[RXRPC]: Fix build failure introduced by skb->stamp changes.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
CommitLineData
1da177e4
LT
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
02c30a84 7 * Ross Biro
1da177e4
LT
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/config.h>
62#include <linux/mm.h>
63#include <linux/smp_lock.h>
64#include <linux/socket.h>
65#include <linux/file.h>
66#include <linux/net.h>
67#include <linux/interrupt.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/wanrouter.h>
72#include <linux/if_bridge.h>
73#include <linux/init.h>
74#include <linux/poll.h>
75#include <linux/cache.h>
76#include <linux/module.h>
77#include <linux/highmem.h>
78#include <linux/divert.h>
79#include <linux/mount.h>
80#include <linux/security.h>
81#include <linux/syscalls.h>
82#include <linux/compat.h>
83#include <linux/kmod.h>
3ec3b2fb 84#include <linux/audit.h>
1da177e4
LT
85
86#ifdef CONFIG_NET_RADIO
87#include <linux/wireless.h> /* Note : will define WIRELESS_EXT */
88#endif /* CONFIG_NET_RADIO */
89
90#include <asm/uaccess.h>
91#include <asm/unistd.h>
92
93#include <net/compat.h>
94
95#include <net/sock.h>
96#include <linux/netfilter.h>
97
98static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
99static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
100 size_t size, loff_t pos);
101static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
102 size_t size, loff_t pos);
103static int sock_mmap(struct file *file, struct vm_area_struct * vma);
104
105static int sock_close(struct inode *inode, struct file *file);
106static unsigned int sock_poll(struct file *file,
107 struct poll_table_struct *wait);
108static long sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
110static int sock_fasync(int fd, struct file *filp, int on);
111static ssize_t sock_readv(struct file *file, const struct iovec *vector,
112 unsigned long count, loff_t *ppos);
113static ssize_t sock_writev(struct file *file, const struct iovec *vector,
114 unsigned long count, loff_t *ppos);
115static ssize_t sock_sendpage(struct file *file, struct page *page,
116 int offset, size_t size, loff_t *ppos, int more);
117
118
119/*
120 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
121 * in the operation structures but are done directly via the socketcall() multiplexor.
122 */
123
124static struct file_operations socket_file_ops = {
125 .owner = THIS_MODULE,
126 .llseek = no_llseek,
127 .aio_read = sock_aio_read,
128 .aio_write = sock_aio_write,
129 .poll = sock_poll,
130 .unlocked_ioctl = sock_ioctl,
131 .mmap = sock_mmap,
132 .open = sock_no_open, /* special open code to disallow open via /proc */
133 .release = sock_close,
134 .fasync = sock_fasync,
135 .readv = sock_readv,
136 .writev = sock_writev,
137 .sendpage = sock_sendpage
138};
139
140/*
141 * The protocol list. Each protocol is registered in here.
142 */
143
144static struct net_proto_family *net_families[NPROTO];
145
146#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
147static atomic_t net_family_lockct = ATOMIC_INIT(0);
148static DEFINE_SPINLOCK(net_family_lock);
149
150/* The strategy is: modifications net_family vector are short, do not
151 sleep and veeery rare, but read access should be free of any exclusive
152 locks.
153 */
154
155static void net_family_write_lock(void)
156{
157 spin_lock(&net_family_lock);
158 while (atomic_read(&net_family_lockct) != 0) {
159 spin_unlock(&net_family_lock);
160
161 yield();
162
163 spin_lock(&net_family_lock);
164 }
165}
166
167static __inline__ void net_family_write_unlock(void)
168{
169 spin_unlock(&net_family_lock);
170}
171
172static __inline__ void net_family_read_lock(void)
173{
174 atomic_inc(&net_family_lockct);
175 spin_unlock_wait(&net_family_lock);
176}
177
178static __inline__ void net_family_read_unlock(void)
179{
180 atomic_dec(&net_family_lockct);
181}
182
183#else
184#define net_family_write_lock() do { } while(0)
185#define net_family_write_unlock() do { } while(0)
186#define net_family_read_lock() do { } while(0)
187#define net_family_read_unlock() do { } while(0)
188#endif
189
190
191/*
192 * Statistics counters of the socket lists
193 */
194
195static DEFINE_PER_CPU(int, sockets_in_use) = 0;
196
197/*
198 * Support routines. Move socket addresses back and forth across the kernel/user
199 * divide and look after the messy bits.
200 */
201
202#define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
203 16 for IP, 16 for IPX,
204 24 for IPv6,
205 about 80 for AX.25
206 must be at least one bigger than
207 the AF_UNIX size (see net/unix/af_unix.c
208 :unix_mkname()).
209 */
210
211/**
212 * move_addr_to_kernel - copy a socket address into kernel space
213 * @uaddr: Address in user space
214 * @kaddr: Address in kernel space
215 * @ulen: Length in user space
216 *
217 * The address is copied into kernel space. If the provided address is
218 * too long an error code of -EINVAL is returned. If the copy gives
219 * invalid addresses -EFAULT is returned. On a success 0 is returned.
220 */
221
222int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
223{
224 if(ulen<0||ulen>MAX_SOCK_ADDR)
225 return -EINVAL;
226 if(ulen==0)
227 return 0;
228 if(copy_from_user(kaddr,uaddr,ulen))
229 return -EFAULT;
3ec3b2fb 230 return audit_sockaddr(ulen, kaddr);
1da177e4
LT
231}
232
233/**
234 * move_addr_to_user - copy an address to user space
235 * @kaddr: kernel space address
236 * @klen: length of address in kernel
237 * @uaddr: user space address
238 * @ulen: pointer to user length field
239 *
240 * The value pointed to by ulen on entry is the buffer length available.
241 * This is overwritten with the buffer space used. -EINVAL is returned
242 * if an overlong buffer is specified or a negative buffer size. -EFAULT
243 * is returned if either the buffer or the length field are not
244 * accessible.
245 * After copying the data up to the limit the user specifies, the true
246 * length of the data is written over the length limit the user
247 * specified. Zero is returned for a success.
248 */
249
250int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
251{
252 int err;
253 int len;
254
255 if((err=get_user(len, ulen)))
256 return err;
257 if(len>klen)
258 len=klen;
259 if(len<0 || len> MAX_SOCK_ADDR)
260 return -EINVAL;
261 if(len)
262 {
263 if(copy_to_user(uaddr,kaddr,len))
264 return -EFAULT;
265 }
266 /*
267 * "fromlen shall refer to the value before truncation.."
268 * 1003.1g
269 */
270 return __put_user(klen, ulen);
271}
272
273#define SOCKFS_MAGIC 0x534F434B
274
275static kmem_cache_t * sock_inode_cachep;
276
277static struct inode *sock_alloc_inode(struct super_block *sb)
278{
279 struct socket_alloc *ei;
280 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
281 if (!ei)
282 return NULL;
283 init_waitqueue_head(&ei->socket.wait);
284
285 ei->socket.fasync_list = NULL;
286 ei->socket.state = SS_UNCONNECTED;
287 ei->socket.flags = 0;
288 ei->socket.ops = NULL;
289 ei->socket.sk = NULL;
290 ei->socket.file = NULL;
291 ei->socket.flags = 0;
292
293 return &ei->vfs_inode;
294}
295
296static void sock_destroy_inode(struct inode *inode)
297{
298 kmem_cache_free(sock_inode_cachep,
299 container_of(inode, struct socket_alloc, vfs_inode));
300}
301
302static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
303{
304 struct socket_alloc *ei = (struct socket_alloc *) foo;
305
306 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
307 SLAB_CTOR_CONSTRUCTOR)
308 inode_init_once(&ei->vfs_inode);
309}
310
311static int init_inodecache(void)
312{
313 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
314 sizeof(struct socket_alloc),
315 0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
316 init_once, NULL);
317 if (sock_inode_cachep == NULL)
318 return -ENOMEM;
319 return 0;
320}
321
322static struct super_operations sockfs_ops = {
323 .alloc_inode = sock_alloc_inode,
324 .destroy_inode =sock_destroy_inode,
325 .statfs = simple_statfs,
326};
327
328static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
329 int flags, const char *dev_name, void *data)
330{
331 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
332}
333
334static struct vfsmount *sock_mnt;
335
336static struct file_system_type sock_fs_type = {
337 .name = "sockfs",
338 .get_sb = sockfs_get_sb,
339 .kill_sb = kill_anon_super,
340};
341static int sockfs_delete_dentry(struct dentry *dentry)
342{
343 return 1;
344}
345static struct dentry_operations sockfs_dentry_operations = {
346 .d_delete = sockfs_delete_dentry,
347};
348
349/*
350 * Obtains the first available file descriptor and sets it up for use.
351 *
352 * This function creates file structure and maps it to fd space
353 * of current process. On success it returns file descriptor
354 * and file struct implicitly stored in sock->file.
355 * Note that another thread may close file descriptor before we return
356 * from this function. We use the fact that now we do not refer
357 * to socket after mapping. If one day we will need it, this
358 * function will increment ref. count on file by 1.
359 *
360 * In any case returned fd MAY BE not valid!
361 * This race condition is unavoidable
362 * with shared fd spaces, we cannot solve it inside kernel,
363 * but we take care of internal coherence yet.
364 */
365
366int sock_map_fd(struct socket *sock)
367{
368 int fd;
369 struct qstr this;
370 char name[32];
371
372 /*
373 * Find a file descriptor suitable for return to the user.
374 */
375
376 fd = get_unused_fd();
377 if (fd >= 0) {
378 struct file *file = get_empty_filp();
379
380 if (!file) {
381 put_unused_fd(fd);
382 fd = -ENFILE;
383 goto out;
384 }
385
f31f5f05 386 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
1da177e4 387 this.name = name;
1da177e4
LT
388 this.hash = SOCK_INODE(sock)->i_ino;
389
390 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
391 if (!file->f_dentry) {
392 put_filp(file);
393 put_unused_fd(fd);
394 fd = -ENOMEM;
395 goto out;
396 }
397 file->f_dentry->d_op = &sockfs_dentry_operations;
398 d_add(file->f_dentry, SOCK_INODE(sock));
399 file->f_vfsmnt = mntget(sock_mnt);
400 file->f_mapping = file->f_dentry->d_inode->i_mapping;
401
402 sock->file = file;
403 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
404 file->f_mode = FMODE_READ | FMODE_WRITE;
405 file->f_flags = O_RDWR;
406 file->f_pos = 0;
07dc3f07 407 file->private_data = sock;
1da177e4
LT
408 fd_install(fd, file);
409 }
410
411out:
412 return fd;
413}
414
415/**
416 * sockfd_lookup - Go from a file number to its socket slot
417 * @fd: file handle
418 * @err: pointer to an error code return
419 *
420 * The file handle passed in is locked and the socket it is bound
421 * too is returned. If an error occurs the err pointer is overwritten
422 * with a negative errno code and NULL is returned. The function checks
423 * for both invalid handles and passing a handle which is not a socket.
424 *
425 * On a success the socket object pointer is returned.
426 */
427
428struct socket *sockfd_lookup(int fd, int *err)
429{
430 struct file *file;
431 struct inode *inode;
432 struct socket *sock;
433
434 if (!(file = fget(fd)))
435 {
436 *err = -EBADF;
437 return NULL;
438 }
439
07dc3f07
BL
440 if (file->f_op == &socket_file_ops)
441 return file->private_data; /* set in sock_map_fd */
442
1da177e4
LT
443 inode = file->f_dentry->d_inode;
444 if (!S_ISSOCK(inode->i_mode)) {
445 *err = -ENOTSOCK;
446 fput(file);
447 return NULL;
448 }
449
450 sock = SOCKET_I(inode);
451 if (sock->file != file) {
452 printk(KERN_ERR "socki_lookup: socket file changed!\n");
453 sock->file = file;
454 }
455 return sock;
456}
457
458/**
459 * sock_alloc - allocate a socket
460 *
461 * Allocate a new inode and socket object. The two are bound together
462 * and initialised. The socket is then returned. If we are out of inodes
463 * NULL is returned.
464 */
465
466static struct socket *sock_alloc(void)
467{
468 struct inode * inode;
469 struct socket * sock;
470
471 inode = new_inode(sock_mnt->mnt_sb);
472 if (!inode)
473 return NULL;
474
475 sock = SOCKET_I(inode);
476
477 inode->i_mode = S_IFSOCK|S_IRWXUGO;
478 inode->i_uid = current->fsuid;
479 inode->i_gid = current->fsgid;
480
481 get_cpu_var(sockets_in_use)++;
482 put_cpu_var(sockets_in_use);
483 return sock;
484}
485
486/*
487 * In theory you can't get an open on this inode, but /proc provides
488 * a back door. Remember to keep it shut otherwise you'll let the
489 * creepy crawlies in.
490 */
491
492static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
493{
494 return -ENXIO;
495}
496
497struct file_operations bad_sock_fops = {
498 .owner = THIS_MODULE,
499 .open = sock_no_open,
500};
501
502/**
503 * sock_release - close a socket
504 * @sock: socket to close
505 *
506 * The socket is released from the protocol stack if it has a release
507 * callback, and the inode is then released if the socket is bound to
508 * an inode not a file.
509 */
510
511void sock_release(struct socket *sock)
512{
513 if (sock->ops) {
514 struct module *owner = sock->ops->owner;
515
516 sock->ops->release(sock);
517 sock->ops = NULL;
518 module_put(owner);
519 }
520
521 if (sock->fasync_list)
522 printk(KERN_ERR "sock_release: fasync list not empty!\n");
523
524 get_cpu_var(sockets_in_use)--;
525 put_cpu_var(sockets_in_use);
526 if (!sock->file) {
527 iput(SOCK_INODE(sock));
528 return;
529 }
530 sock->file=NULL;
531}
532
533static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
534 struct msghdr *msg, size_t size)
535{
536 struct sock_iocb *si = kiocb_to_siocb(iocb);
537 int err;
538
539 si->sock = sock;
540 si->scm = NULL;
541 si->msg = msg;
542 si->size = size;
543
544 err = security_socket_sendmsg(sock, msg, size);
545 if (err)
546 return err;
547
548 return sock->ops->sendmsg(iocb, sock, msg, size);
549}
550
551int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
552{
553 struct kiocb iocb;
554 struct sock_iocb siocb;
555 int ret;
556
557 init_sync_kiocb(&iocb, NULL);
558 iocb.private = &siocb;
559 ret = __sock_sendmsg(&iocb, sock, msg, size);
560 if (-EIOCBQUEUED == ret)
561 ret = wait_on_sync_kiocb(&iocb);
562 return ret;
563}
564
565int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
566 struct kvec *vec, size_t num, size_t size)
567{
568 mm_segment_t oldfs = get_fs();
569 int result;
570
571 set_fs(KERNEL_DS);
572 /*
573 * the following is safe, since for compiler definitions of kvec and
574 * iovec are identical, yielding the same in-core layout and alignment
575 */
576 msg->msg_iov = (struct iovec *)vec,
577 msg->msg_iovlen = num;
578 result = sock_sendmsg(sock, msg, size);
579 set_fs(oldfs);
580 return result;
581}
582
583static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
584 struct msghdr *msg, size_t size, int flags)
585{
586 int err;
587 struct sock_iocb *si = kiocb_to_siocb(iocb);
588
589 si->sock = sock;
590 si->scm = NULL;
591 si->msg = msg;
592 si->size = size;
593 si->flags = flags;
594
595 err = security_socket_recvmsg(sock, msg, size, flags);
596 if (err)
597 return err;
598
599 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
600}
601
602int sock_recvmsg(struct socket *sock, struct msghdr *msg,
603 size_t size, int flags)
604{
605 struct kiocb iocb;
606 struct sock_iocb siocb;
607 int ret;
608
609 init_sync_kiocb(&iocb, NULL);
610 iocb.private = &siocb;
611 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
612 if (-EIOCBQUEUED == ret)
613 ret = wait_on_sync_kiocb(&iocb);
614 return ret;
615}
616
617int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
618 struct kvec *vec, size_t num,
619 size_t size, int flags)
620{
621 mm_segment_t oldfs = get_fs();
622 int result;
623
624 set_fs(KERNEL_DS);
625 /*
626 * the following is safe, since for compiler definitions of kvec and
627 * iovec are identical, yielding the same in-core layout and alignment
628 */
629 msg->msg_iov = (struct iovec *)vec,
630 msg->msg_iovlen = num;
631 result = sock_recvmsg(sock, msg, size, flags);
632 set_fs(oldfs);
633 return result;
634}
635
636static void sock_aio_dtor(struct kiocb *iocb)
637{
638 kfree(iocb->private);
639}
640
641/*
642 * Read data from a socket. ubuf is a user mode pointer. We make sure the user
643 * area ubuf...ubuf+size-1 is writable before asking the protocol.
644 */
645
646static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
647 size_t size, loff_t pos)
648{
649 struct sock_iocb *x, siocb;
650 struct socket *sock;
651 int flags;
652
653 if (pos != 0)
654 return -ESPIPE;
655 if (size==0) /* Match SYS5 behaviour */
656 return 0;
657
658 if (is_sync_kiocb(iocb))
659 x = &siocb;
660 else {
661 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
662 if (!x)
663 return -ENOMEM;
664 iocb->ki_dtor = sock_aio_dtor;
665 }
666 iocb->private = x;
667 x->kiocb = iocb;
668 sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode);
669
670 x->async_msg.msg_name = NULL;
671 x->async_msg.msg_namelen = 0;
672 x->async_msg.msg_iov = &x->async_iov;
673 x->async_msg.msg_iovlen = 1;
674 x->async_msg.msg_control = NULL;
675 x->async_msg.msg_controllen = 0;
676 x->async_iov.iov_base = ubuf;
677 x->async_iov.iov_len = size;
678 flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
679
680 return __sock_recvmsg(iocb, sock, &x->async_msg, size, flags);
681}
682
683
684/*
685 * Write data to a socket. We verify that the user area ubuf..ubuf+size-1
686 * is readable by the user process.
687 */
688
689static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
690 size_t size, loff_t pos)
691{
692 struct sock_iocb *x, siocb;
693 struct socket *sock;
694
695 if (pos != 0)
696 return -ESPIPE;
697 if(size==0) /* Match SYS5 behaviour */
698 return 0;
699
700 if (is_sync_kiocb(iocb))
701 x = &siocb;
702 else {
703 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
704 if (!x)
705 return -ENOMEM;
706 iocb->ki_dtor = sock_aio_dtor;
707 }
708 iocb->private = x;
709 x->kiocb = iocb;
710 sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode);
711
712 x->async_msg.msg_name = NULL;
713 x->async_msg.msg_namelen = 0;
714 x->async_msg.msg_iov = &x->async_iov;
715 x->async_msg.msg_iovlen = 1;
716 x->async_msg.msg_control = NULL;
717 x->async_msg.msg_controllen = 0;
718 x->async_msg.msg_flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
719 if (sock->type == SOCK_SEQPACKET)
720 x->async_msg.msg_flags |= MSG_EOR;
721 x->async_iov.iov_base = (void __user *)ubuf;
722 x->async_iov.iov_len = size;
723
724 return __sock_sendmsg(iocb, sock, &x->async_msg, size);
725}
726
727ssize_t sock_sendpage(struct file *file, struct page *page,
728 int offset, size_t size, loff_t *ppos, int more)
729{
730 struct socket *sock;
731 int flags;
732
733 sock = SOCKET_I(file->f_dentry->d_inode);
734
735 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
736 if (more)
737 flags |= MSG_MORE;
738
739 return sock->ops->sendpage(sock, page, offset, size, flags);
740}
741
742static int sock_readv_writev(int type, struct inode * inode,
743 struct file * file, const struct iovec * iov,
744 long count, size_t size)
745{
746 struct msghdr msg;
747 struct socket *sock;
748
749 sock = SOCKET_I(inode);
750
751 msg.msg_name = NULL;
752 msg.msg_namelen = 0;
753 msg.msg_control = NULL;
754 msg.msg_controllen = 0;
755 msg.msg_iov = (struct iovec *) iov;
756 msg.msg_iovlen = count;
757 msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
758
759 /* read() does a VERIFY_WRITE */
760 if (type == VERIFY_WRITE)
761 return sock_recvmsg(sock, &msg, size, msg.msg_flags);
762
763 if (sock->type == SOCK_SEQPACKET)
764 msg.msg_flags |= MSG_EOR;
765
766 return sock_sendmsg(sock, &msg, size);
767}
768
769static ssize_t sock_readv(struct file *file, const struct iovec *vector,
770 unsigned long count, loff_t *ppos)
771{
772 size_t tot_len = 0;
773 int i;
774 for (i = 0 ; i < count ; i++)
775 tot_len += vector[i].iov_len;
776 return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode,
777 file, vector, count, tot_len);
778}
779
780static ssize_t sock_writev(struct file *file, const struct iovec *vector,
781 unsigned long count, loff_t *ppos)
782{
783 size_t tot_len = 0;
784 int i;
785 for (i = 0 ; i < count ; i++)
786 tot_len += vector[i].iov_len;
787 return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode,
788 file, vector, count, tot_len);
789}
790
791
792/*
793 * Atomic setting of ioctl hooks to avoid race
794 * with module unload.
795 */
796
797static DECLARE_MUTEX(br_ioctl_mutex);
798static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
799
800void brioctl_set(int (*hook)(unsigned int, void __user *))
801{
802 down(&br_ioctl_mutex);
803 br_ioctl_hook = hook;
804 up(&br_ioctl_mutex);
805}
806EXPORT_SYMBOL(brioctl_set);
807
808static DECLARE_MUTEX(vlan_ioctl_mutex);
809static int (*vlan_ioctl_hook)(void __user *arg);
810
811void vlan_ioctl_set(int (*hook)(void __user *))
812{
813 down(&vlan_ioctl_mutex);
814 vlan_ioctl_hook = hook;
815 up(&vlan_ioctl_mutex);
816}
817EXPORT_SYMBOL(vlan_ioctl_set);
818
819static DECLARE_MUTEX(dlci_ioctl_mutex);
820static int (*dlci_ioctl_hook)(unsigned int, void __user *);
821
822void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
823{
824 down(&dlci_ioctl_mutex);
825 dlci_ioctl_hook = hook;
826 up(&dlci_ioctl_mutex);
827}
828EXPORT_SYMBOL(dlci_ioctl_set);
829
830/*
831 * With an ioctl, arg may well be a user mode pointer, but we don't know
832 * what to do with it - that's up to the protocol still.
833 */
834
835static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
836{
837 struct socket *sock;
838 void __user *argp = (void __user *)arg;
839 int pid, err;
840
841 sock = SOCKET_I(file->f_dentry->d_inode);
842 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
843 err = dev_ioctl(cmd, argp);
844 } else
845#ifdef WIRELESS_EXT
846 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
847 err = dev_ioctl(cmd, argp);
848 } else
849#endif /* WIRELESS_EXT */
850 switch (cmd) {
851 case FIOSETOWN:
852 case SIOCSPGRP:
853 err = -EFAULT;
854 if (get_user(pid, (int __user *)argp))
855 break;
856 err = f_setown(sock->file, pid, 1);
857 break;
858 case FIOGETOWN:
859 case SIOCGPGRP:
860 err = put_user(sock->file->f_owner.pid, (int __user *)argp);
861 break;
862 case SIOCGIFBR:
863 case SIOCSIFBR:
864 case SIOCBRADDBR:
865 case SIOCBRDELBR:
866 err = -ENOPKG;
867 if (!br_ioctl_hook)
868 request_module("bridge");
869
870 down(&br_ioctl_mutex);
871 if (br_ioctl_hook)
872 err = br_ioctl_hook(cmd, argp);
873 up(&br_ioctl_mutex);
874 break;
875 case SIOCGIFVLAN:
876 case SIOCSIFVLAN:
877 err = -ENOPKG;
878 if (!vlan_ioctl_hook)
879 request_module("8021q");
880
881 down(&vlan_ioctl_mutex);
882 if (vlan_ioctl_hook)
883 err = vlan_ioctl_hook(argp);
884 up(&vlan_ioctl_mutex);
885 break;
886 case SIOCGIFDIVERT:
887 case SIOCSIFDIVERT:
888 /* Convert this to call through a hook */
889 err = divert_ioctl(cmd, argp);
890 break;
891 case SIOCADDDLCI:
892 case SIOCDELDLCI:
893 err = -ENOPKG;
894 if (!dlci_ioctl_hook)
895 request_module("dlci");
896
897 if (dlci_ioctl_hook) {
898 down(&dlci_ioctl_mutex);
899 err = dlci_ioctl_hook(cmd, argp);
900 up(&dlci_ioctl_mutex);
901 }
902 break;
903 default:
904 err = sock->ops->ioctl(sock, cmd, arg);
905 break;
906 }
907 return err;
908}
909
910int sock_create_lite(int family, int type, int protocol, struct socket **res)
911{
912 int err;
913 struct socket *sock = NULL;
914
915 err = security_socket_create(family, type, protocol, 1);
916 if (err)
917 goto out;
918
919 sock = sock_alloc();
920 if (!sock) {
921 err = -ENOMEM;
922 goto out;
923 }
924
925 security_socket_post_create(sock, family, type, protocol, 1);
926 sock->type = type;
927out:
928 *res = sock;
929 return err;
930}
931
932/* No kernel lock held - perfect */
933static unsigned int sock_poll(struct file *file, poll_table * wait)
934{
935 struct socket *sock;
936
937 /*
938 * We can't return errors to poll, so it's either yes or no.
939 */
940 sock = SOCKET_I(file->f_dentry->d_inode);
941 return sock->ops->poll(file, sock, wait);
942}
943
944static int sock_mmap(struct file * file, struct vm_area_struct * vma)
945{
946 struct socket *sock = SOCKET_I(file->f_dentry->d_inode);
947
948 return sock->ops->mmap(file, sock, vma);
949}
950
951int sock_close(struct inode *inode, struct file *filp)
952{
953 /*
954 * It was possible the inode is NULL we were
955 * closing an unfinished socket.
956 */
957
958 if (!inode)
959 {
960 printk(KERN_DEBUG "sock_close: NULL inode\n");
961 return 0;
962 }
963 sock_fasync(-1, filp, 0);
964 sock_release(SOCKET_I(inode));
965 return 0;
966}
967
968/*
969 * Update the socket async list
970 *
971 * Fasync_list locking strategy.
972 *
973 * 1. fasync_list is modified only under process context socket lock
974 * i.e. under semaphore.
975 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
976 * or under socket lock.
977 * 3. fasync_list can be used from softirq context, so that
978 * modification under socket lock have to be enhanced with
979 * write_lock_bh(&sk->sk_callback_lock).
980 * --ANK (990710)
981 */
982
983static int sock_fasync(int fd, struct file *filp, int on)
984{
985 struct fasync_struct *fa, *fna=NULL, **prev;
986 struct socket *sock;
987 struct sock *sk;
988
989 if (on)
990 {
991 fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
992 if(fna==NULL)
993 return -ENOMEM;
994 }
995
996 sock = SOCKET_I(filp->f_dentry->d_inode);
997
998 if ((sk=sock->sk) == NULL) {
999 kfree(fna);
1000 return -EINVAL;
1001 }
1002
1003 lock_sock(sk);
1004
1005 prev=&(sock->fasync_list);
1006
1007 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1008 if (fa->fa_file==filp)
1009 break;
1010
1011 if(on)
1012 {
1013 if(fa!=NULL)
1014 {
1015 write_lock_bh(&sk->sk_callback_lock);
1016 fa->fa_fd=fd;
1017 write_unlock_bh(&sk->sk_callback_lock);
1018
1019 kfree(fna);
1020 goto out;
1021 }
1022 fna->fa_file=filp;
1023 fna->fa_fd=fd;
1024 fna->magic=FASYNC_MAGIC;
1025 fna->fa_next=sock->fasync_list;
1026 write_lock_bh(&sk->sk_callback_lock);
1027 sock->fasync_list=fna;
1028 write_unlock_bh(&sk->sk_callback_lock);
1029 }
1030 else
1031 {
1032 if (fa!=NULL)
1033 {
1034 write_lock_bh(&sk->sk_callback_lock);
1035 *prev=fa->fa_next;
1036 write_unlock_bh(&sk->sk_callback_lock);
1037 kfree(fa);
1038 }
1039 }
1040
1041out:
1042 release_sock(sock->sk);
1043 return 0;
1044}
1045
1046/* This function may be called only under socket lock or callback_lock */
1047
1048int sock_wake_async(struct socket *sock, int how, int band)
1049{
1050 if (!sock || !sock->fasync_list)
1051 return -1;
1052 switch (how)
1053 {
1054 case 1:
1055
1056 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1057 break;
1058 goto call_kill;
1059 case 2:
1060 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1061 break;
1062 /* fall through */
1063 case 0:
1064 call_kill:
1065 __kill_fasync(sock->fasync_list, SIGIO, band);
1066 break;
1067 case 3:
1068 __kill_fasync(sock->fasync_list, SIGURG, band);
1069 }
1070 return 0;
1071}
1072
1073static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1074{
1075 int err;
1076 struct socket *sock;
1077
1078 /*
1079 * Check protocol is in range
1080 */
1081 if (family < 0 || family >= NPROTO)
1082 return -EAFNOSUPPORT;
1083 if (type < 0 || type >= SOCK_MAX)
1084 return -EINVAL;
1085
1086 /* Compatibility.
1087
1088 This uglymoron is moved from INET layer to here to avoid
1089 deadlock in module load.
1090 */
1091 if (family == PF_INET && type == SOCK_PACKET) {
1092 static int warned;
1093 if (!warned) {
1094 warned = 1;
1095 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1096 }
1097 family = PF_PACKET;
1098 }
1099
1100 err = security_socket_create(family, type, protocol, kern);
1101 if (err)
1102 return err;
1103
1104#if defined(CONFIG_KMOD)
1105 /* Attempt to load a protocol module if the find failed.
1106 *
1107 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1108 * requested real, full-featured networking support upon configuration.
1109 * Otherwise module support will break!
1110 */
1111 if (net_families[family]==NULL)
1112 {
1113 request_module("net-pf-%d",family);
1114 }
1115#endif
1116
1117 net_family_read_lock();
1118 if (net_families[family] == NULL) {
1119 err = -EAFNOSUPPORT;
1120 goto out;
1121 }
1122
1123/*
1124 * Allocate the socket and allow the family to set things up. if
1125 * the protocol is 0, the family is instructed to select an appropriate
1126 * default.
1127 */
1128
1129 if (!(sock = sock_alloc())) {
1130 printk(KERN_WARNING "socket: no more sockets\n");
1131 err = -ENFILE; /* Not exactly a match, but its the
1132 closest posix thing */
1133 goto out;
1134 }
1135
1136 sock->type = type;
1137
1138 /*
1139 * We will call the ->create function, that possibly is in a loadable
1140 * module, so we have to bump that loadable module refcnt first.
1141 */
1142 err = -EAFNOSUPPORT;
1143 if (!try_module_get(net_families[family]->owner))
1144 goto out_release;
1145
1146 if ((err = net_families[family]->create(sock, protocol)) < 0)
1147 goto out_module_put;
1148 /*
1149 * Now to bump the refcnt of the [loadable] module that owns this
1150 * socket at sock_release time we decrement its refcnt.
1151 */
1152 if (!try_module_get(sock->ops->owner)) {
1153 sock->ops = NULL;
1154 goto out_module_put;
1155 }
1156 /*
1157 * Now that we're done with the ->create function, the [loadable]
1158 * module can have its refcnt decremented
1159 */
1160 module_put(net_families[family]->owner);
1161 *res = sock;
1162 security_socket_post_create(sock, family, type, protocol, kern);
1163
1164out:
1165 net_family_read_unlock();
1166 return err;
1167out_module_put:
1168 module_put(net_families[family]->owner);
1169out_release:
1170 sock_release(sock);
1171 goto out;
1172}
1173
1174int sock_create(int family, int type, int protocol, struct socket **res)
1175{
1176 return __sock_create(family, type, protocol, res, 0);
1177}
1178
1179int sock_create_kern(int family, int type, int protocol, struct socket **res)
1180{
1181 return __sock_create(family, type, protocol, res, 1);
1182}
1183
1184asmlinkage long sys_socket(int family, int type, int protocol)
1185{
1186 int retval;
1187 struct socket *sock;
1188
1189 retval = sock_create(family, type, protocol, &sock);
1190 if (retval < 0)
1191 goto out;
1192
1193 retval = sock_map_fd(sock);
1194 if (retval < 0)
1195 goto out_release;
1196
1197out:
1198 /* It may be already another descriptor 8) Not kernel problem. */
1199 return retval;
1200
1201out_release:
1202 sock_release(sock);
1203 return retval;
1204}
1205
1206/*
1207 * Create a pair of connected sockets.
1208 */
1209
1210asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1211{
1212 struct socket *sock1, *sock2;
1213 int fd1, fd2, err;
1214
1215 /*
1216 * Obtain the first socket and check if the underlying protocol
1217 * supports the socketpair call.
1218 */
1219
1220 err = sock_create(family, type, protocol, &sock1);
1221 if (err < 0)
1222 goto out;
1223
1224 err = sock_create(family, type, protocol, &sock2);
1225 if (err < 0)
1226 goto out_release_1;
1227
1228 err = sock1->ops->socketpair(sock1, sock2);
1229 if (err < 0)
1230 goto out_release_both;
1231
1232 fd1 = fd2 = -1;
1233
1234 err = sock_map_fd(sock1);
1235 if (err < 0)
1236 goto out_release_both;
1237 fd1 = err;
1238
1239 err = sock_map_fd(sock2);
1240 if (err < 0)
1241 goto out_close_1;
1242 fd2 = err;
1243
1244 /* fd1 and fd2 may be already another descriptors.
1245 * Not kernel problem.
1246 */
1247
1248 err = put_user(fd1, &usockvec[0]);
1249 if (!err)
1250 err = put_user(fd2, &usockvec[1]);
1251 if (!err)
1252 return 0;
1253
1254 sys_close(fd2);
1255 sys_close(fd1);
1256 return err;
1257
1258out_close_1:
1259 sock_release(sock2);
1260 sys_close(fd1);
1261 return err;
1262
1263out_release_both:
1264 sock_release(sock2);
1265out_release_1:
1266 sock_release(sock1);
1267out:
1268 return err;
1269}
1270
1271
1272/*
1273 * Bind a name to a socket. Nothing much to do here since it's
1274 * the protocol's responsibility to handle the local address.
1275 *
1276 * We move the socket address to kernel space before we call
1277 * the protocol layer (having also checked the address is ok).
1278 */
1279
1280asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1281{
1282 struct socket *sock;
1283 char address[MAX_SOCK_ADDR];
1284 int err;
1285
1286 if((sock = sockfd_lookup(fd,&err))!=NULL)
1287 {
1288 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1289 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1290 if (err) {
1291 sockfd_put(sock);
1292 return err;
1293 }
1294 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1295 }
1296 sockfd_put(sock);
1297 }
1298 return err;
1299}
1300
1301
1302/*
1303 * Perform a listen. Basically, we allow the protocol to do anything
1304 * necessary for a listen, and if that works, we mark the socket as
1305 * ready for listening.
1306 */
1307
1308int sysctl_somaxconn = SOMAXCONN;
1309
1310asmlinkage long sys_listen(int fd, int backlog)
1311{
1312 struct socket *sock;
1313 int err;
1314
1315 if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1316 if ((unsigned) backlog > sysctl_somaxconn)
1317 backlog = sysctl_somaxconn;
1318
1319 err = security_socket_listen(sock, backlog);
1320 if (err) {
1321 sockfd_put(sock);
1322 return err;
1323 }
1324
1325 err=sock->ops->listen(sock, backlog);
1326 sockfd_put(sock);
1327 }
1328 return err;
1329}
1330
1331
1332/*
1333 * For accept, we attempt to create a new socket, set up the link
1334 * with the client, wake up the client, then return the new
1335 * connected fd. We collect the address of the connector in kernel
1336 * space and move it to user at the very end. This is unclean because
1337 * we open the socket then return an error.
1338 *
1339 * 1003.1g adds the ability to recvmsg() to query connection pending
1340 * status to recvmsg. We need to add that support in a way thats
1341 * clean when we restucture accept also.
1342 */
1343
1344asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1345{
1346 struct socket *sock, *newsock;
1347 int err, len;
1348 char address[MAX_SOCK_ADDR];
1349
1350 sock = sockfd_lookup(fd, &err);
1351 if (!sock)
1352 goto out;
1353
1354 err = -ENFILE;
1355 if (!(newsock = sock_alloc()))
1356 goto out_put;
1357
1358 newsock->type = sock->type;
1359 newsock->ops = sock->ops;
1360
1361 err = security_socket_accept(sock, newsock);
1362 if (err)
1363 goto out_release;
1364
1365 /*
1366 * We don't need try_module_get here, as the listening socket (sock)
1367 * has the protocol module (sock->ops->owner) held.
1368 */
1369 __module_get(newsock->ops->owner);
1370
1371 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1372 if (err < 0)
1373 goto out_release;
1374
1375 if (upeer_sockaddr) {
1376 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1377 err = -ECONNABORTED;
1378 goto out_release;
1379 }
1380 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1381 if (err < 0)
1382 goto out_release;
1383 }
1384
1385 /* File flags are not inherited via accept() unlike another OSes. */
1386
1387 if ((err = sock_map_fd(newsock)) < 0)
1388 goto out_release;
1389
1390 security_socket_post_accept(sock, newsock);
1391
1392out_put:
1393 sockfd_put(sock);
1394out:
1395 return err;
1396out_release:
1397 sock_release(newsock);
1398 goto out_put;
1399}
1400
1401
1402/*
1403 * Attempt to connect to a socket with the server address. The address
1404 * is in user space so we verify it is OK and move it to kernel space.
1405 *
1406 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1407 * break bindings
1408 *
1409 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1410 * other SEQPACKET protocols that take time to connect() as it doesn't
1411 * include the -EINPROGRESS status for such sockets.
1412 */
1413
1414asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1415{
1416 struct socket *sock;
1417 char address[MAX_SOCK_ADDR];
1418 int err;
1419
1420 sock = sockfd_lookup(fd, &err);
1421 if (!sock)
1422 goto out;
1423 err = move_addr_to_kernel(uservaddr, addrlen, address);
1424 if (err < 0)
1425 goto out_put;
1426
1427 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1428 if (err)
1429 goto out_put;
1430
1431 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1432 sock->file->f_flags);
1433out_put:
1434 sockfd_put(sock);
1435out:
1436 return err;
1437}
1438
1439/*
1440 * Get the local address ('name') of a socket object. Move the obtained
1441 * name to user space.
1442 */
1443
1444asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1445{
1446 struct socket *sock;
1447 char address[MAX_SOCK_ADDR];
1448 int len, err;
1449
1450 sock = sockfd_lookup(fd, &err);
1451 if (!sock)
1452 goto out;
1453
1454 err = security_socket_getsockname(sock);
1455 if (err)
1456 goto out_put;
1457
1458 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1459 if (err)
1460 goto out_put;
1461 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1462
1463out_put:
1464 sockfd_put(sock);
1465out:
1466 return err;
1467}
1468
1469/*
1470 * Get the remote address ('name') of a socket object. Move the obtained
1471 * name to user space.
1472 */
1473
1474asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1475{
1476 struct socket *sock;
1477 char address[MAX_SOCK_ADDR];
1478 int len, err;
1479
1480 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1481 {
1482 err = security_socket_getpeername(sock);
1483 if (err) {
1484 sockfd_put(sock);
1485 return err;
1486 }
1487
1488 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1489 if (!err)
1490 err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1491 sockfd_put(sock);
1492 }
1493 return err;
1494}
1495
1496/*
1497 * Send a datagram to a given address. We move the address into kernel
1498 * space and check the user space data area is readable before invoking
1499 * the protocol.
1500 */
1501
1502asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1503 struct sockaddr __user *addr, int addr_len)
1504{
1505 struct socket *sock;
1506 char address[MAX_SOCK_ADDR];
1507 int err;
1508 struct msghdr msg;
1509 struct iovec iov;
1510
1511 sock = sockfd_lookup(fd, &err);
1512 if (!sock)
1513 goto out;
1514 iov.iov_base=buff;
1515 iov.iov_len=len;
1516 msg.msg_name=NULL;
1517 msg.msg_iov=&iov;
1518 msg.msg_iovlen=1;
1519 msg.msg_control=NULL;
1520 msg.msg_controllen=0;
1521 msg.msg_namelen=0;
1522 if(addr)
1523 {
1524 err = move_addr_to_kernel(addr, addr_len, address);
1525 if (err < 0)
1526 goto out_put;
1527 msg.msg_name=address;
1528 msg.msg_namelen=addr_len;
1529 }
1530 if (sock->file->f_flags & O_NONBLOCK)
1531 flags |= MSG_DONTWAIT;
1532 msg.msg_flags = flags;
1533 err = sock_sendmsg(sock, &msg, len);
1534
1535out_put:
1536 sockfd_put(sock);
1537out:
1538 return err;
1539}
1540
1541/*
1542 * Send a datagram down a socket.
1543 */
1544
1545asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1546{
1547 return sys_sendto(fd, buff, len, flags, NULL, 0);
1548}
1549
1550/*
1551 * Receive a frame from the socket and optionally record the address of the
1552 * sender. We verify the buffers are writable and if needed move the
1553 * sender address from kernel to user space.
1554 */
1555
1556asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1557 struct sockaddr __user *addr, int __user *addr_len)
1558{
1559 struct socket *sock;
1560 struct iovec iov;
1561 struct msghdr msg;
1562 char address[MAX_SOCK_ADDR];
1563 int err,err2;
1564
1565 sock = sockfd_lookup(fd, &err);
1566 if (!sock)
1567 goto out;
1568
1569 msg.msg_control=NULL;
1570 msg.msg_controllen=0;
1571 msg.msg_iovlen=1;
1572 msg.msg_iov=&iov;
1573 iov.iov_len=size;
1574 iov.iov_base=ubuf;
1575 msg.msg_name=address;
1576 msg.msg_namelen=MAX_SOCK_ADDR;
1577 if (sock->file->f_flags & O_NONBLOCK)
1578 flags |= MSG_DONTWAIT;
1579 err=sock_recvmsg(sock, &msg, size, flags);
1580
1581 if(err >= 0 && addr != NULL)
1582 {
1583 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1584 if(err2<0)
1585 err=err2;
1586 }
1587 sockfd_put(sock);
1588out:
1589 return err;
1590}
1591
1592/*
1593 * Receive a datagram from a socket.
1594 */
1595
1596asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1597{
1598 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1599}
1600
1601/*
1602 * Set a socket option. Because we don't know the option lengths we have
1603 * to pass the user mode parameter for the protocols to sort out.
1604 */
1605
1606asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1607{
1608 int err;
1609 struct socket *sock;
1610
1611 if (optlen < 0)
1612 return -EINVAL;
1613
1614 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1615 {
1616 err = security_socket_setsockopt(sock,level,optname);
1617 if (err) {
1618 sockfd_put(sock);
1619 return err;
1620 }
1621
1622 if (level == SOL_SOCKET)
1623 err=sock_setsockopt(sock,level,optname,optval,optlen);
1624 else
1625 err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1626 sockfd_put(sock);
1627 }
1628 return err;
1629}
1630
1631/*
1632 * Get a socket option. Because we don't know the option lengths we have
1633 * to pass a user mode parameter for the protocols to sort out.
1634 */
1635
1636asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1637{
1638 int err;
1639 struct socket *sock;
1640
1641 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1642 {
1643 err = security_socket_getsockopt(sock, level,
1644 optname);
1645 if (err) {
1646 sockfd_put(sock);
1647 return err;
1648 }
1649
1650 if (level == SOL_SOCKET)
1651 err=sock_getsockopt(sock,level,optname,optval,optlen);
1652 else
1653 err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1654 sockfd_put(sock);
1655 }
1656 return err;
1657}
1658
1659
1660/*
1661 * Shutdown a socket.
1662 */
1663
1664asmlinkage long sys_shutdown(int fd, int how)
1665{
1666 int err;
1667 struct socket *sock;
1668
1669 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1670 {
1671 err = security_socket_shutdown(sock, how);
1672 if (err) {
1673 sockfd_put(sock);
1674 return err;
1675 }
1676
1677 err=sock->ops->shutdown(sock, how);
1678 sockfd_put(sock);
1679 }
1680 return err;
1681}
1682
1683/* A couple of helpful macros for getting the address of the 32/64 bit
1684 * fields which are the same type (int / unsigned) on our platforms.
1685 */
1686#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1687#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1688#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1689
1690
1691/*
1692 * BSD sendmsg interface
1693 */
1694
1695asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1696{
1697 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1698 struct socket *sock;
1699 char address[MAX_SOCK_ADDR];
1700 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1701 unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */
1702 unsigned char *ctl_buf = ctl;
1703 struct msghdr msg_sys;
1704 int err, ctl_len, iov_size, total_len;
1705
1706 err = -EFAULT;
1707 if (MSG_CMSG_COMPAT & flags) {
1708 if (get_compat_msghdr(&msg_sys, msg_compat))
1709 return -EFAULT;
1710 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1711 return -EFAULT;
1712
1713 sock = sockfd_lookup(fd, &err);
1714 if (!sock)
1715 goto out;
1716
1717 /* do not move before msg_sys is valid */
1718 err = -EMSGSIZE;
1719 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1720 goto out_put;
1721
1722 /* Check whether to allocate the iovec area*/
1723 err = -ENOMEM;
1724 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1725 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1726 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1727 if (!iov)
1728 goto out_put;
1729 }
1730
1731 /* This will also move the address data into kernel space */
1732 if (MSG_CMSG_COMPAT & flags) {
1733 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1734 } else
1735 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1736 if (err < 0)
1737 goto out_freeiov;
1738 total_len = err;
1739
1740 err = -ENOBUFS;
1741
1742 if (msg_sys.msg_controllen > INT_MAX)
1743 goto out_freeiov;
1744 ctl_len = msg_sys.msg_controllen;
1745 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1746 err = cmsghdr_from_user_compat_to_kern(&msg_sys, ctl, sizeof(ctl));
1747 if (err)
1748 goto out_freeiov;
1749 ctl_buf = msg_sys.msg_control;
1750 } else if (ctl_len) {
1751 if (ctl_len > sizeof(ctl))
1752 {
1753 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1754 if (ctl_buf == NULL)
1755 goto out_freeiov;
1756 }
1757 err = -EFAULT;
1758 /*
1759 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1760 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1761 * checking falls down on this.
1762 */
1763 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1764 goto out_freectl;
1765 msg_sys.msg_control = ctl_buf;
1766 }
1767 msg_sys.msg_flags = flags;
1768
1769 if (sock->file->f_flags & O_NONBLOCK)
1770 msg_sys.msg_flags |= MSG_DONTWAIT;
1771 err = sock_sendmsg(sock, &msg_sys, total_len);
1772
1773out_freectl:
1774 if (ctl_buf != ctl)
1775 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1776out_freeiov:
1777 if (iov != iovstack)
1778 sock_kfree_s(sock->sk, iov, iov_size);
1779out_put:
1780 sockfd_put(sock);
1781out:
1782 return err;
1783}
1784
1785/*
1786 * BSD recvmsg interface
1787 */
1788
1789asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1790{
1791 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1792 struct socket *sock;
1793 struct iovec iovstack[UIO_FASTIOV];
1794 struct iovec *iov=iovstack;
1795 struct msghdr msg_sys;
1796 unsigned long cmsg_ptr;
1797 int err, iov_size, total_len, len;
1798
1799 /* kernel mode address */
1800 char addr[MAX_SOCK_ADDR];
1801
1802 /* user mode address pointers */
1803 struct sockaddr __user *uaddr;
1804 int __user *uaddr_len;
1805
1806 if (MSG_CMSG_COMPAT & flags) {
1807 if (get_compat_msghdr(&msg_sys, msg_compat))
1808 return -EFAULT;
1809 } else
1810 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1811 return -EFAULT;
1812
1813 sock = sockfd_lookup(fd, &err);
1814 if (!sock)
1815 goto out;
1816
1817 err = -EMSGSIZE;
1818 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1819 goto out_put;
1820
1821 /* Check whether to allocate the iovec area*/
1822 err = -ENOMEM;
1823 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1824 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1825 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1826 if (!iov)
1827 goto out_put;
1828 }
1829
1830 /*
1831 * Save the user-mode address (verify_iovec will change the
1832 * kernel msghdr to use the kernel address space)
1833 */
1834
1835 uaddr = (void __user *) msg_sys.msg_name;
1836 uaddr_len = COMPAT_NAMELEN(msg);
1837 if (MSG_CMSG_COMPAT & flags) {
1838 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1839 } else
1840 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1841 if (err < 0)
1842 goto out_freeiov;
1843 total_len=err;
1844
1845 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1846 msg_sys.msg_flags = 0;
1847 if (MSG_CMSG_COMPAT & flags)
1848 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1849
1850 if (sock->file->f_flags & O_NONBLOCK)
1851 flags |= MSG_DONTWAIT;
1852 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1853 if (err < 0)
1854 goto out_freeiov;
1855 len = err;
1856
1857 if (uaddr != NULL) {
1858 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1859 if (err < 0)
1860 goto out_freeiov;
1861 }
1862 err = __put_user(msg_sys.msg_flags, COMPAT_FLAGS(msg));
1863 if (err)
1864 goto out_freeiov;
1865 if (MSG_CMSG_COMPAT & flags)
1866 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1867 &msg_compat->msg_controllen);
1868 else
1869 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1870 &msg->msg_controllen);
1871 if (err)
1872 goto out_freeiov;
1873 err = len;
1874
1875out_freeiov:
1876 if (iov != iovstack)
1877 sock_kfree_s(sock->sk, iov, iov_size);
1878out_put:
1879 sockfd_put(sock);
1880out:
1881 return err;
1882}
1883
1884#ifdef __ARCH_WANT_SYS_SOCKETCALL
1885
1886/* Argument list sizes for sys_socketcall */
1887#define AL(x) ((x) * sizeof(unsigned long))
1888static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1889 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1890 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1891#undef AL
1892
1893/*
1894 * System call vectors.
1895 *
1896 * Argument checking cleaned up. Saved 20% in size.
1897 * This function doesn't need to set the kernel lock because
1898 * it is set by the callees.
1899 */
1900
1901asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1902{
1903 unsigned long a[6];
1904 unsigned long a0,a1;
1905 int err;
1906
1907 if(call<1||call>SYS_RECVMSG)
1908 return -EINVAL;
1909
1910 /* copy_from_user should be SMP safe. */
1911 if (copy_from_user(a, args, nargs[call]))
1912 return -EFAULT;
3ec3b2fb 1913
4bcff1b3 1914 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
3ec3b2fb
DW
1915 if (err)
1916 return err;
1917
1da177e4
LT
1918 a0=a[0];
1919 a1=a[1];
1920
1921 switch(call)
1922 {
1923 case SYS_SOCKET:
1924 err = sys_socket(a0,a1,a[2]);
1925 break;
1926 case SYS_BIND:
1927 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1928 break;
1929 case SYS_CONNECT:
1930 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1931 break;
1932 case SYS_LISTEN:
1933 err = sys_listen(a0,a1);
1934 break;
1935 case SYS_ACCEPT:
1936 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1937 break;
1938 case SYS_GETSOCKNAME:
1939 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1940 break;
1941 case SYS_GETPEERNAME:
1942 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
1943 break;
1944 case SYS_SOCKETPAIR:
1945 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
1946 break;
1947 case SYS_SEND:
1948 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1949 break;
1950 case SYS_SENDTO:
1951 err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
1952 (struct sockaddr __user *)a[4], a[5]);
1953 break;
1954 case SYS_RECV:
1955 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
1956 break;
1957 case SYS_RECVFROM:
1958 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
1959 (struct sockaddr __user *)a[4], (int __user *)a[5]);
1960 break;
1961 case SYS_SHUTDOWN:
1962 err = sys_shutdown(a0,a1);
1963 break;
1964 case SYS_SETSOCKOPT:
1965 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
1966 break;
1967 case SYS_GETSOCKOPT:
1968 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
1969 break;
1970 case SYS_SENDMSG:
1971 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
1972 break;
1973 case SYS_RECVMSG:
1974 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
1975 break;
1976 default:
1977 err = -EINVAL;
1978 break;
1979 }
1980 return err;
1981}
1982
1983#endif /* __ARCH_WANT_SYS_SOCKETCALL */
1984
1985/*
1986 * This function is called by a protocol handler that wants to
1987 * advertise its address family, and have it linked into the
1988 * SOCKET module.
1989 */
1990
1991int sock_register(struct net_proto_family *ops)
1992{
1993 int err;
1994
1995 if (ops->family >= NPROTO) {
1996 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
1997 return -ENOBUFS;
1998 }
1999 net_family_write_lock();
2000 err = -EEXIST;
2001 if (net_families[ops->family] == NULL) {
2002 net_families[ops->family]=ops;
2003 err = 0;
2004 }
2005 net_family_write_unlock();
2006 printk(KERN_INFO "NET: Registered protocol family %d\n",
2007 ops->family);
2008 return err;
2009}
2010
2011/*
2012 * This function is called by a protocol handler that wants to
2013 * remove its address family, and have it unlinked from the
2014 * SOCKET module.
2015 */
2016
2017int sock_unregister(int family)
2018{
2019 if (family < 0 || family >= NPROTO)
2020 return -1;
2021
2022 net_family_write_lock();
2023 net_families[family]=NULL;
2024 net_family_write_unlock();
2025 printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2026 family);
2027 return 0;
2028}
2029
2030
2031extern void sk_init(void);
2032
2033void __init sock_init(void)
2034{
2035 /*
2036 * Initialize sock SLAB cache.
2037 */
2038
2039 sk_init();
2040
2041#ifdef SLAB_SKB
2042 /*
2043 * Initialize skbuff SLAB cache
2044 */
2045 skb_init();
2046#endif
2047
2048 /*
2049 * Initialize the protocols module.
2050 */
2051
2052 init_inodecache();
2053 register_filesystem(&sock_fs_type);
2054 sock_mnt = kern_mount(&sock_fs_type);
2055 /* The real protocol initialization is performed when
2056 * do_initcalls is run.
2057 */
2058
2059#ifdef CONFIG_NETFILTER
2060 netfilter_init();
2061#endif
2062}
2063
2064#ifdef CONFIG_PROC_FS
2065void socket_seq_show(struct seq_file *seq)
2066{
2067 int cpu;
2068 int counter = 0;
2069
2070 for (cpu = 0; cpu < NR_CPUS; cpu++)
2071 counter += per_cpu(sockets_in_use, cpu);
2072
2073 /* It can be negative, by the way. 8) */
2074 if (counter < 0)
2075 counter = 0;
2076
2077 seq_printf(seq, "sockets: used %d\n", counter);
2078}
2079#endif /* CONFIG_PROC_FS */
2080
2081/* ABI emulation layers need these two */
2082EXPORT_SYMBOL(move_addr_to_kernel);
2083EXPORT_SYMBOL(move_addr_to_user);
2084EXPORT_SYMBOL(sock_create);
2085EXPORT_SYMBOL(sock_create_kern);
2086EXPORT_SYMBOL(sock_create_lite);
2087EXPORT_SYMBOL(sock_map_fd);
2088EXPORT_SYMBOL(sock_recvmsg);
2089EXPORT_SYMBOL(sock_register);
2090EXPORT_SYMBOL(sock_release);
2091EXPORT_SYMBOL(sock_sendmsg);
2092EXPORT_SYMBOL(sock_unregister);
2093EXPORT_SYMBOL(sock_wake_async);
2094EXPORT_SYMBOL(sockfd_lookup);
2095EXPORT_SYMBOL(kernel_sendmsg);
2096EXPORT_SYMBOL(kernel_recvmsg);