import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / async-thread.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kthread.h>
20#include <linux/slab.h>
21#include <linux/list.h>
22#include <linux/spinlock.h>
23#include <linux/freezer.h>
24#include "async-thread.h"
25
26#define WORK_QUEUED_BIT 0
27#define WORK_DONE_BIT 1
28#define WORK_ORDER_DONE_BIT 2
29#define WORK_HIGH_PRIO_BIT 3
30
31/*
32 * container for the kthread task pointer and the list of pending work
33 * One of these is allocated per thread.
34 */
35struct btrfs_worker_thread {
36 /* pool we belong to */
37 struct btrfs_workers *workers;
38
39 /* list of struct btrfs_work that are waiting for service */
40 struct list_head pending;
41 struct list_head prio_pending;
42
43 /* list of worker threads from struct btrfs_workers */
44 struct list_head worker_list;
45
46 /* kthread */
47 struct task_struct *task;
48
49 /* number of things on the pending list */
50 atomic_t num_pending;
51
52 /* reference counter for this struct */
53 atomic_t refs;
54
55 unsigned long sequence;
56
57 /* protects the pending list. */
58 spinlock_t lock;
59
60 /* set to non-zero when this thread is already awake and kicking */
61 int working;
62
63 /* are we currently idle */
64 int idle;
65};
66
67static int __btrfs_start_workers(struct btrfs_workers *workers);
68
69/*
70 * btrfs_start_workers uses kthread_run, which can block waiting for memory
71 * for a very long time. It will actually throttle on page writeback,
72 * and so it may not make progress until after our btrfs worker threads
73 * process all of the pending work structs in their queue
74 *
75 * This means we can't use btrfs_start_workers from inside a btrfs worker
76 * thread that is used as part of cleaning dirty memory, which pretty much
77 * involves all of the worker threads.
78 *
79 * Instead we have a helper queue who never has more than one thread
80 * where we scheduler thread start operations. This worker_start struct
81 * is used to contain the work and hold a pointer to the queue that needs
82 * another worker.
83 */
84struct worker_start {
85 struct btrfs_work work;
86 struct btrfs_workers *queue;
87};
88
89static void start_new_worker_func(struct btrfs_work *work)
90{
91 struct worker_start *start;
92 start = container_of(work, struct worker_start, work);
93 __btrfs_start_workers(start->queue);
94 kfree(start);
95}
96
97/*
98 * helper function to move a thread onto the idle list after it
99 * has finished some requests.
100 */
101static void check_idle_worker(struct btrfs_worker_thread *worker)
102{
103 if (!worker->idle && atomic_read(&worker->num_pending) <
104 worker->workers->idle_thresh / 2) {
105 unsigned long flags;
106 spin_lock_irqsave(&worker->workers->lock, flags);
107 worker->idle = 1;
108
109 /* the list may be empty if the worker is just starting */
110 if (!list_empty(&worker->worker_list)) {
111 list_move(&worker->worker_list,
112 &worker->workers->idle_list);
113 }
114 spin_unlock_irqrestore(&worker->workers->lock, flags);
115 }
116}
117
118/*
119 * helper function to move a thread off the idle list after new
120 * pending work is added.
121 */
122static void check_busy_worker(struct btrfs_worker_thread *worker)
123{
124 if (worker->idle && atomic_read(&worker->num_pending) >=
125 worker->workers->idle_thresh) {
126 unsigned long flags;
127 spin_lock_irqsave(&worker->workers->lock, flags);
128 worker->idle = 0;
129
130 if (!list_empty(&worker->worker_list)) {
131 list_move_tail(&worker->worker_list,
132 &worker->workers->worker_list);
133 }
134 spin_unlock_irqrestore(&worker->workers->lock, flags);
135 }
136}
137
138static void check_pending_worker_creates(struct btrfs_worker_thread *worker)
139{
140 struct btrfs_workers *workers = worker->workers;
141 struct worker_start *start;
142 unsigned long flags;
143
144 rmb();
145 if (!workers->atomic_start_pending)
146 return;
147
148 start = kzalloc(sizeof(*start), GFP_NOFS);
149 if (!start)
150 return;
151
152 start->work.func = start_new_worker_func;
153 start->queue = workers;
154
155 spin_lock_irqsave(&workers->lock, flags);
156 if (!workers->atomic_start_pending)
157 goto out;
158
159 workers->atomic_start_pending = 0;
160 if (workers->num_workers + workers->num_workers_starting >=
161 workers->max_workers)
162 goto out;
163
164 workers->num_workers_starting += 1;
165 spin_unlock_irqrestore(&workers->lock, flags);
166 btrfs_queue_worker(workers->atomic_worker_start, &start->work);
167 return;
168
169out:
170 kfree(start);
171 spin_unlock_irqrestore(&workers->lock, flags);
172}
173
174static noinline void run_ordered_completions(struct btrfs_workers *workers,
175 struct btrfs_work *work)
176{
177 if (!workers->ordered)
178 return;
179
180 set_bit(WORK_DONE_BIT, &work->flags);
181
182 spin_lock(&workers->order_lock);
183
184 while (1) {
185 if (!list_empty(&workers->prio_order_list)) {
186 work = list_entry(workers->prio_order_list.next,
187 struct btrfs_work, order_list);
188 } else if (!list_empty(&workers->order_list)) {
189 work = list_entry(workers->order_list.next,
190 struct btrfs_work, order_list);
191 } else {
192 break;
193 }
194 if (!test_bit(WORK_DONE_BIT, &work->flags))
195 break;
196
197 /* we are going to call the ordered done function, but
198 * we leave the work item on the list as a barrier so
199 * that later work items that are done don't have their
200 * functions called before this one returns
201 */
202 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
203 break;
204
205 spin_unlock(&workers->order_lock);
206
207 work->ordered_func(work);
208
209 /* now take the lock again and drop our item from the list */
210 spin_lock(&workers->order_lock);
211 list_del(&work->order_list);
212 spin_unlock(&workers->order_lock);
213
214 /*
215 * we don't want to call the ordered free functions
216 * with the lock held though
217 */
218 work->ordered_free(work);
219 spin_lock(&workers->order_lock);
220 }
221
222 spin_unlock(&workers->order_lock);
223}
224
225static void put_worker(struct btrfs_worker_thread *worker)
226{
227 if (atomic_dec_and_test(&worker->refs))
228 kfree(worker);
229}
230
231static int try_worker_shutdown(struct btrfs_worker_thread *worker)
232{
233 int freeit = 0;
234
235 spin_lock_irq(&worker->lock);
236 spin_lock(&worker->workers->lock);
237 if (worker->workers->num_workers > 1 &&
238 worker->idle &&
239 !worker->working &&
240 !list_empty(&worker->worker_list) &&
241 list_empty(&worker->prio_pending) &&
242 list_empty(&worker->pending) &&
243 atomic_read(&worker->num_pending) == 0) {
244 freeit = 1;
245 list_del_init(&worker->worker_list);
246 worker->workers->num_workers--;
247 }
248 spin_unlock(&worker->workers->lock);
249 spin_unlock_irq(&worker->lock);
250
251 if (freeit)
252 put_worker(worker);
253 return freeit;
254}
255
256static struct btrfs_work *get_next_work(struct btrfs_worker_thread *worker,
257 struct list_head *prio_head,
258 struct list_head *head)
259{
260 struct btrfs_work *work = NULL;
261 struct list_head *cur = NULL;
262
263 if(!list_empty(prio_head))
264 cur = prio_head->next;
265
266 smp_mb();
267 if (!list_empty(&worker->prio_pending))
268 goto refill;
269
270 if (!list_empty(head))
271 cur = head->next;
272
273 if (cur)
274 goto out;
275
276refill:
277 spin_lock_irq(&worker->lock);
278 list_splice_tail_init(&worker->prio_pending, prio_head);
279 list_splice_tail_init(&worker->pending, head);
280
281 if (!list_empty(prio_head))
282 cur = prio_head->next;
283 else if (!list_empty(head))
284 cur = head->next;
285 spin_unlock_irq(&worker->lock);
286
287 if (!cur)
288 goto out_fail;
289
290out:
291 work = list_entry(cur, struct btrfs_work, list);
292
293out_fail:
294 return work;
295}
296
297/*
298 * main loop for servicing work items
299 */
300static int worker_loop(void *arg)
301{
302 struct btrfs_worker_thread *worker = arg;
303 struct list_head head;
304 struct list_head prio_head;
305 struct btrfs_work *work;
306
307 INIT_LIST_HEAD(&head);
308 INIT_LIST_HEAD(&prio_head);
309
310 set_freezable();
311
312 do {
313again:
314 while (1) {
315
316
317 work = get_next_work(worker, &prio_head, &head);
318 if (!work)
319 break;
320
321 list_del(&work->list);
322 clear_bit(WORK_QUEUED_BIT, &work->flags);
323
324 work->worker = worker;
325
326 work->func(work);
327
328 atomic_dec(&worker->num_pending);
329 /*
330 * unless this is an ordered work queue,
331 * 'work' was probably freed by func above.
332 */
333 run_ordered_completions(worker->workers, work);
334
335 check_pending_worker_creates(worker);
336 cond_resched();
337 }
338
339 spin_lock_irq(&worker->lock);
340 check_idle_worker(worker);
341
342 if (freezing(current)) {
343 worker->working = 0;
344 spin_unlock_irq(&worker->lock);
345 try_to_freeze();
346 } else {
347 spin_unlock_irq(&worker->lock);
348 if (!kthread_freezable_should_stop(NULL)) {
349 cpu_relax();
350 /*
351 * we've dropped the lock, did someone else
352 * jump_in?
353 */
354 smp_mb();
355 if (!list_empty(&worker->pending) ||
356 !list_empty(&worker->prio_pending))
357 continue;
358
359 /*
360 * this short schedule allows more work to
361 * come in without the queue functions
362 * needing to go through wake_up_process()
363 *
364 * worker->working is still 1, so nobody
365 * is going to try and wake us up
366 */
367 schedule_timeout(1);
368 smp_mb();
369 if (!list_empty(&worker->pending) ||
370 !list_empty(&worker->prio_pending))
371 continue;
372
373 if (kthread_freezable_should_stop(NULL))
374 break;
375
376 /* still no more work?, sleep for real */
377 spin_lock_irq(&worker->lock);
378 set_current_state(TASK_INTERRUPTIBLE);
379 if (!list_empty(&worker->pending) ||
380 !list_empty(&worker->prio_pending)) {
381 spin_unlock_irq(&worker->lock);
382 set_current_state(TASK_RUNNING);
383 goto again;
384 }
385
386 /*
387 * this makes sure we get a wakeup when someone
388 * adds something new to the queue
389 */
390 worker->working = 0;
391 spin_unlock_irq(&worker->lock);
392
393 if (!kthread_freezable_should_stop(NULL)) {
394 schedule_timeout(HZ * 120);
395 if (!worker->working &&
396 try_worker_shutdown(worker)) {
397 return 0;
398 }
399 }
400 }
401 __set_current_state(TASK_RUNNING);
402 }
403 } while (!kthread_freezable_should_stop(NULL));
404 return 0;
405}
406
407/*
408 * this will wait for all the worker threads to shutdown
409 */
410void btrfs_stop_workers(struct btrfs_workers *workers)
411{
412 struct list_head *cur;
413 struct btrfs_worker_thread *worker;
414 int can_stop;
415
416 spin_lock_irq(&workers->lock);
417 list_splice_init(&workers->idle_list, &workers->worker_list);
418 while (!list_empty(&workers->worker_list)) {
419 cur = workers->worker_list.next;
420 worker = list_entry(cur, struct btrfs_worker_thread,
421 worker_list);
422
423 atomic_inc(&worker->refs);
424 workers->num_workers -= 1;
425 if (!list_empty(&worker->worker_list)) {
426 list_del_init(&worker->worker_list);
427 put_worker(worker);
428 can_stop = 1;
429 } else
430 can_stop = 0;
431 spin_unlock_irq(&workers->lock);
432 if (can_stop)
433 kthread_stop(worker->task);
434 spin_lock_irq(&workers->lock);
435 put_worker(worker);
436 }
437 spin_unlock_irq(&workers->lock);
438}
439
440/*
441 * simple init on struct btrfs_workers
442 */
443void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max,
444 struct btrfs_workers *async_helper)
445{
446 workers->num_workers = 0;
447 workers->num_workers_starting = 0;
448 INIT_LIST_HEAD(&workers->worker_list);
449 INIT_LIST_HEAD(&workers->idle_list);
450 INIT_LIST_HEAD(&workers->order_list);
451 INIT_LIST_HEAD(&workers->prio_order_list);
452 spin_lock_init(&workers->lock);
453 spin_lock_init(&workers->order_lock);
454 workers->max_workers = max;
455 workers->idle_thresh = 32;
456 workers->name = name;
457 workers->ordered = 0;
458 workers->atomic_start_pending = 0;
459 workers->atomic_worker_start = async_helper;
460}
461
462/*
463 * starts new worker threads. This does not enforce the max worker
464 * count in case you need to temporarily go past it.
465 */
466static int __btrfs_start_workers(struct btrfs_workers *workers)
467{
468 struct btrfs_worker_thread *worker;
469 int ret = 0;
470
471 worker = kzalloc(sizeof(*worker), GFP_NOFS);
472 if (!worker) {
473 ret = -ENOMEM;
474 goto fail;
475 }
476
477 INIT_LIST_HEAD(&worker->pending);
478 INIT_LIST_HEAD(&worker->prio_pending);
479 INIT_LIST_HEAD(&worker->worker_list);
480 spin_lock_init(&worker->lock);
481
482 atomic_set(&worker->num_pending, 0);
483 atomic_set(&worker->refs, 1);
484 worker->workers = workers;
485 worker->task = kthread_run(worker_loop, worker,
486 "btrfs-%s-%d", workers->name,
487 workers->num_workers + 1);
488 if (IS_ERR(worker->task)) {
489 ret = PTR_ERR(worker->task);
490 kfree(worker);
491 goto fail;
492 }
493 spin_lock_irq(&workers->lock);
494 list_add_tail(&worker->worker_list, &workers->idle_list);
495 worker->idle = 1;
496 workers->num_workers++;
497 workers->num_workers_starting--;
498 WARN_ON(workers->num_workers_starting < 0);
499 spin_unlock_irq(&workers->lock);
500
501 return 0;
502fail:
503 spin_lock_irq(&workers->lock);
504 workers->num_workers_starting--;
505 spin_unlock_irq(&workers->lock);
506 return ret;
507}
508
509int btrfs_start_workers(struct btrfs_workers *workers)
510{
511 spin_lock_irq(&workers->lock);
512 workers->num_workers_starting++;
513 spin_unlock_irq(&workers->lock);
514 return __btrfs_start_workers(workers);
515}
516
517/*
518 * run through the list and find a worker thread that doesn't have a lot
519 * to do right now. This can return null if we aren't yet at the thread
520 * count limit and all of the threads are busy.
521 */
522static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
523{
524 struct btrfs_worker_thread *worker;
525 struct list_head *next;
526 int enforce_min;
527
528 enforce_min = (workers->num_workers + workers->num_workers_starting) <
529 workers->max_workers;
530
531 /*
532 * if we find an idle thread, don't move it to the end of the
533 * idle list. This improves the chance that the next submission
534 * will reuse the same thread, and maybe catch it while it is still
535 * working
536 */
537 if (!list_empty(&workers->idle_list)) {
538 next = workers->idle_list.next;
539 worker = list_entry(next, struct btrfs_worker_thread,
540 worker_list);
541 return worker;
542 }
543 if (enforce_min || list_empty(&workers->worker_list))
544 return NULL;
545
546 /*
547 * if we pick a busy task, move the task to the end of the list.
548 * hopefully this will keep things somewhat evenly balanced.
549 * Do the move in batches based on the sequence number. This groups
550 * requests submitted at roughly the same time onto the same worker.
551 */
552 next = workers->worker_list.next;
553 worker = list_entry(next, struct btrfs_worker_thread, worker_list);
554 worker->sequence++;
555
556 if (worker->sequence % workers->idle_thresh == 0)
557 list_move_tail(next, &workers->worker_list);
558 return worker;
559}
560
561/*
562 * selects a worker thread to take the next job. This will either find
563 * an idle worker, start a new worker up to the max count, or just return
564 * one of the existing busy workers.
565 */
566static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
567{
568 struct btrfs_worker_thread *worker;
569 unsigned long flags;
570 struct list_head *fallback;
571 int ret;
572
573 spin_lock_irqsave(&workers->lock, flags);
574again:
575 worker = next_worker(workers);
576
577 if (!worker) {
578 if (workers->num_workers + workers->num_workers_starting >=
579 workers->max_workers) {
580 goto fallback;
581 } else if (workers->atomic_worker_start) {
582 workers->atomic_start_pending = 1;
583 goto fallback;
584 } else {
585 workers->num_workers_starting++;
586 spin_unlock_irqrestore(&workers->lock, flags);
587 /* we're below the limit, start another worker */
588 ret = __btrfs_start_workers(workers);
589 spin_lock_irqsave(&workers->lock, flags);
590 if (ret)
591 goto fallback;
592 goto again;
593 }
594 }
595 goto found;
596
597fallback:
598 fallback = NULL;
599 /*
600 * we have failed to find any workers, just
601 * return the first one we can find.
602 */
603 if (!list_empty(&workers->worker_list))
604 fallback = workers->worker_list.next;
605 if (!list_empty(&workers->idle_list))
606 fallback = workers->idle_list.next;
607 BUG_ON(!fallback);
608 worker = list_entry(fallback,
609 struct btrfs_worker_thread, worker_list);
610found:
611 /*
612 * this makes sure the worker doesn't exit before it is placed
613 * onto a busy/idle list
614 */
615 atomic_inc(&worker->num_pending);
616 spin_unlock_irqrestore(&workers->lock, flags);
617 return worker;
618}
619
620/*
621 * btrfs_requeue_work just puts the work item back on the tail of the list
622 * it was taken from. It is intended for use with long running work functions
623 * that make some progress and want to give the cpu up for others.
624 */
625void btrfs_requeue_work(struct btrfs_work *work)
626{
627 struct btrfs_worker_thread *worker = work->worker;
628 unsigned long flags;
629 int wake = 0;
630
631 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
632 return;
633
634 spin_lock_irqsave(&worker->lock, flags);
635 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
636 list_add_tail(&work->list, &worker->prio_pending);
637 else
638 list_add_tail(&work->list, &worker->pending);
639 atomic_inc(&worker->num_pending);
640
641 /* by definition we're busy, take ourselves off the idle
642 * list
643 */
644 if (worker->idle) {
645 spin_lock(&worker->workers->lock);
646 worker->idle = 0;
647 list_move_tail(&worker->worker_list,
648 &worker->workers->worker_list);
649 spin_unlock(&worker->workers->lock);
650 }
651 if (!worker->working) {
652 wake = 1;
653 worker->working = 1;
654 }
655
656 if (wake)
657 wake_up_process(worker->task);
658 spin_unlock_irqrestore(&worker->lock, flags);
659}
660
661void btrfs_set_work_high_prio(struct btrfs_work *work)
662{
663 set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
664}
665
666/*
667 * places a struct btrfs_work into the pending queue of one of the kthreads
668 */
669void btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
670{
671 struct btrfs_worker_thread *worker;
672 unsigned long flags;
673 int wake = 0;
674
675 /* don't requeue something already on a list */
676 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
677 return;
678
679 worker = find_worker(workers);
680 if (workers->ordered) {
681 /*
682 * you're not allowed to do ordered queues from an
683 * interrupt handler
684 */
685 spin_lock(&workers->order_lock);
686 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) {
687 list_add_tail(&work->order_list,
688 &workers->prio_order_list);
689 } else {
690 list_add_tail(&work->order_list, &workers->order_list);
691 }
692 spin_unlock(&workers->order_lock);
693 } else {
694 INIT_LIST_HEAD(&work->order_list);
695 }
696
697 spin_lock_irqsave(&worker->lock, flags);
698
699 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
700 list_add_tail(&work->list, &worker->prio_pending);
701 else
702 list_add_tail(&work->list, &worker->pending);
703 check_busy_worker(worker);
704
705 /*
706 * avoid calling into wake_up_process if this thread has already
707 * been kicked
708 */
709 if (!worker->working)
710 wake = 1;
711 worker->working = 1;
712
713 if (wake)
714 wake_up_process(worker->task);
715 spin_unlock_irqrestore(&worker->lock, flags);
716}