xfs: add size update tracepoint to IO completion
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_buf.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37#include "xfs_sb.h"
38#include "xfs_inum.h"
39#include "xfs_log.h"
40#include "xfs_ag.h"
41#include "xfs_mount.h"
42#include "xfs_trace.h"
43
44static kmem_zone_t *xfs_buf_zone;
45STATIC int xfsbufd(void *);
46STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
47
48static struct workqueue_struct *xfslogd_workqueue;
49struct workqueue_struct *xfsdatad_workqueue;
50struct workqueue_struct *xfsconvertd_workqueue;
51
52#ifdef XFS_BUF_LOCK_TRACKING
53# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
54# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
55# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
56#else
57# define XB_SET_OWNER(bp) do { } while (0)
58# define XB_CLEAR_OWNER(bp) do { } while (0)
59# define XB_GET_OWNER(bp) do { } while (0)
60#endif
61
62#define xb_to_gfp(flags) \
63 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
64 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
65
66#define xb_to_km(flags) \
67 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
68
69#define xfs_buf_allocate(flags) \
70 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
71#define xfs_buf_deallocate(bp) \
72 kmem_zone_free(xfs_buf_zone, (bp));
73
74static inline int
75xfs_buf_is_vmapped(
76 struct xfs_buf *bp)
77{
78 /*
79 * Return true if the buffer is vmapped.
80 *
81 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
82 * code is clever enough to know it doesn't have to map a single page,
83 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
84 */
85 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
86}
87
88static inline int
89xfs_buf_vmap_len(
90 struct xfs_buf *bp)
91{
92 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
93}
94
95/*
96 * xfs_buf_lru_add - add a buffer to the LRU.
97 *
98 * The LRU takes a new reference to the buffer so that it will only be freed
99 * once the shrinker takes the buffer off the LRU.
100 */
101STATIC void
102xfs_buf_lru_add(
103 struct xfs_buf *bp)
104{
105 struct xfs_buftarg *btp = bp->b_target;
106
107 spin_lock(&btp->bt_lru_lock);
108 if (list_empty(&bp->b_lru)) {
109 atomic_inc(&bp->b_hold);
110 list_add_tail(&bp->b_lru, &btp->bt_lru);
111 btp->bt_lru_nr++;
112 }
113 spin_unlock(&btp->bt_lru_lock);
114}
115
116/*
117 * xfs_buf_lru_del - remove a buffer from the LRU
118 *
119 * The unlocked check is safe here because it only occurs when there are not
120 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
121 * to optimise the shrinker removing the buffer from the LRU and calling
122 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
123 * bt_lru_lock.
124 */
125STATIC void
126xfs_buf_lru_del(
127 struct xfs_buf *bp)
128{
129 struct xfs_buftarg *btp = bp->b_target;
130
131 if (list_empty(&bp->b_lru))
132 return;
133
134 spin_lock(&btp->bt_lru_lock);
135 if (!list_empty(&bp->b_lru)) {
136 list_del_init(&bp->b_lru);
137 btp->bt_lru_nr--;
138 }
139 spin_unlock(&btp->bt_lru_lock);
140}
141
142/*
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
147 *
148 * This prevents build-up of stale buffers on the LRU.
149 */
150void
151xfs_buf_stale(
152 struct xfs_buf *bp)
153{
154 bp->b_flags |= XBF_STALE;
155 atomic_set(&(bp)->b_lru_ref, 0);
156 if (!list_empty(&bp->b_lru)) {
157 struct xfs_buftarg *btp = bp->b_target;
158
159 spin_lock(&btp->bt_lru_lock);
160 if (!list_empty(&bp->b_lru)) {
161 list_del_init(&bp->b_lru);
162 btp->bt_lru_nr--;
163 atomic_dec(&bp->b_hold);
164 }
165 spin_unlock(&btp->bt_lru_lock);
166 }
167 ASSERT(atomic_read(&bp->b_hold) >= 1);
168}
169
170STATIC void
171_xfs_buf_initialize(
172 xfs_buf_t *bp,
173 xfs_buftarg_t *target,
174 xfs_off_t range_base,
175 size_t range_length,
176 xfs_buf_flags_t flags)
177{
178 /*
179 * We don't want certain flags to appear in b_flags.
180 */
181 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
182
183 memset(bp, 0, sizeof(xfs_buf_t));
184 atomic_set(&bp->b_hold, 1);
185 atomic_set(&bp->b_lru_ref, 1);
186 init_completion(&bp->b_iowait);
187 INIT_LIST_HEAD(&bp->b_lru);
188 INIT_LIST_HEAD(&bp->b_list);
189 RB_CLEAR_NODE(&bp->b_rbnode);
190 sema_init(&bp->b_sema, 0); /* held, no waiters */
191 XB_SET_OWNER(bp);
192 bp->b_target = target;
193 bp->b_file_offset = range_base;
194 /*
195 * Set buffer_length and count_desired to the same value initially.
196 * I/O routines should use count_desired, which will be the same in
197 * most cases but may be reset (e.g. XFS recovery).
198 */
199 bp->b_buffer_length = bp->b_count_desired = range_length;
200 bp->b_flags = flags;
201 bp->b_bn = XFS_BUF_DADDR_NULL;
202 atomic_set(&bp->b_pin_count, 0);
203 init_waitqueue_head(&bp->b_waiters);
204
205 XFS_STATS_INC(xb_create);
206
207 trace_xfs_buf_init(bp, _RET_IP_);
208}
209
210/*
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
213 */
214STATIC int
215_xfs_buf_get_pages(
216 xfs_buf_t *bp,
217 int page_count,
218 xfs_buf_flags_t flags)
219{
220 /* Make sure that we have a page list */
221 if (bp->b_pages == NULL) {
222 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
223 bp->b_page_count = page_count;
224 if (page_count <= XB_PAGES) {
225 bp->b_pages = bp->b_page_array;
226 } else {
227 bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 page_count, xb_to_km(flags));
229 if (bp->b_pages == NULL)
230 return -ENOMEM;
231 }
232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233 }
234 return 0;
235}
236
237/*
238 * Frees b_pages if it was allocated.
239 */
240STATIC void
241_xfs_buf_free_pages(
242 xfs_buf_t *bp)
243{
244 if (bp->b_pages != bp->b_page_array) {
245 kmem_free(bp->b_pages);
246 bp->b_pages = NULL;
247 }
248}
249
250/*
251 * Releases the specified buffer.
252 *
253 * The modification state of any associated pages is left unchanged.
254 * The buffer most not be on any hash - use xfs_buf_rele instead for
255 * hashed and refcounted buffers
256 */
257void
258xfs_buf_free(
259 xfs_buf_t *bp)
260{
261 trace_xfs_buf_free(bp, _RET_IP_);
262
263 ASSERT(list_empty(&bp->b_lru));
264
265 if (bp->b_flags & _XBF_PAGES) {
266 uint i;
267
268 if (xfs_buf_is_vmapped(bp))
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
271
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
275 __free_page(page);
276 }
277 } else if (bp->b_flags & _XBF_KMEM)
278 kmem_free(bp->b_addr);
279 _xfs_buf_free_pages(bp);
280 xfs_buf_deallocate(bp);
281}
282
283/*
284 * Allocates all the pages for buffer in question and builds it's page list.
285 */
286STATIC int
287xfs_buf_allocate_memory(
288 xfs_buf_t *bp,
289 uint flags)
290{
291 size_t size = bp->b_count_desired;
292 size_t nbytes, offset;
293 gfp_t gfp_mask = xb_to_gfp(flags);
294 unsigned short page_count, i;
295 xfs_off_t end;
296 int error;
297
298 /*
299 * for buffers that are contained within a single page, just allocate
300 * the memory from the heap - there's no need for the complexity of
301 * page arrays to keep allocation down to order 0.
302 */
303 if (bp->b_buffer_length < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
310 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
311 PAGE_MASK) !=
312 ((unsigned long)bp->b_addr & PAGE_MASK)) {
313 /* b_addr spans two pages - use alloc_page instead */
314 kmem_free(bp->b_addr);
315 bp->b_addr = NULL;
316 goto use_alloc_page;
317 }
318 bp->b_offset = offset_in_page(bp->b_addr);
319 bp->b_pages = bp->b_page_array;
320 bp->b_pages[0] = virt_to_page(bp->b_addr);
321 bp->b_page_count = 1;
322 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
323 return 0;
324 }
325
326use_alloc_page:
327 end = bp->b_file_offset + bp->b_buffer_length;
328 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
329 error = _xfs_buf_get_pages(bp, page_count, flags);
330 if (unlikely(error))
331 return error;
332
333 offset = bp->b_offset;
334 bp->b_flags |= _XBF_PAGES;
335
336 for (i = 0; i < bp->b_page_count; i++) {
337 struct page *page;
338 uint retries = 0;
339retry:
340 page = alloc_page(gfp_mask);
341 if (unlikely(page == NULL)) {
342 if (flags & XBF_READ_AHEAD) {
343 bp->b_page_count = i;
344 error = ENOMEM;
345 goto out_free_pages;
346 }
347
348 /*
349 * This could deadlock.
350 *
351 * But until all the XFS lowlevel code is revamped to
352 * handle buffer allocation failures we can't do much.
353 */
354 if (!(++retries % 100))
355 xfs_err(NULL,
356 "possible memory allocation deadlock in %s (mode:0x%x)",
357 __func__, gfp_mask);
358
359 XFS_STATS_INC(xb_page_retries);
360 congestion_wait(BLK_RW_ASYNC, HZ/50);
361 goto retry;
362 }
363
364 XFS_STATS_INC(xb_page_found);
365
366 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
367 size -= nbytes;
368 bp->b_pages[i] = page;
369 offset = 0;
370 }
371 return 0;
372
373out_free_pages:
374 for (i = 0; i < bp->b_page_count; i++)
375 __free_page(bp->b_pages[i]);
376 return error;
377}
378
379/*
380 * Map buffer into kernel address-space if necessary.
381 */
382STATIC int
383_xfs_buf_map_pages(
384 xfs_buf_t *bp,
385 uint flags)
386{
387 ASSERT(bp->b_flags & _XBF_PAGES);
388 if (bp->b_page_count == 1) {
389 /* A single page buffer is always mappable */
390 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
391 bp->b_flags |= XBF_MAPPED;
392 } else if (flags & XBF_MAPPED) {
393 int retried = 0;
394
395 do {
396 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
397 -1, PAGE_KERNEL);
398 if (bp->b_addr)
399 break;
400 vm_unmap_aliases();
401 } while (retried++ <= 1);
402
403 if (!bp->b_addr)
404 return -ENOMEM;
405 bp->b_addr += bp->b_offset;
406 bp->b_flags |= XBF_MAPPED;
407 }
408
409 return 0;
410}
411
412/*
413 * Finding and Reading Buffers
414 */
415
416/*
417 * Look up, and creates if absent, a lockable buffer for
418 * a given range of an inode. The buffer is returned
419 * locked. If other overlapping buffers exist, they are
420 * released before the new buffer is created and locked,
421 * which may imply that this call will block until those buffers
422 * are unlocked. No I/O is implied by this call.
423 */
424xfs_buf_t *
425_xfs_buf_find(
426 xfs_buftarg_t *btp, /* block device target */
427 xfs_off_t ioff, /* starting offset of range */
428 size_t isize, /* length of range */
429 xfs_buf_flags_t flags,
430 xfs_buf_t *new_bp)
431{
432 xfs_off_t range_base;
433 size_t range_length;
434 struct xfs_perag *pag;
435 struct rb_node **rbp;
436 struct rb_node *parent;
437 xfs_buf_t *bp;
438
439 range_base = (ioff << BBSHIFT);
440 range_length = (isize << BBSHIFT);
441
442 /* Check for IOs smaller than the sector size / not sector aligned */
443 ASSERT(!(range_length < (1 << btp->bt_sshift)));
444 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
445
446 /* get tree root */
447 pag = xfs_perag_get(btp->bt_mount,
448 xfs_daddr_to_agno(btp->bt_mount, ioff));
449
450 /* walk tree */
451 spin_lock(&pag->pag_buf_lock);
452 rbp = &pag->pag_buf_tree.rb_node;
453 parent = NULL;
454 bp = NULL;
455 while (*rbp) {
456 parent = *rbp;
457 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
458
459 if (range_base < bp->b_file_offset)
460 rbp = &(*rbp)->rb_left;
461 else if (range_base > bp->b_file_offset)
462 rbp = &(*rbp)->rb_right;
463 else {
464 /*
465 * found a block offset match. If the range doesn't
466 * match, the only way this is allowed is if the buffer
467 * in the cache is stale and the transaction that made
468 * it stale has not yet committed. i.e. we are
469 * reallocating a busy extent. Skip this buffer and
470 * continue searching to the right for an exact match.
471 */
472 if (bp->b_buffer_length != range_length) {
473 ASSERT(bp->b_flags & XBF_STALE);
474 rbp = &(*rbp)->rb_right;
475 continue;
476 }
477 atomic_inc(&bp->b_hold);
478 goto found;
479 }
480 }
481
482 /* No match found */
483 if (new_bp) {
484 _xfs_buf_initialize(new_bp, btp, range_base,
485 range_length, flags);
486 rb_link_node(&new_bp->b_rbnode, parent, rbp);
487 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
488 /* the buffer keeps the perag reference until it is freed */
489 new_bp->b_pag = pag;
490 spin_unlock(&pag->pag_buf_lock);
491 } else {
492 XFS_STATS_INC(xb_miss_locked);
493 spin_unlock(&pag->pag_buf_lock);
494 xfs_perag_put(pag);
495 }
496 return new_bp;
497
498found:
499 spin_unlock(&pag->pag_buf_lock);
500 xfs_perag_put(pag);
501
502 if (!xfs_buf_trylock(bp)) {
503 if (flags & XBF_TRYLOCK) {
504 xfs_buf_rele(bp);
505 XFS_STATS_INC(xb_busy_locked);
506 return NULL;
507 }
508 xfs_buf_lock(bp);
509 XFS_STATS_INC(xb_get_locked_waited);
510 }
511
512 /*
513 * if the buffer is stale, clear all the external state associated with
514 * it. We need to keep flags such as how we allocated the buffer memory
515 * intact here.
516 */
517 if (bp->b_flags & XBF_STALE) {
518 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
519 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
520 }
521
522 trace_xfs_buf_find(bp, flags, _RET_IP_);
523 XFS_STATS_INC(xb_get_locked);
524 return bp;
525}
526
527/*
528 * Assembles a buffer covering the specified range.
529 * Storage in memory for all portions of the buffer will be allocated,
530 * although backing storage may not be.
531 */
532xfs_buf_t *
533xfs_buf_get(
534 xfs_buftarg_t *target,/* target for buffer */
535 xfs_off_t ioff, /* starting offset of range */
536 size_t isize, /* length of range */
537 xfs_buf_flags_t flags)
538{
539 xfs_buf_t *bp, *new_bp;
540 int error = 0;
541
542 new_bp = xfs_buf_allocate(flags);
543 if (unlikely(!new_bp))
544 return NULL;
545
546 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
547 if (bp == new_bp) {
548 error = xfs_buf_allocate_memory(bp, flags);
549 if (error)
550 goto no_buffer;
551 } else {
552 xfs_buf_deallocate(new_bp);
553 if (unlikely(bp == NULL))
554 return NULL;
555 }
556
557 if (!(bp->b_flags & XBF_MAPPED)) {
558 error = _xfs_buf_map_pages(bp, flags);
559 if (unlikely(error)) {
560 xfs_warn(target->bt_mount,
561 "%s: failed to map pages\n", __func__);
562 goto no_buffer;
563 }
564 }
565
566 XFS_STATS_INC(xb_get);
567
568 /*
569 * Always fill in the block number now, the mapped cases can do
570 * their own overlay of this later.
571 */
572 bp->b_bn = ioff;
573 bp->b_count_desired = bp->b_buffer_length;
574
575 trace_xfs_buf_get(bp, flags, _RET_IP_);
576 return bp;
577
578 no_buffer:
579 if (flags & (XBF_LOCK | XBF_TRYLOCK))
580 xfs_buf_unlock(bp);
581 xfs_buf_rele(bp);
582 return NULL;
583}
584
585STATIC int
586_xfs_buf_read(
587 xfs_buf_t *bp,
588 xfs_buf_flags_t flags)
589{
590 int status;
591
592 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
593 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
594
595 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
596 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
597
598 status = xfs_buf_iorequest(bp);
599 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
600 return status;
601 return xfs_buf_iowait(bp);
602}
603
604xfs_buf_t *
605xfs_buf_read(
606 xfs_buftarg_t *target,
607 xfs_off_t ioff,
608 size_t isize,
609 xfs_buf_flags_t flags)
610{
611 xfs_buf_t *bp;
612
613 flags |= XBF_READ;
614
615 bp = xfs_buf_get(target, ioff, isize, flags);
616 if (bp) {
617 trace_xfs_buf_read(bp, flags, _RET_IP_);
618
619 if (!XFS_BUF_ISDONE(bp)) {
620 XFS_STATS_INC(xb_get_read);
621 _xfs_buf_read(bp, flags);
622 } else if (flags & XBF_ASYNC) {
623 /*
624 * Read ahead call which is already satisfied,
625 * drop the buffer
626 */
627 goto no_buffer;
628 } else {
629 /* We do not want read in the flags */
630 bp->b_flags &= ~XBF_READ;
631 }
632 }
633
634 return bp;
635
636 no_buffer:
637 if (flags & (XBF_LOCK | XBF_TRYLOCK))
638 xfs_buf_unlock(bp);
639 xfs_buf_rele(bp);
640 return NULL;
641}
642
643/*
644 * If we are not low on memory then do the readahead in a deadlock
645 * safe manner.
646 */
647void
648xfs_buf_readahead(
649 xfs_buftarg_t *target,
650 xfs_off_t ioff,
651 size_t isize)
652{
653 if (bdi_read_congested(target->bt_bdi))
654 return;
655
656 xfs_buf_read(target, ioff, isize,
657 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
658}
659
660/*
661 * Read an uncached buffer from disk. Allocates and returns a locked
662 * buffer containing the disk contents or nothing.
663 */
664struct xfs_buf *
665xfs_buf_read_uncached(
666 struct xfs_mount *mp,
667 struct xfs_buftarg *target,
668 xfs_daddr_t daddr,
669 size_t length,
670 int flags)
671{
672 xfs_buf_t *bp;
673 int error;
674
675 bp = xfs_buf_get_uncached(target, length, flags);
676 if (!bp)
677 return NULL;
678
679 /* set up the buffer for a read IO */
680 XFS_BUF_SET_ADDR(bp, daddr);
681 XFS_BUF_READ(bp);
682 XFS_BUF_BUSY(bp);
683
684 xfsbdstrat(mp, bp);
685 error = xfs_buf_iowait(bp);
686 if (error || bp->b_error) {
687 xfs_buf_relse(bp);
688 return NULL;
689 }
690 return bp;
691}
692
693xfs_buf_t *
694xfs_buf_get_empty(
695 size_t len,
696 xfs_buftarg_t *target)
697{
698 xfs_buf_t *bp;
699
700 bp = xfs_buf_allocate(0);
701 if (bp)
702 _xfs_buf_initialize(bp, target, 0, len, 0);
703 return bp;
704}
705
706/*
707 * Return a buffer allocated as an empty buffer and associated to external
708 * memory via xfs_buf_associate_memory() back to it's empty state.
709 */
710void
711xfs_buf_set_empty(
712 struct xfs_buf *bp,
713 size_t len)
714{
715 if (bp->b_pages)
716 _xfs_buf_free_pages(bp);
717
718 bp->b_pages = NULL;
719 bp->b_page_count = 0;
720 bp->b_addr = NULL;
721 bp->b_file_offset = 0;
722 bp->b_buffer_length = bp->b_count_desired = len;
723 bp->b_bn = XFS_BUF_DADDR_NULL;
724 bp->b_flags &= ~XBF_MAPPED;
725}
726
727static inline struct page *
728mem_to_page(
729 void *addr)
730{
731 if ((!is_vmalloc_addr(addr))) {
732 return virt_to_page(addr);
733 } else {
734 return vmalloc_to_page(addr);
735 }
736}
737
738int
739xfs_buf_associate_memory(
740 xfs_buf_t *bp,
741 void *mem,
742 size_t len)
743{
744 int rval;
745 int i = 0;
746 unsigned long pageaddr;
747 unsigned long offset;
748 size_t buflen;
749 int page_count;
750
751 pageaddr = (unsigned long)mem & PAGE_MASK;
752 offset = (unsigned long)mem - pageaddr;
753 buflen = PAGE_ALIGN(len + offset);
754 page_count = buflen >> PAGE_SHIFT;
755
756 /* Free any previous set of page pointers */
757 if (bp->b_pages)
758 _xfs_buf_free_pages(bp);
759
760 bp->b_pages = NULL;
761 bp->b_addr = mem;
762
763 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
764 if (rval)
765 return rval;
766
767 bp->b_offset = offset;
768
769 for (i = 0; i < bp->b_page_count; i++) {
770 bp->b_pages[i] = mem_to_page((void *)pageaddr);
771 pageaddr += PAGE_SIZE;
772 }
773
774 bp->b_count_desired = len;
775 bp->b_buffer_length = buflen;
776 bp->b_flags |= XBF_MAPPED;
777
778 return 0;
779}
780
781xfs_buf_t *
782xfs_buf_get_uncached(
783 struct xfs_buftarg *target,
784 size_t len,
785 int flags)
786{
787 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
788 int error, i;
789 xfs_buf_t *bp;
790
791 bp = xfs_buf_allocate(0);
792 if (unlikely(bp == NULL))
793 goto fail;
794 _xfs_buf_initialize(bp, target, 0, len, 0);
795
796 error = _xfs_buf_get_pages(bp, page_count, 0);
797 if (error)
798 goto fail_free_buf;
799
800 for (i = 0; i < page_count; i++) {
801 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
802 if (!bp->b_pages[i])
803 goto fail_free_mem;
804 }
805 bp->b_flags |= _XBF_PAGES;
806
807 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
808 if (unlikely(error)) {
809 xfs_warn(target->bt_mount,
810 "%s: failed to map pages\n", __func__);
811 goto fail_free_mem;
812 }
813
814 trace_xfs_buf_get_uncached(bp, _RET_IP_);
815 return bp;
816
817 fail_free_mem:
818 while (--i >= 0)
819 __free_page(bp->b_pages[i]);
820 _xfs_buf_free_pages(bp);
821 fail_free_buf:
822 xfs_buf_deallocate(bp);
823 fail:
824 return NULL;
825}
826
827/*
828 * Increment reference count on buffer, to hold the buffer concurrently
829 * with another thread which may release (free) the buffer asynchronously.
830 * Must hold the buffer already to call this function.
831 */
832void
833xfs_buf_hold(
834 xfs_buf_t *bp)
835{
836 trace_xfs_buf_hold(bp, _RET_IP_);
837 atomic_inc(&bp->b_hold);
838}
839
840/*
841 * Releases a hold on the specified buffer. If the
842 * the hold count is 1, calls xfs_buf_free.
843 */
844void
845xfs_buf_rele(
846 xfs_buf_t *bp)
847{
848 struct xfs_perag *pag = bp->b_pag;
849
850 trace_xfs_buf_rele(bp, _RET_IP_);
851
852 if (!pag) {
853 ASSERT(list_empty(&bp->b_lru));
854 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
855 if (atomic_dec_and_test(&bp->b_hold))
856 xfs_buf_free(bp);
857 return;
858 }
859
860 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
861
862 ASSERT(atomic_read(&bp->b_hold) > 0);
863 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
864 if (!(bp->b_flags & XBF_STALE) &&
865 atomic_read(&bp->b_lru_ref)) {
866 xfs_buf_lru_add(bp);
867 spin_unlock(&pag->pag_buf_lock);
868 } else {
869 xfs_buf_lru_del(bp);
870 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
871 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
872 spin_unlock(&pag->pag_buf_lock);
873 xfs_perag_put(pag);
874 xfs_buf_free(bp);
875 }
876 }
877}
878
879
880/*
881 * Lock a buffer object, if it is not already locked.
882 *
883 * If we come across a stale, pinned, locked buffer, we know that we are
884 * being asked to lock a buffer that has been reallocated. Because it is
885 * pinned, we know that the log has not been pushed to disk and hence it
886 * will still be locked. Rather than continuing to have trylock attempts
887 * fail until someone else pushes the log, push it ourselves before
888 * returning. This means that the xfsaild will not get stuck trying
889 * to push on stale inode buffers.
890 */
891int
892xfs_buf_trylock(
893 struct xfs_buf *bp)
894{
895 int locked;
896
897 locked = down_trylock(&bp->b_sema) == 0;
898 if (locked)
899 XB_SET_OWNER(bp);
900 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
901 xfs_log_force(bp->b_target->bt_mount, 0);
902
903 trace_xfs_buf_trylock(bp, _RET_IP_);
904 return locked;
905}
906
907/*
908 * Lock a buffer object.
909 *
910 * If we come across a stale, pinned, locked buffer, we know that we
911 * are being asked to lock a buffer that has been reallocated. Because
912 * it is pinned, we know that the log has not been pushed to disk and
913 * hence it will still be locked. Rather than sleeping until someone
914 * else pushes the log, push it ourselves before trying to get the lock.
915 */
916void
917xfs_buf_lock(
918 struct xfs_buf *bp)
919{
920 trace_xfs_buf_lock(bp, _RET_IP_);
921
922 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
923 xfs_log_force(bp->b_target->bt_mount, 0);
924 down(&bp->b_sema);
925 XB_SET_OWNER(bp);
926
927 trace_xfs_buf_lock_done(bp, _RET_IP_);
928}
929
930/*
931 * Releases the lock on the buffer object.
932 * If the buffer is marked delwri but is not queued, do so before we
933 * unlock the buffer as we need to set flags correctly. We also need to
934 * take a reference for the delwri queue because the unlocker is going to
935 * drop their's and they don't know we just queued it.
936 */
937void
938xfs_buf_unlock(
939 struct xfs_buf *bp)
940{
941 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
942 atomic_inc(&bp->b_hold);
943 bp->b_flags |= XBF_ASYNC;
944 xfs_buf_delwri_queue(bp, 0);
945 }
946
947 XB_CLEAR_OWNER(bp);
948 up(&bp->b_sema);
949
950 trace_xfs_buf_unlock(bp, _RET_IP_);
951}
952
953STATIC void
954xfs_buf_wait_unpin(
955 xfs_buf_t *bp)
956{
957 DECLARE_WAITQUEUE (wait, current);
958
959 if (atomic_read(&bp->b_pin_count) == 0)
960 return;
961
962 add_wait_queue(&bp->b_waiters, &wait);
963 for (;;) {
964 set_current_state(TASK_UNINTERRUPTIBLE);
965 if (atomic_read(&bp->b_pin_count) == 0)
966 break;
967 io_schedule();
968 }
969 remove_wait_queue(&bp->b_waiters, &wait);
970 set_current_state(TASK_RUNNING);
971}
972
973/*
974 * Buffer Utility Routines
975 */
976
977STATIC void
978xfs_buf_iodone_work(
979 struct work_struct *work)
980{
981 xfs_buf_t *bp =
982 container_of(work, xfs_buf_t, b_iodone_work);
983
984 if (bp->b_iodone)
985 (*(bp->b_iodone))(bp);
986 else if (bp->b_flags & XBF_ASYNC)
987 xfs_buf_relse(bp);
988}
989
990void
991xfs_buf_ioend(
992 xfs_buf_t *bp,
993 int schedule)
994{
995 trace_xfs_buf_iodone(bp, _RET_IP_);
996
997 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
998 if (bp->b_error == 0)
999 bp->b_flags |= XBF_DONE;
1000
1001 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1002 if (schedule) {
1003 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1004 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1005 } else {
1006 xfs_buf_iodone_work(&bp->b_iodone_work);
1007 }
1008 } else {
1009 complete(&bp->b_iowait);
1010 }
1011}
1012
1013void
1014xfs_buf_ioerror(
1015 xfs_buf_t *bp,
1016 int error)
1017{
1018 ASSERT(error >= 0 && error <= 0xffff);
1019 bp->b_error = (unsigned short)error;
1020 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1021}
1022
1023int
1024xfs_bwrite(
1025 struct xfs_mount *mp,
1026 struct xfs_buf *bp)
1027{
1028 int error;
1029
1030 bp->b_flags |= XBF_WRITE;
1031 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1032
1033 xfs_buf_delwri_dequeue(bp);
1034 xfs_bdstrat_cb(bp);
1035
1036 error = xfs_buf_iowait(bp);
1037 if (error)
1038 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1039 xfs_buf_relse(bp);
1040 return error;
1041}
1042
1043void
1044xfs_bdwrite(
1045 void *mp,
1046 struct xfs_buf *bp)
1047{
1048 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1049
1050 bp->b_flags &= ~XBF_READ;
1051 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1052
1053 xfs_buf_delwri_queue(bp, 1);
1054}
1055
1056/*
1057 * Called when we want to stop a buffer from getting written or read.
1058 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1059 * so that the proper iodone callbacks get called.
1060 */
1061STATIC int
1062xfs_bioerror(
1063 xfs_buf_t *bp)
1064{
1065#ifdef XFSERRORDEBUG
1066 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1067#endif
1068
1069 /*
1070 * No need to wait until the buffer is unpinned, we aren't flushing it.
1071 */
1072 XFS_BUF_ERROR(bp, EIO);
1073
1074 /*
1075 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1076 */
1077 XFS_BUF_UNREAD(bp);
1078 XFS_BUF_UNDELAYWRITE(bp);
1079 XFS_BUF_UNDONE(bp);
1080 XFS_BUF_STALE(bp);
1081
1082 xfs_buf_ioend(bp, 0);
1083
1084 return EIO;
1085}
1086
1087/*
1088 * Same as xfs_bioerror, except that we are releasing the buffer
1089 * here ourselves, and avoiding the xfs_buf_ioend call.
1090 * This is meant for userdata errors; metadata bufs come with
1091 * iodone functions attached, so that we can track down errors.
1092 */
1093STATIC int
1094xfs_bioerror_relse(
1095 struct xfs_buf *bp)
1096{
1097 int64_t fl = XFS_BUF_BFLAGS(bp);
1098 /*
1099 * No need to wait until the buffer is unpinned.
1100 * We aren't flushing it.
1101 *
1102 * chunkhold expects B_DONE to be set, whether
1103 * we actually finish the I/O or not. We don't want to
1104 * change that interface.
1105 */
1106 XFS_BUF_UNREAD(bp);
1107 XFS_BUF_UNDELAYWRITE(bp);
1108 XFS_BUF_DONE(bp);
1109 XFS_BUF_STALE(bp);
1110 bp->b_iodone = NULL;
1111 if (!(fl & XBF_ASYNC)) {
1112 /*
1113 * Mark b_error and B_ERROR _both_.
1114 * Lot's of chunkcache code assumes that.
1115 * There's no reason to mark error for
1116 * ASYNC buffers.
1117 */
1118 XFS_BUF_ERROR(bp, EIO);
1119 XFS_BUF_FINISH_IOWAIT(bp);
1120 } else {
1121 xfs_buf_relse(bp);
1122 }
1123
1124 return EIO;
1125}
1126
1127
1128/*
1129 * All xfs metadata buffers except log state machine buffers
1130 * get this attached as their b_bdstrat callback function.
1131 * This is so that we can catch a buffer
1132 * after prematurely unpinning it to forcibly shutdown the filesystem.
1133 */
1134int
1135xfs_bdstrat_cb(
1136 struct xfs_buf *bp)
1137{
1138 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1139 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1140 /*
1141 * Metadata write that didn't get logged but
1142 * written delayed anyway. These aren't associated
1143 * with a transaction, and can be ignored.
1144 */
1145 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1146 return xfs_bioerror_relse(bp);
1147 else
1148 return xfs_bioerror(bp);
1149 }
1150
1151 xfs_buf_iorequest(bp);
1152 return 0;
1153}
1154
1155/*
1156 * Wrapper around bdstrat so that we can stop data from going to disk in case
1157 * we are shutting down the filesystem. Typically user data goes thru this
1158 * path; one of the exceptions is the superblock.
1159 */
1160void
1161xfsbdstrat(
1162 struct xfs_mount *mp,
1163 struct xfs_buf *bp)
1164{
1165 if (XFS_FORCED_SHUTDOWN(mp)) {
1166 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1167 xfs_bioerror_relse(bp);
1168 return;
1169 }
1170
1171 xfs_buf_iorequest(bp);
1172}
1173
1174STATIC void
1175_xfs_buf_ioend(
1176 xfs_buf_t *bp,
1177 int schedule)
1178{
1179 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1180 xfs_buf_ioend(bp, schedule);
1181}
1182
1183STATIC void
1184xfs_buf_bio_end_io(
1185 struct bio *bio,
1186 int error)
1187{
1188 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1189
1190 xfs_buf_ioerror(bp, -error);
1191
1192 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1193 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1194
1195 _xfs_buf_ioend(bp, 1);
1196 bio_put(bio);
1197}
1198
1199STATIC void
1200_xfs_buf_ioapply(
1201 xfs_buf_t *bp)
1202{
1203 int rw, map_i, total_nr_pages, nr_pages;
1204 struct bio *bio;
1205 int offset = bp->b_offset;
1206 int size = bp->b_count_desired;
1207 sector_t sector = bp->b_bn;
1208
1209 total_nr_pages = bp->b_page_count;
1210 map_i = 0;
1211
1212 if (bp->b_flags & XBF_WRITE) {
1213 if (bp->b_flags & XBF_SYNCIO)
1214 rw = WRITE_SYNC;
1215 else
1216 rw = WRITE;
1217 if (bp->b_flags & XBF_FUA)
1218 rw |= REQ_FUA;
1219 if (bp->b_flags & XBF_FLUSH)
1220 rw |= REQ_FLUSH;
1221 } else if (bp->b_flags & XBF_READ_AHEAD) {
1222 rw = READA;
1223 } else {
1224 rw = READ;
1225 }
1226
1227next_chunk:
1228 atomic_inc(&bp->b_io_remaining);
1229 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1230 if (nr_pages > total_nr_pages)
1231 nr_pages = total_nr_pages;
1232
1233 bio = bio_alloc(GFP_NOIO, nr_pages);
1234 bio->bi_bdev = bp->b_target->bt_bdev;
1235 bio->bi_sector = sector;
1236 bio->bi_end_io = xfs_buf_bio_end_io;
1237 bio->bi_private = bp;
1238
1239
1240 for (; size && nr_pages; nr_pages--, map_i++) {
1241 int rbytes, nbytes = PAGE_SIZE - offset;
1242
1243 if (nbytes > size)
1244 nbytes = size;
1245
1246 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1247 if (rbytes < nbytes)
1248 break;
1249
1250 offset = 0;
1251 sector += nbytes >> BBSHIFT;
1252 size -= nbytes;
1253 total_nr_pages--;
1254 }
1255
1256 if (likely(bio->bi_size)) {
1257 if (xfs_buf_is_vmapped(bp)) {
1258 flush_kernel_vmap_range(bp->b_addr,
1259 xfs_buf_vmap_len(bp));
1260 }
1261 submit_bio(rw, bio);
1262 if (size)
1263 goto next_chunk;
1264 } else {
1265 xfs_buf_ioerror(bp, EIO);
1266 bio_put(bio);
1267 }
1268}
1269
1270int
1271xfs_buf_iorequest(
1272 xfs_buf_t *bp)
1273{
1274 trace_xfs_buf_iorequest(bp, _RET_IP_);
1275
1276 if (bp->b_flags & XBF_DELWRI) {
1277 xfs_buf_delwri_queue(bp, 1);
1278 return 0;
1279 }
1280
1281 if (bp->b_flags & XBF_WRITE) {
1282 xfs_buf_wait_unpin(bp);
1283 }
1284
1285 xfs_buf_hold(bp);
1286
1287 /* Set the count to 1 initially, this will stop an I/O
1288 * completion callout which happens before we have started
1289 * all the I/O from calling xfs_buf_ioend too early.
1290 */
1291 atomic_set(&bp->b_io_remaining, 1);
1292 _xfs_buf_ioapply(bp);
1293 _xfs_buf_ioend(bp, 0);
1294
1295 xfs_buf_rele(bp);
1296 return 0;
1297}
1298
1299/*
1300 * Waits for I/O to complete on the buffer supplied.
1301 * It returns immediately if no I/O is pending.
1302 * It returns the I/O error code, if any, or 0 if there was no error.
1303 */
1304int
1305xfs_buf_iowait(
1306 xfs_buf_t *bp)
1307{
1308 trace_xfs_buf_iowait(bp, _RET_IP_);
1309
1310 wait_for_completion(&bp->b_iowait);
1311
1312 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1313 return bp->b_error;
1314}
1315
1316xfs_caddr_t
1317xfs_buf_offset(
1318 xfs_buf_t *bp,
1319 size_t offset)
1320{
1321 struct page *page;
1322
1323 if (bp->b_flags & XBF_MAPPED)
1324 return XFS_BUF_PTR(bp) + offset;
1325
1326 offset += bp->b_offset;
1327 page = bp->b_pages[offset >> PAGE_SHIFT];
1328 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1329}
1330
1331/*
1332 * Move data into or out of a buffer.
1333 */
1334void
1335xfs_buf_iomove(
1336 xfs_buf_t *bp, /* buffer to process */
1337 size_t boff, /* starting buffer offset */
1338 size_t bsize, /* length to copy */
1339 void *data, /* data address */
1340 xfs_buf_rw_t mode) /* read/write/zero flag */
1341{
1342 size_t bend, cpoff, csize;
1343 struct page *page;
1344
1345 bend = boff + bsize;
1346 while (boff < bend) {
1347 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1348 cpoff = xfs_buf_poff(boff + bp->b_offset);
1349 csize = min_t(size_t,
1350 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1351
1352 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1353
1354 switch (mode) {
1355 case XBRW_ZERO:
1356 memset(page_address(page) + cpoff, 0, csize);
1357 break;
1358 case XBRW_READ:
1359 memcpy(data, page_address(page) + cpoff, csize);
1360 break;
1361 case XBRW_WRITE:
1362 memcpy(page_address(page) + cpoff, data, csize);
1363 }
1364
1365 boff += csize;
1366 data += csize;
1367 }
1368}
1369
1370/*
1371 * Handling of buffer targets (buftargs).
1372 */
1373
1374/*
1375 * Wait for any bufs with callbacks that have been submitted but have not yet
1376 * returned. These buffers will have an elevated hold count, so wait on those
1377 * while freeing all the buffers only held by the LRU.
1378 */
1379void
1380xfs_wait_buftarg(
1381 struct xfs_buftarg *btp)
1382{
1383 struct xfs_buf *bp;
1384
1385restart:
1386 spin_lock(&btp->bt_lru_lock);
1387 while (!list_empty(&btp->bt_lru)) {
1388 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1389 if (atomic_read(&bp->b_hold) > 1) {
1390 spin_unlock(&btp->bt_lru_lock);
1391 delay(100);
1392 goto restart;
1393 }
1394 /*
1395 * clear the LRU reference count so the bufer doesn't get
1396 * ignored in xfs_buf_rele().
1397 */
1398 atomic_set(&bp->b_lru_ref, 0);
1399 spin_unlock(&btp->bt_lru_lock);
1400 xfs_buf_rele(bp);
1401 spin_lock(&btp->bt_lru_lock);
1402 }
1403 spin_unlock(&btp->bt_lru_lock);
1404}
1405
1406int
1407xfs_buftarg_shrink(
1408 struct shrinker *shrink,
1409 struct shrink_control *sc)
1410{
1411 struct xfs_buftarg *btp = container_of(shrink,
1412 struct xfs_buftarg, bt_shrinker);
1413 struct xfs_buf *bp;
1414 int nr_to_scan = sc->nr_to_scan;
1415 LIST_HEAD(dispose);
1416
1417 if (!nr_to_scan)
1418 return btp->bt_lru_nr;
1419
1420 spin_lock(&btp->bt_lru_lock);
1421 while (!list_empty(&btp->bt_lru)) {
1422 if (nr_to_scan-- <= 0)
1423 break;
1424
1425 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1426
1427 /*
1428 * Decrement the b_lru_ref count unless the value is already
1429 * zero. If the value is already zero, we need to reclaim the
1430 * buffer, otherwise it gets another trip through the LRU.
1431 */
1432 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1433 list_move_tail(&bp->b_lru, &btp->bt_lru);
1434 continue;
1435 }
1436
1437 /*
1438 * remove the buffer from the LRU now to avoid needing another
1439 * lock round trip inside xfs_buf_rele().
1440 */
1441 list_move(&bp->b_lru, &dispose);
1442 btp->bt_lru_nr--;
1443 }
1444 spin_unlock(&btp->bt_lru_lock);
1445
1446 while (!list_empty(&dispose)) {
1447 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1448 list_del_init(&bp->b_lru);
1449 xfs_buf_rele(bp);
1450 }
1451
1452 return btp->bt_lru_nr;
1453}
1454
1455void
1456xfs_free_buftarg(
1457 struct xfs_mount *mp,
1458 struct xfs_buftarg *btp)
1459{
1460 unregister_shrinker(&btp->bt_shrinker);
1461
1462 xfs_flush_buftarg(btp, 1);
1463 if (mp->m_flags & XFS_MOUNT_BARRIER)
1464 xfs_blkdev_issue_flush(btp);
1465
1466 kthread_stop(btp->bt_task);
1467 kmem_free(btp);
1468}
1469
1470STATIC int
1471xfs_setsize_buftarg_flags(
1472 xfs_buftarg_t *btp,
1473 unsigned int blocksize,
1474 unsigned int sectorsize,
1475 int verbose)
1476{
1477 btp->bt_bsize = blocksize;
1478 btp->bt_sshift = ffs(sectorsize) - 1;
1479 btp->bt_smask = sectorsize - 1;
1480
1481 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1482 xfs_warn(btp->bt_mount,
1483 "Cannot set_blocksize to %u on device %s\n",
1484 sectorsize, XFS_BUFTARG_NAME(btp));
1485 return EINVAL;
1486 }
1487
1488 return 0;
1489}
1490
1491/*
1492 * When allocating the initial buffer target we have not yet
1493 * read in the superblock, so don't know what sized sectors
1494 * are being used is at this early stage. Play safe.
1495 */
1496STATIC int
1497xfs_setsize_buftarg_early(
1498 xfs_buftarg_t *btp,
1499 struct block_device *bdev)
1500{
1501 return xfs_setsize_buftarg_flags(btp,
1502 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1503}
1504
1505int
1506xfs_setsize_buftarg(
1507 xfs_buftarg_t *btp,
1508 unsigned int blocksize,
1509 unsigned int sectorsize)
1510{
1511 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1512}
1513
1514STATIC int
1515xfs_alloc_delwrite_queue(
1516 xfs_buftarg_t *btp,
1517 const char *fsname)
1518{
1519 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1520 spin_lock_init(&btp->bt_delwrite_lock);
1521 btp->bt_flags = 0;
1522 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1523 if (IS_ERR(btp->bt_task))
1524 return PTR_ERR(btp->bt_task);
1525 return 0;
1526}
1527
1528xfs_buftarg_t *
1529xfs_alloc_buftarg(
1530 struct xfs_mount *mp,
1531 struct block_device *bdev,
1532 int external,
1533 const char *fsname)
1534{
1535 xfs_buftarg_t *btp;
1536
1537 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1538
1539 btp->bt_mount = mp;
1540 btp->bt_dev = bdev->bd_dev;
1541 btp->bt_bdev = bdev;
1542 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1543 if (!btp->bt_bdi)
1544 goto error;
1545
1546 INIT_LIST_HEAD(&btp->bt_lru);
1547 spin_lock_init(&btp->bt_lru_lock);
1548 if (xfs_setsize_buftarg_early(btp, bdev))
1549 goto error;
1550 if (xfs_alloc_delwrite_queue(btp, fsname))
1551 goto error;
1552 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1553 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1554 register_shrinker(&btp->bt_shrinker);
1555 return btp;
1556
1557error:
1558 kmem_free(btp);
1559 return NULL;
1560}
1561
1562
1563/*
1564 * Delayed write buffer handling
1565 */
1566STATIC void
1567xfs_buf_delwri_queue(
1568 xfs_buf_t *bp,
1569 int unlock)
1570{
1571 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1572 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1573
1574 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1575
1576 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1577
1578 spin_lock(dwlk);
1579 /* If already in the queue, dequeue and place at tail */
1580 if (!list_empty(&bp->b_list)) {
1581 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1582 if (unlock)
1583 atomic_dec(&bp->b_hold);
1584 list_del(&bp->b_list);
1585 }
1586
1587 if (list_empty(dwq)) {
1588 /* start xfsbufd as it is about to have something to do */
1589 wake_up_process(bp->b_target->bt_task);
1590 }
1591
1592 bp->b_flags |= _XBF_DELWRI_Q;
1593 list_add_tail(&bp->b_list, dwq);
1594 bp->b_queuetime = jiffies;
1595 spin_unlock(dwlk);
1596
1597 if (unlock)
1598 xfs_buf_unlock(bp);
1599}
1600
1601void
1602xfs_buf_delwri_dequeue(
1603 xfs_buf_t *bp)
1604{
1605 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1606 int dequeued = 0;
1607
1608 spin_lock(dwlk);
1609 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1610 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1611 list_del_init(&bp->b_list);
1612 dequeued = 1;
1613 }
1614 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1615 spin_unlock(dwlk);
1616
1617 if (dequeued)
1618 xfs_buf_rele(bp);
1619
1620 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1621}
1622
1623/*
1624 * If a delwri buffer needs to be pushed before it has aged out, then promote
1625 * it to the head of the delwri queue so that it will be flushed on the next
1626 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1627 * than the age currently needed to flush the buffer. Hence the next time the
1628 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1629 */
1630void
1631xfs_buf_delwri_promote(
1632 struct xfs_buf *bp)
1633{
1634 struct xfs_buftarg *btp = bp->b_target;
1635 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1636
1637 ASSERT(bp->b_flags & XBF_DELWRI);
1638 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1639
1640 /*
1641 * Check the buffer age before locking the delayed write queue as we
1642 * don't need to promote buffers that are already past the flush age.
1643 */
1644 if (bp->b_queuetime < jiffies - age)
1645 return;
1646 bp->b_queuetime = jiffies - age;
1647 spin_lock(&btp->bt_delwrite_lock);
1648 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1649 spin_unlock(&btp->bt_delwrite_lock);
1650}
1651
1652STATIC void
1653xfs_buf_runall_queues(
1654 struct workqueue_struct *queue)
1655{
1656 flush_workqueue(queue);
1657}
1658
1659/*
1660 * Move as many buffers as specified to the supplied list
1661 * idicating if we skipped any buffers to prevent deadlocks.
1662 */
1663STATIC int
1664xfs_buf_delwri_split(
1665 xfs_buftarg_t *target,
1666 struct list_head *list,
1667 unsigned long age)
1668{
1669 xfs_buf_t *bp, *n;
1670 struct list_head *dwq = &target->bt_delwrite_queue;
1671 spinlock_t *dwlk = &target->bt_delwrite_lock;
1672 int skipped = 0;
1673 int force;
1674
1675 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1676 INIT_LIST_HEAD(list);
1677 spin_lock(dwlk);
1678 list_for_each_entry_safe(bp, n, dwq, b_list) {
1679 ASSERT(bp->b_flags & XBF_DELWRI);
1680
1681 if (!XFS_BUF_ISPINNED(bp) && xfs_buf_trylock(bp)) {
1682 if (!force &&
1683 time_before(jiffies, bp->b_queuetime + age)) {
1684 xfs_buf_unlock(bp);
1685 break;
1686 }
1687
1688 bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1689 bp->b_flags |= XBF_WRITE;
1690 list_move_tail(&bp->b_list, list);
1691 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1692 } else
1693 skipped++;
1694 }
1695 spin_unlock(dwlk);
1696
1697 return skipped;
1698
1699}
1700
1701/*
1702 * Compare function is more complex than it needs to be because
1703 * the return value is only 32 bits and we are doing comparisons
1704 * on 64 bit values
1705 */
1706static int
1707xfs_buf_cmp(
1708 void *priv,
1709 struct list_head *a,
1710 struct list_head *b)
1711{
1712 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1713 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1714 xfs_daddr_t diff;
1715
1716 diff = ap->b_bn - bp->b_bn;
1717 if (diff < 0)
1718 return -1;
1719 if (diff > 0)
1720 return 1;
1721 return 0;
1722}
1723
1724STATIC int
1725xfsbufd(
1726 void *data)
1727{
1728 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1729
1730 current->flags |= PF_MEMALLOC;
1731
1732 set_freezable();
1733
1734 do {
1735 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1736 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1737 struct list_head tmp;
1738 struct blk_plug plug;
1739
1740 if (unlikely(freezing(current))) {
1741 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1742 refrigerator();
1743 } else {
1744 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1745 }
1746
1747 /* sleep for a long time if there is nothing to do. */
1748 if (list_empty(&target->bt_delwrite_queue))
1749 tout = MAX_SCHEDULE_TIMEOUT;
1750 schedule_timeout_interruptible(tout);
1751
1752 xfs_buf_delwri_split(target, &tmp, age);
1753 list_sort(NULL, &tmp, xfs_buf_cmp);
1754
1755 blk_start_plug(&plug);
1756 while (!list_empty(&tmp)) {
1757 struct xfs_buf *bp;
1758 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1759 list_del_init(&bp->b_list);
1760 xfs_bdstrat_cb(bp);
1761 }
1762 blk_finish_plug(&plug);
1763 } while (!kthread_should_stop());
1764
1765 return 0;
1766}
1767
1768/*
1769 * Go through all incore buffers, and release buffers if they belong to
1770 * the given device. This is used in filesystem error handling to
1771 * preserve the consistency of its metadata.
1772 */
1773int
1774xfs_flush_buftarg(
1775 xfs_buftarg_t *target,
1776 int wait)
1777{
1778 xfs_buf_t *bp;
1779 int pincount = 0;
1780 LIST_HEAD(tmp_list);
1781 LIST_HEAD(wait_list);
1782 struct blk_plug plug;
1783
1784 xfs_buf_runall_queues(xfsconvertd_workqueue);
1785 xfs_buf_runall_queues(xfsdatad_workqueue);
1786 xfs_buf_runall_queues(xfslogd_workqueue);
1787
1788 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1789 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1790
1791 /*
1792 * Dropped the delayed write list lock, now walk the temporary list.
1793 * All I/O is issued async and then if we need to wait for completion
1794 * we do that after issuing all the IO.
1795 */
1796 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1797
1798 blk_start_plug(&plug);
1799 while (!list_empty(&tmp_list)) {
1800 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1801 ASSERT(target == bp->b_target);
1802 list_del_init(&bp->b_list);
1803 if (wait) {
1804 bp->b_flags &= ~XBF_ASYNC;
1805 list_add(&bp->b_list, &wait_list);
1806 }
1807 xfs_bdstrat_cb(bp);
1808 }
1809 blk_finish_plug(&plug);
1810
1811 if (wait) {
1812 /* Wait for IO to complete. */
1813 while (!list_empty(&wait_list)) {
1814 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1815
1816 list_del_init(&bp->b_list);
1817 xfs_buf_iowait(bp);
1818 xfs_buf_relse(bp);
1819 }
1820 }
1821
1822 return pincount;
1823}
1824
1825int __init
1826xfs_buf_init(void)
1827{
1828 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1829 KM_ZONE_HWALIGN, NULL);
1830 if (!xfs_buf_zone)
1831 goto out;
1832
1833 xfslogd_workqueue = alloc_workqueue("xfslogd",
1834 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1835 if (!xfslogd_workqueue)
1836 goto out_free_buf_zone;
1837
1838 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1839 if (!xfsdatad_workqueue)
1840 goto out_destroy_xfslogd_workqueue;
1841
1842 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1843 WQ_MEM_RECLAIM, 1);
1844 if (!xfsconvertd_workqueue)
1845 goto out_destroy_xfsdatad_workqueue;
1846
1847 return 0;
1848
1849 out_destroy_xfsdatad_workqueue:
1850 destroy_workqueue(xfsdatad_workqueue);
1851 out_destroy_xfslogd_workqueue:
1852 destroy_workqueue(xfslogd_workqueue);
1853 out_free_buf_zone:
1854 kmem_zone_destroy(xfs_buf_zone);
1855 out:
1856 return -ENOMEM;
1857}
1858
1859void
1860xfs_buf_terminate(void)
1861{
1862 destroy_workqueue(xfsconvertd_workqueue);
1863 destroy_workqueue(xfsdatad_workqueue);
1864 destroy_workqueue(xfslogd_workqueue);
1865 kmem_zone_destroy(xfs_buf_zone);
1866}
1867
1868#ifdef CONFIG_KDB_MODULES
1869struct list_head *
1870xfs_get_buftarg_list(void)
1871{
1872 return &xfs_buftarg_list;
1873}
1874#endif