[IPv6] route: Simplify ip6_ins_rt()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv6 / ip6_fib.c
CommitLineData
1da177e4
LT
1/*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16/*
17 * Changes:
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
20 * routing table.
21 */
1da177e4
LT
22#include <linux/errno.h>
23#include <linux/types.h>
24#include <linux/net.h>
25#include <linux/route.h>
26#include <linux/netdevice.h>
27#include <linux/in6.h>
28#include <linux/init.h>
c71099ac 29#include <linux/list.h>
1da177e4
LT
30
31#ifdef CONFIG_PROC_FS
32#include <linux/proc_fs.h>
33#endif
34
35#include <net/ipv6.h>
36#include <net/ndisc.h>
37#include <net/addrconf.h>
38
39#include <net/ip6_fib.h>
40#include <net/ip6_route.h>
41
42#define RT6_DEBUG 2
43
44#if RT6_DEBUG >= 3
45#define RT6_TRACE(x...) printk(KERN_DEBUG x)
46#else
47#define RT6_TRACE(x...) do { ; } while (0)
48#endif
49
50struct rt6_statistics rt6_stats;
51
ba89966c 52static kmem_cache_t * fib6_node_kmem __read_mostly;
1da177e4
LT
53
54enum fib_walk_state_t
55{
56#ifdef CONFIG_IPV6_SUBTREES
57 FWS_S,
58#endif
59 FWS_L,
60 FWS_R,
61 FWS_C,
62 FWS_U
63};
64
65struct fib6_cleaner_t
66{
67 struct fib6_walker_t w;
68 int (*func)(struct rt6_info *, void *arg);
69 void *arg;
70};
71
90d41122 72static DEFINE_RWLOCK(fib6_walker_lock);
1da177e4
LT
73
74#ifdef CONFIG_IPV6_SUBTREES
75#define FWS_INIT FWS_S
76#define SUBTREE(fn) ((fn)->subtree)
77#else
78#define FWS_INIT FWS_L
79#define SUBTREE(fn) NULL
80#endif
81
82static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
83static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
90d41122
AB
84static int fib6_walk(struct fib6_walker_t *w);
85static int fib6_walk_continue(struct fib6_walker_t *w);
1da177e4
LT
86
87/*
88 * A routing update causes an increase of the serial number on the
89 * affected subtree. This allows for cached routes to be asynchronously
90 * tested when modifications are made to the destination cache as a
91 * result of redirects, path MTU changes, etc.
92 */
93
94static __u32 rt_sernum;
95
8d06afab 96static DEFINE_TIMER(ip6_fib_timer, fib6_run_gc, 0, 0);
1da177e4 97
90d41122 98static struct fib6_walker_t fib6_walker_list = {
1da177e4
LT
99 .prev = &fib6_walker_list,
100 .next = &fib6_walker_list,
101};
102
103#define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
104
90d41122
AB
105static inline void fib6_walker_link(struct fib6_walker_t *w)
106{
107 write_lock_bh(&fib6_walker_lock);
108 w->next = fib6_walker_list.next;
109 w->prev = &fib6_walker_list;
110 w->next->prev = w;
111 w->prev->next = w;
112 write_unlock_bh(&fib6_walker_lock);
113}
114
115static inline void fib6_walker_unlink(struct fib6_walker_t *w)
116{
117 write_lock_bh(&fib6_walker_lock);
118 w->next->prev = w->prev;
119 w->prev->next = w->next;
120 w->prev = w->next = w;
121 write_unlock_bh(&fib6_walker_lock);
122}
1da177e4
LT
123static __inline__ u32 fib6_new_sernum(void)
124{
125 u32 n = ++rt_sernum;
126 if ((__s32)n <= 0)
127 rt_sernum = n = 1;
128 return n;
129}
130
131/*
132 * Auxiliary address test functions for the radix tree.
133 *
134 * These assume a 32bit processor (although it will work on
135 * 64bit processors)
136 */
137
138/*
139 * test bit
140 */
141
142static __inline__ int addr_bit_set(void *token, int fn_bit)
143{
144 __u32 *addr = token;
145
146 return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
147}
148
1da177e4
LT
149static __inline__ struct fib6_node * node_alloc(void)
150{
151 struct fib6_node *fn;
152
153 if ((fn = kmem_cache_alloc(fib6_node_kmem, SLAB_ATOMIC)) != NULL)
154 memset(fn, 0, sizeof(struct fib6_node));
155
156 return fn;
157}
158
159static __inline__ void node_free(struct fib6_node * fn)
160{
161 kmem_cache_free(fib6_node_kmem, fn);
162}
163
164static __inline__ void rt6_release(struct rt6_info *rt)
165{
166 if (atomic_dec_and_test(&rt->rt6i_ref))
167 dst_free(&rt->u.dst);
168}
169
c71099ac
TG
170static struct fib6_table fib6_main_tbl = {
171 .tb6_id = RT6_TABLE_MAIN,
172 .tb6_lock = RW_LOCK_UNLOCKED,
173 .tb6_root = {
174 .leaf = &ip6_null_entry,
175 .fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO,
176 },
177};
178
179#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1b43af54
PM
180#define FIB_TABLE_HASHSZ 256
181#else
182#define FIB_TABLE_HASHSZ 1
183#endif
184static struct hlist_head fib_table_hash[FIB_TABLE_HASHSZ];
185
186static void fib6_link_table(struct fib6_table *tb)
187{
188 unsigned int h;
189
190 h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1);
191
192 /*
193 * No protection necessary, this is the only list mutatation
194 * operation, tables never disappear once they exist.
195 */
196 hlist_add_head_rcu(&tb->tb6_hlist, &fib_table_hash[h]);
197}
c71099ac 198
1b43af54 199#ifdef CONFIG_IPV6_MULTIPLE_TABLES
101367c2
TG
200static struct fib6_table fib6_local_tbl = {
201 .tb6_id = RT6_TABLE_LOCAL,
202 .tb6_lock = RW_LOCK_UNLOCKED,
203 .tb6_root = {
204 .leaf = &ip6_null_entry,
205 .fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO,
206 },
207};
208
c71099ac
TG
209static struct fib6_table *fib6_alloc_table(u32 id)
210{
211 struct fib6_table *table;
212
213 table = kzalloc(sizeof(*table), GFP_ATOMIC);
214 if (table != NULL) {
215 table->tb6_id = id;
216 table->tb6_lock = RW_LOCK_UNLOCKED;
217 table->tb6_root.leaf = &ip6_null_entry;
218 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
219 }
220
221 return table;
222}
223
c71099ac
TG
224struct fib6_table *fib6_new_table(u32 id)
225{
226 struct fib6_table *tb;
227
228 if (id == 0)
229 id = RT6_TABLE_MAIN;
230 tb = fib6_get_table(id);
231 if (tb)
232 return tb;
233
234 tb = fib6_alloc_table(id);
235 if (tb != NULL)
236 fib6_link_table(tb);
237
238 return tb;
239}
240
241struct fib6_table *fib6_get_table(u32 id)
242{
243 struct fib6_table *tb;
244 struct hlist_node *node;
245 unsigned int h;
246
247 if (id == 0)
248 id = RT6_TABLE_MAIN;
249 h = id & (FIB_TABLE_HASHSZ - 1);
250 rcu_read_lock();
251 hlist_for_each_entry_rcu(tb, node, &fib_table_hash[h], tb6_hlist) {
252 if (tb->tb6_id == id) {
253 rcu_read_unlock();
254 return tb;
255 }
256 }
257 rcu_read_unlock();
258
259 return NULL;
260}
261
c71099ac
TG
262static void __init fib6_tables_init(void)
263{
264 fib6_link_table(&fib6_main_tbl);
101367c2 265 fib6_link_table(&fib6_local_tbl);
c71099ac
TG
266}
267
268#else
269
270struct fib6_table *fib6_new_table(u32 id)
271{
272 return fib6_get_table(id);
273}
274
275struct fib6_table *fib6_get_table(u32 id)
276{
277 return &fib6_main_tbl;
278}
279
280struct dst_entry *fib6_rule_lookup(struct flowi *fl, int flags,
281 pol_lookup_t lookup)
282{
283 return (struct dst_entry *) lookup(&fib6_main_tbl, fl, flags);
284}
285
286static void __init fib6_tables_init(void)
287{
1b43af54 288 fib6_link_table(&fib6_main_tbl);
c71099ac
TG
289}
290
291#endif
292
1b43af54
PM
293static int fib6_dump_node(struct fib6_walker_t *w)
294{
295 int res;
296 struct rt6_info *rt;
297
298 for (rt = w->leaf; rt; rt = rt->u.next) {
299 res = rt6_dump_route(rt, w->args);
300 if (res < 0) {
301 /* Frame is full, suspend walking */
302 w->leaf = rt;
303 return 1;
304 }
305 BUG_TRAP(res!=0);
306 }
307 w->leaf = NULL;
308 return 0;
309}
310
311static void fib6_dump_end(struct netlink_callback *cb)
312{
313 struct fib6_walker_t *w = (void*)cb->args[2];
314
315 if (w) {
316 cb->args[2] = 0;
317 kfree(w);
318 }
319 cb->done = (void*)cb->args[3];
320 cb->args[1] = 3;
321}
322
323static int fib6_dump_done(struct netlink_callback *cb)
324{
325 fib6_dump_end(cb);
326 return cb->done ? cb->done(cb) : 0;
327}
328
329static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
330 struct netlink_callback *cb)
331{
332 struct fib6_walker_t *w;
333 int res;
334
335 w = (void *)cb->args[2];
336 w->root = &table->tb6_root;
337
338 if (cb->args[4] == 0) {
339 read_lock_bh(&table->tb6_lock);
340 res = fib6_walk(w);
341 read_unlock_bh(&table->tb6_lock);
342 if (res > 0)
343 cb->args[4] = 1;
344 } else {
345 read_lock_bh(&table->tb6_lock);
346 res = fib6_walk_continue(w);
347 read_unlock_bh(&table->tb6_lock);
348 if (res != 0) {
349 if (res < 0)
350 fib6_walker_unlink(w);
351 goto end;
352 }
353 fib6_walker_unlink(w);
354 cb->args[4] = 0;
355 }
356end:
357 return res;
358}
359
360int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
361{
362 unsigned int h, s_h;
363 unsigned int e = 0, s_e;
364 struct rt6_rtnl_dump_arg arg;
365 struct fib6_walker_t *w;
366 struct fib6_table *tb;
367 struct hlist_node *node;
368 int res = 0;
369
370 s_h = cb->args[0];
371 s_e = cb->args[1];
372
373 w = (void *)cb->args[2];
374 if (w == NULL) {
375 /* New dump:
376 *
377 * 1. hook callback destructor.
378 */
379 cb->args[3] = (long)cb->done;
380 cb->done = fib6_dump_done;
381
382 /*
383 * 2. allocate and initialize walker.
384 */
385 w = kzalloc(sizeof(*w), GFP_ATOMIC);
386 if (w == NULL)
387 return -ENOMEM;
388 w->func = fib6_dump_node;
389 cb->args[2] = (long)w;
390 }
391
392 arg.skb = skb;
393 arg.cb = cb;
394 w->args = &arg;
395
396 for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
397 e = 0;
398 hlist_for_each_entry(tb, node, &fib_table_hash[h], tb6_hlist) {
399 if (e < s_e)
400 goto next;
401 res = fib6_dump_table(tb, skb, cb);
402 if (res != 0)
403 goto out;
404next:
405 e++;
406 }
407 }
408out:
409 cb->args[1] = e;
410 cb->args[0] = h;
411
412 res = res < 0 ? res : skb->len;
413 if (res <= 0)
414 fib6_dump_end(cb);
415 return res;
416}
1da177e4
LT
417
418/*
419 * Routing Table
420 *
421 * return the appropriate node for a routing tree "add" operation
422 * by either creating and inserting or by returning an existing
423 * node.
424 */
425
426static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
427 int addrlen, int plen,
428 int offset)
429{
430 struct fib6_node *fn, *in, *ln;
431 struct fib6_node *pn = NULL;
432 struct rt6key *key;
433 int bit;
434 int dir = 0;
435 __u32 sernum = fib6_new_sernum();
436
437 RT6_TRACE("fib6_add_1\n");
438
439 /* insert node in tree */
440
441 fn = root;
442
443 do {
444 key = (struct rt6key *)((u8 *)fn->leaf + offset);
445
446 /*
447 * Prefix match
448 */
449 if (plen < fn->fn_bit ||
450 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
451 goto insert_above;
452
453 /*
454 * Exact match ?
455 */
456
457 if (plen == fn->fn_bit) {
458 /* clean up an intermediate node */
459 if ((fn->fn_flags & RTN_RTINFO) == 0) {
460 rt6_release(fn->leaf);
461 fn->leaf = NULL;
462 }
463
464 fn->fn_sernum = sernum;
465
466 return fn;
467 }
468
469 /*
470 * We have more bits to go
471 */
472
473 /* Try to walk down on tree. */
474 fn->fn_sernum = sernum;
475 dir = addr_bit_set(addr, fn->fn_bit);
476 pn = fn;
477 fn = dir ? fn->right: fn->left;
478 } while (fn);
479
480 /*
481 * We walked to the bottom of tree.
482 * Create new leaf node without children.
483 */
484
485 ln = node_alloc();
486
487 if (ln == NULL)
488 return NULL;
489 ln->fn_bit = plen;
490
491 ln->parent = pn;
492 ln->fn_sernum = sernum;
493
494 if (dir)
495 pn->right = ln;
496 else
497 pn->left = ln;
498
499 return ln;
500
501
502insert_above:
503 /*
504 * split since we don't have a common prefix anymore or
505 * we have a less significant route.
506 * we've to insert an intermediate node on the list
507 * this new node will point to the one we need to create
508 * and the current
509 */
510
511 pn = fn->parent;
512
513 /* find 1st bit in difference between the 2 addrs.
514
971f359d 515 See comment in __ipv6_addr_diff: bit may be an invalid value,
1da177e4
LT
516 but if it is >= plen, the value is ignored in any case.
517 */
518
971f359d 519 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
1da177e4
LT
520
521 /*
522 * (intermediate)[in]
523 * / \
524 * (new leaf node)[ln] (old node)[fn]
525 */
526 if (plen > bit) {
527 in = node_alloc();
528 ln = node_alloc();
529
530 if (in == NULL || ln == NULL) {
531 if (in)
532 node_free(in);
533 if (ln)
534 node_free(ln);
535 return NULL;
536 }
537
538 /*
539 * new intermediate node.
540 * RTN_RTINFO will
541 * be off since that an address that chooses one of
542 * the branches would not match less specific routes
543 * in the other branch
544 */
545
546 in->fn_bit = bit;
547
548 in->parent = pn;
549 in->leaf = fn->leaf;
550 atomic_inc(&in->leaf->rt6i_ref);
551
552 in->fn_sernum = sernum;
553
554 /* update parent pointer */
555 if (dir)
556 pn->right = in;
557 else
558 pn->left = in;
559
560 ln->fn_bit = plen;
561
562 ln->parent = in;
563 fn->parent = in;
564
565 ln->fn_sernum = sernum;
566
567 if (addr_bit_set(addr, bit)) {
568 in->right = ln;
569 in->left = fn;
570 } else {
571 in->left = ln;
572 in->right = fn;
573 }
574 } else { /* plen <= bit */
575
576 /*
577 * (new leaf node)[ln]
578 * / \
579 * (old node)[fn] NULL
580 */
581
582 ln = node_alloc();
583
584 if (ln == NULL)
585 return NULL;
586
587 ln->fn_bit = plen;
588
589 ln->parent = pn;
590
591 ln->fn_sernum = sernum;
592
593 if (dir)
594 pn->right = ln;
595 else
596 pn->left = ln;
597
598 if (addr_bit_set(&key->addr, plen))
599 ln->right = fn;
600 else
601 ln->left = fn;
602
603 fn->parent = ln;
604 }
605 return ln;
606}
607
608/*
609 * Insert routing information in a node.
610 */
611
612static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
0d51aa80 613 struct nlmsghdr *nlh, struct netlink_skb_parms *req)
1da177e4
LT
614{
615 struct rt6_info *iter = NULL;
616 struct rt6_info **ins;
617
618 ins = &fn->leaf;
619
620 if (fn->fn_flags&RTN_TL_ROOT &&
621 fn->leaf == &ip6_null_entry &&
622 !(rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) ){
623 fn->leaf = rt;
624 rt->u.next = NULL;
625 goto out;
626 }
627
628 for (iter = fn->leaf; iter; iter=iter->u.next) {
629 /*
630 * Search for duplicates
631 */
632
633 if (iter->rt6i_metric == rt->rt6i_metric) {
634 /*
635 * Same priority level
636 */
637
638 if (iter->rt6i_dev == rt->rt6i_dev &&
639 iter->rt6i_idev == rt->rt6i_idev &&
640 ipv6_addr_equal(&iter->rt6i_gateway,
641 &rt->rt6i_gateway)) {
642 if (!(iter->rt6i_flags&RTF_EXPIRES))
643 return -EEXIST;
644 iter->rt6i_expires = rt->rt6i_expires;
645 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
646 iter->rt6i_flags &= ~RTF_EXPIRES;
647 iter->rt6i_expires = 0;
648 }
649 return -EEXIST;
650 }
651 }
652
653 if (iter->rt6i_metric > rt->rt6i_metric)
654 break;
655
656 ins = &iter->u.next;
657 }
658
659 /*
660 * insert node
661 */
662
663out:
664 rt->u.next = iter;
665 *ins = rt;
666 rt->rt6i_node = fn;
667 atomic_inc(&rt->rt6i_ref);
0d51aa80 668 inet6_rt_notify(RTM_NEWROUTE, rt, nlh, req);
1da177e4
LT
669 rt6_stats.fib_rt_entries++;
670
671 if ((fn->fn_flags & RTN_RTINFO) == 0) {
672 rt6_stats.fib_route_nodes++;
673 fn->fn_flags |= RTN_RTINFO;
674 }
675
676 return 0;
677}
678
679static __inline__ void fib6_start_gc(struct rt6_info *rt)
680{
681 if (ip6_fib_timer.expires == 0 &&
682 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
683 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
684}
685
686void fib6_force_start_gc(void)
687{
688 if (ip6_fib_timer.expires == 0)
689 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
690}
691
692/*
693 * Add routing information to the routing tree.
694 * <destination addr>/<source addr>
695 * with source addr info in sub-trees
696 */
697
0d51aa80
JHS
698int fib6_add(struct fib6_node *root, struct rt6_info *rt,
699 struct nlmsghdr *nlh, void *_rtattr, struct netlink_skb_parms *req)
1da177e4
LT
700{
701 struct fib6_node *fn;
702 int err = -ENOMEM;
703
704 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
705 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
706
707 if (fn == NULL)
708 goto out;
709
710#ifdef CONFIG_IPV6_SUBTREES
711 if (rt->rt6i_src.plen) {
712 struct fib6_node *sn;
713
714 if (fn->subtree == NULL) {
715 struct fib6_node *sfn;
716
717 /*
718 * Create subtree.
719 *
720 * fn[main tree]
721 * |
722 * sfn[subtree root]
723 * \
724 * sn[new leaf node]
725 */
726
727 /* Create subtree root node */
728 sfn = node_alloc();
729 if (sfn == NULL)
730 goto st_failure;
731
732 sfn->leaf = &ip6_null_entry;
733 atomic_inc(&ip6_null_entry.rt6i_ref);
734 sfn->fn_flags = RTN_ROOT;
735 sfn->fn_sernum = fib6_new_sernum();
736
737 /* Now add the first leaf node to new subtree */
738
739 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
740 sizeof(struct in6_addr), rt->rt6i_src.plen,
741 offsetof(struct rt6_info, rt6i_src));
742
743 if (sn == NULL) {
744 /* If it is failed, discard just allocated
745 root, and then (in st_failure) stale node
746 in main tree.
747 */
748 node_free(sfn);
749 goto st_failure;
750 }
751
752 /* Now link new subtree to main tree */
753 sfn->parent = fn;
754 fn->subtree = sfn;
755 if (fn->leaf == NULL) {
756 fn->leaf = rt;
757 atomic_inc(&rt->rt6i_ref);
758 }
759 } else {
760 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
761 sizeof(struct in6_addr), rt->rt6i_src.plen,
762 offsetof(struct rt6_info, rt6i_src));
763
764 if (sn == NULL)
765 goto st_failure;
766 }
767
768 fn = sn;
769 }
770#endif
771
0d51aa80 772 err = fib6_add_rt2node(fn, rt, nlh, req);
1da177e4
LT
773
774 if (err == 0) {
775 fib6_start_gc(rt);
776 if (!(rt->rt6i_flags&RTF_CACHE))
777 fib6_prune_clones(fn, rt);
778 }
779
780out:
781 if (err)
782 dst_free(&rt->u.dst);
783 return err;
784
785#ifdef CONFIG_IPV6_SUBTREES
786 /* Subtree creation failed, probably main tree node
787 is orphan. If it is, shoot it.
788 */
789st_failure:
790 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
791 fib6_repair_tree(fn);
792 dst_free(&rt->u.dst);
793 return err;
794#endif
795}
796
797/*
798 * Routing tree lookup
799 *
800 */
801
802struct lookup_args {
803 int offset; /* key offset on rt6_info */
804 struct in6_addr *addr; /* search key */
805};
806
807static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
808 struct lookup_args *args)
809{
810 struct fib6_node *fn;
811 int dir;
812
813 /*
814 * Descend on a tree
815 */
816
817 fn = root;
818
819 for (;;) {
820 struct fib6_node *next;
821
822 dir = addr_bit_set(args->addr, fn->fn_bit);
823
824 next = dir ? fn->right : fn->left;
825
826 if (next) {
827 fn = next;
828 continue;
829 }
830
831 break;
832 }
833
834 while ((fn->fn_flags & RTN_ROOT) == 0) {
835#ifdef CONFIG_IPV6_SUBTREES
836 if (fn->subtree) {
837 struct fib6_node *st;
838 struct lookup_args *narg;
839
840 narg = args + 1;
841
842 if (narg->addr) {
843 st = fib6_lookup_1(fn->subtree, narg);
844
845 if (st && !(st->fn_flags & RTN_ROOT))
846 return st;
847 }
848 }
849#endif
850
851 if (fn->fn_flags & RTN_RTINFO) {
852 struct rt6key *key;
853
854 key = (struct rt6key *) ((u8 *) fn->leaf +
855 args->offset);
856
857 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen))
858 return fn;
859 }
860
861 fn = fn->parent;
862 }
863
864 return NULL;
865}
866
867struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
868 struct in6_addr *saddr)
869{
870 struct lookup_args args[2];
871 struct fib6_node *fn;
872
873 args[0].offset = offsetof(struct rt6_info, rt6i_dst);
874 args[0].addr = daddr;
875
876#ifdef CONFIG_IPV6_SUBTREES
877 args[1].offset = offsetof(struct rt6_info, rt6i_src);
878 args[1].addr = saddr;
879#endif
880
881 fn = fib6_lookup_1(root, args);
882
883 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
884 fn = root;
885
886 return fn;
887}
888
889/*
890 * Get node with specified destination prefix (and source prefix,
891 * if subtrees are used)
892 */
893
894
895static struct fib6_node * fib6_locate_1(struct fib6_node *root,
896 struct in6_addr *addr,
897 int plen, int offset)
898{
899 struct fib6_node *fn;
900
901 for (fn = root; fn ; ) {
902 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
903
904 /*
905 * Prefix match
906 */
907 if (plen < fn->fn_bit ||
908 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
909 return NULL;
910
911 if (plen == fn->fn_bit)
912 return fn;
913
914 /*
915 * We have more bits to go
916 */
917 if (addr_bit_set(addr, fn->fn_bit))
918 fn = fn->right;
919 else
920 fn = fn->left;
921 }
922 return NULL;
923}
924
925struct fib6_node * fib6_locate(struct fib6_node *root,
926 struct in6_addr *daddr, int dst_len,
927 struct in6_addr *saddr, int src_len)
928{
929 struct fib6_node *fn;
930
931 fn = fib6_locate_1(root, daddr, dst_len,
932 offsetof(struct rt6_info, rt6i_dst));
933
934#ifdef CONFIG_IPV6_SUBTREES
935 if (src_len) {
936 BUG_TRAP(saddr!=NULL);
937 if (fn == NULL)
938 fn = fn->subtree;
939 if (fn)
940 fn = fib6_locate_1(fn, saddr, src_len,
941 offsetof(struct rt6_info, rt6i_src));
942 }
943#endif
944
945 if (fn && fn->fn_flags&RTN_RTINFO)
946 return fn;
947
948 return NULL;
949}
950
951
952/*
953 * Deletion
954 *
955 */
956
957static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
958{
959 if (fn->fn_flags&RTN_ROOT)
960 return &ip6_null_entry;
961
962 while(fn) {
963 if(fn->left)
964 return fn->left->leaf;
965
966 if(fn->right)
967 return fn->right->leaf;
968
969 fn = SUBTREE(fn);
970 }
971 return NULL;
972}
973
974/*
975 * Called to trim the tree of intermediate nodes when possible. "fn"
976 * is the node we want to try and remove.
977 */
978
979static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
980{
981 int children;
982 int nstate;
983 struct fib6_node *child, *pn;
984 struct fib6_walker_t *w;
985 int iter = 0;
986
987 for (;;) {
988 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
989 iter++;
990
991 BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
992 BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
993 BUG_TRAP(fn->leaf==NULL);
994
995 children = 0;
996 child = NULL;
997 if (fn->right) child = fn->right, children |= 1;
998 if (fn->left) child = fn->left, children |= 2;
999
1000 if (children == 3 || SUBTREE(fn)
1001#ifdef CONFIG_IPV6_SUBTREES
1002 /* Subtree root (i.e. fn) may have one child */
1003 || (children && fn->fn_flags&RTN_ROOT)
1004#endif
1005 ) {
1006 fn->leaf = fib6_find_prefix(fn);
1007#if RT6_DEBUG >= 2
1008 if (fn->leaf==NULL) {
1009 BUG_TRAP(fn->leaf);
1010 fn->leaf = &ip6_null_entry;
1011 }
1012#endif
1013 atomic_inc(&fn->leaf->rt6i_ref);
1014 return fn->parent;
1015 }
1016
1017 pn = fn->parent;
1018#ifdef CONFIG_IPV6_SUBTREES
1019 if (SUBTREE(pn) == fn) {
1020 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1021 SUBTREE(pn) = NULL;
1022 nstate = FWS_L;
1023 } else {
1024 BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
1025#endif
1026 if (pn->right == fn) pn->right = child;
1027 else if (pn->left == fn) pn->left = child;
1028#if RT6_DEBUG >= 2
1029 else BUG_TRAP(0);
1030#endif
1031 if (child)
1032 child->parent = pn;
1033 nstate = FWS_R;
1034#ifdef CONFIG_IPV6_SUBTREES
1035 }
1036#endif
1037
1038 read_lock(&fib6_walker_lock);
1039 FOR_WALKERS(w) {
1040 if (child == NULL) {
1041 if (w->root == fn) {
1042 w->root = w->node = NULL;
1043 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1044 } else if (w->node == fn) {
1045 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1046 w->node = pn;
1047 w->state = nstate;
1048 }
1049 } else {
1050 if (w->root == fn) {
1051 w->root = child;
1052 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1053 }
1054 if (w->node == fn) {
1055 w->node = child;
1056 if (children&2) {
1057 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1058 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1059 } else {
1060 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1061 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1062 }
1063 }
1064 }
1065 }
1066 read_unlock(&fib6_walker_lock);
1067
1068 node_free(fn);
1069 if (pn->fn_flags&RTN_RTINFO || SUBTREE(pn))
1070 return pn;
1071
1072 rt6_release(pn->leaf);
1073 pn->leaf = NULL;
1074 fn = pn;
1075 }
1076}
1077
1078static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
0d51aa80 1079 struct nlmsghdr *nlh, void *_rtattr, struct netlink_skb_parms *req)
1da177e4
LT
1080{
1081 struct fib6_walker_t *w;
1082 struct rt6_info *rt = *rtp;
1083
1084 RT6_TRACE("fib6_del_route\n");
1085
1086 /* Unlink it */
1087 *rtp = rt->u.next;
1088 rt->rt6i_node = NULL;
1089 rt6_stats.fib_rt_entries--;
1090 rt6_stats.fib_discarded_routes++;
1091
1092 /* Adjust walkers */
1093 read_lock(&fib6_walker_lock);
1094 FOR_WALKERS(w) {
1095 if (w->state == FWS_C && w->leaf == rt) {
1096 RT6_TRACE("walker %p adjusted by delroute\n", w);
1097 w->leaf = rt->u.next;
1098 if (w->leaf == NULL)
1099 w->state = FWS_U;
1100 }
1101 }
1102 read_unlock(&fib6_walker_lock);
1103
1104 rt->u.next = NULL;
1105
1106 if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT)
1107 fn->leaf = &ip6_null_entry;
1108
1109 /* If it was last route, expunge its radix tree node */
1110 if (fn->leaf == NULL) {
1111 fn->fn_flags &= ~RTN_RTINFO;
1112 rt6_stats.fib_route_nodes--;
1113 fn = fib6_repair_tree(fn);
1114 }
1115
1116 if (atomic_read(&rt->rt6i_ref) != 1) {
1117 /* This route is used as dummy address holder in some split
1118 * nodes. It is not leaked, but it still holds other resources,
1119 * which must be released in time. So, scan ascendant nodes
1120 * and replace dummy references to this route with references
1121 * to still alive ones.
1122 */
1123 while (fn) {
1124 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1125 fn->leaf = fib6_find_prefix(fn);
1126 atomic_inc(&fn->leaf->rt6i_ref);
1127 rt6_release(rt);
1128 }
1129 fn = fn->parent;
1130 }
1131 /* No more references are possible at this point. */
1132 if (atomic_read(&rt->rt6i_ref) != 1) BUG();
1133 }
1134
0d51aa80 1135 inet6_rt_notify(RTM_DELROUTE, rt, nlh, req);
1da177e4
LT
1136 rt6_release(rt);
1137}
1138
0d51aa80 1139int fib6_del(struct rt6_info *rt, struct nlmsghdr *nlh, void *_rtattr, struct netlink_skb_parms *req)
1da177e4
LT
1140{
1141 struct fib6_node *fn = rt->rt6i_node;
1142 struct rt6_info **rtp;
1143
1144#if RT6_DEBUG >= 2
1145 if (rt->u.dst.obsolete>0) {
1146 BUG_TRAP(fn==NULL);
1147 return -ENOENT;
1148 }
1149#endif
1150 if (fn == NULL || rt == &ip6_null_entry)
1151 return -ENOENT;
1152
1153 BUG_TRAP(fn->fn_flags&RTN_RTINFO);
1154
1155 if (!(rt->rt6i_flags&RTF_CACHE))
1156 fib6_prune_clones(fn, rt);
1157
1158 /*
1159 * Walk the leaf entries looking for ourself
1160 */
1161
1162 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) {
1163 if (*rtp == rt) {
0d51aa80 1164 fib6_del_route(fn, rtp, nlh, _rtattr, req);
1da177e4
LT
1165 return 0;
1166 }
1167 }
1168 return -ENOENT;
1169}
1170
1171/*
1172 * Tree traversal function.
1173 *
1174 * Certainly, it is not interrupt safe.
1175 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1176 * It means, that we can modify tree during walking
1177 * and use this function for garbage collection, clone pruning,
1178 * cleaning tree when a device goes down etc. etc.
1179 *
1180 * It guarantees that every node will be traversed,
1181 * and that it will be traversed only once.
1182 *
1183 * Callback function w->func may return:
1184 * 0 -> continue walking.
1185 * positive value -> walking is suspended (used by tree dumps,
1186 * and probably by gc, if it will be split to several slices)
1187 * negative value -> terminate walking.
1188 *
1189 * The function itself returns:
1190 * 0 -> walk is complete.
1191 * >0 -> walk is incomplete (i.e. suspended)
1192 * <0 -> walk is terminated by an error.
1193 */
1194
90d41122 1195static int fib6_walk_continue(struct fib6_walker_t *w)
1da177e4
LT
1196{
1197 struct fib6_node *fn, *pn;
1198
1199 for (;;) {
1200 fn = w->node;
1201 if (fn == NULL)
1202 return 0;
1203
1204 if (w->prune && fn != w->root &&
1205 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1206 w->state = FWS_C;
1207 w->leaf = fn->leaf;
1208 }
1209 switch (w->state) {
1210#ifdef CONFIG_IPV6_SUBTREES
1211 case FWS_S:
1212 if (SUBTREE(fn)) {
1213 w->node = SUBTREE(fn);
1214 continue;
1215 }
1216 w->state = FWS_L;
1217#endif
1218 case FWS_L:
1219 if (fn->left) {
1220 w->node = fn->left;
1221 w->state = FWS_INIT;
1222 continue;
1223 }
1224 w->state = FWS_R;
1225 case FWS_R:
1226 if (fn->right) {
1227 w->node = fn->right;
1228 w->state = FWS_INIT;
1229 continue;
1230 }
1231 w->state = FWS_C;
1232 w->leaf = fn->leaf;
1233 case FWS_C:
1234 if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1235 int err = w->func(w);
1236 if (err)
1237 return err;
1238 continue;
1239 }
1240 w->state = FWS_U;
1241 case FWS_U:
1242 if (fn == w->root)
1243 return 0;
1244 pn = fn->parent;
1245 w->node = pn;
1246#ifdef CONFIG_IPV6_SUBTREES
1247 if (SUBTREE(pn) == fn) {
1248 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1249 w->state = FWS_L;
1250 continue;
1251 }
1252#endif
1253 if (pn->left == fn) {
1254 w->state = FWS_R;
1255 continue;
1256 }
1257 if (pn->right == fn) {
1258 w->state = FWS_C;
1259 w->leaf = w->node->leaf;
1260 continue;
1261 }
1262#if RT6_DEBUG >= 2
1263 BUG_TRAP(0);
1264#endif
1265 }
1266 }
1267}
1268
90d41122 1269static int fib6_walk(struct fib6_walker_t *w)
1da177e4
LT
1270{
1271 int res;
1272
1273 w->state = FWS_INIT;
1274 w->node = w->root;
1275
1276 fib6_walker_link(w);
1277 res = fib6_walk_continue(w);
1278 if (res <= 0)
1279 fib6_walker_unlink(w);
1280 return res;
1281}
1282
1283static int fib6_clean_node(struct fib6_walker_t *w)
1284{
1285 int res;
1286 struct rt6_info *rt;
1287 struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w;
1288
1289 for (rt = w->leaf; rt; rt = rt->u.next) {
1290 res = c->func(rt, c->arg);
1291 if (res < 0) {
1292 w->leaf = rt;
0d51aa80 1293 res = fib6_del(rt, NULL, NULL, NULL);
1da177e4
LT
1294 if (res) {
1295#if RT6_DEBUG >= 2
1296 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1297#endif
1298 continue;
1299 }
1300 return 0;
1301 }
1302 BUG_TRAP(res==0);
1303 }
1304 w->leaf = rt;
1305 return 0;
1306}
1307
1308/*
1309 * Convenient frontend to tree walker.
1310 *
1311 * func is called on each route.
1312 * It may return -1 -> delete this route.
1313 * 0 -> continue walking
1314 *
1315 * prune==1 -> only immediate children of node (certainly,
1316 * ignoring pure split nodes) will be scanned.
1317 */
1318
8ce11e6a
AB
1319static void fib6_clean_tree(struct fib6_node *root,
1320 int (*func)(struct rt6_info *, void *arg),
1321 int prune, void *arg)
1da177e4
LT
1322{
1323 struct fib6_cleaner_t c;
1324
1325 c.w.root = root;
1326 c.w.func = fib6_clean_node;
1327 c.w.prune = prune;
1328 c.func = func;
1329 c.arg = arg;
1330
1331 fib6_walk(&c.w);
1332}
1333
c71099ac
TG
1334void fib6_clean_all(int (*func)(struct rt6_info *, void *arg),
1335 int prune, void *arg)
1336{
c71099ac 1337 struct fib6_table *table;
1b43af54
PM
1338 struct hlist_node *node;
1339 unsigned int h;
c71099ac 1340
1b43af54
PM
1341 rcu_read_lock();
1342 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1343 hlist_for_each_entry_rcu(table, node, &fib_table_hash[h],
1344 tb6_hlist) {
c71099ac
TG
1345 write_lock_bh(&table->tb6_lock);
1346 fib6_clean_tree(&table->tb6_root, func, prune, arg);
1347 write_unlock_bh(&table->tb6_lock);
1348 }
1349 }
1b43af54 1350 rcu_read_unlock();
c71099ac
TG
1351}
1352
1da177e4
LT
1353static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1354{
1355 if (rt->rt6i_flags & RTF_CACHE) {
1356 RT6_TRACE("pruning clone %p\n", rt);
1357 return -1;
1358 }
1359
1360 return 0;
1361}
1362
1363static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1364{
1365 fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1366}
1367
1368/*
1369 * Garbage collection
1370 */
1371
1372static struct fib6_gc_args
1373{
1374 int timeout;
1375 int more;
1376} gc_args;
1377
1378static int fib6_age(struct rt6_info *rt, void *arg)
1379{
1380 unsigned long now = jiffies;
1381
1382 /*
1383 * check addrconf expiration here.
1384 * Routes are expired even if they are in use.
1385 *
1386 * Also age clones. Note, that clones are aged out
1387 * only if they are not in use now.
1388 */
1389
1390 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1391 if (time_after(now, rt->rt6i_expires)) {
1392 RT6_TRACE("expiring %p\n", rt);
1da177e4
LT
1393 return -1;
1394 }
1395 gc_args.more++;
1396 } else if (rt->rt6i_flags & RTF_CACHE) {
1397 if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1398 time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1399 RT6_TRACE("aging clone %p\n", rt);
1400 return -1;
1401 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1402 (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1403 RT6_TRACE("purging route %p via non-router but gateway\n",
1404 rt);
1405 return -1;
1406 }
1407 gc_args.more++;
1408 }
1409
1410 return 0;
1411}
1412
1413static DEFINE_SPINLOCK(fib6_gc_lock);
1414
1415void fib6_run_gc(unsigned long dummy)
1416{
1417 if (dummy != ~0UL) {
1418 spin_lock_bh(&fib6_gc_lock);
1419 gc_args.timeout = dummy ? (int)dummy : ip6_rt_gc_interval;
1420 } else {
1421 local_bh_disable();
1422 if (!spin_trylock(&fib6_gc_lock)) {
1423 mod_timer(&ip6_fib_timer, jiffies + HZ);
1424 local_bh_enable();
1425 return;
1426 }
1427 gc_args.timeout = ip6_rt_gc_interval;
1428 }
1429 gc_args.more = 0;
1430
1da177e4 1431 ndisc_dst_gc(&gc_args.more);
c71099ac 1432 fib6_clean_all(fib6_age, 0, NULL);
1da177e4
LT
1433
1434 if (gc_args.more)
1435 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
1436 else {
1437 del_timer(&ip6_fib_timer);
1438 ip6_fib_timer.expires = 0;
1439 }
1440 spin_unlock_bh(&fib6_gc_lock);
1441}
1442
1443void __init fib6_init(void)
1444{
1445 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1446 sizeof(struct fib6_node),
1447 0, SLAB_HWCACHE_ALIGN,
1448 NULL, NULL);
1449 if (!fib6_node_kmem)
1450 panic("cannot create fib6_nodes cache");
c71099ac
TG
1451
1452 fib6_tables_init();
1da177e4
LT
1453}
1454
1455void fib6_gc_cleanup(void)
1456{
1457 del_timer(&ip6_fib_timer);
1458 kmem_cache_destroy(fib6_node_kmem);
1459}