Merge tag 'for-linus-v3.10-rc4' of git://oss.sgi.com/xfs/xfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
5ffc02a1 71#include <net/dst.h>
1da177e4
LT
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
1a2449a8 76#include <net/netdma.h>
1da177e4 77
ab32ea5d
BH
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 86int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 88
282f23c6
ED
89/* rfc5961 challenge ack rate limiting */
90int sysctl_tcp_challenge_ack_limit = 100;
91
ab32ea5d
BH
92int sysctl_tcp_stdurg __read_mostly;
93int sysctl_tcp_rfc1337 __read_mostly;
94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 95int sysctl_tcp_frto __read_mostly = 2;
1da177e4 96
7e380175
AP
97int sysctl_tcp_thin_dupack __read_mostly;
98
ab32ea5d 99int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 100int sysctl_tcp_early_retrans __read_mostly = 3;
1da177e4 101
1da177e4
LT
102#define FLAG_DATA 0x01 /* Incoming frame contained data. */
103#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107#define FLAG_DATA_SACKED 0x20 /* New SACK. */
108#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 109#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 110#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 111#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 112#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 113#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 114#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
115
116#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
1da177e4 121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 123
e905a9ed 124/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 125 * real world.
e905a9ed 126 */
056834d9 127static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 128{
463c84b9 129 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 131 unsigned int len;
1da177e4 132
e905a9ed 133 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
056834d9 138 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
9c70220b 147 len += skb->data - skb_transport_header(skb);
bee7ca9e 148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
463c84b9
ACM
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
1da177e4 162 if (len == lss) {
463c84b9 163 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
164 return;
165 }
166 }
1ef9696c
AK
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
170 }
171}
172
463c84b9 173static void tcp_incr_quickack(struct sock *sk)
1da177e4 174{
463c84b9 175 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 177
056834d9
IJ
178 if (quickacks == 0)
179 quickacks = 2;
463c84b9
ACM
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
182}
183
1b9f4092 184static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 185{
463c84b9
ACM
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
190}
191
192/* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
a2a385d6 196static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 197{
463c84b9 198 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 199
463c84b9 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
201}
202
bdf1ee5d
IJ
203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204{
056834d9 205 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207}
208
cf533ea5 209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
210{
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216{
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
7a269ffa 220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 221{
7a269ffa
ED
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
b82d1bb4 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 226 case INET_ECN_NOT_ECT:
bdf1ee5d 227 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 232 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
233 break;
234 case INET_ECN_CE:
aae06bf5
ED
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
7a269ffa
ED
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
bdf1ee5d
IJ
243 }
244}
245
cf533ea5 246static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 247{
056834d9 248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
249 tp->ecn_flags &= ~TCP_ECN_OK;
250}
251
cf533ea5 252static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 253{
056834d9 254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
255 tp->ecn_flags &= ~TCP_ECN_OK;
256}
257
a2a385d6 258static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 259{
056834d9 260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
261 return true;
262 return false;
bdf1ee5d
IJ
263}
264
1da177e4
LT
265/* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270static void tcp_fixup_sndbuf(struct sock *sk)
271{
87fb4b7b 272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
1da177e4 273
06a59ecb
ED
274 sndmem *= TCP_INIT_CWND;
275 if (sk->sk_sndbuf < sndmem)
276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
277}
278
279/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280 *
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
290 *
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
298 *
299 * The scheme does not work when sender sends good segments opening
caa20d9a 300 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
301 * in common situations. Otherwise, we have to rely on queue collapsing.
302 */
303
304/* Slow part of check#2. */
9e412ba7 305static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 306{
9e412ba7 307 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 308 /* Optimize this! */
dfd4f0ae
ED
309 int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
311
312 while (tp->rcv_ssthresh <= window) {
313 if (truesize <= skb->len)
463c84b9 314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
315
316 truesize >>= 1;
317 window >>= 1;
318 }
319 return 0;
320}
321
cf533ea5 322static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 323{
9e412ba7
IJ
324 struct tcp_sock *tp = tcp_sk(sk);
325
1da177e4
LT
326 /* Check #1 */
327 if (tp->rcv_ssthresh < tp->window_clamp &&
328 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 329 !sk_under_memory_pressure(sk)) {
1da177e4
LT
330 int incr;
331
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
334 */
335 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 336 incr = 2 * tp->advmss;
1da177e4 337 else
9e412ba7 338 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
339
340 if (incr) {
4d846f02 341 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 tp->window_clamp);
463c84b9 344 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
345 }
346 }
347}
348
349/* 3. Tuning rcvbuf, when connection enters established state. */
350
351static void tcp_fixup_rcvbuf(struct sock *sk)
352{
e9266a02
ED
353 u32 mss = tcp_sk(sk)->advmss;
354 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
355 int rcvmem;
1da177e4 356
e9266a02
ED
357 /* Limit to 10 segments if mss <= 1460,
358 * or 14600/mss segments, with a minimum of two segments.
1da177e4 359 */
e9266a02
ED
360 if (mss > 1460)
361 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
362
363 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
364 while (tcp_win_from_space(rcvmem) < mss)
1da177e4 365 rcvmem += 128;
e9266a02
ED
366
367 rcvmem *= icwnd;
368
369 if (sk->sk_rcvbuf < rcvmem)
370 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
371}
372
caa20d9a 373/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
374 * established state.
375 */
10467163 376void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
377{
378 struct tcp_sock *tp = tcp_sk(sk);
379 int maxwin;
380
381 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
382 tcp_fixup_rcvbuf(sk);
383 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
384 tcp_fixup_sndbuf(sk);
385
386 tp->rcvq_space.space = tp->rcv_wnd;
387
388 maxwin = tcp_full_space(sk);
389
390 if (tp->window_clamp >= maxwin) {
391 tp->window_clamp = maxwin;
392
393 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
394 tp->window_clamp = max(maxwin -
395 (maxwin >> sysctl_tcp_app_win),
396 4 * tp->advmss);
397 }
398
399 /* Force reservation of one segment. */
400 if (sysctl_tcp_app_win &&
401 tp->window_clamp > 2 * tp->advmss &&
402 tp->window_clamp + tp->advmss > maxwin)
403 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
404
405 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
406 tp->snd_cwnd_stamp = tcp_time_stamp;
407}
408
1da177e4 409/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 410static void tcp_clamp_window(struct sock *sk)
1da177e4 411{
9e412ba7 412 struct tcp_sock *tp = tcp_sk(sk);
6687e988 413 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 414
6687e988 415 icsk->icsk_ack.quick = 0;
1da177e4 416
326f36e9
JH
417 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
418 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
419 !sk_under_memory_pressure(sk) &&
420 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
421 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
422 sysctl_tcp_rmem[2]);
1da177e4 423 }
326f36e9 424 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 425 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
426}
427
40efc6fa
SH
428/* Initialize RCV_MSS value.
429 * RCV_MSS is an our guess about MSS used by the peer.
430 * We haven't any direct information about the MSS.
431 * It's better to underestimate the RCV_MSS rather than overestimate.
432 * Overestimations make us ACKing less frequently than needed.
433 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
434 */
435void tcp_initialize_rcv_mss(struct sock *sk)
436{
cf533ea5 437 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
438 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
439
056834d9 440 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 441 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
442 hint = max(hint, TCP_MIN_MSS);
443
444 inet_csk(sk)->icsk_ack.rcv_mss = hint;
445}
4bc2f18b 446EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 447
1da177e4
LT
448/* Receiver "autotuning" code.
449 *
450 * The algorithm for RTT estimation w/o timestamps is based on
451 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 452 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
453 *
454 * More detail on this code can be found at
631dd1a8 455 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
456 * though this reference is out of date. A new paper
457 * is pending.
458 */
459static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
460{
461 u32 new_sample = tp->rcv_rtt_est.rtt;
462 long m = sample;
463
464 if (m == 0)
465 m = 1;
466
467 if (new_sample != 0) {
468 /* If we sample in larger samples in the non-timestamp
469 * case, we could grossly overestimate the RTT especially
470 * with chatty applications or bulk transfer apps which
471 * are stalled on filesystem I/O.
472 *
473 * Also, since we are only going for a minimum in the
31f34269 474 * non-timestamp case, we do not smooth things out
caa20d9a 475 * else with timestamps disabled convergence takes too
1da177e4
LT
476 * long.
477 */
478 if (!win_dep) {
479 m -= (new_sample >> 3);
480 new_sample += m;
18a223e0
NC
481 } else {
482 m <<= 3;
483 if (m < new_sample)
484 new_sample = m;
485 }
1da177e4 486 } else {
caa20d9a 487 /* No previous measure. */
1da177e4
LT
488 new_sample = m << 3;
489 }
490
491 if (tp->rcv_rtt_est.rtt != new_sample)
492 tp->rcv_rtt_est.rtt = new_sample;
493}
494
495static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
496{
497 if (tp->rcv_rtt_est.time == 0)
498 goto new_measure;
499 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
500 return;
651913ce 501 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
502
503new_measure:
504 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
505 tp->rcv_rtt_est.time = tcp_time_stamp;
506}
507
056834d9
IJ
508static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
509 const struct sk_buff *skb)
1da177e4 510{
463c84b9 511 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
512 if (tp->rx_opt.rcv_tsecr &&
513 (TCP_SKB_CB(skb)->end_seq -
463c84b9 514 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
515 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
516}
517
518/*
519 * This function should be called every time data is copied to user space.
520 * It calculates the appropriate TCP receive buffer space.
521 */
522void tcp_rcv_space_adjust(struct sock *sk)
523{
524 struct tcp_sock *tp = tcp_sk(sk);
525 int time;
526 int space;
e905a9ed 527
1da177e4
LT
528 if (tp->rcvq_space.time == 0)
529 goto new_measure;
e905a9ed 530
1da177e4 531 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 532 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 533 return;
e905a9ed 534
1da177e4
LT
535 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
536
537 space = max(tp->rcvq_space.space, space);
538
539 if (tp->rcvq_space.space != space) {
540 int rcvmem;
541
542 tp->rcvq_space.space = space;
543
6fcf9412
JH
544 if (sysctl_tcp_moderate_rcvbuf &&
545 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
546 int new_clamp = space;
547
548 /* Receive space grows, normalize in order to
549 * take into account packet headers and sk_buff
550 * structure overhead.
551 */
552 space /= tp->advmss;
553 if (!space)
554 space = 1;
87fb4b7b 555 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
1da177e4
LT
556 while (tcp_win_from_space(rcvmem) < tp->advmss)
557 rcvmem += 128;
558 space *= rcvmem;
559 space = min(space, sysctl_tcp_rmem[2]);
560 if (space > sk->sk_rcvbuf) {
561 sk->sk_rcvbuf = space;
562
563 /* Make the window clamp follow along. */
564 tp->window_clamp = new_clamp;
565 }
566 }
567 }
e905a9ed 568
1da177e4
LT
569new_measure:
570 tp->rcvq_space.seq = tp->copied_seq;
571 tp->rcvq_space.time = tcp_time_stamp;
572}
573
574/* There is something which you must keep in mind when you analyze the
575 * behavior of the tp->ato delayed ack timeout interval. When a
576 * connection starts up, we want to ack as quickly as possible. The
577 * problem is that "good" TCP's do slow start at the beginning of data
578 * transmission. The means that until we send the first few ACK's the
579 * sender will sit on his end and only queue most of his data, because
580 * he can only send snd_cwnd unacked packets at any given time. For
581 * each ACK we send, he increments snd_cwnd and transmits more of his
582 * queue. -DaveM
583 */
9e412ba7 584static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 585{
9e412ba7 586 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 587 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
588 u32 now;
589
463c84b9 590 inet_csk_schedule_ack(sk);
1da177e4 591
463c84b9 592 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
593
594 tcp_rcv_rtt_measure(tp);
e905a9ed 595
1da177e4
LT
596 now = tcp_time_stamp;
597
463c84b9 598 if (!icsk->icsk_ack.ato) {
1da177e4
LT
599 /* The _first_ data packet received, initialize
600 * delayed ACK engine.
601 */
463c84b9
ACM
602 tcp_incr_quickack(sk);
603 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 604 } else {
463c84b9 605 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 606
056834d9 607 if (m <= TCP_ATO_MIN / 2) {
1da177e4 608 /* The fastest case is the first. */
463c84b9
ACM
609 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
610 } else if (m < icsk->icsk_ack.ato) {
611 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
612 if (icsk->icsk_ack.ato > icsk->icsk_rto)
613 icsk->icsk_ack.ato = icsk->icsk_rto;
614 } else if (m > icsk->icsk_rto) {
caa20d9a 615 /* Too long gap. Apparently sender failed to
1da177e4
LT
616 * restart window, so that we send ACKs quickly.
617 */
463c84b9 618 tcp_incr_quickack(sk);
3ab224be 619 sk_mem_reclaim(sk);
1da177e4
LT
620 }
621 }
463c84b9 622 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
623
624 TCP_ECN_check_ce(tp, skb);
625
626 if (skb->len >= 128)
9e412ba7 627 tcp_grow_window(sk, skb);
1da177e4
LT
628}
629
1da177e4
LT
630/* Called to compute a smoothed rtt estimate. The data fed to this
631 * routine either comes from timestamps, or from segments that were
632 * known _not_ to have been retransmitted [see Karn/Partridge
633 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
634 * piece by Van Jacobson.
635 * NOTE: the next three routines used to be one big routine.
636 * To save cycles in the RFC 1323 implementation it was better to break
637 * it up into three procedures. -- erics
638 */
2d2abbab 639static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 640{
6687e988 641 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
642 long m = mrtt; /* RTT */
643
1da177e4
LT
644 /* The following amusing code comes from Jacobson's
645 * article in SIGCOMM '88. Note that rtt and mdev
646 * are scaled versions of rtt and mean deviation.
e905a9ed 647 * This is designed to be as fast as possible
1da177e4
LT
648 * m stands for "measurement".
649 *
650 * On a 1990 paper the rto value is changed to:
651 * RTO = rtt + 4 * mdev
652 *
653 * Funny. This algorithm seems to be very broken.
654 * These formulae increase RTO, when it should be decreased, increase
31f34269 655 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
656 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
657 * does not matter how to _calculate_ it. Seems, it was trap
658 * that VJ failed to avoid. 8)
659 */
2de979bd 660 if (m == 0)
1da177e4
LT
661 m = 1;
662 if (tp->srtt != 0) {
663 m -= (tp->srtt >> 3); /* m is now error in rtt est */
664 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
665 if (m < 0) {
666 m = -m; /* m is now abs(error) */
667 m -= (tp->mdev >> 2); /* similar update on mdev */
668 /* This is similar to one of Eifel findings.
669 * Eifel blocks mdev updates when rtt decreases.
670 * This solution is a bit different: we use finer gain
671 * for mdev in this case (alpha*beta).
672 * Like Eifel it also prevents growth of rto,
673 * but also it limits too fast rto decreases,
674 * happening in pure Eifel.
675 */
676 if (m > 0)
677 m >>= 3;
678 } else {
679 m -= (tp->mdev >> 2); /* similar update on mdev */
680 }
681 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
682 if (tp->mdev > tp->mdev_max) {
683 tp->mdev_max = tp->mdev;
684 if (tp->mdev_max > tp->rttvar)
685 tp->rttvar = tp->mdev_max;
686 }
687 if (after(tp->snd_una, tp->rtt_seq)) {
688 if (tp->mdev_max < tp->rttvar)
056834d9 689 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 690 tp->rtt_seq = tp->snd_nxt;
05bb1fad 691 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
692 }
693 } else {
694 /* no previous measure. */
056834d9
IJ
695 tp->srtt = m << 3; /* take the measured time to be rtt */
696 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 697 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
698 tp->rtt_seq = tp->snd_nxt;
699 }
1da177e4
LT
700}
701
702/* Calculate rto without backoff. This is the second half of Van Jacobson's
703 * routine referred to above.
704 */
4aabd8ef 705void tcp_set_rto(struct sock *sk)
1da177e4 706{
463c84b9 707 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
708 /* Old crap is replaced with new one. 8)
709 *
710 * More seriously:
711 * 1. If rtt variance happened to be less 50msec, it is hallucination.
712 * It cannot be less due to utterly erratic ACK generation made
713 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
714 * to do with delayed acks, because at cwnd>2 true delack timeout
715 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 716 * ACKs in some circumstances.
1da177e4 717 */
f1ecd5d9 718 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
719
720 /* 2. Fixups made earlier cannot be right.
721 * If we do not estimate RTO correctly without them,
722 * all the algo is pure shit and should be replaced
caa20d9a 723 * with correct one. It is exactly, which we pretend to do.
1da177e4 724 */
1da177e4 725
ee6aac59
IJ
726 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
727 * guarantees that rto is higher.
728 */
f1ecd5d9 729 tcp_bound_rto(sk);
1da177e4
LT
730}
731
cf533ea5 732__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
733{
734 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
735
22b71c8f 736 if (!cwnd)
442b9635 737 cwnd = TCP_INIT_CWND;
1da177e4
LT
738 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
739}
740
e60402d0
IJ
741/*
742 * Packet counting of FACK is based on in-order assumptions, therefore TCP
743 * disables it when reordering is detected
744 */
4aabd8ef 745void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 746{
85cc391c
IJ
747 /* RFC3517 uses different metric in lost marker => reset on change */
748 if (tcp_is_fack(tp))
749 tp->lost_skb_hint = NULL;
ab56222a 750 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
751}
752
564262c1 753/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
754static void tcp_dsack_seen(struct tcp_sock *tp)
755{
ab56222a 756 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
757}
758
6687e988
ACM
759static void tcp_update_reordering(struct sock *sk, const int metric,
760 const int ts)
1da177e4 761{
6687e988 762 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 763 if (metric > tp->reordering) {
40b215e5
PE
764 int mib_idx;
765
1da177e4
LT
766 tp->reordering = min(TCP_MAX_REORDERING, metric);
767
768 /* This exciting event is worth to be remembered. 8) */
769 if (ts)
40b215e5 770 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 771 else if (tcp_is_reno(tp))
40b215e5 772 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 773 else if (tcp_is_fack(tp))
40b215e5 774 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 775 else
40b215e5
PE
776 mib_idx = LINUX_MIB_TCPSACKREORDER;
777
de0744af 778 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 779#if FASTRETRANS_DEBUG > 1
91df42be
JP
780 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
781 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
782 tp->reordering,
783 tp->fackets_out,
784 tp->sacked_out,
785 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 786#endif
e60402d0 787 tcp_disable_fack(tp);
1da177e4 788 }
eed530b6
YC
789
790 if (metric > 0)
791 tcp_disable_early_retrans(tp);
1da177e4
LT
792}
793
006f582c 794/* This must be called before lost_out is incremented */
c8c213f2
IJ
795static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
796{
006f582c 797 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
798 before(TCP_SKB_CB(skb)->seq,
799 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
800 tp->retransmit_skb_hint = skb;
801
802 if (!tp->lost_out ||
803 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
804 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
805}
806
41ea36e3
IJ
807static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
808{
809 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
810 tcp_verify_retransmit_hint(tp, skb);
811
812 tp->lost_out += tcp_skb_pcount(skb);
813 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
814 }
815}
816
e1aa680f
IJ
817static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
818 struct sk_buff *skb)
006f582c
IJ
819{
820 tcp_verify_retransmit_hint(tp, skb);
821
822 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
823 tp->lost_out += tcp_skb_pcount(skb);
824 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
825 }
826}
827
1da177e4
LT
828/* This procedure tags the retransmission queue when SACKs arrive.
829 *
830 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
831 * Packets in queue with these bits set are counted in variables
832 * sacked_out, retrans_out and lost_out, correspondingly.
833 *
834 * Valid combinations are:
835 * Tag InFlight Description
836 * 0 1 - orig segment is in flight.
837 * S 0 - nothing flies, orig reached receiver.
838 * L 0 - nothing flies, orig lost by net.
839 * R 2 - both orig and retransmit are in flight.
840 * L|R 1 - orig is lost, retransmit is in flight.
841 * S|R 1 - orig reached receiver, retrans is still in flight.
842 * (L|S|R is logically valid, it could occur when L|R is sacked,
843 * but it is equivalent to plain S and code short-curcuits it to S.
844 * L|S is logically invalid, it would mean -1 packet in flight 8))
845 *
846 * These 6 states form finite state machine, controlled by the following events:
847 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
848 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 849 * 3. Loss detection event of two flavors:
1da177e4
LT
850 * A. Scoreboard estimator decided the packet is lost.
851 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
852 * A''. Its FACK modification, head until snd.fack is lost.
853 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
854 * segment was retransmitted.
855 * 4. D-SACK added new rule: D-SACK changes any tag to S.
856 *
857 * It is pleasant to note, that state diagram turns out to be commutative,
858 * so that we are allowed not to be bothered by order of our actions,
859 * when multiple events arrive simultaneously. (see the function below).
860 *
861 * Reordering detection.
862 * --------------------
863 * Reordering metric is maximal distance, which a packet can be displaced
864 * in packet stream. With SACKs we can estimate it:
865 *
866 * 1. SACK fills old hole and the corresponding segment was not
867 * ever retransmitted -> reordering. Alas, we cannot use it
868 * when segment was retransmitted.
869 * 2. The last flaw is solved with D-SACK. D-SACK arrives
870 * for retransmitted and already SACKed segment -> reordering..
871 * Both of these heuristics are not used in Loss state, when we cannot
872 * account for retransmits accurately.
5b3c9882
IJ
873 *
874 * SACK block validation.
875 * ----------------------
876 *
877 * SACK block range validation checks that the received SACK block fits to
878 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
879 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
880 * it means that the receiver is rather inconsistent with itself reporting
881 * SACK reneging when it should advance SND.UNA. Such SACK block this is
882 * perfectly valid, however, in light of RFC2018 which explicitly states
883 * that "SACK block MUST reflect the newest segment. Even if the newest
884 * segment is going to be discarded ...", not that it looks very clever
885 * in case of head skb. Due to potentional receiver driven attacks, we
886 * choose to avoid immediate execution of a walk in write queue due to
887 * reneging and defer head skb's loss recovery to standard loss recovery
888 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
889 *
890 * Implements also blockage to start_seq wrap-around. Problem lies in the
891 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
892 * there's no guarantee that it will be before snd_nxt (n). The problem
893 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
894 * wrap (s_w):
895 *
896 * <- outs wnd -> <- wrapzone ->
897 * u e n u_w e_w s n_w
898 * | | | | | | |
899 * |<------------+------+----- TCP seqno space --------------+---------->|
900 * ...-- <2^31 ->| |<--------...
901 * ...---- >2^31 ------>| |<--------...
902 *
903 * Current code wouldn't be vulnerable but it's better still to discard such
904 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
905 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
906 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
907 * equal to the ideal case (infinite seqno space without wrap caused issues).
908 *
909 * With D-SACK the lower bound is extended to cover sequence space below
910 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 911 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
912 * for the normal SACK blocks, explained above). But there all simplicity
913 * ends, TCP might receive valid D-SACKs below that. As long as they reside
914 * fully below undo_marker they do not affect behavior in anyway and can
915 * therefore be safely ignored. In rare cases (which are more or less
916 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
917 * fragmentation and packet reordering past skb's retransmission. To consider
918 * them correctly, the acceptable range must be extended even more though
919 * the exact amount is rather hard to quantify. However, tp->max_window can
920 * be used as an exaggerated estimate.
1da177e4 921 */
a2a385d6
ED
922static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
923 u32 start_seq, u32 end_seq)
5b3c9882
IJ
924{
925 /* Too far in future, or reversed (interpretation is ambiguous) */
926 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 927 return false;
5b3c9882
IJ
928
929 /* Nasty start_seq wrap-around check (see comments above) */
930 if (!before(start_seq, tp->snd_nxt))
a2a385d6 931 return false;
5b3c9882 932
564262c1 933 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
934 * start_seq == snd_una is non-sensical (see comments above)
935 */
936 if (after(start_seq, tp->snd_una))
a2a385d6 937 return true;
5b3c9882
IJ
938
939 if (!is_dsack || !tp->undo_marker)
a2a385d6 940 return false;
5b3c9882
IJ
941
942 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 943 if (after(end_seq, tp->snd_una))
a2a385d6 944 return false;
5b3c9882
IJ
945
946 if (!before(start_seq, tp->undo_marker))
a2a385d6 947 return true;
5b3c9882
IJ
948
949 /* Too old */
950 if (!after(end_seq, tp->undo_marker))
a2a385d6 951 return false;
5b3c9882
IJ
952
953 /* Undo_marker boundary crossing (overestimates a lot). Known already:
954 * start_seq < undo_marker and end_seq >= undo_marker.
955 */
956 return !before(start_seq, end_seq - tp->max_window);
957}
958
1c1e87ed 959/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 960 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 961 * for reordering! Ugly, but should help.
f785a8e2
IJ
962 *
963 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
964 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
965 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
966 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 967 */
407ef1de 968static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 969{
9f58f3b7 970 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
971 struct tcp_sock *tp = tcp_sk(sk);
972 struct sk_buff *skb;
f785a8e2 973 int cnt = 0;
df2e014b 974 u32 new_low_seq = tp->snd_nxt;
6859d494 975 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
976
977 if (!tcp_is_fack(tp) || !tp->retrans_out ||
978 !after(received_upto, tp->lost_retrans_low) ||
979 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 980 return;
1c1e87ed
IJ
981
982 tcp_for_write_queue(skb, sk) {
983 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
984
985 if (skb == tcp_send_head(sk))
986 break;
f785a8e2 987 if (cnt == tp->retrans_out)
1c1e87ed
IJ
988 break;
989 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
990 continue;
991
f785a8e2
IJ
992 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
993 continue;
994
d0af4160
IJ
995 /* TODO: We would like to get rid of tcp_is_fack(tp) only
996 * constraint here (see above) but figuring out that at
997 * least tp->reordering SACK blocks reside between ack_seq
998 * and received_upto is not easy task to do cheaply with
999 * the available datastructures.
1000 *
1001 * Whether FACK should check here for tp->reordering segs
1002 * in-between one could argue for either way (it would be
1003 * rather simple to implement as we could count fack_count
1004 * during the walk and do tp->fackets_out - fack_count).
1005 */
1006 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1007 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1008 tp->retrans_out -= tcp_skb_pcount(skb);
1009
006f582c 1010 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1011 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1012 } else {
df2e014b 1013 if (before(ack_seq, new_low_seq))
b08d6cb2 1014 new_low_seq = ack_seq;
f785a8e2 1015 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1016 }
1017 }
b08d6cb2
IJ
1018
1019 if (tp->retrans_out)
1020 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1021}
5b3c9882 1022
a2a385d6
ED
1023static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1024 struct tcp_sack_block_wire *sp, int num_sacks,
1025 u32 prior_snd_una)
d06e021d 1026{
1ed83465 1027 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1028 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1029 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1030 bool dup_sack = false;
d06e021d
DM
1031
1032 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1033 dup_sack = true;
e60402d0 1034 tcp_dsack_seen(tp);
de0744af 1035 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1036 } else if (num_sacks > 1) {
d3e2ce3b
HH
1037 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1038 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1039
1040 if (!after(end_seq_0, end_seq_1) &&
1041 !before(start_seq_0, start_seq_1)) {
a2a385d6 1042 dup_sack = true;
e60402d0 1043 tcp_dsack_seen(tp);
de0744af
PE
1044 NET_INC_STATS_BH(sock_net(sk),
1045 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1046 }
1047 }
1048
1049 /* D-SACK for already forgotten data... Do dumb counting. */
c24f691b 1050 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
d06e021d
DM
1051 !after(end_seq_0, prior_snd_una) &&
1052 after(end_seq_0, tp->undo_marker))
1053 tp->undo_retrans--;
1054
1055 return dup_sack;
1056}
1057
a1197f5a
IJ
1058struct tcp_sacktag_state {
1059 int reord;
1060 int fack_count;
1061 int flag;
1062};
1063
d1935942
IJ
1064/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1065 * the incoming SACK may not exactly match but we can find smaller MSS
1066 * aligned portion of it that matches. Therefore we might need to fragment
1067 * which may fail and creates some hassle (caller must handle error case
1068 * returns).
832d11c5
IJ
1069 *
1070 * FIXME: this could be merged to shift decision code
d1935942 1071 */
0f79efdc 1072static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1073 u32 start_seq, u32 end_seq)
d1935942 1074{
a2a385d6
ED
1075 int err;
1076 bool in_sack;
d1935942 1077 unsigned int pkt_len;
adb92db8 1078 unsigned int mss;
d1935942
IJ
1079
1080 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1081 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1082
1083 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1084 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1085 mss = tcp_skb_mss(skb);
d1935942
IJ
1086 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1087
adb92db8 1088 if (!in_sack) {
d1935942 1089 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1090 if (pkt_len < mss)
1091 pkt_len = mss;
1092 } else {
d1935942 1093 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1094 if (pkt_len < mss)
1095 return -EINVAL;
1096 }
1097
1098 /* Round if necessary so that SACKs cover only full MSSes
1099 * and/or the remaining small portion (if present)
1100 */
1101 if (pkt_len > mss) {
1102 unsigned int new_len = (pkt_len / mss) * mss;
1103 if (!in_sack && new_len < pkt_len) {
1104 new_len += mss;
1105 if (new_len > skb->len)
1106 return 0;
1107 }
1108 pkt_len = new_len;
1109 }
1110 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1111 if (err < 0)
1112 return err;
1113 }
1114
1115 return in_sack;
1116}
1117
cc9a672e
NC
1118/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1119static u8 tcp_sacktag_one(struct sock *sk,
1120 struct tcp_sacktag_state *state, u8 sacked,
1121 u32 start_seq, u32 end_seq,
a2a385d6 1122 bool dup_sack, int pcount)
9e10c47c 1123{
6859d494 1124 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1125 int fack_count = state->fack_count;
9e10c47c
IJ
1126
1127 /* Account D-SACK for retransmitted packet. */
1128 if (dup_sack && (sacked & TCPCB_RETRANS)) {
c24f691b 1129 if (tp->undo_marker && tp->undo_retrans &&
cc9a672e 1130 after(end_seq, tp->undo_marker))
9e10c47c 1131 tp->undo_retrans--;
ede9f3b1 1132 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1133 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1134 }
1135
1136 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1137 if (!after(end_seq, tp->snd_una))
a1197f5a 1138 return sacked;
9e10c47c
IJ
1139
1140 if (!(sacked & TCPCB_SACKED_ACKED)) {
1141 if (sacked & TCPCB_SACKED_RETRANS) {
1142 /* If the segment is not tagged as lost,
1143 * we do not clear RETRANS, believing
1144 * that retransmission is still in flight.
1145 */
1146 if (sacked & TCPCB_LOST) {
a1197f5a 1147 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1148 tp->lost_out -= pcount;
1149 tp->retrans_out -= pcount;
9e10c47c
IJ
1150 }
1151 } else {
1152 if (!(sacked & TCPCB_RETRANS)) {
1153 /* New sack for not retransmitted frame,
1154 * which was in hole. It is reordering.
1155 */
cc9a672e 1156 if (before(start_seq,
9e10c47c 1157 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1158 state->reord = min(fack_count,
1159 state->reord);
e33099f9
YC
1160 if (!after(end_seq, tp->high_seq))
1161 state->flag |= FLAG_ORIG_SACK_ACKED;
9e10c47c
IJ
1162 }
1163
1164 if (sacked & TCPCB_LOST) {
a1197f5a 1165 sacked &= ~TCPCB_LOST;
f58b22fd 1166 tp->lost_out -= pcount;
9e10c47c
IJ
1167 }
1168 }
1169
a1197f5a
IJ
1170 sacked |= TCPCB_SACKED_ACKED;
1171 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1172 tp->sacked_out += pcount;
9e10c47c 1173
f58b22fd 1174 fack_count += pcount;
9e10c47c
IJ
1175
1176 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1177 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1178 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1179 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1180
1181 if (fack_count > tp->fackets_out)
1182 tp->fackets_out = fack_count;
9e10c47c
IJ
1183 }
1184
1185 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1186 * frames and clear it. undo_retrans is decreased above, L|R frames
1187 * are accounted above as well.
1188 */
a1197f5a
IJ
1189 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1190 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1191 tp->retrans_out -= pcount;
9e10c47c
IJ
1192 }
1193
a1197f5a 1194 return sacked;
9e10c47c
IJ
1195}
1196
daef52ba
NC
1197/* Shift newly-SACKed bytes from this skb to the immediately previous
1198 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1199 */
a2a385d6
ED
1200static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1201 struct tcp_sacktag_state *state,
1202 unsigned int pcount, int shifted, int mss,
1203 bool dup_sack)
832d11c5
IJ
1204{
1205 struct tcp_sock *tp = tcp_sk(sk);
50133161 1206 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1207 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1208 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1209
1210 BUG_ON(!pcount);
1211
4c90d3b3
NC
1212 /* Adjust counters and hints for the newly sacked sequence
1213 * range but discard the return value since prev is already
1214 * marked. We must tag the range first because the seq
1215 * advancement below implicitly advances
1216 * tcp_highest_sack_seq() when skb is highest_sack.
1217 */
1218 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1219 start_seq, end_seq, dup_sack, pcount);
1220
1221 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1222 tp->lost_cnt_hint += pcount;
1223
832d11c5
IJ
1224 TCP_SKB_CB(prev)->end_seq += shifted;
1225 TCP_SKB_CB(skb)->seq += shifted;
1226
1227 skb_shinfo(prev)->gso_segs += pcount;
1228 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1229 skb_shinfo(skb)->gso_segs -= pcount;
1230
1231 /* When we're adding to gso_segs == 1, gso_size will be zero,
1232 * in theory this shouldn't be necessary but as long as DSACK
1233 * code can come after this skb later on it's better to keep
1234 * setting gso_size to something.
1235 */
1236 if (!skb_shinfo(prev)->gso_size) {
1237 skb_shinfo(prev)->gso_size = mss;
c9af6db4 1238 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
832d11c5
IJ
1239 }
1240
1241 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1242 if (skb_shinfo(skb)->gso_segs <= 1) {
1243 skb_shinfo(skb)->gso_size = 0;
c9af6db4 1244 skb_shinfo(skb)->gso_type = 0;
832d11c5
IJ
1245 }
1246
832d11c5
IJ
1247 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1248 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1249
832d11c5
IJ
1250 if (skb->len > 0) {
1251 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1252 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1253 return false;
832d11c5
IJ
1254 }
1255
1256 /* Whole SKB was eaten :-) */
1257
92ee76b6
IJ
1258 if (skb == tp->retransmit_skb_hint)
1259 tp->retransmit_skb_hint = prev;
1260 if (skb == tp->scoreboard_skb_hint)
1261 tp->scoreboard_skb_hint = prev;
1262 if (skb == tp->lost_skb_hint) {
1263 tp->lost_skb_hint = prev;
1264 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1265 }
1266
4de075e0 1267 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
832d11c5
IJ
1268 if (skb == tcp_highest_sack(sk))
1269 tcp_advance_highest_sack(sk, skb);
1270
1271 tcp_unlink_write_queue(skb, sk);
1272 sk_wmem_free_skb(sk, skb);
1273
111cc8b9
IJ
1274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1275
a2a385d6 1276 return true;
832d11c5
IJ
1277}
1278
1279/* I wish gso_size would have a bit more sane initialization than
1280 * something-or-zero which complicates things
1281 */
cf533ea5 1282static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1283{
775ffabf 1284 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1285}
1286
1287/* Shifting pages past head area doesn't work */
cf533ea5 1288static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1289{
1290 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1291}
1292
1293/* Try collapsing SACK blocks spanning across multiple skbs to a single
1294 * skb.
1295 */
1296static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1297 struct tcp_sacktag_state *state,
832d11c5 1298 u32 start_seq, u32 end_seq,
a2a385d6 1299 bool dup_sack)
832d11c5
IJ
1300{
1301 struct tcp_sock *tp = tcp_sk(sk);
1302 struct sk_buff *prev;
1303 int mss;
1304 int pcount = 0;
1305 int len;
1306 int in_sack;
1307
1308 if (!sk_can_gso(sk))
1309 goto fallback;
1310
1311 /* Normally R but no L won't result in plain S */
1312 if (!dup_sack &&
9969ca5f 1313 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1314 goto fallback;
1315 if (!skb_can_shift(skb))
1316 goto fallback;
1317 /* This frame is about to be dropped (was ACKed). */
1318 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1319 goto fallback;
1320
1321 /* Can only happen with delayed DSACK + discard craziness */
1322 if (unlikely(skb == tcp_write_queue_head(sk)))
1323 goto fallback;
1324 prev = tcp_write_queue_prev(sk, skb);
1325
1326 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1327 goto fallback;
1328
1329 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1330 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1331
1332 if (in_sack) {
1333 len = skb->len;
1334 pcount = tcp_skb_pcount(skb);
775ffabf 1335 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1336
1337 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1338 * drop this restriction as unnecessary
1339 */
775ffabf 1340 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1341 goto fallback;
1342 } else {
1343 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1344 goto noop;
1345 /* CHECKME: This is non-MSS split case only?, this will
1346 * cause skipped skbs due to advancing loop btw, original
1347 * has that feature too
1348 */
1349 if (tcp_skb_pcount(skb) <= 1)
1350 goto noop;
1351
1352 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1353 if (!in_sack) {
1354 /* TODO: head merge to next could be attempted here
1355 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1356 * though it might not be worth of the additional hassle
1357 *
1358 * ...we can probably just fallback to what was done
1359 * previously. We could try merging non-SACKed ones
1360 * as well but it probably isn't going to buy off
1361 * because later SACKs might again split them, and
1362 * it would make skb timestamp tracking considerably
1363 * harder problem.
1364 */
1365 goto fallback;
1366 }
1367
1368 len = end_seq - TCP_SKB_CB(skb)->seq;
1369 BUG_ON(len < 0);
1370 BUG_ON(len > skb->len);
1371
1372 /* MSS boundaries should be honoured or else pcount will
1373 * severely break even though it makes things bit trickier.
1374 * Optimize common case to avoid most of the divides
1375 */
1376 mss = tcp_skb_mss(skb);
1377
1378 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1379 * drop this restriction as unnecessary
1380 */
775ffabf 1381 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1382 goto fallback;
1383
1384 if (len == mss) {
1385 pcount = 1;
1386 } else if (len < mss) {
1387 goto noop;
1388 } else {
1389 pcount = len / mss;
1390 len = pcount * mss;
1391 }
1392 }
1393
4648dc97
NC
1394 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1395 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1396 goto fallback;
1397
832d11c5
IJ
1398 if (!skb_shift(prev, skb, len))
1399 goto fallback;
9ec06ff5 1400 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1401 goto out;
1402
1403 /* Hole filled allows collapsing with the next as well, this is very
1404 * useful when hole on every nth skb pattern happens
1405 */
1406 if (prev == tcp_write_queue_tail(sk))
1407 goto out;
1408 skb = tcp_write_queue_next(sk, prev);
1409
f0bc52f3
IJ
1410 if (!skb_can_shift(skb) ||
1411 (skb == tcp_send_head(sk)) ||
1412 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1413 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1414 goto out;
1415
1416 len = skb->len;
1417 if (skb_shift(prev, skb, len)) {
1418 pcount += tcp_skb_pcount(skb);
9ec06ff5 1419 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1420 }
1421
1422out:
a1197f5a 1423 state->fack_count += pcount;
832d11c5
IJ
1424 return prev;
1425
1426noop:
1427 return skb;
1428
1429fallback:
111cc8b9 1430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1431 return NULL;
1432}
1433
68f8353b
IJ
1434static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1435 struct tcp_sack_block *next_dup,
a1197f5a 1436 struct tcp_sacktag_state *state,
68f8353b 1437 u32 start_seq, u32 end_seq,
a2a385d6 1438 bool dup_sack_in)
68f8353b 1439{
832d11c5
IJ
1440 struct tcp_sock *tp = tcp_sk(sk);
1441 struct sk_buff *tmp;
1442
68f8353b
IJ
1443 tcp_for_write_queue_from(skb, sk) {
1444 int in_sack = 0;
a2a385d6 1445 bool dup_sack = dup_sack_in;
68f8353b
IJ
1446
1447 if (skb == tcp_send_head(sk))
1448 break;
1449
1450 /* queue is in-order => we can short-circuit the walk early */
1451 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1452 break;
1453
1454 if ((next_dup != NULL) &&
1455 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1456 in_sack = tcp_match_skb_to_sack(sk, skb,
1457 next_dup->start_seq,
1458 next_dup->end_seq);
1459 if (in_sack > 0)
a2a385d6 1460 dup_sack = true;
68f8353b
IJ
1461 }
1462
832d11c5
IJ
1463 /* skb reference here is a bit tricky to get right, since
1464 * shifting can eat and free both this skb and the next,
1465 * so not even _safe variant of the loop is enough.
1466 */
1467 if (in_sack <= 0) {
a1197f5a
IJ
1468 tmp = tcp_shift_skb_data(sk, skb, state,
1469 start_seq, end_seq, dup_sack);
832d11c5
IJ
1470 if (tmp != NULL) {
1471 if (tmp != skb) {
1472 skb = tmp;
1473 continue;
1474 }
1475
1476 in_sack = 0;
1477 } else {
1478 in_sack = tcp_match_skb_to_sack(sk, skb,
1479 start_seq,
1480 end_seq);
1481 }
1482 }
1483
68f8353b
IJ
1484 if (unlikely(in_sack < 0))
1485 break;
1486
832d11c5 1487 if (in_sack) {
cc9a672e
NC
1488 TCP_SKB_CB(skb)->sacked =
1489 tcp_sacktag_one(sk,
1490 state,
1491 TCP_SKB_CB(skb)->sacked,
1492 TCP_SKB_CB(skb)->seq,
1493 TCP_SKB_CB(skb)->end_seq,
1494 dup_sack,
1495 tcp_skb_pcount(skb));
68f8353b 1496
832d11c5
IJ
1497 if (!before(TCP_SKB_CB(skb)->seq,
1498 tcp_highest_sack_seq(tp)))
1499 tcp_advance_highest_sack(sk, skb);
1500 }
1501
a1197f5a 1502 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1503 }
1504 return skb;
1505}
1506
1507/* Avoid all extra work that is being done by sacktag while walking in
1508 * a normal way
1509 */
1510static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1511 struct tcp_sacktag_state *state,
1512 u32 skip_to_seq)
68f8353b
IJ
1513{
1514 tcp_for_write_queue_from(skb, sk) {
1515 if (skb == tcp_send_head(sk))
1516 break;
1517
e8bae275 1518 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1519 break;
d152a7d8 1520
a1197f5a 1521 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1522 }
1523 return skb;
1524}
1525
1526static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1527 struct sock *sk,
1528 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1529 struct tcp_sacktag_state *state,
1530 u32 skip_to_seq)
68f8353b
IJ
1531{
1532 if (next_dup == NULL)
1533 return skb;
1534
1535 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1536 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1537 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1538 next_dup->start_seq, next_dup->end_seq,
1539 1);
68f8353b
IJ
1540 }
1541
1542 return skb;
1543}
1544
cf533ea5 1545static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1546{
1547 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1548}
1549
1da177e4 1550static int
cf533ea5 1551tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
056834d9 1552 u32 prior_snd_una)
1da177e4
LT
1553{
1554 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1555 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1556 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1557 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1558 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1559 struct tcp_sack_block *cache;
a1197f5a 1560 struct tcp_sacktag_state state;
68f8353b 1561 struct sk_buff *skb;
4389dded 1562 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1563 int used_sacks;
a2a385d6 1564 bool found_dup_sack = false;
68f8353b 1565 int i, j;
fda03fbb 1566 int first_sack_index;
1da177e4 1567
a1197f5a
IJ
1568 state.flag = 0;
1569 state.reord = tp->packets_out;
1570
d738cd8f 1571 if (!tp->sacked_out) {
de83c058
IJ
1572 if (WARN_ON(tp->fackets_out))
1573 tp->fackets_out = 0;
6859d494 1574 tcp_highest_sack_reset(sk);
d738cd8f 1575 }
1da177e4 1576
1ed83465 1577 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1578 num_sacks, prior_snd_una);
1579 if (found_dup_sack)
a1197f5a 1580 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1581
1582 /* Eliminate too old ACKs, but take into
1583 * account more or less fresh ones, they can
1584 * contain valid SACK info.
1585 */
1586 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1587 return 0;
1588