner() returned an error, proprogate that. If it
2320 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2321 */
2322 if (res)
2323 ret = (res < 0) ? res : 0;
2324
2325 /* Unqueue and drop the lock. */
2326 unqueue_me_pi(&q);
2327 }
2328
2329 /*
2330 * If fixup_pi_state_owner() faulted and was unable to handle the
2331 * fault, unlock the rt_mutex and return the fault to userspace.
2332 */
2333 if (ret == -EFAULT) {
2334 if (rt_mutex_owner(pi_mutex) == current)
2335 rt_mutex_unlock(pi_mutex);
2336 } else if (ret == -EINTR) {
2337 /*
2338 * We've already been requeued, but cannot restart by calling
2339 * futex_lock_pi() directly. We could restart this syscall, but
2340 * it would detect that the user space "val" changed and return
2341 * -EWOULDBLOCK. Save the overhead of the restart and return
2342 * -EWOULDBLOCK directly.
2343 */
2344 ret = -EWOULDBLOCK;
2345 }
2346
2347out_put_keys:
2348 put_futex_key(&q.key);
2349out_key2:
2350 put_futex_key(&key2);
2351
2352out:
2353 if (to) {
2354 hrtimer_cancel(&to->timer);
2355 destroy_hrtimer_on_stack(&to->timer);
2356 }
2357 return ret;
2358}
2359
2360/*
2361 * Support for robust futexes: the kernel cleans up held futexes at
2362 * thread exit time.
2363 *
2364 * Implementation: user-space maintains a per-thread list of locks it
2365 * is holding. Upon do_exit(), the kernel carefully walks this list,
2366 * and marks all locks that are owned by this thread with the
2367 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2368 * always manipulated with the lock held, so the list is private and
2369 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2370 * field, to allow the kernel to clean up if the thread dies after
2371 * acquiring the lock, but just before it could have added itself to
2372 * the list. There can only be one such pending lock.
2373 */
2374
2375/**
2376 * sys_set_robust_list() - Set the robust-futex list head of a task
2377 * @head: pointer to the list-head
2378 * @len: length of the list-head, as userspace expects
2379 */
2380SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2381 size_t, len)
2382{
2383 if (!futex_cmpxchg_enabled)
2384 return -ENOSYS;
2385 /*
2386 * The kernel knows only one size for now:
2387 */
2388 if (unlikely(len != sizeof(*head)))
2389 return -EINVAL;
2390
2391 current->robust_list = head;
2392
2393 return 0;
2394}
2395
2396/**
2397 * sys_get_robust_list() - Get the robust-futex list head of a task
2398 * @pid: pid of the process [zero for current task]
2399 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2400 * @len_ptr: pointer to a length field, the kernel fills in the header size
2401 */
2402SYSCALL_DEFINE3(get_robust_list, int, pid,
2403 struct robust_list_head __user * __user *, head_ptr,
2404 size_t __user *, len_ptr)
2405{
2406 struct robust_list_head __user *head;
2407 unsigned long ret;
2408 const struct cred *cred = current_cred(), *pcred;
2409
2410 if (!futex_cmpxchg_enabled)
2411 return -ENOSYS;
2412
2413 if (!pid)
2414 head = current->robust_list;
2415 else {
2416 struct task_struct *p;
2417
2418 ret = -ESRCH;
2419 rcu_read_lock();
2420 p = find_task_by_vpid(pid);
2421 if (!p)
2422 goto err_unlock;
2423 ret = -EPERM;
2424 pcred = __task_cred(p);
2425 if (cred->euid != pcred->euid &&
2426 cred->euid != pcred->uid &&
2427 !capable(CAP_SYS_PTRACE))
2428 goto err_unlock;
2429 head = p->robust_list;
2430 rcu_read_unlock();
2431 }
2432
2433 if (put_user(sizeof(*head), len_ptr))
2434 return -EFAULT;
2435 return put_user(head, head_ptr);
2436
2437err_unlock:
2438 rcu_read_unlock();
2439
2440 return ret;
2441}
2442
2443/*
2444 * Process a futex-list entry, check whether it's owned by the
2445 * dying task, and do notification if so:
2446 */
2447int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2448{
2449 u32 uval, nval, mval;
2450
2451retry:
2452 if (get_user(uval, uaddr))
2453 return -1;
2454
2455 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2456 /*
2457 * Ok, this dying thread is truly holding a futex
2458 * of interest. Set the OWNER_DIED bit atomically
2459 * via cmpxchg, and if the value had FUTEX_WAITERS
2460 * set, wake up a waiter (if any). (We have to do a
2461 * futex_wake() even if OWNER_DIED is already set -
2462 * to handle the rare but possible case of recursive
2463 * thread-death.) The rest of the cleanup is done in
2464 * userspace.
2465 */
2466 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2467 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2468
2469 if (nval == -EFAULT)
2470 return -1;
2471
2472 if (nval != uval)
2473 goto retry;
2474
2475 /*
2476 * Wake robust non-PI futexes here. The wakeup of
2477 * PI futexes happens in exit_pi_state():
2478 */
2479 if (!pi && (uval & FUTEX_WAITERS))
2480 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2481 }
2482 return 0;
2483}
2484
2485/*
2486 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2487 */
2488static inline int fetch_robust_entry(struct robust_list __user **entry,
2489 struct robust_list __user * __user *head,
2490 unsigned int *pi)
2491{
2492 unsigned long uentry;
2493
2494 if (get_user(uentry, (unsigned long __user *)head))
2495 return -EFAULT;
2496
2497 *entry = (void __user *)(uentry & ~1UL);
2498 *pi = uentry & 1;
2499
2500 return 0;
2501}
2502
2503/*
2504 * Walk curr->robust_list (very carefully, it's a userspace list!)
2505 * and mark any locks found there dead, and notify any waiters.
2506 *
2507 * We silently return on any sign of list-walking problem.
2508 */
2509void exit_robust_list(struct task_struct *curr)
2510{
2511 struct robust_list_head __user *head = curr->robust_list;
2512 struct robust_list __user *entry, *next_entry, *pending;
2513 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2514 unsigned int uninitialized_var(next_pi);
2515 unsigned long futex_offset;
2516 int rc;
2517
2518 if (!futex_cmpxchg_enabled)
2519 return;
2520
2521 /*
2522 * Fetch the list head (which was registered earlier, via
2523 * sys_set_robust_list()):
2524 */
2525 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2526 return;
2527 /*
2528 * Fetch the relative futex offset:
2529 */
2530 if (get_user(futex_offset, &head->futex_offset))
2531 return;
2532 /*
2533 * Fetch any possibly pending lock-add first, and handle it
2534 * if it exists:
2535 */
2536 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2537 return;
2538
2539 next_entry = NULL; /* avoid warning with gcc */
2540 while (entry != &head->list) {
2541 /*
2542 * Fetch the next entry in the list before calling
2543 * handle_futex_death:
2544 */
2545 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2546 /*
2547 * A pending lock might already be on the list, so
2548 * don't process it twice:
2549 */
2550 if (entry != pending)
2551 if (handle_futex_death((void __user *)entry + futex_offset,
2552 curr, pi))
2553 return;
2554 if (rc)
2555 return;
2556 entry = next_entry;
2557 pi = next_pi;
2558 /*
2559 * Avoid excessively long or circular lists:
2560 */
2561 if (!--limit)
2562 break;
2563
2564 cond_resched();
2565 }
2566
2567 if (pending)
2568 handle_futex_death((void __user *)pending + futex_offset,
2569 curr, pip);
2570}
2571
2572long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2573 u32 __user *uaddr2, u32 val2, u32 val3)
2574{
2575 int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2576 unsigned int flags = 0;
2577
2578 if (!(op & FUTEX_PRIVATE_FLAG))
2579 flags |= FLAGS_SHARED;
2580
2581 if (op & FUTEX_CLOCK_REALTIME) {
2582 flags |= FLAGS_CLOCKRT;
2583 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2584 return -ENOSYS;
2585 }
2586
2587 switch (cmd) {
2588 case FUTEX_WAIT:
2589 val3 = FUTEX_BITSET_MATCH_ANY;
2590 case FUTEX_WAIT_BITSET:
2591 ret = futex_wait(uaddr, flags, val, timeout, val3);
2592 break;
2593 case FUTEX_WAKE:
2594 val3 = FUTEX_BITSET_MATCH_ANY;
2595 case FUTEX_WAKE_BITSET:
2596 ret = futex_wake(uaddr, flags, val, val3);
2597 break;
2598 case FUTEX_REQUEUE:
2599 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2600 break;
2601 case FUTEX_CMP_REQUEUE:
2602 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2603 break;
2604 case FUTEX_WAKE_OP:
2605 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2606 break;
2607 case FUTEX_LOCK_PI:
2608 if (futex_cmpxchg_enabled)
2609 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2610 break;
2611 case FUTEX_UNLOCK_PI:
2612 if (futex_cmpxchg_enabled)
2613 ret = futex_unlock_pi(uaddr, flags);
2614 break;
2615 case FUTEX_TRYLOCK_PI:
2616 if (futex_cmpxchg_enabled)
2617 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2618 break;
2619 case FUTEX_WAIT_REQUEUE_PI:
2620 val3 = FUTEX_BITSET_MATCH_ANY;
2621 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2622 uaddr2);
2623 break;
2624 case FUTEX_CMP_REQUEUE_PI:
2625 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2626 break;
2627 default:
2628 ret = -ENOSYS;
2629 }
2630 return ret;
2631}
2632
2633
2634SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2635 struct timespec __user *, utime, u32 __user *, uaddr2,
2636 u32, val3)
2637{
2638 struct timespec ts;
2639 ktime_t t, *tp = NULL;
2640 u32 val2 = 0;
2641 int cmd = op & FUTEX_CMD_MASK;
2642
2643 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2644 cmd == FUTEX_WAIT_BITSET ||
2645 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2646 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2647 return -EFAULT;
2648 if (!timespec_valid(&ts))
2649 return -EINVAL;
2650
2651 t = timespec_to_ktime(ts);
2652 if (cmd == FUTEX_WAIT)
2653 t = ktime_add_safe(ktime_get(), t);
2654 tp = &t;
2655 }
2656 /*
2657 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2658 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2659 */
2660 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2661 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2662 val2 = (u32) (unsigned long) utime;
2663
2664 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2665}
2666
2667static int __init futex_init(void)
2668{
2669 u32 curval;
2670 int i;
2671
2672 /*
2673 * This will fail and we want it. Some arch implementations do
2674 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2675 * functionality. We want to know that before we call in any
2676 * of the complex code paths. Also we want to prevent
2677 * registration of robust lists in that case. NULL is
2678 * guaranteed to fault and we get -EFAULT on functional
2679 * implementation, the non-functional ones will return
2680 * -ENOSYS.
2681 */
2682 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2683 if (curval == -EFAULT)
2684 futex_cmpxchg_enabled = 1;
2685
2686 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2687 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2688 spin_lock_init(&futex_queues[i].lock);
2689 }
2690
2691 return 0;
2692}
2693__initcall(futex_init);