Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
... / ...
CommitLineData
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/gfp.h>
9#include <linux/bug.h>
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/atomic.h>
14#include <linux/debug_locks.h>
15#include <linux/mm_types.h>
16#include <linux/range.h>
17#include <linux/pfn.h>
18#include <linux/bit_spinlock.h>
19#include <linux/shrinker.h>
20
21struct mempolicy;
22struct anon_vma;
23struct anon_vma_chain;
24struct file_ra_state;
25struct user_struct;
26struct writeback_control;
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
33extern unsigned long totalram_pages;
34extern void * high_memory;
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
46
47extern unsigned long sysctl_user_reserve_kbytes;
48extern unsigned long sysctl_admin_reserve_kbytes;
49
50#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
51
52/* to align the pointer to the (next) page boundary */
53#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
54
55/*
56 * Linux kernel virtual memory manager primitives.
57 * The idea being to have a "virtual" mm in the same way
58 * we have a virtual fs - giving a cleaner interface to the
59 * mm details, and allowing different kinds of memory mappings
60 * (from shared memory to executable loading to arbitrary
61 * mmap() functions).
62 */
63
64extern struct kmem_cache *vm_area_cachep;
65
66#ifndef CONFIG_MMU
67extern struct rb_root nommu_region_tree;
68extern struct rw_semaphore nommu_region_sem;
69
70extern unsigned int kobjsize(const void *objp);
71#endif
72
73/*
74 * vm_flags in vm_area_struct, see mm_types.h.
75 */
76#define VM_NONE 0x00000000
77
78#define VM_READ 0x00000001 /* currently active flags */
79#define VM_WRITE 0x00000002
80#define VM_EXEC 0x00000004
81#define VM_SHARED 0x00000008
82
83/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
84#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
85#define VM_MAYWRITE 0x00000020
86#define VM_MAYEXEC 0x00000040
87#define VM_MAYSHARE 0x00000080
88
89#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
90#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
91#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
92
93#define VM_LOCKED 0x00002000
94#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
102#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
103#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
104#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
105#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
106#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
107#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
108#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
109
110#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
111#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
112#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
113#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
114
115#if defined(CONFIG_X86)
116# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
117#elif defined(CONFIG_PPC)
118# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
119#elif defined(CONFIG_PARISC)
120# define VM_GROWSUP VM_ARCH_1
121#elif defined(CONFIG_METAG)
122# define VM_GROWSUP VM_ARCH_1
123#elif defined(CONFIG_IA64)
124# define VM_GROWSUP VM_ARCH_1
125#elif !defined(CONFIG_MMU)
126# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
127#endif
128
129#ifndef VM_GROWSUP
130# define VM_GROWSUP VM_NONE
131#endif
132
133/* Bits set in the VMA until the stack is in its final location */
134#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
135
136#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
137#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
138#endif
139
140#ifdef CONFIG_STACK_GROWSUP
141#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
142#else
143#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
144#endif
145
146#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
147#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
148#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
149#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
150#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
151
152/*
153 * Special vmas that are non-mergable, non-mlock()able.
154 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
155 */
156#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
157
158/*
159 * mapping from the currently active vm_flags protection bits (the
160 * low four bits) to a page protection mask..
161 */
162extern pgprot_t protection_map[16];
163
164#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
165#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
166#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
167#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
168#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
169#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
170#define FAULT_FLAG_TRIED 0x40 /* second try */
171#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
172
173/*
174 * vm_fault is filled by the the pagefault handler and passed to the vma's
175 * ->fault function. The vma's ->fault is responsible for returning a bitmask
176 * of VM_FAULT_xxx flags that give details about how the fault was handled.
177 *
178 * pgoff should be used in favour of virtual_address, if possible. If pgoff
179 * is used, one may implement ->remap_pages to get nonlinear mapping support.
180 */
181struct vm_fault {
182 unsigned int flags; /* FAULT_FLAG_xxx flags */
183 pgoff_t pgoff; /* Logical page offset based on vma */
184 void __user *virtual_address; /* Faulting virtual address */
185
186 struct page *page; /* ->fault handlers should return a
187 * page here, unless VM_FAULT_NOPAGE
188 * is set (which is also implied by
189 * VM_FAULT_ERROR).
190 */
191};
192
193/*
194 * These are the virtual MM functions - opening of an area, closing and
195 * unmapping it (needed to keep files on disk up-to-date etc), pointer
196 * to the functions called when a no-page or a wp-page exception occurs.
197 */
198struct vm_operations_struct {
199 void (*open)(struct vm_area_struct * area);
200 void (*close)(struct vm_area_struct * area);
201 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
202
203 /* notification that a previously read-only page is about to become
204 * writable, if an error is returned it will cause a SIGBUS */
205 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
206
207 /* called by access_process_vm when get_user_pages() fails, typically
208 * for use by special VMAs that can switch between memory and hardware
209 */
210 int (*access)(struct vm_area_struct *vma, unsigned long addr,
211 void *buf, int len, int write);
212#ifdef CONFIG_NUMA
213 /*
214 * set_policy() op must add a reference to any non-NULL @new mempolicy
215 * to hold the policy upon return. Caller should pass NULL @new to
216 * remove a policy and fall back to surrounding context--i.e. do not
217 * install a MPOL_DEFAULT policy, nor the task or system default
218 * mempolicy.
219 */
220 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
221
222 /*
223 * get_policy() op must add reference [mpol_get()] to any policy at
224 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
225 * in mm/mempolicy.c will do this automatically.
226 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
227 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
228 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
229 * must return NULL--i.e., do not "fallback" to task or system default
230 * policy.
231 */
232 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
233 unsigned long addr);
234 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
235 const nodemask_t *to, unsigned long flags);
236#endif
237 /* called by sys_remap_file_pages() to populate non-linear mapping */
238 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
239 unsigned long size, pgoff_t pgoff);
240};
241
242struct mmu_gather;
243struct inode;
244
245#define page_private(page) ((page)->private)
246#define set_page_private(page, v) ((page)->private = (v))
247
248/* It's valid only if the page is free path or free_list */
249static inline void set_freepage_migratetype(struct page *page, int migratetype)
250{
251 page->index = migratetype;
252}
253
254/* It's valid only if the page is free path or free_list */
255static inline int get_freepage_migratetype(struct page *page)
256{
257 return page->index;
258}
259
260/*
261 * FIXME: take this include out, include page-flags.h in
262 * files which need it (119 of them)
263 */
264#include <linux/page-flags.h>
265#include <linux/huge_mm.h>
266
267/*
268 * Methods to modify the page usage count.
269 *
270 * What counts for a page usage:
271 * - cache mapping (page->mapping)
272 * - private data (page->private)
273 * - page mapped in a task's page tables, each mapping
274 * is counted separately
275 *
276 * Also, many kernel routines increase the page count before a critical
277 * routine so they can be sure the page doesn't go away from under them.
278 */
279
280/*
281 * Drop a ref, return true if the refcount fell to zero (the page has no users)
282 */
283static inline int put_page_testzero(struct page *page)
284{
285 VM_BUG_ON(atomic_read(&page->_count) == 0);
286 return atomic_dec_and_test(&page->_count);
287}
288
289/*
290 * Try to grab a ref unless the page has a refcount of zero, return false if
291 * that is the case.
292 */
293static inline int get_page_unless_zero(struct page *page)
294{
295 return atomic_inc_not_zero(&page->_count);
296}
297
298extern int page_is_ram(unsigned long pfn);
299
300/* Support for virtually mapped pages */
301struct page *vmalloc_to_page(const void *addr);
302unsigned long vmalloc_to_pfn(const void *addr);
303
304/*
305 * Determine if an address is within the vmalloc range
306 *
307 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
308 * is no special casing required.
309 */
310static inline int is_vmalloc_addr(const void *x)
311{
312#ifdef CONFIG_MMU
313 unsigned long addr = (unsigned long)x;
314
315 return addr >= VMALLOC_START && addr < VMALLOC_END;
316#else
317 return 0;
318#endif
319}
320#ifdef CONFIG_MMU
321extern int is_vmalloc_or_module_addr(const void *x);
322#else
323static inline int is_vmalloc_or_module_addr(const void *x)
324{
325 return 0;
326}
327#endif
328
329extern void kvfree(const void *addr);
330
331static inline void compound_lock(struct page *page)
332{
333#ifdef CONFIG_TRANSPARENT_HUGEPAGE
334 VM_BUG_ON(PageSlab(page));
335 bit_spin_lock(PG_compound_lock, &page->flags);
336#endif
337}
338
339static inline void compound_unlock(struct page *page)
340{
341#ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 VM_BUG_ON(PageSlab(page));
343 bit_spin_unlock(PG_compound_lock, &page->flags);
344#endif
345}
346
347static inline unsigned long compound_lock_irqsave(struct page *page)
348{
349 unsigned long uninitialized_var(flags);
350#ifdef CONFIG_TRANSPARENT_HUGEPAGE
351 local_irq_save(flags);
352 compound_lock(page);
353#endif
354 return flags;
355}
356
357static inline void compound_unlock_irqrestore(struct page *page,
358 unsigned long flags)
359{
360#ifdef CONFIG_TRANSPARENT_HUGEPAGE
361 compound_unlock(page);
362 local_irq_restore(flags);
363#endif
364}
365
366static inline struct page *compound_head(struct page *page)
367{
368 if (unlikely(PageTail(page))) {
369 struct page *head = page->first_page;
370
371 /*
372 * page->first_page may be a dangling pointer to an old
373 * compound page, so recheck that it is still a tail
374 * page before returning.
375 */
376 smp_rmb();
377 if (likely(PageTail(page)))
378 return head;
379 }
380 return page;
381}
382
383/*
384 * The atomic page->_mapcount, starts from -1: so that transitions
385 * both from it and to it can be tracked, using atomic_inc_and_test
386 * and atomic_add_negative(-1).
387 */
388static inline void page_mapcount_reset(struct page *page)
389{
390 atomic_set(&(page)->_mapcount, -1);
391}
392
393static inline int page_mapcount(struct page *page)
394{
395 return atomic_read(&(page)->_mapcount) + 1;
396}
397
398static inline int page_count(struct page *page)
399{
400 return atomic_read(&compound_head(page)->_count);
401}
402
403static inline void get_huge_page_tail(struct page *page)
404{
405 /*
406 * __split_huge_page_refcount() cannot run
407 * from under us.
408 */
409 VM_BUG_ON(page_mapcount(page) < 0);
410 VM_BUG_ON(atomic_read(&page->_count) != 0);
411 atomic_inc(&page->_mapcount);
412}
413
414extern bool __get_page_tail(struct page *page);
415
416static inline void get_page(struct page *page)
417{
418 if (unlikely(PageTail(page)))
419 if (likely(__get_page_tail(page)))
420 return;
421 /*
422 * Getting a normal page or the head of a compound page
423 * requires to already have an elevated page->_count.
424 */
425 VM_BUG_ON(atomic_read(&page->_count) <= 0);
426 atomic_inc(&page->_count);
427}
428
429static inline struct page *virt_to_head_page(const void *x)
430{
431 struct page *page = virt_to_page(x);
432 return compound_head(page);
433}
434
435/*
436 * Setup the page count before being freed into the page allocator for
437 * the first time (boot or memory hotplug)
438 */
439static inline void init_page_count(struct page *page)
440{
441 atomic_set(&page->_count, 1);
442}
443
444/*
445 * PageBuddy() indicate that the page is free and in the buddy system
446 * (see mm/page_alloc.c).
447 *
448 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
449 * -2 so that an underflow of the page_mapcount() won't be mistaken
450 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
451 * efficiently by most CPU architectures.
452 */
453#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
454
455static inline int PageBuddy(struct page *page)
456{
457 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
458}
459
460static inline void __SetPageBuddy(struct page *page)
461{
462 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
463 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
464}
465
466static inline void __ClearPageBuddy(struct page *page)
467{
468 VM_BUG_ON(!PageBuddy(page));
469 atomic_set(&page->_mapcount, -1);
470}
471
472void put_page(struct page *page);
473void put_pages_list(struct list_head *pages);
474
475void split_page(struct page *page, unsigned int order);
476int split_free_page(struct page *page);
477
478/*
479 * Compound pages have a destructor function. Provide a
480 * prototype for that function and accessor functions.
481 * These are _only_ valid on the head of a PG_compound page.
482 */
483typedef void compound_page_dtor(struct page *);
484
485static inline void set_compound_page_dtor(struct page *page,
486 compound_page_dtor *dtor)
487{
488 page[1].lru.next = (void *)dtor;
489}
490
491static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
492{
493 return (compound_page_dtor *)page[1].lru.next;
494}
495
496static inline int compound_order(struct page *page)
497{
498 if (!PageHead(page))
499 return 0;
500 return (unsigned long)page[1].lru.prev;
501}
502
503static inline int compound_trans_order(struct page *page)
504{
505 int order;
506 unsigned long flags;
507
508 if (!PageHead(page))
509 return 0;
510
511 flags = compound_lock_irqsave(page);
512 order = compound_order(page);
513 compound_unlock_irqrestore(page, flags);
514 return order;
515}
516
517static inline void set_compound_order(struct page *page, unsigned long order)
518{
519 page[1].lru.prev = (void *)order;
520}
521
522#ifdef CONFIG_MMU
523/*
524 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
525 * servicing faults for write access. In the normal case, do always want
526 * pte_mkwrite. But get_user_pages can cause write faults for mappings
527 * that do not have writing enabled, when used by access_process_vm.
528 */
529static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
530{
531 if (likely(vma->vm_flags & VM_WRITE))
532 pte = pte_mkwrite(pte);
533 return pte;
534}
535#endif
536
537/*
538 * Multiple processes may "see" the same page. E.g. for untouched
539 * mappings of /dev/null, all processes see the same page full of
540 * zeroes, and text pages of executables and shared libraries have
541 * only one copy in memory, at most, normally.
542 *
543 * For the non-reserved pages, page_count(page) denotes a reference count.
544 * page_count() == 0 means the page is free. page->lru is then used for
545 * freelist management in the buddy allocator.
546 * page_count() > 0 means the page has been allocated.
547 *
548 * Pages are allocated by the slab allocator in order to provide memory
549 * to kmalloc and kmem_cache_alloc. In this case, the management of the
550 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
551 * unless a particular usage is carefully commented. (the responsibility of
552 * freeing the kmalloc memory is the caller's, of course).
553 *
554 * A page may be used by anyone else who does a __get_free_page().
555 * In this case, page_count still tracks the references, and should only
556 * be used through the normal accessor functions. The top bits of page->flags
557 * and page->virtual store page management information, but all other fields
558 * are unused and could be used privately, carefully. The management of this
559 * page is the responsibility of the one who allocated it, and those who have
560 * subsequently been given references to it.
561 *
562 * The other pages (we may call them "pagecache pages") are completely
563 * managed by the Linux memory manager: I/O, buffers, swapping etc.
564 * The following discussion applies only to them.
565 *
566 * A pagecache page contains an opaque `private' member, which belongs to the
567 * page's address_space. Usually, this is the address of a circular list of
568 * the page's disk buffers. PG_private must be set to tell the VM to call
569 * into the filesystem to release these pages.
570 *
571 * A page may belong to an inode's memory mapping. In this case, page->mapping
572 * is the pointer to the inode, and page->index is the file offset of the page,
573 * in units of PAGE_CACHE_SIZE.
574 *
575 * If pagecache pages are not associated with an inode, they are said to be
576 * anonymous pages. These may become associated with the swapcache, and in that
577 * case PG_swapcache is set, and page->private is an offset into the swapcache.
578 *
579 * In either case (swapcache or inode backed), the pagecache itself holds one
580 * reference to the page. Setting PG_private should also increment the
581 * refcount. The each user mapping also has a reference to the page.
582 *
583 * The pagecache pages are stored in a per-mapping radix tree, which is
584 * rooted at mapping->page_tree, and indexed by offset.
585 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
586 * lists, we instead now tag pages as dirty/writeback in the radix tree.
587 *
588 * All pagecache pages may be subject to I/O:
589 * - inode pages may need to be read from disk,
590 * - inode pages which have been modified and are MAP_SHARED may need
591 * to be written back to the inode on disk,
592 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
593 * modified may need to be swapped out to swap space and (later) to be read
594 * back into memory.
595 */
596
597/*
598 * The zone field is never updated after free_area_init_core()
599 * sets it, so none of the operations on it need to be atomic.
600 */
601
602/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
603#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
604#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
605#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
606#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
607
608/*
609 * Define the bit shifts to access each section. For non-existent
610 * sections we define the shift as 0; that plus a 0 mask ensures
611 * the compiler will optimise away reference to them.
612 */
613#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
614#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
615#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
616#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
617
618/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
619#ifdef NODE_NOT_IN_PAGE_FLAGS
620#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
621#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
622 SECTIONS_PGOFF : ZONES_PGOFF)
623#else
624#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
625#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
626 NODES_PGOFF : ZONES_PGOFF)
627#endif
628
629#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
630
631#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
632#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
633#endif
634
635#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
636#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
637#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
638#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
639#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
640
641static inline enum zone_type page_zonenum(const struct page *page)
642{
643 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
644}
645
646#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
647#define SECTION_IN_PAGE_FLAGS
648#endif
649
650/*
651 * The identification function is only used by the buddy allocator for
652 * determining if two pages could be buddies. We are not really
653 * identifying a zone since we could be using a the section number
654 * id if we have not node id available in page flags.
655 * We guarantee only that it will return the same value for two
656 * combinable pages in a zone.
657 */
658static inline int page_zone_id(struct page *page)
659{
660 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
661}
662
663static inline int zone_to_nid(struct zone *zone)
664{
665#ifdef CONFIG_NUMA
666 return zone->node;
667#else
668 return 0;
669#endif
670}
671
672#ifdef NODE_NOT_IN_PAGE_FLAGS
673extern int page_to_nid(const struct page *page);
674#else
675static inline int page_to_nid(const struct page *page)
676{
677 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
678}
679#endif
680
681#ifdef CONFIG_NUMA_BALANCING
682#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
683static inline int page_nid_xchg_last(struct page *page, int nid)
684{
685 return xchg(&page->_last_nid, nid);
686}
687
688static inline int page_nid_last(struct page *page)
689{
690 return page->_last_nid;
691}
692static inline void page_nid_reset_last(struct page *page)
693{
694 page->_last_nid = -1;
695}
696#else
697static inline int page_nid_last(struct page *page)
698{
699 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
700}
701
702extern int page_nid_xchg_last(struct page *page, int nid);
703
704static inline void page_nid_reset_last(struct page *page)
705{
706 int nid = (1 << LAST_NID_SHIFT) - 1;
707
708 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
709 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
710}
711#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
712#else
713static inline int page_nid_xchg_last(struct page *page, int nid)
714{
715 return page_to_nid(page);
716}
717
718static inline int page_nid_last(struct page *page)
719{
720 return page_to_nid(page);
721}
722
723static inline void page_nid_reset_last(struct page *page)
724{
725}
726#endif
727
728static inline struct zone *page_zone(const struct page *page)
729{
730 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
731}
732
733#ifdef SECTION_IN_PAGE_FLAGS
734static inline void set_page_section(struct page *page, unsigned long section)
735{
736 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
737 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
738}
739
740static inline unsigned long page_to_section(const struct page *page)
741{
742 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
743}
744#endif
745
746static inline void set_page_zone(struct page *page, enum zone_type zone)
747{
748 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
749 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
750}
751
752static inline void set_page_node(struct page *page, unsigned long node)
753{
754 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
755 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
756}
757
758static inline void set_page_links(struct page *page, enum zone_type zone,
759 unsigned long node, unsigned long pfn)
760{
761 set_page_zone(page, zone);
762 set_page_node(page, node);
763#ifdef SECTION_IN_PAGE_FLAGS
764 set_page_section(page, pfn_to_section_nr(pfn));
765#endif
766}
767
768/*
769 * Some inline functions in vmstat.h depend on page_zone()
770 */
771#include <linux/vmstat.h>
772
773static __always_inline void *lowmem_page_address(const struct page *page)
774{
775 return __va(PFN_PHYS(page_to_pfn(page)));
776}
777
778#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
779#define HASHED_PAGE_VIRTUAL
780#endif
781
782#if defined(WANT_PAGE_VIRTUAL)
783static inline void *page_address(const struct page *page)
784{
785 return page->virtual;
786}
787static inline void set_page_address(struct page *page, void *address)
788{
789 page->virtual = address;
790}
791#define page_address_init() do { } while(0)
792#endif
793
794#if defined(HASHED_PAGE_VIRTUAL)
795void *page_address(const struct page *page);
796void set_page_address(struct page *page, void *virtual);
797void page_address_init(void);
798#endif
799
800#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
801#define page_address(page) lowmem_page_address(page)
802#define set_page_address(page, address) do { } while(0)
803#define page_address_init() do { } while(0)
804#endif
805
806/*
807 * On an anonymous page mapped into a user virtual memory area,
808 * page->mapping points to its anon_vma, not to a struct address_space;
809 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
810 *
811 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
812 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
813 * and then page->mapping points, not to an anon_vma, but to a private
814 * structure which KSM associates with that merged page. See ksm.h.
815 *
816 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
817 *
818 * Please note that, confusingly, "page_mapping" refers to the inode
819 * address_space which maps the page from disk; whereas "page_mapped"
820 * refers to user virtual address space into which the page is mapped.
821 */
822#define PAGE_MAPPING_ANON 1
823#define PAGE_MAPPING_KSM 2
824#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
825
826extern struct address_space *page_mapping(struct page *page);
827
828/* Neutral page->mapping pointer to address_space or anon_vma or other */
829static inline void *page_rmapping(struct page *page)
830{
831 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
832}
833
834extern struct address_space *__page_file_mapping(struct page *);
835
836static inline
837struct address_space *page_file_mapping(struct page *page)
838{
839 if (unlikely(PageSwapCache(page)))
840 return __page_file_mapping(page);
841
842 return page->mapping;
843}
844
845static inline int PageAnon(struct page *page)
846{
847 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
848}
849
850/*
851 * Return the pagecache index of the passed page. Regular pagecache pages
852 * use ->index whereas swapcache pages use ->private
853 */
854static inline pgoff_t page_index(struct page *page)
855{
856 if (unlikely(PageSwapCache(page)))
857 return page_private(page);
858 return page->index;
859}
860
861extern pgoff_t __page_file_index(struct page *page);
862
863/*
864 * Return the file index of the page. Regular pagecache pages use ->index
865 * whereas swapcache pages use swp_offset(->private)
866 */
867static inline pgoff_t page_file_index(struct page *page)
868{
869 if (unlikely(PageSwapCache(page)))
870 return __page_file_index(page);
871
872 return page->index;
873}
874
875/*
876 * Return true if this page is mapped into pagetables.
877 */
878static inline int page_mapped(struct page *page)
879{
880 return atomic_read(&(page)->_mapcount) >= 0;
881}
882
883/*
884 * Different kinds of faults, as returned by handle_mm_fault().
885 * Used to decide whether a process gets delivered SIGBUS or
886 * just gets major/minor fault counters bumped up.
887 */
888
889#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
890
891#define VM_FAULT_OOM 0x0001
892#define VM_FAULT_SIGBUS 0x0002
893#define VM_FAULT_MAJOR 0x0004
894#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
895#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
896#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
897#define VM_FAULT_SIGSEGV 0x0040
898
899#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
900#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
901#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
902
903#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
904
905#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
906 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)
907
908/* Encode hstate index for a hwpoisoned large page */
909#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
910#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
911
912/*
913 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
914 */
915extern void pagefault_out_of_memory(void);
916
917#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
918
919/*
920 * Flags passed to show_mem() and show_free_areas() to suppress output in
921 * various contexts.
922 */
923#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
924#define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
925
926extern void show_free_areas(unsigned int flags);
927extern bool skip_free_areas_node(unsigned int flags, int nid);
928
929void shmem_set_file(struct vm_area_struct *vma, struct file *file);
930int shmem_zero_setup(struct vm_area_struct *);
931
932extern int can_do_mlock(void);
933extern int user_shm_lock(size_t, struct user_struct *);
934extern void user_shm_unlock(size_t, struct user_struct *);
935
936/*
937 * Parameter block passed down to zap_pte_range in exceptional cases.
938 */
939struct zap_details {
940 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
941 struct address_space *check_mapping; /* Check page->mapping if set */
942 pgoff_t first_index; /* Lowest page->index to unmap */
943 pgoff_t last_index; /* Highest page->index to unmap */
944};
945
946struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
947 pte_t pte);
948
949int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
950 unsigned long size);
951void zap_page_range(struct vm_area_struct *vma, unsigned long address,
952 unsigned long size, struct zap_details *);
953void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
954 unsigned long start, unsigned long end);
955
956/**
957 * mm_walk - callbacks for walk_page_range
958 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
959 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
960 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
961 * this handler is required to be able to handle
962 * pmd_trans_huge() pmds. They may simply choose to
963 * split_huge_page() instead of handling it explicitly.
964 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
965 * @pte_hole: if set, called for each hole at all levels
966 * @hugetlb_entry: if set, called for each hugetlb entry
967 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
968 * is used.
969 *
970 * (see walk_page_range for more details)
971 */
972struct mm_walk {
973 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
974 unsigned long next, struct mm_walk *walk);
975 int (*pud_entry)(pud_t *pud, unsigned long addr,
976 unsigned long next, struct mm_walk *walk);
977 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
978 unsigned long next, struct mm_walk *walk);
979 int (*pte_entry)(pte_t *pte, unsigned long addr,
980 unsigned long next, struct mm_walk *walk);
981 int (*pte_hole)(unsigned long addr, unsigned long next,
982 struct mm_walk *walk);
983 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
984 unsigned long addr, unsigned long next,
985 struct mm_walk *walk);
986 struct mm_struct *mm;
987 void *private;
988};
989
990int walk_page_range(unsigned long addr, unsigned long end,
991 struct mm_walk *walk);
992void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
993 unsigned long end, unsigned long floor, unsigned long ceiling);
994int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
995 struct vm_area_struct *vma);
996void unmap_mapping_range(struct address_space *mapping,
997 loff_t const holebegin, loff_t const holelen, int even_cows);
998int follow_pfn(struct vm_area_struct *vma, unsigned long address,
999 unsigned long *pfn);
1000int follow_phys(struct vm_area_struct *vma, unsigned long address,
1001 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1002int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1003 void *buf, int len, int write);
1004
1005static inline void unmap_shared_mapping_range(struct address_space *mapping,
1006 loff_t const holebegin, loff_t const holelen)
1007{
1008 unmap_mapping_range(mapping, holebegin, holelen, 0);
1009}
1010
1011extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1012extern void truncate_setsize(struct inode *inode, loff_t newsize);
1013void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1014void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1015int truncate_inode_page(struct address_space *mapping, struct page *page);
1016int generic_error_remove_page(struct address_space *mapping, struct page *page);
1017int invalidate_inode_page(struct page *page);
1018
1019#ifdef CONFIG_MMU
1020extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1021 unsigned long address, unsigned int flags);
1022extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1023 unsigned long address, unsigned int fault_flags);
1024#else
1025static inline int handle_mm_fault(struct mm_struct *mm,
1026 struct vm_area_struct *vma, unsigned long address,
1027 unsigned int flags)
1028{
1029 /* should never happen if there's no MMU */
1030 BUG();
1031 return VM_FAULT_SIGBUS;
1032}
1033static inline int fixup_user_fault(struct task_struct *tsk,
1034 struct mm_struct *mm, unsigned long address,
1035 unsigned int fault_flags)
1036{
1037 /* should never happen if there's no MMU */
1038 BUG();
1039 return -EFAULT;
1040}
1041#endif
1042
1043extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1044extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1045 void *buf, int len, int write);
1046
1047long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1048 unsigned long start, unsigned long nr_pages,
1049 unsigned int foll_flags, struct page **pages,
1050 struct vm_area_struct **vmas, int *nonblocking);
1051long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1052 unsigned long start, unsigned long nr_pages,
1053 int write, int force, struct page **pages,
1054 struct vm_area_struct **vmas);
1055int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1056 struct page **pages);
1057struct kvec;
1058int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1059 struct page **pages);
1060int get_kernel_page(unsigned long start, int write, struct page **pages);
1061struct page *get_dump_page(unsigned long addr);
1062
1063extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1064extern void do_invalidatepage(struct page *page, unsigned long offset);
1065
1066int __set_page_dirty_nobuffers(struct page *page);
1067int __set_page_dirty_no_writeback(struct page *page);
1068int redirty_page_for_writepage(struct writeback_control *wbc,
1069 struct page *page);
1070void account_page_dirtied(struct page *page, struct address_space *mapping);
1071void account_page_writeback(struct page *page);
1072int set_page_dirty(struct page *page);
1073int set_page_dirty_lock(struct page *page);
1074int clear_page_dirty_for_io(struct page *page);
1075
1076extern pid_t
1077vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1078
1079extern unsigned long move_page_tables(struct vm_area_struct *vma,
1080 unsigned long old_addr, struct vm_area_struct *new_vma,
1081 unsigned long new_addr, unsigned long len,
1082 bool need_rmap_locks);
1083extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1084 unsigned long end, pgprot_t newprot,
1085 int dirty_accountable, int prot_numa);
1086extern int mprotect_fixup(struct vm_area_struct *vma,
1087 struct vm_area_struct **pprev, unsigned long start,
1088 unsigned long end, unsigned long newflags);
1089
1090/*
1091 * doesn't attempt to fault and will return short.
1092 */
1093int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1094 struct page **pages);
1095/*
1096 * per-process(per-mm_struct) statistics.
1097 */
1098static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1099{
1100 long val = atomic_long_read(&mm->rss_stat.count[member]);
1101
1102#ifdef SPLIT_RSS_COUNTING
1103 /*
1104 * counter is updated in asynchronous manner and may go to minus.
1105 * But it's never be expected number for users.
1106 */
1107 if (val < 0)
1108 val = 0;
1109#endif
1110 return (unsigned long)val;
1111}
1112
1113static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1114{
1115 atomic_long_add(value, &mm->rss_stat.count[member]);
1116}
1117
1118static inline void inc_mm_counter(struct mm_struct *mm, int member)
1119{
1120 atomic_long_inc(&mm->rss_stat.count[member]);
1121}
1122
1123static inline void dec_mm_counter(struct mm_struct *mm, int member)
1124{
1125 atomic_long_dec(&mm->rss_stat.count[member]);
1126}
1127
1128static inline unsigned long get_mm_rss(struct mm_struct *mm)
1129{
1130 return get_mm_counter(mm, MM_FILEPAGES) +
1131 get_mm_counter(mm, MM_ANONPAGES);
1132}
1133
1134static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1135{
1136 return max(mm->hiwater_rss, get_mm_rss(mm));
1137}
1138
1139static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1140{
1141 return max(mm->hiwater_vm, mm->total_vm);
1142}
1143
1144static inline void update_hiwater_rss(struct mm_struct *mm)
1145{
1146 unsigned long _rss = get_mm_rss(mm);
1147
1148 if ((mm)->hiwater_rss < _rss)
1149 (mm)->hiwater_rss = _rss;
1150}
1151
1152static inline void update_hiwater_vm(struct mm_struct *mm)
1153{
1154 if (mm->hiwater_vm < mm->total_vm)
1155 mm->hiwater_vm = mm->total_vm;
1156}
1157
1158static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1159 struct mm_struct *mm)
1160{
1161 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1162
1163 if (*maxrss < hiwater_rss)
1164 *maxrss = hiwater_rss;
1165}
1166
1167#if defined(SPLIT_RSS_COUNTING)
1168void sync_mm_rss(struct mm_struct *mm);
1169#else
1170static inline void sync_mm_rss(struct mm_struct *mm)
1171{
1172}
1173#endif
1174
1175int vma_wants_writenotify(struct vm_area_struct *vma);
1176
1177extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1178 spinlock_t **ptl);
1179static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1180 spinlock_t **ptl)
1181{
1182 pte_t *ptep;
1183 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1184 return ptep;
1185}
1186
1187#ifdef __PAGETABLE_PUD_FOLDED
1188static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1189 unsigned long address)
1190{
1191 return 0;
1192}
1193#else
1194int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1195#endif
1196
1197#ifdef __PAGETABLE_PMD_FOLDED
1198static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1199 unsigned long address)
1200{
1201 return 0;
1202}
1203#else
1204int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1205#endif
1206
1207int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1208 pmd_t *pmd, unsigned long address);
1209int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1210
1211/*
1212 * The following ifdef needed to get the 4level-fixup.h header to work.
1213 * Remove it when 4level-fixup.h has been removed.
1214 */
1215#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1216static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1217{
1218 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1219 NULL: pud_offset(pgd, address);
1220}
1221
1222static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1223{
1224 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1225 NULL: pmd_offset(pud, address);
1226}
1227#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1228
1229#if USE_SPLIT_PTLOCKS
1230/*
1231 * We tuck a spinlock to guard each pagetable page into its struct page,
1232 * at page->private, with BUILD_BUG_ON to make sure that this will not
1233 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1234 * When freeing, reset page->mapping so free_pages_check won't complain.
1235 */
1236#define __pte_lockptr(page) &((page)->ptl)
1237#define pte_lock_init(_page) do { \
1238 spin_lock_init(__pte_lockptr(_page)); \
1239} while (0)
1240#define pte_lock_deinit(page) ((page)->mapping = NULL)
1241#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1242#else /* !USE_SPLIT_PTLOCKS */
1243/*
1244 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1245 */
1246#define pte_lock_init(page) do {} while (0)
1247#define pte_lock_deinit(page) do {} while (0)
1248#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1249#endif /* USE_SPLIT_PTLOCKS */
1250
1251static inline void pgtable_page_ctor(struct page *page)
1252{
1253 pte_lock_init(page);
1254 inc_zone_page_state(page, NR_PAGETABLE);
1255}
1256
1257static inline void pgtable_page_dtor(struct page *page)
1258{
1259 pte_lock_deinit(page);
1260 dec_zone_page_state(page, NR_PAGETABLE);
1261}
1262
1263#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1264({ \
1265 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1266 pte_t *__pte = pte_offset_map(pmd, address); \
1267 *(ptlp) = __ptl; \
1268 spin_lock(__ptl); \
1269 __pte; \
1270})
1271
1272#define pte_unmap_unlock(pte, ptl) do { \
1273 spin_unlock(ptl); \
1274 pte_unmap(pte); \
1275} while (0)
1276
1277#define pte_alloc_map(mm, vma, pmd, address) \
1278 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1279 pmd, address))? \
1280 NULL: pte_offset_map(pmd, address))
1281
1282#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1283 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1284 pmd, address))? \
1285 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1286
1287#define pte_alloc_kernel(pmd, address) \
1288 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1289 NULL: pte_offset_kernel(pmd, address))
1290
1291extern void free_area_init(unsigned long * zones_size);
1292extern void free_area_init_node(int nid, unsigned long * zones_size,
1293 unsigned long zone_start_pfn, unsigned long *zholes_size);
1294extern void free_initmem(void);
1295
1296/*
1297 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1298 * into the buddy system. The freed pages will be poisoned with pattern
1299 * "poison" if it's non-zero.
1300 * Return pages freed into the buddy system.
1301 */
1302extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1303 int poison, char *s);
1304#ifdef CONFIG_HIGHMEM
1305/*
1306 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1307 * and totalram_pages.
1308 */
1309extern void free_highmem_page(struct page *page);
1310#endif
1311
1312static inline void adjust_managed_page_count(struct page *page, long count)
1313{
1314 totalram_pages += count;
1315}
1316
1317/* Free the reserved page into the buddy system, so it gets managed. */
1318static inline void __free_reserved_page(struct page *page)
1319{
1320 ClearPageReserved(page);
1321 init_page_count(page);
1322 __free_page(page);
1323}
1324
1325static inline void free_reserved_page(struct page *page)
1326{
1327 __free_reserved_page(page);
1328 adjust_managed_page_count(page, 1);
1329}
1330
1331static inline void mark_page_reserved(struct page *page)
1332{
1333 SetPageReserved(page);
1334 adjust_managed_page_count(page, -1);
1335}
1336
1337/*
1338 * Default method to free all the __init memory into the buddy system.
1339 * The freed pages will be poisoned with pattern "poison" if it is
1340 * non-zero. Return pages freed into the buddy system.
1341 */
1342static inline unsigned long free_initmem_default(int poison)
1343{
1344 extern char __init_begin[], __init_end[];
1345
1346 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1347 ((unsigned long)&__init_end) & PAGE_MASK,
1348 poison, "unused kernel");
1349}
1350
1351#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1352/*
1353 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1354 * zones, allocate the backing mem_map and account for memory holes in a more
1355 * architecture independent manner. This is a substitute for creating the
1356 * zone_sizes[] and zholes_size[] arrays and passing them to
1357 * free_area_init_node()
1358 *
1359 * An architecture is expected to register range of page frames backed by
1360 * physical memory with memblock_add[_node]() before calling
1361 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1362 * usage, an architecture is expected to do something like
1363 *
1364 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1365 * max_highmem_pfn};
1366 * for_each_valid_physical_page_range()
1367 * memblock_add_node(base, size, nid)
1368 * free_area_init_nodes(max_zone_pfns);
1369 *
1370 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1371 * registered physical page range. Similarly
1372 * sparse_memory_present_with_active_regions() calls memory_present() for
1373 * each range when SPARSEMEM is enabled.
1374 *
1375 * See mm/page_alloc.c for more information on each function exposed by
1376 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1377 */
1378extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1379unsigned long node_map_pfn_alignment(void);
1380unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1381 unsigned long end_pfn);
1382extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1383 unsigned long end_pfn);
1384extern void get_pfn_range_for_nid(unsigned int nid,
1385 unsigned long *start_pfn, unsigned long *end_pfn);
1386extern unsigned long find_min_pfn_with_active_regions(void);
1387extern void free_bootmem_with_active_regions(int nid,
1388 unsigned long max_low_pfn);
1389extern void sparse_memory_present_with_active_regions(int nid);
1390
1391#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1392
1393#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1394 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1395static inline int __early_pfn_to_nid(unsigned long pfn)
1396{
1397 return 0;
1398}
1399#else
1400/* please see mm/page_alloc.c */
1401extern int __meminit early_pfn_to_nid(unsigned long pfn);
1402#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1403/* there is a per-arch backend function. */
1404extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1405#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1406#endif
1407
1408extern void set_dma_reserve(unsigned long new_dma_reserve);
1409extern void memmap_init_zone(unsigned long, int, unsigned long,
1410 unsigned long, enum memmap_context);
1411extern void setup_per_zone_wmarks(void);
1412extern int __meminit init_per_zone_wmark_min(void);
1413extern void mem_init(void);
1414extern void __init mmap_init(void);
1415extern void show_mem(unsigned int flags);
1416extern void si_meminfo(struct sysinfo * val);
1417extern void si_meminfo_node(struct sysinfo *val, int nid);
1418
1419extern __printf(3, 4)
1420void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1421
1422extern void setup_per_cpu_pageset(void);
1423
1424extern void zone_pcp_update(struct zone *zone);
1425extern void zone_pcp_reset(struct zone *zone);
1426
1427/* page_alloc.c */
1428extern int min_free_kbytes;
1429
1430/* nommu.c */
1431extern atomic_long_t mmap_pages_allocated;
1432extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1433
1434/* interval_tree.c */
1435void vma_interval_tree_insert(struct vm_area_struct *node,
1436 struct rb_root *root);
1437void vma_interval_tree_insert_after(struct vm_area_struct *node,
1438 struct vm_area_struct *prev,
1439 struct rb_root *root);
1440void vma_interval_tree_remove(struct vm_area_struct *node,
1441 struct rb_root *root);
1442struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1443 unsigned long start, unsigned long last);
1444struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1445 unsigned long start, unsigned long last);
1446
1447#define vma_interval_tree_foreach(vma, root, start, last) \
1448 for (vma = vma_interval_tree_iter_first(root, start, last); \
1449 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1450
1451static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1452 struct list_head *list)
1453{
1454 list_add_tail(&vma->shared.nonlinear, list);
1455}
1456
1457void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1458 struct rb_root *root);
1459void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1460 struct rb_root *root);
1461struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1462 struct rb_root *root, unsigned long start, unsigned long last);
1463struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1464 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1465#ifdef CONFIG_DEBUG_VM_RB
1466void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1467#endif
1468
1469#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1470 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1471 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1472
1473/* mmap.c */
1474extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1475extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1476 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1477extern struct vm_area_struct *vma_merge(struct mm_struct *,
1478 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1479 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1480 struct mempolicy *, const char __user *);
1481extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1482extern int split_vma(struct mm_struct *,
1483 struct vm_area_struct *, unsigned long addr, int new_below);
1484extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1485extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1486 struct rb_node **, struct rb_node *);
1487extern void unlink_file_vma(struct vm_area_struct *);
1488extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1489 unsigned long addr, unsigned long len, pgoff_t pgoff,
1490 bool *need_rmap_locks);
1491extern void exit_mmap(struct mm_struct *);
1492
1493extern int mm_take_all_locks(struct mm_struct *mm);
1494extern void mm_drop_all_locks(struct mm_struct *mm);
1495
1496extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1497extern struct file *get_mm_exe_file(struct mm_struct *mm);
1498
1499extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1500extern int install_special_mapping(struct mm_struct *mm,
1501 unsigned long addr, unsigned long len,
1502 unsigned long flags, struct page **pages);
1503
1504extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1505
1506extern unsigned long mmap_region(struct file *file, unsigned long addr,
1507 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1508extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1509 unsigned long len, unsigned long prot, unsigned long flags,
1510 unsigned long pgoff, unsigned long *populate);
1511extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1512
1513#ifdef CONFIG_MMU
1514extern int __mm_populate(unsigned long addr, unsigned long len,
1515 int ignore_errors);
1516static inline void mm_populate(unsigned long addr, unsigned long len)
1517{
1518 /* Ignore errors */
1519 (void) __mm_populate(addr, len, 1);
1520}
1521#else
1522static inline void mm_populate(unsigned long addr, unsigned long len) {}
1523#endif
1524
1525/* These take the mm semaphore themselves */
1526extern unsigned long vm_brk(unsigned long, unsigned long);
1527extern int vm_munmap(unsigned long, size_t);
1528extern unsigned long vm_mmap(struct file *, unsigned long,
1529 unsigned long, unsigned long,
1530 unsigned long, unsigned long);
1531
1532struct vm_unmapped_area_info {
1533#define VM_UNMAPPED_AREA_TOPDOWN 1
1534 unsigned long flags;
1535 unsigned long length;
1536 unsigned long low_limit;
1537 unsigned long high_limit;
1538 unsigned long align_mask;
1539 unsigned long align_offset;
1540};
1541
1542extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1543extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1544
1545/*
1546 * Search for an unmapped address range.
1547 *
1548 * We are looking for a range that:
1549 * - does not intersect with any VMA;
1550 * - is contained within the [low_limit, high_limit) interval;
1551 * - is at least the desired size.
1552 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1553 */
1554static inline unsigned long
1555vm_unmapped_area(struct vm_unmapped_area_info *info)
1556{
1557 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1558 return unmapped_area(info);
1559 else
1560 return unmapped_area_topdown(info);
1561}
1562
1563/* truncate.c */
1564extern void truncate_inode_pages(struct address_space *, loff_t);
1565extern void truncate_inode_pages_range(struct address_space *,
1566 loff_t lstart, loff_t lend);
1567
1568/* generic vm_area_ops exported for stackable file systems */
1569extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1570extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1571
1572/* mm/page-writeback.c */
1573int write_one_page(struct page *page, int wait);
1574void task_dirty_inc(struct task_struct *tsk);
1575
1576/* readahead.c */
1577#define VM_MAX_READAHEAD 128 /* kbytes */
1578#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1579
1580int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1581 pgoff_t offset, unsigned long nr_to_read);
1582
1583void page_cache_sync_readahead(struct address_space *mapping,
1584 struct file_ra_state *ra,
1585 struct file *filp,
1586 pgoff_t offset,
1587 unsigned long size);
1588
1589void page_cache_async_readahead(struct address_space *mapping,
1590 struct file_ra_state *ra,
1591 struct file *filp,
1592 struct page *pg,
1593 pgoff_t offset,
1594 unsigned long size);
1595
1596unsigned long max_sane_readahead(unsigned long nr);
1597unsigned long ra_submit(struct file_ra_state *ra,
1598 struct address_space *mapping,
1599 struct file *filp);
1600
1601extern unsigned long stack_guard_gap;
1602/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1603extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1604
1605/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1606extern int expand_downwards(struct vm_area_struct *vma,
1607 unsigned long address);
1608#if VM_GROWSUP
1609extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1610#else
1611 #define expand_upwards(vma, address) (0)
1612#endif
1613
1614/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1615extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1616extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1617 struct vm_area_struct **pprev);
1618
1619/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1620 NULL if none. Assume start_addr < end_addr. */
1621static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1622{
1623 struct vm_area_struct * vma = find_vma(mm,start_addr);
1624
1625 if (vma && end_addr <= vma->vm_start)
1626 vma = NULL;
1627 return vma;
1628}
1629
1630static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
1631{
1632 unsigned long vm_start = vma->vm_start;
1633
1634 if (vma->vm_flags & VM_GROWSDOWN) {
1635 vm_start -= stack_guard_gap;
1636 if (vm_start > vma->vm_start)
1637 vm_start = 0;
1638 }
1639 return vm_start;
1640}
1641
1642static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
1643{
1644 unsigned long vm_end = vma->vm_end;
1645
1646 if (vma->vm_flags & VM_GROWSUP) {
1647 vm_end += stack_guard_gap;
1648 if (vm_end < vma->vm_end)
1649 vm_end = -PAGE_SIZE;
1650 }
1651 return vm_end;
1652}
1653
1654static inline unsigned long vma_pages(struct vm_area_struct *vma)
1655{
1656 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1657}
1658
1659/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1660static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1661 unsigned long vm_start, unsigned long vm_end)
1662{
1663 struct vm_area_struct *vma = find_vma(mm, vm_start);
1664
1665 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1666 vma = NULL;
1667
1668 return vma;
1669}
1670
1671#ifdef CONFIG_MMU
1672pgprot_t vm_get_page_prot(unsigned long vm_flags);
1673#else
1674static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1675{
1676 return __pgprot(0);
1677}
1678#endif
1679
1680#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1681unsigned long change_prot_numa(struct vm_area_struct *vma,
1682 unsigned long start, unsigned long end);
1683#endif
1684
1685struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1686int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1687 unsigned long pfn, unsigned long size, pgprot_t);
1688int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1689int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1690 unsigned long pfn);
1691int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1692 unsigned long pfn);
1693int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1694
1695
1696struct page *follow_page_mask(struct vm_area_struct *vma,
1697 unsigned long address, unsigned int foll_flags,
1698 unsigned int *page_mask);
1699
1700static inline struct page *follow_page(struct vm_area_struct *vma,
1701 unsigned long address, unsigned int foll_flags)
1702{
1703 unsigned int unused_page_mask;
1704 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1705}
1706
1707#define FOLL_WRITE 0x01 /* check pte is writable */
1708#define FOLL_TOUCH 0x02 /* mark page accessed */
1709#define FOLL_GET 0x04 /* do get_page on page */
1710#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1711#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1712#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1713 * and return without waiting upon it */
1714#define FOLL_MLOCK 0x40 /* mark page as mlocked */
1715#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1716#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1717#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1718#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1719#define FOLL_COW 0x4000 /* internal GUP flag */
1720
1721typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1722 void *data);
1723extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1724 unsigned long size, pte_fn_t fn, void *data);
1725
1726#ifdef CONFIG_PROC_FS
1727void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1728#else
1729static inline void vm_stat_account(struct mm_struct *mm,
1730 unsigned long flags, struct file *file, long pages)
1731{
1732 mm->total_vm += pages;
1733}
1734#endif /* CONFIG_PROC_FS */
1735
1736#ifdef CONFIG_DEBUG_PAGEALLOC
1737extern void kernel_map_pages(struct page *page, int numpages, int enable);
1738#ifdef CONFIG_HIBERNATION
1739extern bool kernel_page_present(struct page *page);
1740#endif /* CONFIG_HIBERNATION */
1741#else
1742static inline void
1743kernel_map_pages(struct page *page, int numpages, int enable) {}
1744#ifdef CONFIG_HIBERNATION
1745static inline bool kernel_page_present(struct page *page) { return true; }
1746#endif /* CONFIG_HIBERNATION */
1747#endif
1748
1749extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1750#ifdef __HAVE_ARCH_GATE_AREA
1751int in_gate_area_no_mm(unsigned long addr);
1752int in_gate_area(struct mm_struct *mm, unsigned long addr);
1753#else
1754int in_gate_area_no_mm(unsigned long addr);
1755#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1756#endif /* __HAVE_ARCH_GATE_AREA */
1757
1758#ifdef CONFIG_SYSCTL
1759extern int sysctl_drop_caches;
1760int drop_caches_sysctl_handler(struct ctl_table *, int,
1761 void __user *, size_t *, loff_t *);
1762#endif
1763
1764unsigned long shrink_slab(struct shrink_control *shrink,
1765 unsigned long nr_pages_scanned,
1766 unsigned long lru_pages);
1767void drop_pagecache(void);
1768
1769#ifndef CONFIG_MMU
1770#define randomize_va_space 0
1771#else
1772extern int randomize_va_space;
1773#endif
1774
1775const char * arch_vma_name(struct vm_area_struct *vma);
1776void print_vma_addr(char *prefix, unsigned long rip);
1777
1778void sparse_mem_maps_populate_node(struct page **map_map,
1779 unsigned long pnum_begin,
1780 unsigned long pnum_end,
1781 unsigned long map_count,
1782 int nodeid);
1783
1784struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1785pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1786pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1787pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1788pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1789void *vmemmap_alloc_block(unsigned long size, int node);
1790void *vmemmap_alloc_block_buf(unsigned long size, int node);
1791void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1792int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1793 int node);
1794int vmemmap_populate(unsigned long start, unsigned long end, int node);
1795void vmemmap_populate_print_last(void);
1796#ifdef CONFIG_MEMORY_HOTPLUG
1797void vmemmap_free(unsigned long start, unsigned long end);
1798#endif
1799void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1800 unsigned long size);
1801
1802enum mf_flags {
1803 MF_COUNT_INCREASED = 1 << 0,
1804 MF_ACTION_REQUIRED = 1 << 1,
1805 MF_MUST_KILL = 1 << 2,
1806};
1807extern int memory_failure(unsigned long pfn, int trapno, int flags);
1808extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1809extern int unpoison_memory(unsigned long pfn);
1810extern int sysctl_memory_failure_early_kill;
1811extern int sysctl_memory_failure_recovery;
1812extern void shake_page(struct page *p, int access);
1813extern atomic_long_t num_poisoned_pages;
1814extern int soft_offline_page(struct page *page, int flags);
1815
1816extern void dump_page(struct page *page);
1817
1818#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1819extern void clear_huge_page(struct page *page,
1820 unsigned long addr,
1821 unsigned int pages_per_huge_page);
1822extern void copy_user_huge_page(struct page *dst, struct page *src,
1823 unsigned long addr, struct vm_area_struct *vma,
1824 unsigned int pages_per_huge_page);
1825#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1826
1827#ifdef CONFIG_DEBUG_PAGEALLOC
1828extern unsigned int _debug_guardpage_minorder;
1829
1830static inline unsigned int debug_guardpage_minorder(void)
1831{
1832 return _debug_guardpage_minorder;
1833}
1834
1835static inline bool page_is_guard(struct page *page)
1836{
1837 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1838}
1839#else
1840static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1841static inline bool page_is_guard(struct page *page) { return false; }
1842#endif /* CONFIG_DEBUG_PAGEALLOC */
1843
1844#if MAX_NUMNODES > 1
1845void __init setup_nr_node_ids(void);
1846#else
1847static inline void setup_nr_node_ids(void) {}
1848#endif
1849
1850#endif /* __KERNEL__ */
1851#endif /* _LINUX_MM_H */