[SLAB] Introduce kmem_cache_name
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_output.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
27 * : AF independence
28 *
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
36 *
37 */
38
39#include <net/tcp.h>
40
41#include <linux/compiler.h>
42#include <linux/module.h>
43#include <linux/smp_lock.h>
44
45/* People can turn this off for buggy TCP's found in printers etc. */
46int sysctl_tcp_retrans_collapse = 1;
47
48/* This limits the percentage of the congestion window which we
49 * will allow a single TSO frame to consume. Building TSO frames
50 * which are too large can cause TCP streams to be bursty.
51 */
52int sysctl_tcp_tso_win_divisor = 8;
53
54static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 struct sk_buff *skb)
56{
57 sk->sk_send_head = skb->next;
58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 sk->sk_send_head = NULL;
60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 tcp_packets_out_inc(sk, tp, skb);
62}
63
64/* SND.NXT, if window was not shrunk.
65 * If window has been shrunk, what should we make? It is not clear at all.
66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68 * invalid. OK, let's make this for now:
69 */
70static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
71{
72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 return tp->snd_nxt;
74 else
75 return tp->snd_una+tp->snd_wnd;
76}
77
78/* Calculate mss to advertise in SYN segment.
79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
80 *
81 * 1. It is independent of path mtu.
82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84 * attached devices, because some buggy hosts are confused by
85 * large MSS.
86 * 4. We do not make 3, we advertise MSS, calculated from first
87 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
88 * This may be overridden via information stored in routing table.
89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90 * probably even Jumbo".
91 */
92static __u16 tcp_advertise_mss(struct sock *sk)
93{
94 struct tcp_sock *tp = tcp_sk(sk);
95 struct dst_entry *dst = __sk_dst_get(sk);
96 int mss = tp->advmss;
97
98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 mss = dst_metric(dst, RTAX_ADVMSS);
100 tp->advmss = mss;
101 }
102
103 return (__u16)mss;
104}
105
106/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107 * This is the first part of cwnd validation mechanism. */
108static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst)
109{
110 s32 delta = tcp_time_stamp - tp->lsndtime;
111 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
112 u32 cwnd = tp->snd_cwnd;
113
114 if (tcp_is_vegas(tp))
115 tcp_vegas_enable(tp);
116
117 tp->snd_ssthresh = tcp_current_ssthresh(tp);
118 restart_cwnd = min(restart_cwnd, cwnd);
119
120 while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd)
121 cwnd >>= 1;
122 tp->snd_cwnd = max(cwnd, restart_cwnd);
123 tp->snd_cwnd_stamp = tcp_time_stamp;
124 tp->snd_cwnd_used = 0;
125}
126
127static inline void tcp_event_data_sent(struct tcp_sock *tp,
128 struct sk_buff *skb, struct sock *sk)
129{
130 u32 now = tcp_time_stamp;
131
132 if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto)
133 tcp_cwnd_restart(tp, __sk_dst_get(sk));
134
135 tp->lsndtime = now;
136
137 /* If it is a reply for ato after last received
138 * packet, enter pingpong mode.
139 */
140 if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato)
141 tp->ack.pingpong = 1;
142}
143
144static __inline__ void tcp_event_ack_sent(struct sock *sk)
145{
146 struct tcp_sock *tp = tcp_sk(sk);
147
148 tcp_dec_quickack_mode(tp);
149 tcp_clear_xmit_timer(sk, TCP_TIME_DACK);
150}
151
152/* Determine a window scaling and initial window to offer.
153 * Based on the assumption that the given amount of space
154 * will be offered. Store the results in the tp structure.
155 * NOTE: for smooth operation initial space offering should
156 * be a multiple of mss if possible. We assume here that mss >= 1.
157 * This MUST be enforced by all callers.
158 */
159void tcp_select_initial_window(int __space, __u32 mss,
160 __u32 *rcv_wnd, __u32 *window_clamp,
161 int wscale_ok, __u8 *rcv_wscale)
162{
163 unsigned int space = (__space < 0 ? 0 : __space);
164
165 /* If no clamp set the clamp to the max possible scaled window */
166 if (*window_clamp == 0)
167 (*window_clamp) = (65535 << 14);
168 space = min(*window_clamp, space);
169
170 /* Quantize space offering to a multiple of mss if possible. */
171 if (space > mss)
172 space = (space / mss) * mss;
173
174 /* NOTE: offering an initial window larger than 32767
175 * will break some buggy TCP stacks. We try to be nice.
176 * If we are not window scaling, then this truncates
177 * our initial window offering to 32k. There should also
178 * be a sysctl option to stop being nice.
179 */
180 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
181 (*rcv_wscale) = 0;
182 if (wscale_ok) {
183 /* Set window scaling on max possible window
184 * See RFC1323 for an explanation of the limit to 14
185 */
186 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
187 while (space > 65535 && (*rcv_wscale) < 14) {
188 space >>= 1;
189 (*rcv_wscale)++;
190 }
191 }
192
193 /* Set initial window to value enough for senders,
194 * following RFC1414. Senders, not following this RFC,
195 * will be satisfied with 2.
196 */
197 if (mss > (1<<*rcv_wscale)) {
198 int init_cwnd = 4;
199 if (mss > 1460*3)
200 init_cwnd = 2;
201 else if (mss > 1460)
202 init_cwnd = 3;
203 if (*rcv_wnd > init_cwnd*mss)
204 *rcv_wnd = init_cwnd*mss;
205 }
206
207 /* Set the clamp no higher than max representable value */
208 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
209}
210
211/* Chose a new window to advertise, update state in tcp_sock for the
212 * socket, and return result with RFC1323 scaling applied. The return
213 * value can be stuffed directly into th->window for an outgoing
214 * frame.
215 */
216static __inline__ u16 tcp_select_window(struct sock *sk)
217{
218 struct tcp_sock *tp = tcp_sk(sk);
219 u32 cur_win = tcp_receive_window(tp);
220 u32 new_win = __tcp_select_window(sk);
221
222 /* Never shrink the offered window */
223 if(new_win < cur_win) {
224 /* Danger Will Robinson!
225 * Don't update rcv_wup/rcv_wnd here or else
226 * we will not be able to advertise a zero
227 * window in time. --DaveM
228 *
229 * Relax Will Robinson.
230 */
231 new_win = cur_win;
232 }
233 tp->rcv_wnd = new_win;
234 tp->rcv_wup = tp->rcv_nxt;
235
236 /* Make sure we do not exceed the maximum possible
237 * scaled window.
238 */
239 if (!tp->rx_opt.rcv_wscale)
240 new_win = min(new_win, MAX_TCP_WINDOW);
241 else
242 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
243
244 /* RFC1323 scaling applied */
245 new_win >>= tp->rx_opt.rcv_wscale;
246
247 /* If we advertise zero window, disable fast path. */
248 if (new_win == 0)
249 tp->pred_flags = 0;
250
251 return new_win;
252}
253
254
255/* This routine actually transmits TCP packets queued in by
256 * tcp_do_sendmsg(). This is used by both the initial
257 * transmission and possible later retransmissions.
258 * All SKB's seen here are completely headerless. It is our
259 * job to build the TCP header, and pass the packet down to
260 * IP so it can do the same plus pass the packet off to the
261 * device.
262 *
263 * We are working here with either a clone of the original
264 * SKB, or a fresh unique copy made by the retransmit engine.
265 */
266static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
267{
268 if (skb != NULL) {
269 struct inet_sock *inet = inet_sk(sk);
270 struct tcp_sock *tp = tcp_sk(sk);
271 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
272 int tcp_header_size = tp->tcp_header_len;
273 struct tcphdr *th;
274 int sysctl_flags;
275 int err;
276
277 BUG_ON(!tcp_skb_pcount(skb));
278
279#define SYSCTL_FLAG_TSTAMPS 0x1
280#define SYSCTL_FLAG_WSCALE 0x2
281#define SYSCTL_FLAG_SACK 0x4
282
283 sysctl_flags = 0;
284 if (tcb->flags & TCPCB_FLAG_SYN) {
285 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
286 if(sysctl_tcp_timestamps) {
287 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
288 sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
289 }
290 if(sysctl_tcp_window_scaling) {
291 tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
292 sysctl_flags |= SYSCTL_FLAG_WSCALE;
293 }
294 if(sysctl_tcp_sack) {
295 sysctl_flags |= SYSCTL_FLAG_SACK;
296 if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
297 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
298 }
299 } else if (tp->rx_opt.eff_sacks) {
300 /* A SACK is 2 pad bytes, a 2 byte header, plus
301 * 2 32-bit sequence numbers for each SACK block.
302 */
303 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
304 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
305 }
306
307 /*
308 * If the connection is idle and we are restarting,
309 * then we don't want to do any Vegas calculations
310 * until we get fresh RTT samples. So when we
311 * restart, we reset our Vegas state to a clean
312 * slate. After we get acks for this flight of
313 * packets, _then_ we can make Vegas calculations
314 * again.
315 */
316 if (tcp_is_vegas(tp) && tcp_packets_in_flight(tp) == 0)
317 tcp_vegas_enable(tp);
318
319 th = (struct tcphdr *) skb_push(skb, tcp_header_size);
320 skb->h.th = th;
321 skb_set_owner_w(skb, sk);
322
323 /* Build TCP header and checksum it. */
324 th->source = inet->sport;
325 th->dest = inet->dport;
326 th->seq = htonl(tcb->seq);
327 th->ack_seq = htonl(tp->rcv_nxt);
328 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags);
329 if (tcb->flags & TCPCB_FLAG_SYN) {
330 /* RFC1323: The window in SYN & SYN/ACK segments
331 * is never scaled.
332 */
333 th->window = htons(tp->rcv_wnd);
334 } else {
335 th->window = htons(tcp_select_window(sk));
336 }
337 th->check = 0;
338 th->urg_ptr = 0;
339
340 if (tp->urg_mode &&
341 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
342 th->urg_ptr = htons(tp->snd_up-tcb->seq);
343 th->urg = 1;
344 }
345
346 if (tcb->flags & TCPCB_FLAG_SYN) {
347 tcp_syn_build_options((__u32 *)(th + 1),
348 tcp_advertise_mss(sk),
349 (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
350 (sysctl_flags & SYSCTL_FLAG_SACK),
351 (sysctl_flags & SYSCTL_FLAG_WSCALE),
352 tp->rx_opt.rcv_wscale,
353 tcb->when,
354 tp->rx_opt.ts_recent);
355 } else {
356 tcp_build_and_update_options((__u32 *)(th + 1),
357 tp, tcb->when);
358
359 TCP_ECN_send(sk, tp, skb, tcp_header_size);
360 }
361 tp->af_specific->send_check(sk, th, skb->len, skb);
362
363 if (tcb->flags & TCPCB_FLAG_ACK)
364 tcp_event_ack_sent(sk);
365
366 if (skb->len != tcp_header_size)
367 tcp_event_data_sent(tp, skb, sk);
368
369 TCP_INC_STATS(TCP_MIB_OUTSEGS);
370
371 err = tp->af_specific->queue_xmit(skb, 0);
372 if (err <= 0)
373 return err;
374
375 tcp_enter_cwr(tp);
376
377 /* NET_XMIT_CN is special. It does not guarantee,
378 * that this packet is lost. It tells that device
379 * is about to start to drop packets or already
380 * drops some packets of the same priority and
381 * invokes us to send less aggressively.
382 */
383 return err == NET_XMIT_CN ? 0 : err;
384 }
385 return -ENOBUFS;
386#undef SYSCTL_FLAG_TSTAMPS
387#undef SYSCTL_FLAG_WSCALE
388#undef SYSCTL_FLAG_SACK
389}
390
391
392/* This routine just queue's the buffer
393 *
394 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
395 * otherwise socket can stall.
396 */
397static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
398{
399 struct tcp_sock *tp = tcp_sk(sk);
400
401 /* Advance write_seq and place onto the write_queue. */
402 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
403 skb_header_release(skb);
404 __skb_queue_tail(&sk->sk_write_queue, skb);
405 sk_charge_skb(sk, skb);
406
407 /* Queue it, remembering where we must start sending. */
408 if (sk->sk_send_head == NULL)
409 sk->sk_send_head = skb;
410}
411
412static inline void tcp_tso_set_push(struct sk_buff *skb)
413{
414 /* Force push to be on for any TSO frames to workaround
415 * problems with busted implementations like Mac OS-X that
416 * hold off socket receive wakeups until push is seen.
417 */
418 if (tcp_skb_pcount(skb) > 1)
419 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
420}
421
422/* Send _single_ skb sitting at the send head. This function requires
423 * true push pending frames to setup probe timer etc.
424 */
425void tcp_push_one(struct sock *sk, unsigned cur_mss)
426{
427 struct tcp_sock *tp = tcp_sk(sk);
428 struct sk_buff *skb = sk->sk_send_head;
429
d5ac99a6 430 if (tcp_snd_test(sk, skb, cur_mss, TCP_NAGLE_PUSH)) {
1da177e4
LT
431 /* Send it out now. */
432 TCP_SKB_CB(skb)->when = tcp_time_stamp;
433 tcp_tso_set_push(skb);
434 if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) {
435 sk->sk_send_head = NULL;
436 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
437 tcp_packets_out_inc(sk, tp, skb);
438 return;
439 }
440 }
441}
442
d5ac99a6 443void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb)
1da177e4 444{
d5ac99a6
DM
445 struct tcp_sock *tp = tcp_sk(sk);
446
447 if (skb->len <= tp->mss_cache_std ||
448 !(sk->sk_route_caps & NETIF_F_TSO)) {
1da177e4
LT
449 /* Avoid the costly divide in the normal
450 * non-TSO case.
451 */
452 skb_shinfo(skb)->tso_segs = 1;
453 skb_shinfo(skb)->tso_size = 0;
454 } else {
455 unsigned int factor;
456
d5ac99a6
DM
457 factor = skb->len + (tp->mss_cache_std - 1);
458 factor /= tp->mss_cache_std;
1da177e4 459 skb_shinfo(skb)->tso_segs = factor;
d5ac99a6 460 skb_shinfo(skb)->tso_size = tp->mss_cache_std;
1da177e4
LT
461 }
462}
463
464/* Function to create two new TCP segments. Shrinks the given segment
465 * to the specified size and appends a new segment with the rest of the
466 * packet to the list. This won't be called frequently, I hope.
467 * Remember, these are still headerless SKBs at this point.
468 */
469static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len)
470{
471 struct tcp_sock *tp = tcp_sk(sk);
472 struct sk_buff *buff;
473 int nsize;
474 u16 flags;
475
476 nsize = skb_headlen(skb) - len;
477 if (nsize < 0)
478 nsize = 0;
479
480 if (skb_cloned(skb) &&
481 skb_is_nonlinear(skb) &&
482 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
483 return -ENOMEM;
484
485 /* Get a new skb... force flag on. */
486 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
487 if (buff == NULL)
488 return -ENOMEM; /* We'll just try again later. */
489 sk_charge_skb(sk, buff);
490
491 /* Correct the sequence numbers. */
492 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
493 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
494 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
495
496 /* PSH and FIN should only be set in the second packet. */
497 flags = TCP_SKB_CB(skb)->flags;
498 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
499 TCP_SKB_CB(buff)->flags = flags;
500 TCP_SKB_CB(buff)->sacked =
501 (TCP_SKB_CB(skb)->sacked &
502 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL));
503 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
504
505 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
506 /* Copy and checksum data tail into the new buffer. */
507 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
508 nsize, 0);
509
510 skb_trim(skb, len);
511
512 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
513 } else {
514 skb->ip_summed = CHECKSUM_HW;
515 skb_split(skb, buff, len);
516 }
517
518 buff->ip_summed = skb->ip_summed;
519
520 /* Looks stupid, but our code really uses when of
521 * skbs, which it never sent before. --ANK
522 */
523 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
524
525 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
526 tp->lost_out -= tcp_skb_pcount(skb);
527 tp->left_out -= tcp_skb_pcount(skb);
528 }
529
530 /* Fix up tso_factor for both original and new SKB. */
d5ac99a6
DM
531 tcp_set_skb_tso_segs(sk, skb);
532 tcp_set_skb_tso_segs(sk, buff);
1da177e4
LT
533
534 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
535 tp->lost_out += tcp_skb_pcount(skb);
536 tp->left_out += tcp_skb_pcount(skb);
537 }
538
539 if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) {
540 tp->lost_out += tcp_skb_pcount(buff);
541 tp->left_out += tcp_skb_pcount(buff);
542 }
543
544 /* Link BUFF into the send queue. */
545 __skb_append(skb, buff);
546
547 return 0;
548}
549
550/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
551 * eventually). The difference is that pulled data not copied, but
552 * immediately discarded.
553 */
554static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
555{
556 int i, k, eat;
557
558 eat = len;
559 k = 0;
560 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
561 if (skb_shinfo(skb)->frags[i].size <= eat) {
562 put_page(skb_shinfo(skb)->frags[i].page);
563 eat -= skb_shinfo(skb)->frags[i].size;
564 } else {
565 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
566 if (eat) {
567 skb_shinfo(skb)->frags[k].page_offset += eat;
568 skb_shinfo(skb)->frags[k].size -= eat;
569 eat = 0;
570 }
571 k++;
572 }
573 }
574 skb_shinfo(skb)->nr_frags = k;
575
576 skb->tail = skb->data;
577 skb->data_len -= len;
578 skb->len = skb->data_len;
579 return skb->tail;
580}
581
582int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
583{
584 if (skb_cloned(skb) &&
585 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
586 return -ENOMEM;
587
588 if (len <= skb_headlen(skb)) {
589 __skb_pull(skb, len);
590 } else {
591 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
592 return -ENOMEM;
593 }
594
595 TCP_SKB_CB(skb)->seq += len;
596 skb->ip_summed = CHECKSUM_HW;
597
598 skb->truesize -= len;
599 sk->sk_wmem_queued -= len;
600 sk->sk_forward_alloc += len;
601 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
602
603 /* Any change of skb->len requires recalculation of tso
604 * factor and mss.
605 */
606 if (tcp_skb_pcount(skb) > 1)
d5ac99a6 607 tcp_set_skb_tso_segs(sk, skb);
1da177e4
LT
608
609 return 0;
610}
611
612/* This function synchronize snd mss to current pmtu/exthdr set.
613
614 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
615 for TCP options, but includes only bare TCP header.
616
617 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
618 It is minumum of user_mss and mss received with SYN.
619 It also does not include TCP options.
620
621 tp->pmtu_cookie is last pmtu, seen by this function.
622
623 tp->mss_cache is current effective sending mss, including
624 all tcp options except for SACKs. It is evaluated,
625 taking into account current pmtu, but never exceeds
626 tp->rx_opt.mss_clamp.
627
628 NOTE1. rfc1122 clearly states that advertised MSS
629 DOES NOT include either tcp or ip options.
630
631 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
632 this function. --ANK (980731)
633 */
634
635unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
636{
637 struct tcp_sock *tp = tcp_sk(sk);
638 int mss_now;
639
640 /* Calculate base mss without TCP options:
641 It is MMS_S - sizeof(tcphdr) of rfc1122
642 */
643 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
644
645 /* Clamp it (mss_clamp does not include tcp options) */
646 if (mss_now > tp->rx_opt.mss_clamp)
647 mss_now = tp->rx_opt.mss_clamp;
648
649 /* Now subtract optional transport overhead */
650 mss_now -= tp->ext_header_len;
651
652 /* Then reserve room for full set of TCP options and 8 bytes of data */
653 if (mss_now < 48)
654 mss_now = 48;
655
656 /* Now subtract TCP options size, not including SACKs */
657 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
658
659 /* Bound mss with half of window */
660 if (tp->max_window && mss_now > (tp->max_window>>1))
661 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
662
663 /* And store cached results */
664 tp->pmtu_cookie = pmtu;
665 tp->mss_cache = tp->mss_cache_std = mss_now;
666
667 return mss_now;
668}
669
670/* Compute the current effective MSS, taking SACKs and IP options,
671 * and even PMTU discovery events into account.
672 *
673 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
674 * cannot be large. However, taking into account rare use of URG, this
675 * is not a big flaw.
676 */
677
678unsigned int tcp_current_mss(struct sock *sk, int large)
679{
680 struct tcp_sock *tp = tcp_sk(sk);
681 struct dst_entry *dst = __sk_dst_get(sk);
682 unsigned int do_large, mss_now;
683
684 mss_now = tp->mss_cache_std;
685 if (dst) {
686 u32 mtu = dst_mtu(dst);
687 if (mtu != tp->pmtu_cookie)
688 mss_now = tcp_sync_mss(sk, mtu);
689 }
690
691 do_large = (large &&
692 (sk->sk_route_caps & NETIF_F_TSO) &&
693 !tp->urg_mode);
694
695 if (do_large) {
696 unsigned int large_mss, factor, limit;
697
698 large_mss = 65535 - tp->af_specific->net_header_len -
699 tp->ext_header_len - tp->tcp_header_len;
700
701 if (tp->max_window && large_mss > (tp->max_window>>1))
702 large_mss = max((tp->max_window>>1),
703 68U - tp->tcp_header_len);
704
705 factor = large_mss / mss_now;
706
707 /* Always keep large mss multiple of real mss, but
708 * do not exceed 1/tso_win_divisor of the congestion window
709 * so we can keep the ACK clock ticking and minimize
710 * bursting.
711 */
712 limit = tp->snd_cwnd;
713 if (sysctl_tcp_tso_win_divisor)
714 limit /= sysctl_tcp_tso_win_divisor;
715 limit = max(1U, limit);
716 if (factor > limit)
717 factor = limit;
718
719 tp->mss_cache = mss_now * factor;
720
721 mss_now = tp->mss_cache;
722 }
723
724 if (tp->rx_opt.eff_sacks)
725 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
726 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
727 return mss_now;
728}
729
730/* This routine writes packets to the network. It advances the
731 * send_head. This happens as incoming acks open up the remote
732 * window for us.
733 *
734 * Returns 1, if no segments are in flight and we have queued segments, but
735 * cannot send anything now because of SWS or another problem.
736 */
737int tcp_write_xmit(struct sock *sk, int nonagle)
738{
739 struct tcp_sock *tp = tcp_sk(sk);
740 unsigned int mss_now;
741
742 /* If we are closed, the bytes will have to remain here.
743 * In time closedown will finish, we empty the write queue and all
744 * will be happy.
745 */
746 if (sk->sk_state != TCP_CLOSE) {
747 struct sk_buff *skb;
748 int sent_pkts = 0;
749
750 /* Account for SACKS, we may need to fragment due to this.
751 * It is just like the real MSS changing on us midstream.
752 * We also handle things correctly when the user adds some
753 * IP options mid-stream. Silly to do, but cover it.
754 */
755 mss_now = tcp_current_mss(sk, 1);
756
757 while ((skb = sk->sk_send_head) &&
d5ac99a6 758 tcp_snd_test(sk, skb, mss_now,
1da177e4
LT
759 tcp_skb_is_last(sk, skb) ? nonagle :
760 TCP_NAGLE_PUSH)) {
761 if (skb->len > mss_now) {
762 if (tcp_fragment(sk, skb, mss_now))
763 break;
764 }
765
766 TCP_SKB_CB(skb)->when = tcp_time_stamp;
767 tcp_tso_set_push(skb);
768 if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)))
769 break;
770
771 /* Advance the send_head. This one is sent out.
772 * This call will increment packets_out.
773 */
774 update_send_head(sk, tp, skb);
775
776 tcp_minshall_update(tp, mss_now, skb);
777 sent_pkts = 1;
778 }
779
780 if (sent_pkts) {
781 tcp_cwnd_validate(sk, tp);
782 return 0;
783 }
784
785 return !tp->packets_out && sk->sk_send_head;
786 }
787 return 0;
788}
789
790/* This function returns the amount that we can raise the
791 * usable window based on the following constraints
792 *
793 * 1. The window can never be shrunk once it is offered (RFC 793)
794 * 2. We limit memory per socket
795 *
796 * RFC 1122:
797 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
798 * RECV.NEXT + RCV.WIN fixed until:
799 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
800 *
801 * i.e. don't raise the right edge of the window until you can raise
802 * it at least MSS bytes.
803 *
804 * Unfortunately, the recommended algorithm breaks header prediction,
805 * since header prediction assumes th->window stays fixed.
806 *
807 * Strictly speaking, keeping th->window fixed violates the receiver
808 * side SWS prevention criteria. The problem is that under this rule
809 * a stream of single byte packets will cause the right side of the
810 * window to always advance by a single byte.
811 *
812 * Of course, if the sender implements sender side SWS prevention
813 * then this will not be a problem.
814 *
815 * BSD seems to make the following compromise:
816 *
817 * If the free space is less than the 1/4 of the maximum
818 * space available and the free space is less than 1/2 mss,
819 * then set the window to 0.
820 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
821 * Otherwise, just prevent the window from shrinking
822 * and from being larger than the largest representable value.
823 *
824 * This prevents incremental opening of the window in the regime
825 * where TCP is limited by the speed of the reader side taking
826 * data out of the TCP receive queue. It does nothing about
827 * those cases where the window is constrained on the sender side
828 * because the pipeline is full.
829 *
830 * BSD also seems to "accidentally" limit itself to windows that are a
831 * multiple of MSS, at least until the free space gets quite small.
832 * This would appear to be a side effect of the mbuf implementation.
833 * Combining these two algorithms results in the observed behavior
834 * of having a fixed window size at almost all times.
835 *
836 * Below we obtain similar behavior by forcing the offered window to
837 * a multiple of the mss when it is feasible to do so.
838 *
839 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
840 * Regular options like TIMESTAMP are taken into account.
841 */
842u32 __tcp_select_window(struct sock *sk)
843{
844 struct tcp_sock *tp = tcp_sk(sk);
845 /* MSS for the peer's data. Previous verions used mss_clamp
846 * here. I don't know if the value based on our guesses
847 * of peer's MSS is better for the performance. It's more correct
848 * but may be worse for the performance because of rcv_mss
849 * fluctuations. --SAW 1998/11/1
850 */
851 int mss = tp->ack.rcv_mss;
852 int free_space = tcp_space(sk);
853 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
854 int window;
855
856 if (mss > full_space)
857 mss = full_space;
858
859 if (free_space < full_space/2) {
860 tp->ack.quick = 0;
861
862 if (tcp_memory_pressure)
863 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
864
865 if (free_space < mss)
866 return 0;
867 }
868
869 if (free_space > tp->rcv_ssthresh)
870 free_space = tp->rcv_ssthresh;
871
872 /* Don't do rounding if we are using window scaling, since the
873 * scaled window will not line up with the MSS boundary anyway.
874 */
875 window = tp->rcv_wnd;
876 if (tp->rx_opt.rcv_wscale) {
877 window = free_space;
878
879 /* Advertise enough space so that it won't get scaled away.
880 * Import case: prevent zero window announcement if
881 * 1<<rcv_wscale > mss.
882 */
883 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
884 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
885 << tp->rx_opt.rcv_wscale);
886 } else {
887 /* Get the largest window that is a nice multiple of mss.
888 * Window clamp already applied above.
889 * If our current window offering is within 1 mss of the
890 * free space we just keep it. This prevents the divide
891 * and multiply from happening most of the time.
892 * We also don't do any window rounding when the free space
893 * is too small.
894 */
895 if (window <= free_space - mss || window > free_space)
896 window = (free_space/mss)*mss;
897 }
898
899 return window;
900}
901
902/* Attempt to collapse two adjacent SKB's during retransmission. */
903static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
904{
905 struct tcp_sock *tp = tcp_sk(sk);
906 struct sk_buff *next_skb = skb->next;
907
908 /* The first test we must make is that neither of these two
909 * SKB's are still referenced by someone else.
910 */
911 if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
912 int skb_size = skb->len, next_skb_size = next_skb->len;
913 u16 flags = TCP_SKB_CB(skb)->flags;
914
915 /* Also punt if next skb has been SACK'd. */
916 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
917 return;
918
919 /* Next skb is out of window. */
920 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
921 return;
922
923 /* Punt if not enough space exists in the first SKB for
924 * the data in the second, or the total combined payload
925 * would exceed the MSS.
926 */
927 if ((next_skb_size > skb_tailroom(skb)) ||
928 ((skb_size + next_skb_size) > mss_now))
929 return;
930
931 BUG_ON(tcp_skb_pcount(skb) != 1 ||
932 tcp_skb_pcount(next_skb) != 1);
933
934 /* Ok. We will be able to collapse the packet. */
935 __skb_unlink(next_skb, next_skb->list);
936
937 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
938
939 if (next_skb->ip_summed == CHECKSUM_HW)
940 skb->ip_summed = CHECKSUM_HW;
941
942 if (skb->ip_summed != CHECKSUM_HW)
943 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
944
945 /* Update sequence range on original skb. */
946 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
947
948 /* Merge over control information. */
949 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
950 TCP_SKB_CB(skb)->flags = flags;
951
952 /* All done, get rid of second SKB and account for it so
953 * packet counting does not break.
954 */
955 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
956 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
957 tp->retrans_out -= tcp_skb_pcount(next_skb);
958 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
959 tp->lost_out -= tcp_skb_pcount(next_skb);
960 tp->left_out -= tcp_skb_pcount(next_skb);
961 }
962 /* Reno case is special. Sigh... */
963 if (!tp->rx_opt.sack_ok && tp->sacked_out) {
964 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
965 tp->left_out -= tcp_skb_pcount(next_skb);
966 }
967
968 /* Not quite right: it can be > snd.fack, but
969 * it is better to underestimate fackets.
970 */
971 tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
972 tcp_packets_out_dec(tp, next_skb);
973 sk_stream_free_skb(sk, next_skb);
974 }
975}
976
977/* Do a simple retransmit without using the backoff mechanisms in
978 * tcp_timer. This is used for path mtu discovery.
979 * The socket is already locked here.
980 */
981void tcp_simple_retransmit(struct sock *sk)
982{
983 struct tcp_sock *tp = tcp_sk(sk);
984 struct sk_buff *skb;
985 unsigned int mss = tcp_current_mss(sk, 0);
986 int lost = 0;
987
988 sk_stream_for_retrans_queue(skb, sk) {
989 if (skb->len > mss &&
990 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
991 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
992 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
993 tp->retrans_out -= tcp_skb_pcount(skb);
994 }
995 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
996 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
997 tp->lost_out += tcp_skb_pcount(skb);
998 lost = 1;
999 }
1000 }
1001 }
1002
1003 if (!lost)
1004 return;
1005
1006 tcp_sync_left_out(tp);
1007
1008 /* Don't muck with the congestion window here.
1009 * Reason is that we do not increase amount of _data_
1010 * in network, but units changed and effective
1011 * cwnd/ssthresh really reduced now.
1012 */
1013 if (tp->ca_state != TCP_CA_Loss) {
1014 tp->high_seq = tp->snd_nxt;
1015 tp->snd_ssthresh = tcp_current_ssthresh(tp);
1016 tp->prior_ssthresh = 0;
1017 tp->undo_marker = 0;
1018 tcp_set_ca_state(tp, TCP_CA_Loss);
1019 }
1020 tcp_xmit_retransmit_queue(sk);
1021}
1022
1023/* This retransmits one SKB. Policy decisions and retransmit queue
1024 * state updates are done by the caller. Returns non-zero if an
1025 * error occurred which prevented the send.
1026 */
1027int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1028{
1029 struct tcp_sock *tp = tcp_sk(sk);
1030 unsigned int cur_mss = tcp_current_mss(sk, 0);
1031 int err;
1032
1033 /* Do not sent more than we queued. 1/4 is reserved for possible
1034 * copying overhead: frgagmentation, tunneling, mangling etc.
1035 */
1036 if (atomic_read(&sk->sk_wmem_alloc) >
1037 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1038 return -EAGAIN;
1039
1040 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1041 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1042 BUG();
1043
1044 if (sk->sk_route_caps & NETIF_F_TSO) {
1045 sk->sk_route_caps &= ~NETIF_F_TSO;
1046 sock_set_flag(sk, SOCK_NO_LARGESEND);
1047 tp->mss_cache = tp->mss_cache_std;
1048 }
1049
1050 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1051 return -ENOMEM;
1052 }
1053
1054 /* If receiver has shrunk his window, and skb is out of
1055 * new window, do not retransmit it. The exception is the
1056 * case, when window is shrunk to zero. In this case
1057 * our retransmit serves as a zero window probe.
1058 */
1059 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1060 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1061 return -EAGAIN;
1062
1063 if (skb->len > cur_mss) {
1064 int old_factor = tcp_skb_pcount(skb);
1065 int new_factor;
1066
1067 if (tcp_fragment(sk, skb, cur_mss))
1068 return -ENOMEM; /* We'll try again later. */
1069
1070 /* New SKB created, account for it. */
1071 new_factor = tcp_skb_pcount(skb);
1072 tp->packets_out -= old_factor - new_factor;
1073 tp->packets_out += tcp_skb_pcount(skb->next);
1074 }
1075
1076 /* Collapse two adjacent packets if worthwhile and we can. */
1077 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1078 (skb->len < (cur_mss >> 1)) &&
1079 (skb->next != sk->sk_send_head) &&
1080 (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1081 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1082 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1083 (sysctl_tcp_retrans_collapse != 0))
1084 tcp_retrans_try_collapse(sk, skb, cur_mss);
1085
1086 if(tp->af_specific->rebuild_header(sk))
1087 return -EHOSTUNREACH; /* Routing failure or similar. */
1088
1089 /* Some Solaris stacks overoptimize and ignore the FIN on a
1090 * retransmit when old data is attached. So strip it off
1091 * since it is cheap to do so and saves bytes on the network.
1092 */
1093 if(skb->len > 0 &&
1094 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1095 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1096 if (!pskb_trim(skb, 0)) {
1097 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1098 skb_shinfo(skb)->tso_segs = 1;
1099 skb_shinfo(skb)->tso_size = 0;
1100 skb->ip_summed = CHECKSUM_NONE;
1101 skb->csum = 0;
1102 }
1103 }
1104
1105 /* Make a copy, if the first transmission SKB clone we made
1106 * is still in somebody's hands, else make a clone.
1107 */
1108 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1109 tcp_tso_set_push(skb);
1110
1111 err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
1112 pskb_copy(skb, GFP_ATOMIC):
1113 skb_clone(skb, GFP_ATOMIC)));
1114
1115 if (err == 0) {
1116 /* Update global TCP statistics. */
1117 TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1118
1119 tp->total_retrans++;
1120
1121#if FASTRETRANS_DEBUG > 0
1122 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1123 if (net_ratelimit())
1124 printk(KERN_DEBUG "retrans_out leaked.\n");
1125 }
1126#endif
1127 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1128 tp->retrans_out += tcp_skb_pcount(skb);
1129
1130 /* Save stamp of the first retransmit. */
1131 if (!tp->retrans_stamp)
1132 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1133
1134 tp->undo_retrans++;
1135
1136 /* snd_nxt is stored to detect loss of retransmitted segment,
1137 * see tcp_input.c tcp_sacktag_write_queue().
1138 */
1139 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1140 }
1141 return err;
1142}
1143
1144/* This gets called after a retransmit timeout, and the initially
1145 * retransmitted data is acknowledged. It tries to continue
1146 * resending the rest of the retransmit queue, until either
1147 * we've sent it all or the congestion window limit is reached.
1148 * If doing SACK, the first ACK which comes back for a timeout
1149 * based retransmit packet might feed us FACK information again.
1150 * If so, we use it to avoid unnecessarily retransmissions.
1151 */
1152void tcp_xmit_retransmit_queue(struct sock *sk)
1153{
1154 struct tcp_sock *tp = tcp_sk(sk);
1155 struct sk_buff *skb;
1156 int packet_cnt = tp->lost_out;
1157
1158 /* First pass: retransmit lost packets. */
1159 if (packet_cnt) {
1160 sk_stream_for_retrans_queue(skb, sk) {
1161 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1162
1163 /* Assume this retransmit will generate
1164 * only one packet for congestion window
1165 * calculation purposes. This works because
1166 * tcp_retransmit_skb() will chop up the
1167 * packet to be MSS sized and all the
1168 * packet counting works out.
1169 */
1170 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1171 return;
1172
1173 if (sacked&TCPCB_LOST) {
1174 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1175 if (tcp_retransmit_skb(sk, skb))
1176 return;
1177 if (tp->ca_state != TCP_CA_Loss)
1178 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1179 else
1180 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1181
1182 if (skb ==
1183 skb_peek(&sk->sk_write_queue))
1184 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1185 }
1186
1187 packet_cnt -= tcp_skb_pcount(skb);
1188 if (packet_cnt <= 0)
1189 break;
1190 }
1191 }
1192 }
1193
1194 /* OK, demanded retransmission is finished. */
1195
1196 /* Forward retransmissions are possible only during Recovery. */
1197 if (tp->ca_state != TCP_CA_Recovery)
1198 return;
1199
1200 /* No forward retransmissions in Reno are possible. */
1201 if (!tp->rx_opt.sack_ok)
1202 return;
1203
1204 /* Yeah, we have to make difficult choice between forward transmission
1205 * and retransmission... Both ways have their merits...
1206 *
1207 * For now we do not retransmit anything, while we have some new
1208 * segments to send.
1209 */
1210
1211 if (tcp_may_send_now(sk, tp))
1212 return;
1213
1214 packet_cnt = 0;
1215
1216 sk_stream_for_retrans_queue(skb, sk) {
1217 /* Similar to the retransmit loop above we
1218 * can pretend that the retransmitted SKB
1219 * we send out here will be composed of one
1220 * real MSS sized packet because tcp_retransmit_skb()
1221 * will fragment it if necessary.
1222 */
1223 if (++packet_cnt > tp->fackets_out)
1224 break;
1225
1226 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1227 break;
1228
1229 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1230 continue;
1231
1232 /* Ok, retransmit it. */
1233 if (tcp_retransmit_skb(sk, skb))
1234 break;
1235
1236 if (skb == skb_peek(&sk->sk_write_queue))
1237 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1238
1239 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1240 }
1241}
1242
1243
1244/* Send a fin. The caller locks the socket for us. This cannot be
1245 * allowed to fail queueing a FIN frame under any circumstances.
1246 */
1247void tcp_send_fin(struct sock *sk)
1248{
1249 struct tcp_sock *tp = tcp_sk(sk);
1250 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1251 int mss_now;
1252
1253 /* Optimization, tack on the FIN if we have a queue of
1254 * unsent frames. But be careful about outgoing SACKS
1255 * and IP options.
1256 */
1257 mss_now = tcp_current_mss(sk, 1);
1258
1259 if (sk->sk_send_head != NULL) {
1260 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1261 TCP_SKB_CB(skb)->end_seq++;
1262 tp->write_seq++;
1263 } else {
1264 /* Socket is locked, keep trying until memory is available. */
1265 for (;;) {
1266 skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL);
1267 if (skb)
1268 break;
1269 yield();
1270 }
1271
1272 /* Reserve space for headers and prepare control bits. */
1273 skb_reserve(skb, MAX_TCP_HEADER);
1274 skb->csum = 0;
1275 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1276 TCP_SKB_CB(skb)->sacked = 0;
1277 skb_shinfo(skb)->tso_segs = 1;
1278 skb_shinfo(skb)->tso_size = 0;
1279
1280 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1281 TCP_SKB_CB(skb)->seq = tp->write_seq;
1282 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1283 tcp_queue_skb(sk, skb);
1284 }
1285 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1286}
1287
1288/* We get here when a process closes a file descriptor (either due to
1289 * an explicit close() or as a byproduct of exit()'ing) and there
1290 * was unread data in the receive queue. This behavior is recommended
1291 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
1292 */
1293void tcp_send_active_reset(struct sock *sk, int priority)
1294{
1295 struct tcp_sock *tp = tcp_sk(sk);
1296 struct sk_buff *skb;
1297
1298 /* NOTE: No TCP options attached and we never retransmit this. */
1299 skb = alloc_skb(MAX_TCP_HEADER, priority);
1300 if (!skb) {
1301 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1302 return;
1303 }
1304
1305 /* Reserve space for headers and prepare control bits. */
1306 skb_reserve(skb, MAX_TCP_HEADER);
1307 skb->csum = 0;
1308 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1309 TCP_SKB_CB(skb)->sacked = 0;
1310 skb_shinfo(skb)->tso_segs = 1;
1311 skb_shinfo(skb)->tso_size = 0;
1312
1313 /* Send it off. */
1314 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1315 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1316 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1317 if (tcp_transmit_skb(sk, skb))
1318 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1319}
1320
1321/* WARNING: This routine must only be called when we have already sent
1322 * a SYN packet that crossed the incoming SYN that caused this routine
1323 * to get called. If this assumption fails then the initial rcv_wnd
1324 * and rcv_wscale values will not be correct.
1325 */
1326int tcp_send_synack(struct sock *sk)
1327{
1328 struct sk_buff* skb;
1329
1330 skb = skb_peek(&sk->sk_write_queue);
1331 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1332 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1333 return -EFAULT;
1334 }
1335 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1336 if (skb_cloned(skb)) {
1337 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1338 if (nskb == NULL)
1339 return -ENOMEM;
1340 __skb_unlink(skb, &sk->sk_write_queue);
1341 skb_header_release(nskb);
1342 __skb_queue_head(&sk->sk_write_queue, nskb);
1343 sk_stream_free_skb(sk, skb);
1344 sk_charge_skb(sk, nskb);
1345 skb = nskb;
1346 }
1347
1348 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1349 TCP_ECN_send_synack(tcp_sk(sk), skb);
1350 }
1351 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1352 return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1353}
1354
1355/*
1356 * Prepare a SYN-ACK.
1357 */
1358struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
1359 struct open_request *req)
1360{
1361 struct tcp_sock *tp = tcp_sk(sk);
1362 struct tcphdr *th;
1363 int tcp_header_size;
1364 struct sk_buff *skb;
1365
1366 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1367 if (skb == NULL)
1368 return NULL;
1369
1370 /* Reserve space for headers. */
1371 skb_reserve(skb, MAX_TCP_HEADER);
1372
1373 skb->dst = dst_clone(dst);
1374
1375 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
1376 (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1377 (req->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1378 /* SACK_PERM is in the place of NOP NOP of TS */
1379 ((req->sack_ok && !req->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1380 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1381
1382 memset(th, 0, sizeof(struct tcphdr));
1383 th->syn = 1;
1384 th->ack = 1;
1385 if (dst->dev->features&NETIF_F_TSO)
1386 req->ecn_ok = 0;
1387 TCP_ECN_make_synack(req, th);
1388 th->source = inet_sk(sk)->sport;
1389 th->dest = req->rmt_port;
1390 TCP_SKB_CB(skb)->seq = req->snt_isn;
1391 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1392 TCP_SKB_CB(skb)->sacked = 0;
1393 skb_shinfo(skb)->tso_segs = 1;
1394 skb_shinfo(skb)->tso_size = 0;
1395 th->seq = htonl(TCP_SKB_CB(skb)->seq);
1396 th->ack_seq = htonl(req->rcv_isn + 1);
1397 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1398 __u8 rcv_wscale;
1399 /* Set this up on the first call only */
1400 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1401 /* tcp_full_space because it is guaranteed to be the first packet */
1402 tcp_select_initial_window(tcp_full_space(sk),
1403 dst_metric(dst, RTAX_ADVMSS) - (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1404 &req->rcv_wnd,
1405 &req->window_clamp,
1406 req->wscale_ok,
1407 &rcv_wscale);
1408 req->rcv_wscale = rcv_wscale;
1409 }
1410
1411 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1412 th->window = htons(req->rcv_wnd);
1413
1414 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1415 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), req->tstamp_ok,
1416 req->sack_ok, req->wscale_ok, req->rcv_wscale,
1417 TCP_SKB_CB(skb)->when,
1418 req->ts_recent);
1419
1420 skb->csum = 0;
1421 th->doff = (tcp_header_size >> 2);
1422 TCP_INC_STATS(TCP_MIB_OUTSEGS);
1423 return skb;
1424}
1425
1426/*
1427 * Do all connect socket setups that can be done AF independent.
1428 */
1429static inline void tcp_connect_init(struct sock *sk)
1430{
1431 struct dst_entry *dst = __sk_dst_get(sk);
1432 struct tcp_sock *tp = tcp_sk(sk);
1433 __u8 rcv_wscale;
1434
1435 /* We'll fix this up when we get a response from the other end.
1436 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1437 */
1438 tp->tcp_header_len = sizeof(struct tcphdr) +
1439 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1440
1441 /* If user gave his TCP_MAXSEG, record it to clamp */
1442 if (tp->rx_opt.user_mss)
1443 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1444 tp->max_window = 0;
1445 tcp_sync_mss(sk, dst_mtu(dst));
1446
1447 if (!tp->window_clamp)
1448 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1449 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1450 tcp_initialize_rcv_mss(sk);
1451 tcp_ca_init(tp);
1452
1453 tcp_select_initial_window(tcp_full_space(sk),
1454 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1455 &tp->rcv_wnd,
1456 &tp->window_clamp,
1457 sysctl_tcp_window_scaling,
1458 &rcv_wscale);
1459
1460 tp->rx_opt.rcv_wscale = rcv_wscale;
1461 tp->rcv_ssthresh = tp->rcv_wnd;
1462
1463 sk->sk_err = 0;
1464 sock_reset_flag(sk, SOCK_DONE);
1465 tp->snd_wnd = 0;
1466 tcp_init_wl(tp, tp->write_seq, 0);
1467 tp->snd_una = tp->write_seq;
1468 tp->snd_sml = tp->write_seq;
1469 tp->rcv_nxt = 0;
1470 tp->rcv_wup = 0;
1471 tp->copied_seq = 0;
1472
1473 tp->rto = TCP_TIMEOUT_INIT;
1474 tp->retransmits = 0;
1475 tcp_clear_retrans(tp);
1476}
1477
1478/*
1479 * Build a SYN and send it off.
1480 */
1481int tcp_connect(struct sock *sk)
1482{
1483 struct tcp_sock *tp = tcp_sk(sk);
1484 struct sk_buff *buff;
1485
1486 tcp_connect_init(sk);
1487
1488 buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation);
1489 if (unlikely(buff == NULL))
1490 return -ENOBUFS;
1491
1492 /* Reserve space for headers. */
1493 skb_reserve(buff, MAX_TCP_HEADER);
1494
1495 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1496 TCP_ECN_send_syn(sk, tp, buff);
1497 TCP_SKB_CB(buff)->sacked = 0;
1498 skb_shinfo(buff)->tso_segs = 1;
1499 skb_shinfo(buff)->tso_size = 0;
1500 buff->csum = 0;
1501 TCP_SKB_CB(buff)->seq = tp->write_seq++;
1502 TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1503 tp->snd_nxt = tp->write_seq;
1504 tp->pushed_seq = tp->write_seq;
1505 tcp_ca_init(tp);
1506
1507 /* Send it off. */
1508 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1509 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1510 skb_header_release(buff);
1511 __skb_queue_tail(&sk->sk_write_queue, buff);
1512 sk_charge_skb(sk, buff);
1513 tp->packets_out += tcp_skb_pcount(buff);
1514 tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
1515 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1516
1517 /* Timer for repeating the SYN until an answer. */
1518 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1519 return 0;
1520}
1521
1522/* Send out a delayed ack, the caller does the policy checking
1523 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
1524 * for details.
1525 */
1526void tcp_send_delayed_ack(struct sock *sk)
1527{
1528 struct tcp_sock *tp = tcp_sk(sk);
1529 int ato = tp->ack.ato;
1530 unsigned long timeout;
1531
1532 if (ato > TCP_DELACK_MIN) {
1533 int max_ato = HZ/2;
1534
1535 if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED))
1536 max_ato = TCP_DELACK_MAX;
1537
1538 /* Slow path, intersegment interval is "high". */
1539
1540 /* If some rtt estimate is known, use it to bound delayed ack.
1541 * Do not use tp->rto here, use results of rtt measurements
1542 * directly.
1543 */
1544 if (tp->srtt) {
1545 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1546
1547 if (rtt < max_ato)
1548 max_ato = rtt;
1549 }
1550
1551 ato = min(ato, max_ato);
1552 }
1553
1554 /* Stay within the limit we were given */
1555 timeout = jiffies + ato;
1556
1557 /* Use new timeout only if there wasn't a older one earlier. */
1558 if (tp->ack.pending&TCP_ACK_TIMER) {
1559 /* If delack timer was blocked or is about to expire,
1560 * send ACK now.
1561 */
1562 if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) {
1563 tcp_send_ack(sk);
1564 return;
1565 }
1566
1567 if (!time_before(timeout, tp->ack.timeout))
1568 timeout = tp->ack.timeout;
1569 }
1570 tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER;
1571 tp->ack.timeout = timeout;
1572 sk_reset_timer(sk, &tp->delack_timer, timeout);
1573}
1574
1575/* This routine sends an ack and also updates the window. */
1576void tcp_send_ack(struct sock *sk)
1577{
1578 /* If we have been reset, we may not send again. */
1579 if (sk->sk_state != TCP_CLOSE) {
1580 struct tcp_sock *tp = tcp_sk(sk);
1581 struct sk_buff *buff;
1582
1583 /* We are not putting this on the write queue, so
1584 * tcp_transmit_skb() will set the ownership to this
1585 * sock.
1586 */
1587 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1588 if (buff == NULL) {
1589 tcp_schedule_ack(tp);
1590 tp->ack.ato = TCP_ATO_MIN;
1591 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
1592 return;
1593 }
1594
1595 /* Reserve space for headers and prepare control bits. */
1596 skb_reserve(buff, MAX_TCP_HEADER);
1597 buff->csum = 0;
1598 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
1599 TCP_SKB_CB(buff)->sacked = 0;
1600 skb_shinfo(buff)->tso_segs = 1;
1601 skb_shinfo(buff)->tso_size = 0;
1602
1603 /* Send it off, this clears delayed acks for us. */
1604 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
1605 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1606 tcp_transmit_skb(sk, buff);
1607 }
1608}
1609
1610/* This routine sends a packet with an out of date sequence
1611 * number. It assumes the other end will try to ack it.
1612 *
1613 * Question: what should we make while urgent mode?
1614 * 4.4BSD forces sending single byte of data. We cannot send
1615 * out of window data, because we have SND.NXT==SND.MAX...
1616 *
1617 * Current solution: to send TWO zero-length segments in urgent mode:
1618 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1619 * out-of-date with SND.UNA-1 to probe window.
1620 */
1621static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
1622{
1623 struct tcp_sock *tp = tcp_sk(sk);
1624 struct sk_buff *skb;
1625
1626 /* We don't queue it, tcp_transmit_skb() sets ownership. */
1627 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1628 if (skb == NULL)
1629 return -1;
1630
1631 /* Reserve space for headers and set control bits. */
1632 skb_reserve(skb, MAX_TCP_HEADER);
1633 skb->csum = 0;
1634 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
1635 TCP_SKB_CB(skb)->sacked = urgent;
1636 skb_shinfo(skb)->tso_segs = 1;
1637 skb_shinfo(skb)->tso_size = 0;
1638
1639 /* Use a previous sequence. This should cause the other
1640 * end to send an ack. Don't queue or clone SKB, just
1641 * send it.
1642 */
1643 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
1644 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1645 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1646 return tcp_transmit_skb(sk, skb);
1647}
1648
1649int tcp_write_wakeup(struct sock *sk)
1650{
1651 if (sk->sk_state != TCP_CLOSE) {
1652 struct tcp_sock *tp = tcp_sk(sk);
1653 struct sk_buff *skb;
1654
1655 if ((skb = sk->sk_send_head) != NULL &&
1656 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
1657 int err;
1658 unsigned int mss = tcp_current_mss(sk, 0);
1659 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
1660
1661 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
1662 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
1663
1664 /* We are probing the opening of a window
1665 * but the window size is != 0
1666 * must have been a result SWS avoidance ( sender )
1667 */
1668 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
1669 skb->len > mss) {
1670 seg_size = min(seg_size, mss);
1671 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1672 if (tcp_fragment(sk, skb, seg_size))
1673 return -1;
1674 /* SWS override triggered forced fragmentation.
1675 * Disable TSO, the connection is too sick. */
1676 if (sk->sk_route_caps & NETIF_F_TSO) {
1677 sock_set_flag(sk, SOCK_NO_LARGESEND);
1678 sk->sk_route_caps &= ~NETIF_F_TSO;
1679 tp->mss_cache = tp->mss_cache_std;
1680 }
1681 } else if (!tcp_skb_pcount(skb))
d5ac99a6 1682 tcp_set_skb_tso_segs(sk, skb);
1da177e4
LT
1683
1684 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1685 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1686 tcp_tso_set_push(skb);
1687 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1688 if (!err) {
1689 update_send_head(sk, tp, skb);
1690 }
1691 return err;
1692 } else {
1693 if (tp->urg_mode &&
1694 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
1695 tcp_xmit_probe_skb(sk, TCPCB_URG);
1696 return tcp_xmit_probe_skb(sk, 0);
1697 }
1698 }
1699 return -1;
1700}
1701
1702/* A window probe timeout has occurred. If window is not closed send
1703 * a partial packet else a zero probe.
1704 */
1705void tcp_send_probe0(struct sock *sk)
1706{
1707 struct tcp_sock *tp = tcp_sk(sk);
1708 int err;
1709
1710 err = tcp_write_wakeup(sk);
1711
1712 if (tp->packets_out || !sk->sk_send_head) {
1713 /* Cancel probe timer, if it is not required. */
1714 tp->probes_out = 0;
1715 tp->backoff = 0;
1716 return;
1717 }
1718
1719 if (err <= 0) {
1720 if (tp->backoff < sysctl_tcp_retries2)
1721 tp->backoff++;
1722 tp->probes_out++;
1723 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
1724 min(tp->rto << tp->backoff, TCP_RTO_MAX));
1725 } else {
1726 /* If packet was not sent due to local congestion,
1727 * do not backoff and do not remember probes_out.
1728 * Let local senders to fight for local resources.
1729 *
1730 * Use accumulated backoff yet.
1731 */
1732 if (!tp->probes_out)
1733 tp->probes_out=1;
1734 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
1735 min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL));
1736 }
1737}
1738
1739EXPORT_SYMBOL(tcp_connect);
1740EXPORT_SYMBOL(tcp_make_synack);
1741EXPORT_SYMBOL(tcp_simple_retransmit);
1742EXPORT_SYMBOL(tcp_sync_mss);