amd-iommu: disable round-robin allocator for CONFIG_IOMMU_STRESS
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / amd_iommu.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
23#include <linux/debugfs.h>
24#include <linux/scatterlist.h>
25#include <linux/dma-mapping.h>
26#include <linux/iommu-helper.h>
27#include <linux/iommu.h>
28#include <asm/proto.h>
29#include <asm/iommu.h>
30#include <asm/gart.h>
31#include <asm/amd_iommu_types.h>
32#include <asm/amd_iommu.h>
33
34#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
36#define EXIT_LOOP_COUNT 10000000
37
38static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
40/* A list of preallocated protection domains */
41static LIST_HEAD(iommu_pd_list);
42static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
44#ifdef CONFIG_IOMMU_API
45static struct iommu_ops amd_iommu_ops;
46#endif
47
48/*
49 * general struct to manage commands send to an IOMMU
50 */
51struct iommu_cmd {
52 u32 data[4];
53};
54
55static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
56 struct unity_map_entry *e);
57static struct dma_ops_domain *find_protection_domain(u16 devid);
58static u64* alloc_pte(struct protection_domain *dom,
59 unsigned long address, u64
60 **pte_page, gfp_t gfp);
61static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
62 unsigned long start_page,
63 unsigned int pages);
64
65#ifdef CONFIG_AMD_IOMMU_STATS
66
67/*
68 * Initialization code for statistics collection
69 */
70
71DECLARE_STATS_COUNTER(compl_wait);
72DECLARE_STATS_COUNTER(cnt_map_single);
73DECLARE_STATS_COUNTER(cnt_unmap_single);
74DECLARE_STATS_COUNTER(cnt_map_sg);
75DECLARE_STATS_COUNTER(cnt_unmap_sg);
76DECLARE_STATS_COUNTER(cnt_alloc_coherent);
77DECLARE_STATS_COUNTER(cnt_free_coherent);
78DECLARE_STATS_COUNTER(cross_page);
79DECLARE_STATS_COUNTER(domain_flush_single);
80DECLARE_STATS_COUNTER(domain_flush_all);
81DECLARE_STATS_COUNTER(alloced_io_mem);
82DECLARE_STATS_COUNTER(total_map_requests);
83
84static struct dentry *stats_dir;
85static struct dentry *de_isolate;
86static struct dentry *de_fflush;
87
88static void amd_iommu_stats_add(struct __iommu_counter *cnt)
89{
90 if (stats_dir == NULL)
91 return;
92
93 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
94 &cnt->value);
95}
96
97static void amd_iommu_stats_init(void)
98{
99 stats_dir = debugfs_create_dir("amd-iommu", NULL);
100 if (stats_dir == NULL)
101 return;
102
103 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
104 (u32 *)&amd_iommu_isolate);
105
106 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
107 (u32 *)&amd_iommu_unmap_flush);
108
109 amd_iommu_stats_add(&compl_wait);
110 amd_iommu_stats_add(&cnt_map_single);
111 amd_iommu_stats_add(&cnt_unmap_single);
112 amd_iommu_stats_add(&cnt_map_sg);
113 amd_iommu_stats_add(&cnt_unmap_sg);
114 amd_iommu_stats_add(&cnt_alloc_coherent);
115 amd_iommu_stats_add(&cnt_free_coherent);
116 amd_iommu_stats_add(&cross_page);
117 amd_iommu_stats_add(&domain_flush_single);
118 amd_iommu_stats_add(&domain_flush_all);
119 amd_iommu_stats_add(&alloced_io_mem);
120 amd_iommu_stats_add(&total_map_requests);
121}
122
123#endif
124
125/* returns !0 if the IOMMU is caching non-present entries in its TLB */
126static int iommu_has_npcache(struct amd_iommu *iommu)
127{
128 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
129}
130
131/****************************************************************************
132 *
133 * Interrupt handling functions
134 *
135 ****************************************************************************/
136
137static void iommu_print_event(void *__evt)
138{
139 u32 *event = __evt;
140 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
141 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
142 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
143 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
144 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
145
146 printk(KERN_ERR "AMD IOMMU: Event logged [");
147
148 switch (type) {
149 case EVENT_TYPE_ILL_DEV:
150 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
151 "address=0x%016llx flags=0x%04x]\n",
152 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
153 address, flags);
154 break;
155 case EVENT_TYPE_IO_FAULT:
156 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
157 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
158 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
159 domid, address, flags);
160 break;
161 case EVENT_TYPE_DEV_TAB_ERR:
162 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
163 "address=0x%016llx flags=0x%04x]\n",
164 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
165 address, flags);
166 break;
167 case EVENT_TYPE_PAGE_TAB_ERR:
168 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
169 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
170 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
171 domid, address, flags);
172 break;
173 case EVENT_TYPE_ILL_CMD:
174 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
175 break;
176 case EVENT_TYPE_CMD_HARD_ERR:
177 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
178 "flags=0x%04x]\n", address, flags);
179 break;
180 case EVENT_TYPE_IOTLB_INV_TO:
181 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
182 "address=0x%016llx]\n",
183 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
184 address);
185 break;
186 case EVENT_TYPE_INV_DEV_REQ:
187 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
188 "address=0x%016llx flags=0x%04x]\n",
189 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
190 address, flags);
191 break;
192 default:
193 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
194 }
195}
196
197static void iommu_poll_events(struct amd_iommu *iommu)
198{
199 u32 head, tail;
200 unsigned long flags;
201
202 spin_lock_irqsave(&iommu->lock, flags);
203
204 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
205 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
206
207 while (head != tail) {
208 iommu_print_event(iommu->evt_buf + head);
209 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
210 }
211
212 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
213
214 spin_unlock_irqrestore(&iommu->lock, flags);
215}
216
217irqreturn_t amd_iommu_int_handler(int irq, void *data)
218{
219 struct amd_iommu *iommu;
220
221 list_for_each_entry(iommu, &amd_iommu_list, list)
222 iommu_poll_events(iommu);
223
224 return IRQ_HANDLED;
225}
226
227/****************************************************************************
228 *
229 * IOMMU command queuing functions
230 *
231 ****************************************************************************/
232
233/*
234 * Writes the command to the IOMMUs command buffer and informs the
235 * hardware about the new command. Must be called with iommu->lock held.
236 */
237static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
238{
239 u32 tail, head;
240 u8 *target;
241
242 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
243 target = iommu->cmd_buf + tail;
244 memcpy_toio(target, cmd, sizeof(*cmd));
245 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
246 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
247 if (tail == head)
248 return -ENOMEM;
249 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
250
251 return 0;
252}
253
254/*
255 * General queuing function for commands. Takes iommu->lock and calls
256 * __iommu_queue_command().
257 */
258static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
259{
260 unsigned long flags;
261 int ret;
262
263 spin_lock_irqsave(&iommu->lock, flags);
264 ret = __iommu_queue_command(iommu, cmd);
265 if (!ret)
266 iommu->need_sync = true;
267 spin_unlock_irqrestore(&iommu->lock, flags);
268
269 return ret;
270}
271
272/*
273 * This function waits until an IOMMU has completed a completion
274 * wait command
275 */
276static void __iommu_wait_for_completion(struct amd_iommu *iommu)
277{
278 int ready = 0;
279 unsigned status = 0;
280 unsigned long i = 0;
281
282 INC_STATS_COUNTER(compl_wait);
283
284 while (!ready && (i < EXIT_LOOP_COUNT)) {
285 ++i;
286 /* wait for the bit to become one */
287 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
288 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
289 }
290
291 /* set bit back to zero */
292 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
293 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
294
295 if (unlikely(i == EXIT_LOOP_COUNT))
296 panic("AMD IOMMU: Completion wait loop failed\n");
297}
298
299/*
300 * This function queues a completion wait command into the command
301 * buffer of an IOMMU
302 */
303static int __iommu_completion_wait(struct amd_iommu *iommu)
304{
305 struct iommu_cmd cmd;
306
307 memset(&cmd, 0, sizeof(cmd));
308 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
309 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
310
311 return __iommu_queue_command(iommu, &cmd);
312}
313
314/*
315 * This function is called whenever we need to ensure that the IOMMU has
316 * completed execution of all commands we sent. It sends a
317 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
318 * us about that by writing a value to a physical address we pass with
319 * the command.
320 */
321static int iommu_completion_wait(struct amd_iommu *iommu)
322{
323 int ret = 0;
324 unsigned long flags;
325
326 spin_lock_irqsave(&iommu->lock, flags);
327
328 if (!iommu->need_sync)
329 goto out;
330
331 ret = __iommu_completion_wait(iommu);
332
333 iommu->need_sync = false;
334
335 if (ret)
336 goto out;
337
338 __iommu_wait_for_completion(iommu);
339
340out:
341 spin_unlock_irqrestore(&iommu->lock, flags);
342
343 return 0;
344}
345
346/*
347 * Command send function for invalidating a device table entry
348 */
349static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
350{
351 struct iommu_cmd cmd;
352 int ret;
353
354 BUG_ON(iommu == NULL);
355
356 memset(&cmd, 0, sizeof(cmd));
357 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
358 cmd.data[0] = devid;
359
360 ret = iommu_queue_command(iommu, &cmd);
361
362 return ret;
363}
364
365static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
366 u16 domid, int pde, int s)
367{
368 memset(cmd, 0, sizeof(*cmd));
369 address &= PAGE_MASK;
370 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
371 cmd->data[1] |= domid;
372 cmd->data[2] = lower_32_bits(address);
373 cmd->data[3] = upper_32_bits(address);
374 if (s) /* size bit - we flush more than one 4kb page */
375 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
376 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
377 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
378}
379
380/*
381 * Generic command send function for invalidaing TLB entries
382 */
383static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
384 u64 address, u16 domid, int pde, int s)
385{
386 struct iommu_cmd cmd;
387 int ret;
388
389 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
390
391 ret = iommu_queue_command(iommu, &cmd);
392
393 return ret;
394}
395
396/*
397 * TLB invalidation function which is called from the mapping functions.
398 * It invalidates a single PTE if the range to flush is within a single
399 * page. Otherwise it flushes the whole TLB of the IOMMU.
400 */
401static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
402 u64 address, size_t size)
403{
404 int s = 0;
405 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
406
407 address &= PAGE_MASK;
408
409 if (pages > 1) {
410 /*
411 * If we have to flush more than one page, flush all
412 * TLB entries for this domain
413 */
414 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
415 s = 1;
416 }
417
418 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
419
420 return 0;
421}
422
423/* Flush the whole IO/TLB for a given protection domain */
424static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
425{
426 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
427
428 INC_STATS_COUNTER(domain_flush_single);
429
430 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
431}
432
433/*
434 * This function is used to flush the IO/TLB for a given protection domain
435 * on every IOMMU in the system
436 */
437static void iommu_flush_domain(u16 domid)
438{
439 unsigned long flags;
440 struct amd_iommu *iommu;
441 struct iommu_cmd cmd;
442
443 INC_STATS_COUNTER(domain_flush_all);
444
445 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
446 domid, 1, 1);
447
448 list_for_each_entry(iommu, &amd_iommu_list, list) {
449 spin_lock_irqsave(&iommu->lock, flags);
450 __iommu_queue_command(iommu, &cmd);
451 __iommu_completion_wait(iommu);
452 __iommu_wait_for_completion(iommu);
453 spin_unlock_irqrestore(&iommu->lock, flags);
454 }
455}
456
457/****************************************************************************
458 *
459 * The functions below are used the create the page table mappings for
460 * unity mapped regions.
461 *
462 ****************************************************************************/
463
464/*
465 * Generic mapping functions. It maps a physical address into a DMA
466 * address space. It allocates the page table pages if necessary.
467 * In the future it can be extended to a generic mapping function
468 * supporting all features of AMD IOMMU page tables like level skipping
469 * and full 64 bit address spaces.
470 */
471static int iommu_map_page(struct protection_domain *dom,
472 unsigned long bus_addr,
473 unsigned long phys_addr,
474 int prot)
475{
476 u64 __pte, *pte;
477
478 bus_addr = PAGE_ALIGN(bus_addr);
479 phys_addr = PAGE_ALIGN(phys_addr);
480
481 /* only support 512GB address spaces for now */
482 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
483 return -EINVAL;
484
485 pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
486
487 if (IOMMU_PTE_PRESENT(*pte))
488 return -EBUSY;
489
490 __pte = phys_addr | IOMMU_PTE_P;
491 if (prot & IOMMU_PROT_IR)
492 __pte |= IOMMU_PTE_IR;
493 if (prot & IOMMU_PROT_IW)
494 __pte |= IOMMU_PTE_IW;
495
496 *pte = __pte;
497
498 return 0;
499}
500
501static void iommu_unmap_page(struct protection_domain *dom,
502 unsigned long bus_addr)
503{
504 u64 *pte;
505
506 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
507
508 if (!IOMMU_PTE_PRESENT(*pte))
509 return;
510
511 pte = IOMMU_PTE_PAGE(*pte);
512 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
513
514 if (!IOMMU_PTE_PRESENT(*pte))
515 return;
516
517 pte = IOMMU_PTE_PAGE(*pte);
518 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
519
520 *pte = 0;
521}
522
523/*
524 * This function checks if a specific unity mapping entry is needed for
525 * this specific IOMMU.
526 */
527static int iommu_for_unity_map(struct amd_iommu *iommu,
528 struct unity_map_entry *entry)
529{
530 u16 bdf, i;
531
532 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
533 bdf = amd_iommu_alias_table[i];
534 if (amd_iommu_rlookup_table[bdf] == iommu)
535 return 1;
536 }
537
538 return 0;
539}
540
541/*
542 * Init the unity mappings for a specific IOMMU in the system
543 *
544 * Basically iterates over all unity mapping entries and applies them to
545 * the default domain DMA of that IOMMU if necessary.
546 */
547static int iommu_init_unity_mappings(struct amd_iommu *iommu)
548{
549 struct unity_map_entry *entry;
550 int ret;
551
552 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
553 if (!iommu_for_unity_map(iommu, entry))
554 continue;
555 ret = dma_ops_unity_map(iommu->default_dom, entry);
556 if (ret)
557 return ret;
558 }
559
560 return 0;
561}
562
563/*
564 * This function actually applies the mapping to the page table of the
565 * dma_ops domain.
566 */
567static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
568 struct unity_map_entry *e)
569{
570 u64 addr;
571 int ret;
572
573 for (addr = e->address_start; addr < e->address_end;
574 addr += PAGE_SIZE) {
575 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
576 if (ret)
577 return ret;
578 /*
579 * if unity mapping is in aperture range mark the page
580 * as allocated in the aperture
581 */
582 if (addr < dma_dom->aperture_size)
583 __set_bit(addr >> PAGE_SHIFT,
584 dma_dom->aperture[0]->bitmap);
585 }
586
587 return 0;
588}
589
590/*
591 * Inits the unity mappings required for a specific device
592 */
593static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
594 u16 devid)
595{
596 struct unity_map_entry *e;
597 int ret;
598
599 list_for_each_entry(e, &amd_iommu_unity_map, list) {
600 if (!(devid >= e->devid_start && devid <= e->devid_end))
601 continue;
602 ret = dma_ops_unity_map(dma_dom, e);
603 if (ret)
604 return ret;
605 }
606
607 return 0;
608}
609
610/****************************************************************************
611 *
612 * The next functions belong to the address allocator for the dma_ops
613 * interface functions. They work like the allocators in the other IOMMU
614 * drivers. Its basically a bitmap which marks the allocated pages in
615 * the aperture. Maybe it could be enhanced in the future to a more
616 * efficient allocator.
617 *
618 ****************************************************************************/
619
620/*
621 * The address allocator core functions.
622 *
623 * called with domain->lock held
624 */
625
626/*
627 * This function checks if there is a PTE for a given dma address. If
628 * there is one, it returns the pointer to it.
629 */
630static u64* fetch_pte(struct protection_domain *domain,
631 unsigned long address)
632{
633 u64 *pte;
634
635 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];
636
637 if (!IOMMU_PTE_PRESENT(*pte))
638 return NULL;
639
640 pte = IOMMU_PTE_PAGE(*pte);
641 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
642
643 if (!IOMMU_PTE_PRESENT(*pte))
644 return NULL;
645
646 pte = IOMMU_PTE_PAGE(*pte);
647 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
648
649 return pte;
650}
651
652/*
653 * This function is used to add a new aperture range to an existing
654 * aperture in case of dma_ops domain allocation or address allocation
655 * failure.
656 */
657static int alloc_new_range(struct amd_iommu *iommu,
658 struct dma_ops_domain *dma_dom,
659 bool populate, gfp_t gfp)
660{
661 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
662 int i;
663
664 if (index >= APERTURE_MAX_RANGES)
665 return -ENOMEM;
666
667 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
668 if (!dma_dom->aperture[index])
669 return -ENOMEM;
670
671 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
672 if (!dma_dom->aperture[index]->bitmap)
673 goto out_free;
674
675 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
676
677 if (populate) {
678 unsigned long address = dma_dom->aperture_size;
679 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
680 u64 *pte, *pte_page;
681
682 for (i = 0; i < num_ptes; ++i) {
683 pte = alloc_pte(&dma_dom->domain, address,
684 &pte_page, gfp);
685 if (!pte)
686 goto out_free;
687
688 dma_dom->aperture[index]->pte_pages[i] = pte_page;
689
690 address += APERTURE_RANGE_SIZE / 64;
691 }
692 }
693
694 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
695
696 /* Intialize the exclusion range if necessary */
697 if (iommu->exclusion_start &&
698 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
699 iommu->exclusion_start < dma_dom->aperture_size) {
700 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
701 int pages = iommu_num_pages(iommu->exclusion_start,
702 iommu->exclusion_length,
703 PAGE_SIZE);
704 dma_ops_reserve_addresses(dma_dom, startpage, pages);
705 }
706
707 /*
708 * Check for areas already mapped as present in the new aperture
709 * range and mark those pages as reserved in the allocator. Such
710 * mappings may already exist as a result of requested unity
711 * mappings for devices.
712 */
713 for (i = dma_dom->aperture[index]->offset;
714 i < dma_dom->aperture_size;
715 i += PAGE_SIZE) {
716 u64 *pte = fetch_pte(&dma_dom->domain, i);
717 if (!pte || !IOMMU_PTE_PRESENT(*pte))
718 continue;
719
720 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
721 }
722
723 return 0;
724
725out_free:
726 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
727
728 kfree(dma_dom->aperture[index]);
729 dma_dom->aperture[index] = NULL;
730
731 return -ENOMEM;
732}
733
734static unsigned long dma_ops_area_alloc(struct device *dev,
735 struct dma_ops_domain *dom,
736 unsigned int pages,
737 unsigned long align_mask,
738 u64 dma_mask,
739 unsigned long start)
740{
741 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
742 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
743 int i = start >> APERTURE_RANGE_SHIFT;
744 unsigned long boundary_size;
745 unsigned long address = -1;
746 unsigned long limit;
747
748 next_bit >>= PAGE_SHIFT;
749
750 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
751 PAGE_SIZE) >> PAGE_SHIFT;
752
753 for (;i < max_index; ++i) {
754 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
755
756 if (dom->aperture[i]->offset >= dma_mask)
757 break;
758
759 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
760 dma_mask >> PAGE_SHIFT);
761
762 address = iommu_area_alloc(dom->aperture[i]->bitmap,
763 limit, next_bit, pages, 0,
764 boundary_size, align_mask);
765 if (address != -1) {
766 address = dom->aperture[i]->offset +
767 (address << PAGE_SHIFT);
768 dom->next_address = address + (pages << PAGE_SHIFT);
769 break;
770 }
771
772 next_bit = 0;
773 }
774
775 return address;
776}
777
778static unsigned long dma_ops_alloc_addresses(struct device *dev,
779 struct dma_ops_domain *dom,
780 unsigned int pages,
781 unsigned long align_mask,
782 u64 dma_mask)
783{
784 unsigned long address;
785
786#ifdef CONFIG_IOMMU_STRESS
787 dom->next_address = 0;
788 dom->need_flush = true;
789#endif
790
791 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
792 dma_mask, dom->next_address);
793
794 if (address == -1) {
795 dom->next_address = 0;
796 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
797 dma_mask, 0);
798 dom->need_flush = true;
799 }
800
801 if (unlikely(address == -1))
802 address = bad_dma_address;
803
804 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
805
806 return address;
807}
808
809/*
810 * The address free function.
811 *
812 * called with domain->lock held
813 */
814static void dma_ops_free_addresses(struct dma_ops_domain *dom,
815 unsigned long address,
816 unsigned int pages)
817{
818 unsigned i = address >> APERTURE_RANGE_SHIFT;
819 struct aperture_range *range = dom->aperture[i];
820
821 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
822
823 if (address >= dom->next_address)
824 dom->need_flush = true;
825
826 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
827
828 iommu_area_free(range->bitmap, address, pages);
829
830}
831
832/****************************************************************************
833 *
834 * The next functions belong to the domain allocation. A domain is
835 * allocated for every IOMMU as the default domain. If device isolation
836 * is enabled, every device get its own domain. The most important thing
837 * about domains is the page table mapping the DMA address space they
838 * contain.
839 *
840 ****************************************************************************/
841
842static u16 domain_id_alloc(void)
843{
844 unsigned long flags;
845 int id;
846
847 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
848 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
849 BUG_ON(id == 0);
850 if (id > 0 && id < MAX_DOMAIN_ID)
851 __set_bit(id, amd_iommu_pd_alloc_bitmap);
852 else
853 id = 0;
854 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
855
856 return id;
857}
858
859static void domain_id_free(int id)
860{
861 unsigned long flags;
862
863 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
864 if (id > 0 && id < MAX_DOMAIN_ID)
865 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
866 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
867}
868
869/*
870 * Used to reserve address ranges in the aperture (e.g. for exclusion
871 * ranges.
872 */
873static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
874 unsigned long start_page,
875 unsigned int pages)
876{
877 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
878
879 if (start_page + pages > last_page)
880 pages = last_page - start_page;
881
882 for (i = start_page; i < start_page + pages; ++i) {
883 int index = i / APERTURE_RANGE_PAGES;
884 int page = i % APERTURE_RANGE_PAGES;
885 __set_bit(page, dom->aperture[index]->bitmap);
886 }
887}
888
889static void free_pagetable(struct protection_domain *domain)
890{
891 int i, j;
892 u64 *p1, *p2, *p3;
893
894 p1 = domain->pt_root;
895
896 if (!p1)
897 return;
898
899 for (i = 0; i < 512; ++i) {
900 if (!IOMMU_PTE_PRESENT(p1[i]))
901 continue;
902
903 p2 = IOMMU_PTE_PAGE(p1[i]);
904 for (j = 0; j < 512; ++j) {
905 if (!IOMMU_PTE_PRESENT(p2[j]))
906 continue;
907 p3 = IOMMU_PTE_PAGE(p2[j]);
908 free_page((unsigned long)p3);
909 }
910
911 free_page((unsigned long)p2);
912 }
913
914 free_page((unsigned long)p1);
915
916 domain->pt_root = NULL;
917}
918
919/*
920 * Free a domain, only used if something went wrong in the
921 * allocation path and we need to free an already allocated page table
922 */
923static void dma_ops_domain_free(struct dma_ops_domain *dom)
924{
925 int i;
926
927 if (!dom)
928 return;
929
930 free_pagetable(&dom->domain);
931
932 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
933 if (!dom->aperture[i])
934 continue;
935 free_page((unsigned long)dom->aperture[i]->bitmap);
936 kfree(dom->aperture[i]);
937 }
938
939 kfree(dom);
940}
941
942/*
943 * Allocates a new protection domain usable for the dma_ops functions.
944 * It also intializes the page table and the address allocator data
945 * structures required for the dma_ops interface
946 */
947static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
948{
949 struct dma_ops_domain *dma_dom;
950
951 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
952 if (!dma_dom)
953 return NULL;
954
955 spin_lock_init(&dma_dom->domain.lock);
956
957 dma_dom->domain.id = domain_id_alloc();
958 if (dma_dom->domain.id == 0)
959 goto free_dma_dom;
960 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
961 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
962 dma_dom->domain.flags = PD_DMA_OPS_MASK;
963 dma_dom->domain.priv = dma_dom;
964 if (!dma_dom->domain.pt_root)
965 goto free_dma_dom;
966
967 dma_dom->need_flush = false;
968 dma_dom->target_dev = 0xffff;
969
970 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
971 goto free_dma_dom;
972
973 /*
974 * mark the first page as allocated so we never return 0 as
975 * a valid dma-address. So we can use 0 as error value
976 */
977 dma_dom->aperture[0]->bitmap[0] = 1;
978 dma_dom->next_address = 0;
979
980
981 return dma_dom;
982
983free_dma_dom:
984 dma_ops_domain_free(dma_dom);
985
986 return NULL;
987}
988
989/*
990 * little helper function to check whether a given protection domain is a
991 * dma_ops domain
992 */
993static bool dma_ops_domain(struct protection_domain *domain)
994{
995 return domain->flags & PD_DMA_OPS_MASK;
996}
997
998/*
999 * Find out the protection domain structure for a given PCI device. This
1000 * will give us the pointer to the page table root for example.
1001 */
1002static struct protection_domain *domain_for_device(u16 devid)
1003{
1004 struct protection_domain *dom;
1005 unsigned long flags;
1006
1007 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1008 dom = amd_iommu_pd_table[devid];
1009 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1010
1011 return dom;
1012}
1013
1014/*
1015 * If a device is not yet associated with a domain, this function does
1016 * assigns it visible for the hardware
1017 */
1018static void attach_device(struct amd_iommu *iommu,
1019 struct protection_domain *domain,
1020 u16 devid)
1021{
1022 unsigned long flags;
1023 u64 pte_root = virt_to_phys(domain->pt_root);
1024
1025 domain->dev_cnt += 1;
1026
1027 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1028 << DEV_ENTRY_MODE_SHIFT;
1029 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1030
1031 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1032 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1033 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1034 amd_iommu_dev_table[devid].data[2] = domain->id;
1035
1036 amd_iommu_pd_table[devid] = domain;
1037 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1038
1039 iommu_queue_inv_dev_entry(iommu, devid);
1040}
1041
1042/*
1043 * Removes a device from a protection domain (unlocked)
1044 */
1045static void __detach_device(struct protection_domain *domain, u16 devid)
1046{
1047
1048 /* lock domain */
1049 spin_lock(&domain->lock);
1050
1051 /* remove domain from the lookup table */
1052 amd_iommu_pd_table[devid] = NULL;
1053
1054 /* remove entry from the device table seen by the hardware */
1055 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1056 amd_iommu_dev_table[devid].data[1] = 0;
1057 amd_iommu_dev_table[devid].data[2] = 0;
1058
1059 /* decrease reference counter */
1060 domain->dev_cnt -= 1;
1061
1062 /* ready */
1063 spin_unlock(&domain->lock);
1064}
1065
1066/*
1067 * Removes a device from a protection domain (with devtable_lock held)
1068 */
1069static void detach_device(struct protection_domain *domain, u16 devid)
1070{
1071 unsigned long flags;
1072
1073 /* lock device table */
1074 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1075 __detach_device(domain, devid);
1076 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1077}
1078
1079static int device_change_notifier(struct notifier_block *nb,
1080 unsigned long action, void *data)
1081{
1082 struct device *dev = data;
1083 struct pci_dev *pdev = to_pci_dev(dev);
1084 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1085 struct protection_domain *domain;
1086 struct dma_ops_domain *dma_domain;
1087 struct amd_iommu *iommu;
1088 unsigned long flags;
1089
1090 if (devid > amd_iommu_last_bdf)
1091 goto out;
1092
1093 devid = amd_iommu_alias_table[devid];
1094
1095 iommu = amd_iommu_rlookup_table[devid];
1096 if (iommu == NULL)
1097 goto out;
1098
1099 domain = domain_for_device(devid);
1100
1101 if (domain && !dma_ops_domain(domain))
1102 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1103 "to a non-dma-ops domain\n", dev_name(dev));
1104
1105 switch (action) {
1106 case BUS_NOTIFY_BOUND_DRIVER:
1107 if (domain)
1108 goto out;
1109 dma_domain = find_protection_domain(devid);
1110 if (!dma_domain)
1111 dma_domain = iommu->default_dom;
1112 attach_device(iommu, &dma_domain->domain, devid);
1113 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
1114 "device %s\n", dma_domain->domain.id, dev_name(dev));
1115 break;
1116 case BUS_NOTIFY_UNBIND_DRIVER:
1117 if (!domain)
1118 goto out;
1119 detach_device(domain, devid);
1120 break;
1121 case BUS_NOTIFY_ADD_DEVICE:
1122 /* allocate a protection domain if a device is added */
1123 dma_domain = find_protection_domain(devid);
1124 if (dma_domain)
1125 goto out;
1126 dma_domain = dma_ops_domain_alloc(iommu);
1127 if (!dma_domain)
1128 goto out;
1129 dma_domain->target_dev = devid;
1130
1131 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1132 list_add_tail(&dma_domain->list, &iommu_pd_list);
1133 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1134
1135 break;
1136 default:
1137 goto out;
1138 }
1139
1140 iommu_queue_inv_dev_entry(iommu, devid);
1141 iommu_completion_wait(iommu);
1142
1143out:
1144 return 0;
1145}
1146
1147struct notifier_block device_nb = {
1148 .notifier_call = device_change_notifier,
1149};
1150
1151/*****************************************************************************
1152 *
1153 * The next functions belong to the dma_ops mapping/unmapping code.
1154 *
1155 *****************************************************************************/
1156
1157/*
1158 * This function checks if the driver got a valid device from the caller to
1159 * avoid dereferencing invalid pointers.
1160 */
1161static bool check_device(struct device *dev)
1162{
1163 if (!dev || !dev->dma_mask)
1164 return false;
1165
1166 return true;
1167}
1168
1169/*
1170 * In this function the list of preallocated protection domains is traversed to
1171 * find the domain for a specific device
1172 */
1173static struct dma_ops_domain *find_protection_domain(u16 devid)
1174{
1175 struct dma_ops_domain *entry, *ret = NULL;
1176 unsigned long flags;
1177
1178 if (list_empty(&iommu_pd_list))
1179 return NULL;
1180
1181 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1182
1183 list_for_each_entry(entry, &iommu_pd_list, list) {
1184 if (entry->target_dev == devid) {
1185 ret = entry;
1186 break;
1187 }
1188 }
1189
1190 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1191
1192 return ret;
1193}
1194
1195/*
1196 * In the dma_ops path we only have the struct device. This function
1197 * finds the corresponding IOMMU, the protection domain and the
1198 * requestor id for a given device.
1199 * If the device is not yet associated with a domain this is also done
1200 * in this function.
1201 */
1202static int get_device_resources(struct device *dev,
1203 struct amd_iommu **iommu,
1204 struct protection_domain **domain,
1205 u16 *bdf)
1206{
1207 struct dma_ops_domain *dma_dom;
1208 struct pci_dev *pcidev;
1209 u16 _bdf;
1210
1211 *iommu = NULL;
1212 *domain = NULL;
1213 *bdf = 0xffff;
1214
1215 if (dev->bus != &pci_bus_type)
1216 return 0;
1217
1218 pcidev = to_pci_dev(dev);
1219 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1220
1221 /* device not translated by any IOMMU in the system? */
1222 if (_bdf > amd_iommu_last_bdf)
1223 return 0;
1224
1225 *bdf = amd_iommu_alias_table[_bdf];
1226
1227 *iommu = amd_iommu_rlookup_table[*bdf];
1228 if (*iommu == NULL)
1229 return 0;
1230 *domain = domain_for_device(*bdf);
1231 if (*domain == NULL) {
1232 dma_dom = find_protection_domain(*bdf);
1233 if (!dma_dom)
1234 dma_dom = (*iommu)->default_dom;
1235 *domain = &dma_dom->domain;
1236 attach_device(*iommu, *domain, *bdf);
1237 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
1238 "device %s\n", (*domain)->id, dev_name(dev));
1239 }
1240
1241 if (domain_for_device(_bdf) == NULL)
1242 attach_device(*iommu, *domain, _bdf);
1243
1244 return 1;
1245}
1246
1247/*
1248 * If the pte_page is not yet allocated this function is called
1249 */
1250static u64* alloc_pte(struct protection_domain *dom,
1251 unsigned long address, u64 **pte_page, gfp_t gfp)
1252{
1253 u64 *pte, *page;
1254
1255 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
1256
1257 if (!IOMMU_PTE_PRESENT(*pte)) {
1258 page = (u64 *)get_zeroed_page(gfp);
1259 if (!page)
1260 return NULL;
1261 *pte = IOMMU_L2_PDE(virt_to_phys(page));
1262 }
1263
1264 pte = IOMMU_PTE_PAGE(*pte);
1265 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
1266
1267 if (!IOMMU_PTE_PRESENT(*pte)) {
1268 page = (u64 *)get_zeroed_page(gfp);
1269 if (!page)
1270 return NULL;
1271 *pte = IOMMU_L1_PDE(virt_to_phys(page));
1272 }
1273
1274 pte = IOMMU_PTE_PAGE(*pte);
1275
1276 if (pte_page)
1277 *pte_page = pte;
1278
1279 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
1280
1281 return pte;
1282}
1283
1284/*
1285 * This function fetches the PTE for a given address in the aperture
1286 */
1287static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1288 unsigned long address)
1289{
1290 struct aperture_range *aperture;
1291 u64 *pte, *pte_page;
1292
1293 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1294 if (!aperture)
1295 return NULL;
1296
1297 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1298 if (!pte) {
1299 pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
1300 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1301 } else
1302 pte += IOMMU_PTE_L0_INDEX(address);
1303
1304 return pte;
1305}
1306
1307/*
1308 * This is the generic map function. It maps one 4kb page at paddr to
1309 * the given address in the DMA address space for the domain.
1310 */
1311static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1312 struct dma_ops_domain *dom,
1313 unsigned long address,
1314 phys_addr_t paddr,
1315 int direction)
1316{
1317 u64 *pte, __pte;
1318
1319 WARN_ON(address > dom->aperture_size);
1320
1321 paddr &= PAGE_MASK;
1322
1323 pte = dma_ops_get_pte(dom, address);
1324 if (!pte)
1325 return bad_dma_address;
1326
1327 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1328
1329 if (direction == DMA_TO_DEVICE)
1330 __pte |= IOMMU_PTE_IR;
1331 else if (direction == DMA_FROM_DEVICE)
1332 __pte |= IOMMU_PTE_IW;
1333 else if (direction == DMA_BIDIRECTIONAL)
1334 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1335
1336 WARN_ON(*pte);
1337
1338 *pte = __pte;
1339
1340 return (dma_addr_t)address;
1341}
1342
1343/*
1344 * The generic unmapping function for on page in the DMA address space.
1345 */
1346static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1347 struct dma_ops_domain *dom,
1348 unsigned long address)
1349{
1350 struct aperture_range *aperture;
1351 u64 *pte;
1352
1353 if (address >= dom->aperture_size)
1354 return;
1355
1356 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1357 if (!aperture)
1358 return;
1359
1360 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1361 if (!pte)
1362 return;
1363
1364 pte += IOMMU_PTE_L0_INDEX(address);
1365
1366 WARN_ON(!*pte);
1367
1368 *pte = 0ULL;
1369}
1370
1371/*
1372 * This function contains common code for mapping of a physically
1373 * contiguous memory region into DMA address space. It is used by all
1374 * mapping functions provided with this IOMMU driver.
1375 * Must be called with the domain lock held.
1376 */
1377static dma_addr_t __map_single(struct device *dev,
1378 struct amd_iommu *iommu,
1379 struct dma_ops_domain *dma_dom,
1380 phys_addr_t paddr,
1381 size_t size,
1382 int dir,
1383 bool align,
1384 u64 dma_mask)
1385{
1386 dma_addr_t offset = paddr & ~PAGE_MASK;
1387 dma_addr_t address, start, ret;
1388 unsigned int pages;
1389 unsigned long align_mask = 0;
1390 int i;
1391
1392 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1393 paddr &= PAGE_MASK;
1394
1395 INC_STATS_COUNTER(total_map_requests);
1396
1397 if (pages > 1)
1398 INC_STATS_COUNTER(cross_page);
1399
1400 if (align)
1401 align_mask = (1UL << get_order(size)) - 1;
1402
1403retry:
1404 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1405 dma_mask);
1406 if (unlikely(address == bad_dma_address)) {
1407 /*
1408 * setting next_address here will let the address
1409 * allocator only scan the new allocated range in the
1410 * first run. This is a small optimization.
1411 */
1412 dma_dom->next_address = dma_dom->aperture_size;
1413
1414 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1415 goto out;
1416
1417 /*
1418 * aperture was sucessfully enlarged by 128 MB, try
1419 * allocation again
1420 */
1421 goto retry;
1422 }
1423
1424 start = address;
1425 for (i = 0; i < pages; ++i) {
1426 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1427 if (ret == bad_dma_address)
1428 goto out_unmap;
1429
1430 paddr += PAGE_SIZE;
1431 start += PAGE_SIZE;
1432 }
1433 address += offset;
1434
1435 ADD_STATS_COUNTER(alloced_io_mem, size);
1436
1437 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1438 iommu_flush_tlb(iommu, dma_dom->domain.id);
1439 dma_dom->need_flush = false;
1440 } else if (unlikely(iommu_has_npcache(iommu)))
1441 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1442
1443out:
1444 return address;
1445
1446out_unmap:
1447
1448 for (--i; i >= 0; --i) {
1449 start -= PAGE_SIZE;
1450 dma_ops_domain_unmap(iommu, dma_dom, start);
1451 }
1452
1453 dma_ops_free_addresses(dma_dom, address, pages);
1454
1455 return bad_dma_address;
1456}
1457
1458/*
1459 * Does the reverse of the __map_single function. Must be called with
1460 * the domain lock held too
1461 */
1462static void __unmap_single(struct amd_iommu *iommu,
1463 struct dma_ops_domain *dma_dom,
1464 dma_addr_t dma_addr,
1465 size_t size,
1466 int dir)
1467{
1468 dma_addr_t i, start;
1469 unsigned int pages;
1470
1471 if ((dma_addr == bad_dma_address) ||
1472 (dma_addr + size > dma_dom->aperture_size))
1473 return;
1474
1475 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1476 dma_addr &= PAGE_MASK;
1477 start = dma_addr;
1478
1479 for (i = 0; i < pages; ++i) {
1480 dma_ops_domain_unmap(iommu, dma_dom, start);
1481 start += PAGE_SIZE;
1482 }
1483
1484 SUB_STATS_COUNTER(alloced_io_mem, size);
1485
1486 dma_ops_free_addresses(dma_dom, dma_addr, pages);
1487
1488 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1489 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1490 dma_dom->need_flush = false;
1491 }
1492}
1493
1494/*
1495 * The exported map_single function for dma_ops.
1496 */
1497static dma_addr_t map_page(struct device *dev, struct page *page,
1498 unsigned long offset, size_t size,
1499 enum dma_data_direction dir,
1500 struct dma_attrs *attrs)
1501{
1502 unsigned long flags;
1503 struct amd_iommu *iommu;
1504 struct protection_domain *domain;
1505 u16 devid;
1506 dma_addr_t addr;
1507 u64 dma_mask;
1508 phys_addr_t paddr = page_to_phys(page) + offset;
1509
1510 INC_STATS_COUNTER(cnt_map_single);
1511
1512 if (!check_device(dev))
1513 return bad_dma_address;
1514
1515 dma_mask = *dev->dma_mask;
1516
1517 get_device_resources(dev, &iommu, &domain, &devid);
1518
1519 if (iommu == NULL || domain == NULL)
1520 /* device not handled by any AMD IOMMU */
1521 return (dma_addr_t)paddr;
1522
1523 if (!dma_ops_domain(domain))
1524 return bad_dma_address;
1525
1526 spin_lock_irqsave(&domain->lock, flags);
1527 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1528 dma_mask);
1529 if (addr == bad_dma_address)
1530 goto out;
1531
1532 iommu_completion_wait(iommu);
1533
1534out:
1535 spin_unlock_irqrestore(&domain->lock, flags);
1536
1537 return addr;
1538}
1539
1540/*
1541 * The exported unmap_single function for dma_ops.
1542 */
1543static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1544 enum dma_data_direction dir, struct dma_attrs *attrs)
1545{
1546 unsigned long flags;
1547 struct amd_iommu *iommu;
1548 struct protection_domain *domain;
1549 u16 devid;
1550
1551 INC_STATS_COUNTER(cnt_unmap_single);
1552
1553 if (!check_device(dev) ||
1554 !get_device_resources(dev, &iommu, &domain, &devid))
1555 /* device not handled by any AMD IOMMU */
1556 return;
1557
1558 if (!dma_ops_domain(domain))
1559 return;
1560
1561 spin_lock_irqsave(&domain->lock, flags);
1562
1563 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1564
1565 iommu_completion_wait(iommu);
1566
1567 spin_unlock_irqrestore(&domain->lock, flags);
1568}
1569
1570/*
1571 * This is a special map_sg function which is used if we should map a
1572 * device which is not handled by an AMD IOMMU in the system.
1573 */
1574static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1575 int nelems, int dir)
1576{
1577 struct scatterlist *s;
1578 int i;
1579
1580 for_each_sg(sglist, s, nelems, i) {
1581 s->dma_address = (dma_addr_t)sg_phys(s);
1582 s->dma_length = s->length;
1583 }
1584
1585 return nelems;
1586}
1587
1588/*
1589 * The exported map_sg function for dma_ops (handles scatter-gather
1590 * lists).
1591 */
1592static int map_sg(struct device *dev, struct scatterlist *sglist,
1593 int nelems, enum dma_data_direction dir,
1594 struct dma_attrs *attrs)
1595{
1596 unsigned long flags;
1597 struct amd_iommu *iommu;
1598 struct protection_domain *domain;
1599 u16 devid;
1600 int i;
1601 struct scatterlist *s;
1602 phys_addr_t paddr;
1603 int mapped_elems = 0;
1604 u64 dma_mask;
1605
1606 INC_STATS_COUNTER(cnt_map_sg);
1607
1608 if (!check_device(dev))
1609 return 0;
1610
1611 dma_mask = *dev->dma_mask;
1612
1613 get_device_resources(dev, &iommu, &domain, &devid);
1614
1615 if (!iommu || !domain)
1616 return map_sg_no_iommu(dev, sglist, nelems, dir);
1617
1618 if (!dma_ops_domain(domain))
1619 return 0;
1620
1621 spin_lock_irqsave(&domain->lock, flags);
1622
1623 for_each_sg(sglist, s, nelems, i) {
1624 paddr = sg_phys(s);
1625
1626 s->dma_address = __map_single(dev, iommu, domain->priv,
1627 paddr, s->length, dir, false,
1628 dma_mask);
1629
1630 if (s->dma_address) {
1631 s->dma_length = s->length;
1632 mapped_elems++;
1633 } else
1634 goto unmap;
1635 }
1636
1637 iommu_completion_wait(iommu);
1638
1639out:
1640 spin_unlock_irqrestore(&domain->lock, flags);
1641
1642 return mapped_elems;
1643unmap:
1644 for_each_sg(sglist, s, mapped_elems, i) {
1645 if (s->dma_address)
1646 __unmap_single(iommu, domain->priv, s->dma_address,
1647 s->dma_length, dir);
1648 s->dma_address = s->dma_length = 0;
1649 }
1650
1651 mapped_elems = 0;
1652
1653 goto out;
1654}
1655
1656/*
1657 * The exported map_sg function for dma_ops (handles scatter-gather
1658 * lists).
1659 */
1660static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1661 int nelems, enum dma_data_direction dir,
1662 struct dma_attrs *attrs)
1663{
1664 unsigned long flags;
1665 struct amd_iommu *iommu;
1666 struct protection_domain *domain;
1667 struct scatterlist *s;
1668 u16 devid;
1669 int i;
1670
1671 INC_STATS_COUNTER(cnt_unmap_sg);
1672
1673 if (!check_device(dev) ||
1674 !get_device_resources(dev, &iommu, &domain, &devid))
1675 return;
1676
1677 if (!dma_ops_domain(domain))
1678 return;
1679
1680 spin_lock_irqsave(&domain->lock, flags);
1681
1682 for_each_sg(sglist, s, nelems, i) {
1683 __unmap_single(iommu, domain->priv, s->dma_address,
1684 s->dma_length, dir);
1685 s->dma_address = s->dma_length = 0;
1686 }
1687
1688 iommu_completion_wait(iommu);
1689
1690 spin_unlock_irqrestore(&domain->lock, flags);
1691}
1692
1693/*
1694 * The exported alloc_coherent function for dma_ops.
1695 */
1696static void *alloc_coherent(struct device *dev, size_t size,
1697 dma_addr_t *dma_addr, gfp_t flag)
1698{
1699 unsigned long flags;
1700 void *virt_addr;
1701 struct amd_iommu *iommu;
1702 struct protection_domain *domain;
1703 u16 devid;
1704 phys_addr_t paddr;
1705 u64 dma_mask = dev->coherent_dma_mask;
1706
1707 INC_STATS_COUNTER(cnt_alloc_coherent);
1708
1709 if (!check_device(dev))
1710 return NULL;
1711
1712 if (!get_device_resources(dev, &iommu, &domain, &devid))
1713 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1714
1715 flag |= __GFP_ZERO;
1716 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1717 if (!virt_addr)
1718 return 0;
1719
1720 paddr = virt_to_phys(virt_addr);
1721
1722 if (!iommu || !domain) {
1723 *dma_addr = (dma_addr_t)paddr;
1724 return virt_addr;
1725 }
1726
1727 if (!dma_ops_domain(domain))
1728 goto out_free;
1729
1730 if (!dma_mask)
1731 dma_mask = *dev->dma_mask;
1732
1733 spin_lock_irqsave(&domain->lock, flags);
1734
1735 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1736 size, DMA_BIDIRECTIONAL, true, dma_mask);
1737
1738 if (*dma_addr == bad_dma_address)
1739 goto out_free;
1740
1741 iommu_completion_wait(iommu);
1742
1743 spin_unlock_irqrestore(&domain->lock, flags);
1744
1745 return virt_addr;
1746
1747out_free:
1748
1749 free_pages((unsigned long)virt_addr, get_order(size));
1750
1751 return NULL;
1752}
1753
1754/*
1755 * The exported free_coherent function for dma_ops.
1756 */
1757static void free_coherent(struct device *dev, size_t size,
1758 void *virt_addr, dma_addr_t dma_addr)
1759{
1760 unsigned long flags;
1761 struct amd_iommu *iommu;
1762 struct protection_domain *domain;
1763 u16 devid;
1764
1765 INC_STATS_COUNTER(cnt_free_coherent);
1766
1767 if (!check_device(dev))
1768 return;
1769
1770 get_device_resources(dev, &iommu, &domain, &devid);
1771
1772 if (!iommu || !domain)
1773 goto free_mem;
1774
1775 if (!dma_ops_domain(domain))
1776 goto free_mem;
1777
1778 spin_lock_irqsave(&domain->lock, flags);
1779
1780 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
1781
1782 iommu_completion_wait(iommu);
1783
1784 spin_unlock_irqrestore(&domain->lock, flags);
1785
1786free_mem:
1787 free_pages((unsigned long)virt_addr, get_order(size));
1788}
1789
1790/*
1791 * This function is called by the DMA layer to find out if we can handle a
1792 * particular device. It is part of the dma_ops.
1793 */
1794static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1795{
1796 u16 bdf;
1797 struct pci_dev *pcidev;
1798
1799 /* No device or no PCI device */
1800 if (!dev || dev->bus != &pci_bus_type)
1801 return 0;
1802
1803 pcidev = to_pci_dev(dev);
1804
1805 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1806
1807 /* Out of our scope? */
1808 if (bdf > amd_iommu_last_bdf)
1809 return 0;
1810
1811 return 1;
1812}
1813
1814/*
1815 * The function for pre-allocating protection domains.
1816 *
1817 * If the driver core informs the DMA layer if a driver grabs a device
1818 * we don't need to preallocate the protection domains anymore.
1819 * For now we have to.
1820 */
1821static void prealloc_protection_domains(void)
1822{
1823 struct pci_dev *dev = NULL;
1824 struct dma_ops_domain *dma_dom;
1825 struct amd_iommu *iommu;
1826 u16 devid;
1827
1828 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1829 devid = calc_devid(dev->bus->number, dev->devfn);
1830 if (devid > amd_iommu_last_bdf)
1831 continue;
1832 devid = amd_iommu_alias_table[devid];
1833 if (domain_for_device(devid))
1834 continue;
1835 iommu = amd_iommu_rlookup_table[devid];
1836 if (!iommu)
1837 continue;
1838 dma_dom = dma_ops_domain_alloc(iommu);
1839 if (!dma_dom)
1840 continue;
1841 init_unity_mappings_for_device(dma_dom, devid);
1842 dma_dom->target_dev = devid;
1843
1844 list_add_tail(&dma_dom->list, &iommu_pd_list);
1845 }
1846}
1847
1848static struct dma_map_ops amd_iommu_dma_ops = {
1849 .alloc_coherent = alloc_coherent,
1850 .free_coherent = free_coherent,
1851 .map_page = map_page,
1852 .unmap_page = unmap_page,
1853 .map_sg = map_sg,
1854 .unmap_sg = unmap_sg,
1855 .dma_supported = amd_iommu_dma_supported,
1856};
1857
1858/*
1859 * The function which clues the AMD IOMMU driver into dma_ops.
1860 */
1861int __init amd_iommu_init_dma_ops(void)
1862{
1863 struct amd_iommu *iommu;
1864 int ret;
1865
1866 /*
1867 * first allocate a default protection domain for every IOMMU we
1868 * found in the system. Devices not assigned to any other
1869 * protection domain will be assigned to the default one.
1870 */
1871 list_for_each_entry(iommu, &amd_iommu_list, list) {
1872 iommu->default_dom = dma_ops_domain_alloc(iommu);
1873 if (iommu->default_dom == NULL)
1874 return -ENOMEM;
1875 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1876 ret = iommu_init_unity_mappings(iommu);
1877 if (ret)
1878 goto free_domains;
1879 }
1880
1881 /*
1882 * If device isolation is enabled, pre-allocate the protection
1883 * domains for each device.
1884 */
1885 if (amd_iommu_isolate)
1886 prealloc_protection_domains();
1887
1888 iommu_detected = 1;
1889 force_iommu = 1;
1890 bad_dma_address = 0;
1891#ifdef CONFIG_GART_IOMMU
1892 gart_iommu_aperture_disabled = 1;
1893 gart_iommu_aperture = 0;
1894#endif
1895
1896 /* Make the driver finally visible to the drivers */
1897 dma_ops = &amd_iommu_dma_ops;
1898
1899 register_iommu(&amd_iommu_ops);
1900
1901 bus_register_notifier(&pci_bus_type, &device_nb);
1902
1903 amd_iommu_stats_init();
1904
1905 return 0;
1906
1907free_domains:
1908
1909 list_for_each_entry(iommu, &amd_iommu_list, list) {
1910 if (iommu->default_dom)
1911 dma_ops_domain_free(iommu->default_dom);
1912 }
1913
1914 return ret;
1915}
1916
1917/*****************************************************************************
1918 *
1919 * The following functions belong to the exported interface of AMD IOMMU
1920 *
1921 * This interface allows access to lower level functions of the IOMMU
1922 * like protection domain handling and assignement of devices to domains
1923 * which is not possible with the dma_ops interface.
1924 *
1925 *****************************************************************************/
1926
1927static void cleanup_domain(struct protection_domain *domain)
1928{
1929 unsigned long flags;
1930 u16 devid;
1931
1932 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1933
1934 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1935 if (amd_iommu_pd_table[devid] == domain)
1936 __detach_device(domain, devid);
1937
1938 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1939}
1940
1941static int amd_iommu_domain_init(struct iommu_domain *dom)
1942{
1943 struct protection_domain *domain;
1944
1945 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1946 if (!domain)
1947 return -ENOMEM;
1948
1949 spin_lock_init(&domain->lock);
1950 domain->mode = PAGE_MODE_3_LEVEL;
1951 domain->id = domain_id_alloc();
1952 if (!domain->id)
1953 goto out_free;
1954 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1955 if (!domain->pt_root)
1956 goto out_free;
1957
1958 dom->priv = domain;
1959
1960 return 0;
1961
1962out_free:
1963 kfree(domain);
1964
1965 return -ENOMEM;
1966}
1967
1968static void amd_iommu_domain_destroy(struct iommu_domain *dom)
1969{
1970 struct protection_domain *domain = dom->priv;
1971
1972 if (!domain)
1973 return;
1974
1975 if (domain->dev_cnt > 0)
1976 cleanup_domain(domain);
1977
1978 BUG_ON(domain->dev_cnt != 0);
1979
1980 free_pagetable(domain);
1981
1982 domain_id_free(domain->id);
1983
1984 kfree(domain);
1985
1986 dom->priv = NULL;
1987}
1988
1989static void amd_iommu_detach_device(struct iommu_domain *dom,
1990 struct device *dev)
1991{
1992 struct protection_domain *domain = dom->priv;
1993 struct amd_iommu *iommu;
1994 struct pci_dev *pdev;
1995 u16 devid;
1996
1997 if (dev->bus != &pci_bus_type)
1998 return;
1999
2000 pdev = to_pci_dev(dev);
2001
2002 devid = calc_devid(pdev->bus->number, pdev->devfn);
2003
2004 if (devid > 0)
2005 detach_device(domain, devid);
2006
2007 iommu = amd_iommu_rlookup_table[devid];
2008 if (!iommu)
2009 return;
2010
2011 iommu_queue_inv_dev_entry(iommu, devid);
2012 iommu_completion_wait(iommu);
2013}
2014
2015static int amd_iommu_attach_device(struct iommu_domain *dom,
2016 struct device *dev)
2017{
2018 struct protection_domain *domain = dom->priv;
2019 struct protection_domain *old_domain;
2020 struct amd_iommu *iommu;
2021 struct pci_dev *pdev;
2022 u16 devid;
2023
2024 if (dev->bus != &pci_bus_type)
2025 return -EINVAL;
2026
2027 pdev = to_pci_dev(dev);
2028
2029 devid = calc_devid(pdev->bus->number, pdev->devfn);
2030
2031 if (devid >= amd_iommu_last_bdf ||
2032 devid != amd_iommu_alias_table[devid])
2033 return -EINVAL;
2034
2035 iommu = amd_iommu_rlookup_table[devid];
2036 if (!iommu)
2037 return -EINVAL;
2038
2039 old_domain = domain_for_device(devid);
2040 if (old_domain)
2041 return -EBUSY;
2042
2043 attach_device(iommu, domain, devid);
2044
2045 iommu_completion_wait(iommu);
2046
2047 return 0;
2048}
2049
2050static int amd_iommu_map_range(struct iommu_domain *dom,
2051 unsigned long iova, phys_addr_t paddr,
2052 size_t size, int iommu_prot)
2053{
2054 struct protection_domain *domain = dom->priv;
2055 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2056 int prot = 0;
2057 int ret;
2058
2059 if (iommu_prot & IOMMU_READ)
2060 prot |= IOMMU_PROT_IR;
2061 if (iommu_prot & IOMMU_WRITE)
2062 prot |= IOMMU_PROT_IW;
2063
2064 iova &= PAGE_MASK;
2065 paddr &= PAGE_MASK;
2066
2067 for (i = 0; i < npages; ++i) {
2068 ret = iommu_map_page(domain, iova, paddr, prot);
2069 if (ret)
2070 return ret;
2071
2072 iova += PAGE_SIZE;
2073 paddr += PAGE_SIZE;
2074 }
2075
2076 return 0;
2077}
2078
2079static void amd_iommu_unmap_range(struct iommu_domain *dom,
2080 unsigned long iova, size_t size)
2081{
2082
2083 struct protection_domain *domain = dom->priv;
2084 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2085
2086 iova &= PAGE_MASK;
2087
2088 for (i = 0; i < npages; ++i) {
2089 iommu_unmap_page(domain, iova);
2090 iova += PAGE_SIZE;
2091 }
2092
2093 iommu_flush_domain(domain->id);
2094}
2095
2096static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2097 unsigned long iova)
2098{
2099 struct protection_domain *domain = dom->priv;
2100 unsigned long offset = iova & ~PAGE_MASK;
2101 phys_addr_t paddr;
2102 u64 *pte;
2103
2104 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
2105
2106 if (!IOMMU_PTE_PRESENT(*pte))
2107 return 0;
2108
2109 pte = IOMMU_PTE_PAGE(*pte);
2110 pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
2111
2112 if (!IOMMU_PTE_PRESENT(*pte))
2113 return 0;
2114
2115 pte = IOMMU_PTE_PAGE(*pte);
2116 pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
2117
2118 if (!IOMMU_PTE_PRESENT(*pte))
2119 return 0;
2120
2121 paddr = *pte & IOMMU_PAGE_MASK;
2122 paddr |= offset;
2123
2124 return paddr;
2125}
2126
2127static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2128 unsigned long cap)
2129{
2130 return 0;
2131}
2132
2133static struct iommu_ops amd_iommu_ops = {
2134 .domain_init = amd_iommu_domain_init,
2135 .domain_destroy = amd_iommu_domain_destroy,
2136 .attach_dev = amd_iommu_attach_device,
2137 .detach_dev = amd_iommu_detach_device,
2138 .map = amd_iommu_map_range,
2139 .unmap = amd_iommu_unmap_range,
2140 .iova_to_phys = amd_iommu_iova_to_phys,
2141 .domain_has_cap = amd_iommu_domain_has_cap,
2142};
2143