netlink: Rename pid to portid to avoid confusion
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
70c71606 74#include <linux/prefetch.h>
bc3b2d7f 75#include <linux/export.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
19baf839 87#define KEYLENGTH (8*sizeof(t_key))
19baf839 88
19baf839
RO
89typedef unsigned int t_key;
90
91#define T_TNODE 0
92#define T_LEAF 1
93#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
94#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
91b9a277
OJ
96#define IS_TNODE(n) (!(n->parent & T_LEAF))
97#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839 98
b299e4f0 99struct rt_trie_node {
91b9a277 100 unsigned long parent;
8d965444 101 t_key key;
19baf839
RO
102};
103
104struct leaf {
91b9a277 105 unsigned long parent;
8d965444 106 t_key key;
19baf839 107 struct hlist_head list;
2373ce1c 108 struct rcu_head rcu;
19baf839
RO
109};
110
111struct leaf_info {
112 struct hlist_node hlist;
113 int plen;
5c74501f 114 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
19baf839 115 struct list_head falh;
5c74501f 116 struct rcu_head rcu;
19baf839
RO
117};
118
119struct tnode {
91b9a277 120 unsigned long parent;
8d965444 121 t_key key;
112d8cfc
ED
122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
124 unsigned int full_children; /* KEYLENGTH bits needed */
125 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
126 union {
127 struct rcu_head rcu;
128 struct work_struct work;
e0f7cb8c 129 struct tnode *tnode_free;
15be75cd 130 };
0a5c0475 131 struct rt_trie_node __rcu *child[0];
19baf839
RO
132};
133
134#ifdef CONFIG_IP_FIB_TRIE_STATS
135struct trie_use_stats {
136 unsigned int gets;
137 unsigned int backtrack;
138 unsigned int semantic_match_passed;
139 unsigned int semantic_match_miss;
140 unsigned int null_node_hit;
2f36895a 141 unsigned int resize_node_skipped;
19baf839
RO
142};
143#endif
144
145struct trie_stat {
146 unsigned int totdepth;
147 unsigned int maxdepth;
148 unsigned int tnodes;
149 unsigned int leaves;
150 unsigned int nullpointers;
93672292 151 unsigned int prefixes;
06ef921d 152 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 153};
19baf839
RO
154
155struct trie {
0a5c0475 156 struct rt_trie_node __rcu *trie;
19baf839
RO
157#ifdef CONFIG_IP_FIB_TRIE_STATS
158 struct trie_use_stats stats;
159#endif
19baf839
RO
160};
161
b299e4f0 162static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 163 int wasfull);
b299e4f0 164static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
165static struct tnode *inflate(struct trie *t, struct tnode *tn);
166static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
167/* tnodes to free after resize(); protected by RTNL */
168static struct tnode *tnode_free_head;
c3059477
JP
169static size_t tnode_free_size;
170
171/*
172 * synchronize_rcu after call_rcu for that many pages; it should be especially
173 * useful before resizing the root node with PREEMPT_NONE configs; the value was
174 * obtained experimentally, aiming to avoid visible slowdown.
175 */
176static const int sync_pages = 128;
19baf839 177
e18b890b 178static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 179static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 180
0a5c0475
ED
181/*
182 * caller must hold RTNL
183 */
184static inline struct tnode *node_parent(const struct rt_trie_node *node)
06801916 185{
0a5c0475
ED
186 unsigned long parent;
187
188 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
189
190 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
b59cfbf7
ED
191}
192
0a5c0475
ED
193/*
194 * caller must hold RCU read lock or RTNL
195 */
196static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
b59cfbf7 197{
0a5c0475
ED
198 unsigned long parent;
199
200 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
201 lockdep_rtnl_is_held());
06801916 202
0a5c0475 203 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
06801916
SH
204}
205
cf778b00 206/* Same as rcu_assign_pointer
6440cc9e
SH
207 * but that macro() assumes that value is a pointer.
208 */
b299e4f0 209static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
06801916 210{
6440cc9e
SH
211 smp_wmb();
212 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 213}
2373ce1c 214
0a5c0475
ED
215/*
216 * caller must hold RTNL
217 */
218static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
b59cfbf7
ED
219{
220 BUG_ON(i >= 1U << tn->bits);
2373ce1c 221
0a5c0475 222 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
223}
224
0a5c0475
ED
225/*
226 * caller must hold RCU read lock or RTNL
227 */
228static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
19baf839 229{
0a5c0475 230 BUG_ON(i >= 1U << tn->bits);
19baf839 231
0a5c0475 232 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
233}
234
bb435b8d 235static inline int tnode_child_length(const struct tnode *tn)
19baf839 236{
91b9a277 237 return 1 << tn->bits;
19baf839
RO
238}
239
3b004569 240static inline t_key mask_pfx(t_key k, unsigned int l)
ab66b4a7
SH
241{
242 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
243}
244
3b004569 245static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
19baf839 246{
91b9a277 247 if (offset < KEYLENGTH)
19baf839 248 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 249 else
19baf839
RO
250 return 0;
251}
252
253static inline int tkey_equals(t_key a, t_key b)
254{
c877efb2 255 return a == b;
19baf839
RO
256}
257
258static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
259{
c877efb2
SH
260 if (bits == 0 || offset >= KEYLENGTH)
261 return 1;
91b9a277
OJ
262 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
263 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 264}
19baf839
RO
265
266static inline int tkey_mismatch(t_key a, int offset, t_key b)
267{
268 t_key diff = a ^ b;
269 int i = offset;
270
c877efb2
SH
271 if (!diff)
272 return 0;
273 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
274 i++;
275 return i;
276}
277
19baf839 278/*
e905a9ed
YH
279 To understand this stuff, an understanding of keys and all their bits is
280 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
281 all of the bits in that key are significant.
282
283 Consider a node 'n' and its parent 'tp'.
284
e905a9ed
YH
285 If n is a leaf, every bit in its key is significant. Its presence is
286 necessitated by path compression, since during a tree traversal (when
287 searching for a leaf - unless we are doing an insertion) we will completely
288 ignore all skipped bits we encounter. Thus we need to verify, at the end of
289 a potentially successful search, that we have indeed been walking the
19baf839
RO
290 correct key path.
291
e905a9ed
YH
292 Note that we can never "miss" the correct key in the tree if present by
293 following the wrong path. Path compression ensures that segments of the key
294 that are the same for all keys with a given prefix are skipped, but the
295 skipped part *is* identical for each node in the subtrie below the skipped
296 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
297 call to tkey_sub_equals() in trie_insert().
298
e905a9ed 299 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
300 have many different meanings.
301
e905a9ed 302 Example:
19baf839
RO
303 _________________________________________________________________
304 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
305 -----------------------------------------------------------------
e905a9ed 306 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
307
308 _________________________________________________________________
309 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
310 -----------------------------------------------------------------
311 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
312
313 tp->pos = 7
314 tp->bits = 3
315 n->pos = 15
91b9a277 316 n->bits = 4
19baf839 317
e905a9ed
YH
318 First, let's just ignore the bits that come before the parent tp, that is
319 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
320 not use them for anything.
321
322 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 323 index into the parent's child array. That is, they will be used to find
19baf839
RO
324 'n' among tp's children.
325
326 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
327 for the node n.
328
e905a9ed 329 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
330 of the bits are really not needed or indeed known in n->key.
331
e905a9ed 332 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 333 n's child array, and will of course be different for each child.
e905a9ed 334
c877efb2 335
19baf839
RO
336 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
337 at this point.
338
339*/
340
0c7770c7 341static inline void check_tnode(const struct tnode *tn)
19baf839 342{
0c7770c7 343 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
344}
345
f5026fab
DL
346static const int halve_threshold = 25;
347static const int inflate_threshold = 50;
345aa031 348static const int halve_threshold_root = 15;
80b71b80 349static const int inflate_threshold_root = 30;
2373ce1c
RO
350
351static void __alias_free_mem(struct rcu_head *head)
19baf839 352{
2373ce1c
RO
353 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
354 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
355}
356
2373ce1c 357static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 358{
2373ce1c
RO
359 call_rcu(&fa->rcu, __alias_free_mem);
360}
91b9a277 361
2373ce1c
RO
362static void __leaf_free_rcu(struct rcu_head *head)
363{
bc3c8c1e
SH
364 struct leaf *l = container_of(head, struct leaf, rcu);
365 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 366}
91b9a277 367
387a5487
SH
368static inline void free_leaf(struct leaf *l)
369{
0c03eca3 370 call_rcu(&l->rcu, __leaf_free_rcu);
387a5487
SH
371}
372
2373ce1c 373static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 374{
bceb0f45 375 kfree_rcu(leaf, rcu);
19baf839
RO
376}
377
8d965444 378static struct tnode *tnode_alloc(size_t size)
f0e36f8c 379{
2373ce1c 380 if (size <= PAGE_SIZE)
8d965444 381 return kzalloc(size, GFP_KERNEL);
15be75cd 382 else
7a1c8e5a 383 return vzalloc(size);
15be75cd 384}
2373ce1c 385
15be75cd
SH
386static void __tnode_vfree(struct work_struct *arg)
387{
388 struct tnode *tn = container_of(arg, struct tnode, work);
389 vfree(tn);
f0e36f8c
PM
390}
391
2373ce1c 392static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 393{
2373ce1c 394 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444 395 size_t size = sizeof(struct tnode) +
b299e4f0 396 (sizeof(struct rt_trie_node *) << tn->bits);
f0e36f8c
PM
397
398 if (size <= PAGE_SIZE)
399 kfree(tn);
15be75cd
SH
400 else {
401 INIT_WORK(&tn->work, __tnode_vfree);
402 schedule_work(&tn->work);
403 }
f0e36f8c
PM
404}
405
2373ce1c
RO
406static inline void tnode_free(struct tnode *tn)
407{
387a5487
SH
408 if (IS_LEAF(tn))
409 free_leaf((struct leaf *) tn);
410 else
550e29bc 411 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
412}
413
e0f7cb8c
JP
414static void tnode_free_safe(struct tnode *tn)
415{
416 BUG_ON(IS_LEAF(tn));
7b85576d
JP
417 tn->tnode_free = tnode_free_head;
418 tnode_free_head = tn;
c3059477 419 tnode_free_size += sizeof(struct tnode) +
b299e4f0 420 (sizeof(struct rt_trie_node *) << tn->bits);
e0f7cb8c
JP
421}
422
423static void tnode_free_flush(void)
424{
425 struct tnode *tn;
426
427 while ((tn = tnode_free_head)) {
428 tnode_free_head = tn->tnode_free;
429 tn->tnode_free = NULL;
430 tnode_free(tn);
431 }
c3059477
JP
432
433 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
434 tnode_free_size = 0;
435 synchronize_rcu();
436 }
e0f7cb8c
JP
437}
438
2373ce1c
RO
439static struct leaf *leaf_new(void)
440{
bc3c8c1e 441 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
442 if (l) {
443 l->parent = T_LEAF;
444 INIT_HLIST_HEAD(&l->list);
445 }
446 return l;
447}
448
449static struct leaf_info *leaf_info_new(int plen)
450{
451 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
452 if (li) {
453 li->plen = plen;
5c74501f 454 li->mask_plen = ntohl(inet_make_mask(plen));
2373ce1c
RO
455 INIT_LIST_HEAD(&li->falh);
456 }
457 return li;
458}
459
a07f5f50 460static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 461{
b299e4f0 462 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
f0e36f8c 463 struct tnode *tn = tnode_alloc(sz);
19baf839 464
91b9a277 465 if (tn) {
2373ce1c 466 tn->parent = T_TNODE;
19baf839
RO
467 tn->pos = pos;
468 tn->bits = bits;
469 tn->key = key;
470 tn->full_children = 0;
471 tn->empty_children = 1<<bits;
472 }
c877efb2 473
a034ee3c 474 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
4ea4bf7e 475 sizeof(struct rt_trie_node *) << bits);
19baf839
RO
476 return tn;
477}
478
19baf839
RO
479/*
480 * Check whether a tnode 'n' is "full", i.e. it is an internal node
481 * and no bits are skipped. See discussion in dyntree paper p. 6
482 */
483
b299e4f0 484static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
19baf839 485{
c877efb2 486 if (n == NULL || IS_LEAF(n))
19baf839
RO
487 return 0;
488
489 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
490}
491
61648d91 492static inline void put_child(struct tnode *tn, int i,
b299e4f0 493 struct rt_trie_node *n)
19baf839
RO
494{
495 tnode_put_child_reorg(tn, i, n, -1);
496}
497
c877efb2 498 /*
19baf839
RO
499 * Add a child at position i overwriting the old value.
500 * Update the value of full_children and empty_children.
501 */
502
b299e4f0 503static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 504 int wasfull)
19baf839 505{
0a5c0475 506 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
19baf839
RO
507 int isfull;
508
0c7770c7
SH
509 BUG_ON(i >= 1<<tn->bits);
510
19baf839
RO
511 /* update emptyChildren */
512 if (n == NULL && chi != NULL)
513 tn->empty_children++;
514 else if (n != NULL && chi == NULL)
515 tn->empty_children--;
c877efb2 516
19baf839 517 /* update fullChildren */
91b9a277 518 if (wasfull == -1)
19baf839
RO
519 wasfull = tnode_full(tn, chi);
520
521 isfull = tnode_full(tn, n);
c877efb2 522 if (wasfull && !isfull)
19baf839 523 tn->full_children--;
c877efb2 524 else if (!wasfull && isfull)
19baf839 525 tn->full_children++;
91b9a277 526
c877efb2 527 if (n)
06801916 528 node_set_parent(n, tn);
19baf839 529
cf778b00 530 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
531}
532
80b71b80 533#define MAX_WORK 10
b299e4f0 534static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
535{
536 int i;
2f80b3c8 537 struct tnode *old_tn;
e6308be8
RO
538 int inflate_threshold_use;
539 int halve_threshold_use;
80b71b80 540 int max_work;
19baf839 541
e905a9ed 542 if (!tn)
19baf839
RO
543 return NULL;
544
0c7770c7
SH
545 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
546 tn, inflate_threshold, halve_threshold);
19baf839
RO
547
548 /* No children */
549 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 550 tnode_free_safe(tn);
19baf839
RO
551 return NULL;
552 }
553 /* One child */
554 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 555 goto one_child;
c877efb2 556 /*
19baf839
RO
557 * Double as long as the resulting node has a number of
558 * nonempty nodes that are above the threshold.
559 */
560
561 /*
c877efb2
SH
562 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
563 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 564 * Telecommunications, page 6:
c877efb2 565 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
566 * children in the *doubled* node is at least 'high'."
567 *
c877efb2
SH
568 * 'high' in this instance is the variable 'inflate_threshold'. It
569 * is expressed as a percentage, so we multiply it with
570 * tnode_child_length() and instead of multiplying by 2 (since the
571 * child array will be doubled by inflate()) and multiplying
572 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 573 * multiply the left-hand side by 50.
c877efb2
SH
574 *
575 * The left-hand side may look a bit weird: tnode_child_length(tn)
576 * - tn->empty_children is of course the number of non-null children
577 * in the current node. tn->full_children is the number of "full"
19baf839 578 * children, that is non-null tnodes with a skip value of 0.
c877efb2 579 * All of those will be doubled in the resulting inflated tnode, so
19baf839 580 * we just count them one extra time here.
c877efb2 581 *
19baf839 582 * A clearer way to write this would be:
c877efb2 583 *
19baf839 584 * to_be_doubled = tn->full_children;
c877efb2 585 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
586 * tn->full_children;
587 *
588 * new_child_length = tnode_child_length(tn) * 2;
589 *
c877efb2 590 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
591 * new_child_length;
592 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
593 *
594 * ...and so on, tho it would mess up the while () loop.
595 *
19baf839
RO
596 * anyway,
597 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
598 * inflate_threshold
c877efb2 599 *
19baf839
RO
600 * avoid a division:
601 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
602 * inflate_threshold * new_child_length
c877efb2 603 *
19baf839 604 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 605 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 606 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 607 *
19baf839 608 * expand new_child_length:
c877efb2 609 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 610 * tn->full_children) >=
19baf839 611 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 612 *
19baf839 613 * shorten again:
c877efb2 614 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 615 * tn->empty_children) >= inflate_threshold *
19baf839 616 * tnode_child_length(tn)
c877efb2 617 *
19baf839
RO
618 */
619
620 check_tnode(tn);
c877efb2 621
e6308be8
RO
622 /* Keep root node larger */
623
b299e4f0 624 if (!node_parent((struct rt_trie_node *)tn)) {
80b71b80
JL
625 inflate_threshold_use = inflate_threshold_root;
626 halve_threshold_use = halve_threshold_root;
a034ee3c 627 } else {
e6308be8 628 inflate_threshold_use = inflate_threshold;
80b71b80
JL
629 halve_threshold_use = halve_threshold;
630 }
e6308be8 631
80b71b80
JL
632 max_work = MAX_WORK;
633 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
634 50 * (tn->full_children + tnode_child_length(tn)
635 - tn->empty_children)
636 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 637
2f80b3c8
RO
638 old_tn = tn;
639 tn = inflate(t, tn);
a07f5f50 640
2f80b3c8
RO
641 if (IS_ERR(tn)) {
642 tn = old_tn;
2f36895a
RO
643#ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645#endif
646 break;
647 }
19baf839
RO
648 }
649
650 check_tnode(tn);
651
80b71b80 652 /* Return if at least one inflate is run */
a034ee3c 653 if (max_work != MAX_WORK)
b299e4f0 654 return (struct rt_trie_node *) tn;
80b71b80 655
19baf839
RO
656 /*
657 * Halve as long as the number of empty children in this
658 * node is above threshold.
659 */
2f36895a 660
80b71b80
JL
661 max_work = MAX_WORK;
662 while (tn->bits > 1 && max_work-- &&
19baf839 663 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 664 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 665
2f80b3c8
RO
666 old_tn = tn;
667 tn = halve(t, tn);
668 if (IS_ERR(tn)) {
669 tn = old_tn;
2f36895a
RO
670#ifdef CONFIG_IP_FIB_TRIE_STATS
671 t->stats.resize_node_skipped++;
672#endif
673 break;
674 }
675 }
19baf839 676
c877efb2 677
19baf839 678 /* Only one child remains */
80b71b80
JL
679 if (tn->empty_children == tnode_child_length(tn) - 1) {
680one_child:
19baf839 681 for (i = 0; i < tnode_child_length(tn); i++) {
b299e4f0 682 struct rt_trie_node *n;
19baf839 683
0a5c0475 684 n = rtnl_dereference(tn->child[i]);
2373ce1c 685 if (!n)
91b9a277 686 continue;
91b9a277
OJ
687
688 /* compress one level */
689
06801916 690 node_set_parent(n, NULL);
e0f7cb8c 691 tnode_free_safe(tn);
91b9a277 692 return n;
19baf839 693 }
80b71b80 694 }
b299e4f0 695 return (struct rt_trie_node *) tn;
19baf839
RO
696}
697
0a5c0475
ED
698
699static void tnode_clean_free(struct tnode *tn)
700{
701 int i;
702 struct tnode *tofree;
703
704 for (i = 0; i < tnode_child_length(tn); i++) {
705 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
706 if (tofree)
707 tnode_free(tofree);
708 }
709 tnode_free(tn);
710}
711
2f80b3c8 712static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 713{
19baf839
RO
714 struct tnode *oldtnode = tn;
715 int olen = tnode_child_length(tn);
716 int i;
717
0c7770c7 718 pr_debug("In inflate\n");
19baf839
RO
719
720 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
721
0c7770c7 722 if (!tn)
2f80b3c8 723 return ERR_PTR(-ENOMEM);
2f36895a
RO
724
725 /*
c877efb2
SH
726 * Preallocate and store tnodes before the actual work so we
727 * don't get into an inconsistent state if memory allocation
728 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
729 * of tnode is ignored.
730 */
91b9a277
OJ
731
732 for (i = 0; i < olen; i++) {
a07f5f50 733 struct tnode *inode;
2f36895a 734
a07f5f50 735 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
736 if (inode &&
737 IS_TNODE(inode) &&
738 inode->pos == oldtnode->pos + oldtnode->bits &&
739 inode->bits > 1) {
740 struct tnode *left, *right;
ab66b4a7 741 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 742
2f36895a
RO
743 left = tnode_new(inode->key&(~m), inode->pos + 1,
744 inode->bits - 1);
2f80b3c8
RO
745 if (!left)
746 goto nomem;
91b9a277 747
2f36895a
RO
748 right = tnode_new(inode->key|m, inode->pos + 1,
749 inode->bits - 1);
750
e905a9ed 751 if (!right) {
2f80b3c8
RO
752 tnode_free(left);
753 goto nomem;
e905a9ed 754 }
2f36895a 755
61648d91
LM
756 put_child(tn, 2*i, (struct rt_trie_node *) left);
757 put_child(tn, 2*i+1, (struct rt_trie_node *) right);
2f36895a
RO
758 }
759 }
760
91b9a277 761 for (i = 0; i < olen; i++) {
c95aaf9a 762 struct tnode *inode;
b299e4f0 763 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
764 struct tnode *left, *right;
765 int size, j;
c877efb2 766
19baf839
RO
767 /* An empty child */
768 if (node == NULL)
769 continue;
770
771 /* A leaf or an internal node with skipped bits */
772
c877efb2 773 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 774 tn->pos + tn->bits - 1) {
a07f5f50
SH
775 if (tkey_extract_bits(node->key,
776 oldtnode->pos + oldtnode->bits,
777 1) == 0)
61648d91 778 put_child(tn, 2*i, node);
19baf839 779 else
61648d91 780 put_child(tn, 2*i+1, node);
19baf839
RO
781 continue;
782 }
783
784 /* An internal node with two children */
785 inode = (struct tnode *) node;
786
787 if (inode->bits == 1) {
61648d91
LM
788 put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
789 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
19baf839 790
e0f7cb8c 791 tnode_free_safe(inode);
91b9a277 792 continue;
19baf839
RO
793 }
794
91b9a277
OJ
795 /* An internal node with more than two children */
796
797 /* We will replace this node 'inode' with two new
798 * ones, 'left' and 'right', each with half of the
799 * original children. The two new nodes will have
800 * a position one bit further down the key and this
801 * means that the "significant" part of their keys
802 * (see the discussion near the top of this file)
803 * will differ by one bit, which will be "0" in
804 * left's key and "1" in right's key. Since we are
805 * moving the key position by one step, the bit that
806 * we are moving away from - the bit at position
807 * (inode->pos) - is the one that will differ between
808 * left and right. So... we synthesize that bit in the
809 * two new keys.
810 * The mask 'm' below will be a single "one" bit at
811 * the position (inode->pos)
812 */
19baf839 813
91b9a277
OJ
814 /* Use the old key, but set the new significant
815 * bit to zero.
816 */
2f36895a 817
91b9a277 818 left = (struct tnode *) tnode_get_child(tn, 2*i);
61648d91 819 put_child(tn, 2*i, NULL);
2f36895a 820
91b9a277 821 BUG_ON(!left);
2f36895a 822
91b9a277 823 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
61648d91 824 put_child(tn, 2*i+1, NULL);
19baf839 825
91b9a277 826 BUG_ON(!right);
19baf839 827
91b9a277
OJ
828 size = tnode_child_length(left);
829 for (j = 0; j < size; j++) {
61648d91
LM
830 put_child(left, j, rtnl_dereference(inode->child[j]));
831 put_child(right, j, rtnl_dereference(inode->child[j + size]));
19baf839 832 }
61648d91
LM
833 put_child(tn, 2*i, resize(t, left));
834 put_child(tn, 2*i+1, resize(t, right));
91b9a277 835
e0f7cb8c 836 tnode_free_safe(inode);
19baf839 837 }
e0f7cb8c 838 tnode_free_safe(oldtnode);
19baf839 839 return tn;
2f80b3c8 840nomem:
0a5c0475
ED
841 tnode_clean_free(tn);
842 return ERR_PTR(-ENOMEM);
19baf839
RO
843}
844
2f80b3c8 845static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
846{
847 struct tnode *oldtnode = tn;
b299e4f0 848 struct rt_trie_node *left, *right;
19baf839
RO
849 int i;
850 int olen = tnode_child_length(tn);
851
0c7770c7 852 pr_debug("In halve\n");
c877efb2
SH
853
854 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 855
2f80b3c8
RO
856 if (!tn)
857 return ERR_PTR(-ENOMEM);
2f36895a
RO
858
859 /*
c877efb2
SH
860 * Preallocate and store tnodes before the actual work so we
861 * don't get into an inconsistent state if memory allocation
862 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
863 * of tnode is ignored.
864 */
865
91b9a277 866 for (i = 0; i < olen; i += 2) {
2f36895a
RO
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
c877efb2 869
2f36895a 870 /* Two nonempty children */
0c7770c7 871 if (left && right) {
2f80b3c8 872 struct tnode *newn;
0c7770c7 873
2f80b3c8 874 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
875
876 if (!newn)
2f80b3c8 877 goto nomem;
0c7770c7 878
61648d91 879 put_child(tn, i/2, (struct rt_trie_node *)newn);
2f36895a 880 }
2f36895a 881
2f36895a 882 }
19baf839 883
91b9a277
OJ
884 for (i = 0; i < olen; i += 2) {
885 struct tnode *newBinNode;
886
19baf839
RO
887 left = tnode_get_child(oldtnode, i);
888 right = tnode_get_child(oldtnode, i+1);
c877efb2 889
19baf839
RO
890 /* At least one of the children is empty */
891 if (left == NULL) {
892 if (right == NULL) /* Both are empty */
893 continue;
61648d91 894 put_child(tn, i/2, right);
91b9a277 895 continue;
0c7770c7 896 }
91b9a277
OJ
897
898 if (right == NULL) {
61648d91 899 put_child(tn, i/2, left);
91b9a277
OJ
900 continue;
901 }
c877efb2 902
19baf839 903 /* Two nonempty children */
91b9a277 904 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
61648d91
LM
905 put_child(tn, i/2, NULL);
906 put_child(newBinNode, 0, left);
907 put_child(newBinNode, 1, right);
908 put_child(tn, i/2, resize(t, newBinNode));
19baf839 909 }
e0f7cb8c 910 tnode_free_safe(oldtnode);
19baf839 911 return tn;
2f80b3c8 912nomem:
0a5c0475
ED
913 tnode_clean_free(tn);
914 return ERR_PTR(-ENOMEM);
19baf839
RO
915}
916
772cb712 917/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
918 via get_fa_head and dump */
919
772cb712 920static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 921{
772cb712 922 struct hlist_head *head = &l->list;
19baf839
RO
923 struct hlist_node *node;
924 struct leaf_info *li;
925
2373ce1c 926 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 927 if (li->plen == plen)
19baf839 928 return li;
91b9a277 929
19baf839
RO
930 return NULL;
931}
932
a07f5f50 933static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 934{
772cb712 935 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 936
91b9a277
OJ
937 if (!li)
938 return NULL;
c877efb2 939
91b9a277 940 return &li->falh;
19baf839
RO
941}
942
943static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
944{
e905a9ed
YH
945 struct leaf_info *li = NULL, *last = NULL;
946 struct hlist_node *node;
947
948 if (hlist_empty(head)) {
949 hlist_add_head_rcu(&new->hlist, head);
950 } else {
951 hlist_for_each_entry(li, node, head, hlist) {
952 if (new->plen > li->plen)
953 break;
954
955 last = li;
956 }
957 if (last)
958 hlist_add_after_rcu(&last->hlist, &new->hlist);
959 else
960 hlist_add_before_rcu(&new->hlist, &li->hlist);
961 }
19baf839
RO
962}
963
2373ce1c
RO
964/* rcu_read_lock needs to be hold by caller from readside */
965
19baf839
RO
966static struct leaf *
967fib_find_node(struct trie *t, u32 key)
968{
969 int pos;
970 struct tnode *tn;
b299e4f0 971 struct rt_trie_node *n;
19baf839
RO
972
973 pos = 0;
a034ee3c 974 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
975
976 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
977 tn = (struct tnode *) n;
91b9a277 978
19baf839 979 check_tnode(tn);
91b9a277 980
c877efb2 981 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 982 pos = tn->pos + tn->bits;
a07f5f50
SH
983 n = tnode_get_child_rcu(tn,
984 tkey_extract_bits(key,
985 tn->pos,
986 tn->bits));
91b9a277 987 } else
19baf839
RO
988 break;
989 }
990 /* Case we have found a leaf. Compare prefixes */
991
91b9a277
OJ
992 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
993 return (struct leaf *)n;
994
19baf839
RO
995 return NULL;
996}
997
7b85576d 998static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 999{
19baf839 1000 int wasfull;
3ed18d76 1001 t_key cindex, key;
06801916 1002 struct tnode *tp;
19baf839 1003
3ed18d76
RO
1004 key = tn->key;
1005
b299e4f0 1006 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
19baf839
RO
1007 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1008 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
e3192690 1009 tn = (struct tnode *)resize(t, tn);
a07f5f50 1010
e3192690 1011 tnode_put_child_reorg(tp, cindex,
b299e4f0 1012 (struct rt_trie_node *)tn, wasfull);
91b9a277 1013
b299e4f0 1014 tp = node_parent((struct rt_trie_node *) tn);
008440e3 1015 if (!tp)
cf778b00 1016 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
008440e3 1017
e0f7cb8c 1018 tnode_free_flush();
06801916 1019 if (!tp)
19baf839 1020 break;
06801916 1021 tn = tp;
19baf839 1022 }
06801916 1023
19baf839 1024 /* Handle last (top) tnode */
7b85576d 1025 if (IS_TNODE(tn))
e3192690 1026 tn = (struct tnode *)resize(t, tn);
19baf839 1027
cf778b00 1028 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
7b85576d 1029 tnode_free_flush();
19baf839
RO
1030}
1031
2373ce1c
RO
1032/* only used from updater-side */
1033
fea86ad8 1034static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1035{
1036 int pos, newpos;
1037 struct tnode *tp = NULL, *tn = NULL;
b299e4f0 1038 struct rt_trie_node *n;
19baf839
RO
1039 struct leaf *l;
1040 int missbit;
c877efb2 1041 struct list_head *fa_head = NULL;
19baf839
RO
1042 struct leaf_info *li;
1043 t_key cindex;
1044
1045 pos = 0;
0a5c0475 1046 n = rtnl_dereference(t->trie);
19baf839 1047
c877efb2
SH
1048 /* If we point to NULL, stop. Either the tree is empty and we should
1049 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1050 * and we should just put our new leaf in that.
c877efb2
SH
1051 * If we point to a T_TNODE, check if it matches our key. Note that
1052 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1053 * not be the parent's 'pos'+'bits'!
1054 *
c877efb2 1055 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1056 * the index from our key, push the T_TNODE and walk the tree.
1057 *
1058 * If it doesn't, we have to replace it with a new T_TNODE.
1059 *
c877efb2
SH
1060 * If we point to a T_LEAF, it might or might not have the same key
1061 * as we do. If it does, just change the value, update the T_LEAF's
1062 * value, and return it.
19baf839
RO
1063 * If it doesn't, we need to replace it with a T_TNODE.
1064 */
1065
1066 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1067 tn = (struct tnode *) n;
91b9a277 1068
c877efb2 1069 check_tnode(tn);
91b9a277 1070
c877efb2 1071 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1072 tp = tn;
91b9a277 1073 pos = tn->pos + tn->bits;
a07f5f50
SH
1074 n = tnode_get_child(tn,
1075 tkey_extract_bits(key,
1076 tn->pos,
1077 tn->bits));
19baf839 1078
06801916 1079 BUG_ON(n && node_parent(n) != tn);
91b9a277 1080 } else
19baf839
RO
1081 break;
1082 }
1083
1084 /*
1085 * n ----> NULL, LEAF or TNODE
1086 *
c877efb2 1087 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1088 */
1089
91b9a277 1090 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1091
1092 /* Case 1: n is a leaf. Compare prefixes */
1093
c877efb2 1094 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1095 l = (struct leaf *) n;
19baf839 1096 li = leaf_info_new(plen);
91b9a277 1097
fea86ad8
SH
1098 if (!li)
1099 return NULL;
19baf839
RO
1100
1101 fa_head = &li->falh;
1102 insert_leaf_info(&l->list, li);
1103 goto done;
1104 }
19baf839
RO
1105 l = leaf_new();
1106
fea86ad8
SH
1107 if (!l)
1108 return NULL;
19baf839
RO
1109
1110 l->key = key;
1111 li = leaf_info_new(plen);
1112
c877efb2 1113 if (!li) {
387a5487 1114 free_leaf(l);
fea86ad8 1115 return NULL;
f835e471 1116 }
19baf839
RO
1117
1118 fa_head = &li->falh;
1119 insert_leaf_info(&l->list, li);
1120
19baf839 1121 if (t->trie && n == NULL) {
91b9a277 1122 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1123
b299e4f0 1124 node_set_parent((struct rt_trie_node *)l, tp);
19baf839 1125
91b9a277 1126 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
61648d91 1127 put_child(tp, cindex, (struct rt_trie_node *)l);
91b9a277
OJ
1128 } else {
1129 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1130 /*
1131 * Add a new tnode here
19baf839
RO
1132 * first tnode need some special handling
1133 */
1134
1135 if (tp)
91b9a277 1136 pos = tp->pos+tp->bits;
19baf839 1137 else
91b9a277
OJ
1138 pos = 0;
1139
c877efb2 1140 if (n) {
19baf839
RO
1141 newpos = tkey_mismatch(key, pos, n->key);
1142 tn = tnode_new(n->key, newpos, 1);
91b9a277 1143 } else {
19baf839 1144 newpos = 0;
c877efb2 1145 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1146 }
19baf839 1147
c877efb2 1148 if (!tn) {
f835e471 1149 free_leaf_info(li);
387a5487 1150 free_leaf(l);
fea86ad8 1151 return NULL;
91b9a277
OJ
1152 }
1153
b299e4f0 1154 node_set_parent((struct rt_trie_node *)tn, tp);
19baf839 1155
91b9a277 1156 missbit = tkey_extract_bits(key, newpos, 1);
61648d91
LM
1157 put_child(tn, missbit, (struct rt_trie_node *)l);
1158 put_child(tn, 1-missbit, n);
19baf839 1159
c877efb2 1160 if (tp) {
19baf839 1161 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
61648d91 1162 put_child(tp, cindex, (struct rt_trie_node *)tn);
91b9a277 1163 } else {
cf778b00 1164 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
19baf839
RO
1165 tp = tn;
1166 }
1167 }
91b9a277
OJ
1168
1169 if (tp && tp->pos + tp->bits > 32)
058bd4d2
JP
1170 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1171 tp, tp->pos, tp->bits, key, plen);
91b9a277 1172
19baf839 1173 /* Rebalance the trie */
2373ce1c 1174
7b85576d 1175 trie_rebalance(t, tp);
f835e471 1176done:
19baf839
RO
1177 return fa_head;
1178}
1179
d562f1f8
RO
1180/*
1181 * Caller must hold RTNL.
1182 */
16c6cf8b 1183int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1184{
1185 struct trie *t = (struct trie *) tb->tb_data;
1186 struct fib_alias *fa, *new_fa;
c877efb2 1187 struct list_head *fa_head = NULL;
19baf839 1188 struct fib_info *fi;
4e902c57
TG
1189 int plen = cfg->fc_dst_len;
1190 u8 tos = cfg->fc_tos;
19baf839
RO
1191 u32 key, mask;
1192 int err;
1193 struct leaf *l;
1194
1195 if (plen > 32)
1196 return -EINVAL;
1197
4e902c57 1198 key = ntohl(cfg->fc_dst);
19baf839 1199
2dfe55b4 1200 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1201
91b9a277 1202 mask = ntohl(inet_make_mask(plen));
19baf839 1203
c877efb2 1204 if (key & ~mask)
19baf839
RO
1205 return -EINVAL;
1206
1207 key = key & mask;
1208
4e902c57
TG
1209 fi = fib_create_info(cfg);
1210 if (IS_ERR(fi)) {
1211 err = PTR_ERR(fi);
19baf839 1212 goto err;
4e902c57 1213 }
19baf839
RO
1214
1215 l = fib_find_node(t, key);
c877efb2 1216 fa = NULL;
19baf839 1217
c877efb2 1218 if (l) {
19baf839
RO
1219 fa_head = get_fa_head(l, plen);
1220 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1221 }
1222
1223 /* Now fa, if non-NULL, points to the first fib alias
1224 * with the same keys [prefix,tos,priority], if such key already
1225 * exists or to the node before which we will insert new one.
1226 *
1227 * If fa is NULL, we will need to allocate a new one and
1228 * insert to the head of f.
1229 *
1230 * If f is NULL, no fib node matched the destination key
1231 * and we need to allocate a new one of those as well.
1232 */
1233
936f6f8e
JA
1234 if (fa && fa->fa_tos == tos &&
1235 fa->fa_info->fib_priority == fi->fib_priority) {
1236 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1237
1238 err = -EEXIST;
4e902c57 1239 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1240 goto out;
1241
936f6f8e
JA
1242 /* We have 2 goals:
1243 * 1. Find exact match for type, scope, fib_info to avoid
1244 * duplicate routes
1245 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1246 */
1247 fa_match = NULL;
1248 fa_first = fa;
1249 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1250 list_for_each_entry_continue(fa, fa_head, fa_list) {
1251 if (fa->fa_tos != tos)
1252 break;
1253 if (fa->fa_info->fib_priority != fi->fib_priority)
1254 break;
1255 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1256 fa->fa_info == fi) {
1257 fa_match = fa;
1258 break;
1259 }
1260 }
1261
4e902c57 1262 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1263 struct fib_info *fi_drop;
1264 u8 state;
1265
936f6f8e
JA
1266 fa = fa_first;
1267 if (fa_match) {
1268 if (fa == fa_match)
1269 err = 0;
6725033f 1270 goto out;
936f6f8e 1271 }
2373ce1c 1272 err = -ENOBUFS;
e94b1766 1273 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1274 if (new_fa == NULL)
1275 goto out;
19baf839
RO
1276
1277 fi_drop = fa->fa_info;
2373ce1c
RO
1278 new_fa->fa_tos = fa->fa_tos;
1279 new_fa->fa_info = fi;
4e902c57 1280 new_fa->fa_type = cfg->fc_type;
19baf839 1281 state = fa->fa_state;
936f6f8e 1282 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1283
2373ce1c
RO
1284 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1285 alias_free_mem_rcu(fa);
19baf839
RO
1286
1287 fib_release_info(fi_drop);
1288 if (state & FA_S_ACCESSED)
4ccfe6d4 1289 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1290 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1291 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1292
91b9a277 1293 goto succeeded;
19baf839
RO
1294 }
1295 /* Error if we find a perfect match which
1296 * uses the same scope, type, and nexthop
1297 * information.
1298 */
936f6f8e
JA
1299 if (fa_match)
1300 goto out;
a07f5f50 1301
4e902c57 1302 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1303 fa = fa_first;
19baf839
RO
1304 }
1305 err = -ENOENT;
4e902c57 1306 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1307 goto out;
1308
1309 err = -ENOBUFS;
e94b1766 1310 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1311 if (new_fa == NULL)
1312 goto out;
1313
1314 new_fa->fa_info = fi;
1315 new_fa->fa_tos = tos;
4e902c57 1316 new_fa->fa_type = cfg->fc_type;
19baf839 1317 new_fa->fa_state = 0;
19baf839
RO
1318 /*
1319 * Insert new entry to the list.
1320 */
1321
c877efb2 1322 if (!fa_head) {
fea86ad8
SH
1323 fa_head = fib_insert_node(t, key, plen);
1324 if (unlikely(!fa_head)) {
1325 err = -ENOMEM;
f835e471 1326 goto out_free_new_fa;
fea86ad8 1327 }
f835e471 1328 }
19baf839 1329
21d8c49e
DM
1330 if (!plen)
1331 tb->tb_num_default++;
1332
2373ce1c
RO
1333 list_add_tail_rcu(&new_fa->fa_list,
1334 (fa ? &fa->fa_list : fa_head));
19baf839 1335
4ccfe6d4 1336 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1337 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1338 &cfg->fc_nlinfo, 0);
19baf839
RO
1339succeeded:
1340 return 0;
f835e471
RO
1341
1342out_free_new_fa:
1343 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1344out:
1345 fib_release_info(fi);
91b9a277 1346err:
19baf839
RO
1347 return err;
1348}
1349
772cb712 1350/* should be called with rcu_read_lock */
5b470441 1351static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
22bd5b9b 1352 t_key key, const struct flowi4 *flp,
ebc0ffae 1353 struct fib_result *res, int fib_flags)
19baf839 1354{
19baf839
RO
1355 struct leaf_info *li;
1356 struct hlist_head *hhead = &l->list;
1357 struct hlist_node *node;
c877efb2 1358
2373ce1c 1359 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
3be0686b 1360 struct fib_alias *fa;
a07f5f50 1361
5c74501f 1362 if (l->key != (key & li->mask_plen))
19baf839
RO
1363 continue;
1364
3be0686b
DM
1365 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1366 struct fib_info *fi = fa->fa_info;
1367 int nhsel, err;
a07f5f50 1368
22bd5b9b 1369 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
3be0686b 1370 continue;
dccd9ecc
DM
1371 if (fi->fib_dead)
1372 continue;
37e826c5 1373 if (fa->fa_info->fib_scope < flp->flowi4_scope)
3be0686b
DM
1374 continue;
1375 fib_alias_accessed(fa);
1376 err = fib_props[fa->fa_type].error;
1377 if (err) {
19baf839 1378#ifdef CONFIG_IP_FIB_TRIE_STATS
1fbc7843 1379 t->stats.semantic_match_passed++;
3be0686b 1380#endif
1fbc7843 1381 return err;
3be0686b
DM
1382 }
1383 if (fi->fib_flags & RTNH_F_DEAD)
1384 continue;
1385 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1386 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1387
1388 if (nh->nh_flags & RTNH_F_DEAD)
1389 continue;
22bd5b9b 1390 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
3be0686b
DM
1391 continue;
1392
1393#ifdef CONFIG_IP_FIB_TRIE_STATS
1394 t->stats.semantic_match_passed++;
1395#endif
5c74501f 1396 res->prefixlen = li->plen;
3be0686b
DM
1397 res->nh_sel = nhsel;
1398 res->type = fa->fa_type;
37e826c5 1399 res->scope = fa->fa_info->fib_scope;
3be0686b
DM
1400 res->fi = fi;
1401 res->table = tb;
1402 res->fa_head = &li->falh;
1403 if (!(fib_flags & FIB_LOOKUP_NOREF))
5c74501f 1404 atomic_inc(&fi->fib_clntref);
3be0686b
DM
1405 return 0;
1406 }
1407 }
1408
1409#ifdef CONFIG_IP_FIB_TRIE_STATS
1410 t->stats.semantic_match_miss++;
19baf839 1411#endif
19baf839 1412 }
a07f5f50 1413
2e655571 1414 return 1;
19baf839
RO
1415}
1416
22bd5b9b 1417int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1418 struct fib_result *res, int fib_flags)
19baf839
RO
1419{
1420 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1421 int ret;
b299e4f0 1422 struct rt_trie_node *n;
19baf839 1423 struct tnode *pn;
3b004569 1424 unsigned int pos, bits;
22bd5b9b 1425 t_key key = ntohl(flp->daddr);
3b004569 1426 unsigned int chopped_off;
19baf839 1427 t_key cindex = 0;
3b004569 1428 unsigned int current_prefix_length = KEYLENGTH;
91b9a277 1429 struct tnode *cn;
874ffa8f 1430 t_key pref_mismatch;
91b9a277 1431
2373ce1c 1432 rcu_read_lock();
91b9a277 1433
2373ce1c 1434 n = rcu_dereference(t->trie);
c877efb2 1435 if (!n)
19baf839
RO
1436 goto failed;
1437
1438#ifdef CONFIG_IP_FIB_TRIE_STATS
1439 t->stats.gets++;
1440#endif
1441
1442 /* Just a leaf? */
1443 if (IS_LEAF(n)) {
5b470441 1444 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1445 goto found;
19baf839 1446 }
a07f5f50 1447
19baf839
RO
1448 pn = (struct tnode *) n;
1449 chopped_off = 0;
c877efb2 1450
91b9a277 1451 while (pn) {
19baf839
RO
1452 pos = pn->pos;
1453 bits = pn->bits;
1454
c877efb2 1455 if (!chopped_off)
ab66b4a7
SH
1456 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1457 pos, bits);
19baf839 1458
b902e573 1459 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1460
1461 if (n == NULL) {
1462#ifdef CONFIG_IP_FIB_TRIE_STATS
1463 t->stats.null_node_hit++;
1464#endif
1465 goto backtrace;
1466 }
1467
91b9a277 1468 if (IS_LEAF(n)) {
5b470441 1469 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1470 if (ret > 0)
91b9a277 1471 goto backtrace;
a07f5f50 1472 goto found;
91b9a277
OJ
1473 }
1474
91b9a277 1475 cn = (struct tnode *)n;
19baf839 1476
91b9a277
OJ
1477 /*
1478 * It's a tnode, and we can do some extra checks here if we
1479 * like, to avoid descending into a dead-end branch.
1480 * This tnode is in the parent's child array at index
1481 * key[p_pos..p_pos+p_bits] but potentially with some bits
1482 * chopped off, so in reality the index may be just a
1483 * subprefix, padded with zero at the end.
1484 * We can also take a look at any skipped bits in this
1485 * tnode - everything up to p_pos is supposed to be ok,
1486 * and the non-chopped bits of the index (se previous
1487 * paragraph) are also guaranteed ok, but the rest is
1488 * considered unknown.
1489 *
1490 * The skipped bits are key[pos+bits..cn->pos].
1491 */
19baf839 1492
91b9a277
OJ
1493 /* If current_prefix_length < pos+bits, we are already doing
1494 * actual prefix matching, which means everything from
1495 * pos+(bits-chopped_off) onward must be zero along some
1496 * branch of this subtree - otherwise there is *no* valid
1497 * prefix present. Here we can only check the skipped
1498 * bits. Remember, since we have already indexed into the
1499 * parent's child array, we know that the bits we chopped of
1500 * *are* zero.
1501 */
19baf839 1502
a07f5f50
SH
1503 /* NOTA BENE: Checking only skipped bits
1504 for the new node here */
19baf839 1505
91b9a277
OJ
1506 if (current_prefix_length < pos+bits) {
1507 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1508 cn->pos - current_prefix_length)
1509 || !(cn->child[0]))
91b9a277
OJ
1510 goto backtrace;
1511 }
19baf839 1512
91b9a277
OJ
1513 /*
1514 * If chopped_off=0, the index is fully validated and we
1515 * only need to look at the skipped bits for this, the new,
1516 * tnode. What we actually want to do is to find out if
1517 * these skipped bits match our key perfectly, or if we will
1518 * have to count on finding a matching prefix further down,
1519 * because if we do, we would like to have some way of
1520 * verifying the existence of such a prefix at this point.
1521 */
19baf839 1522
91b9a277
OJ
1523 /* The only thing we can do at this point is to verify that
1524 * any such matching prefix can indeed be a prefix to our
1525 * key, and if the bits in the node we are inspecting that
1526 * do not match our key are not ZERO, this cannot be true.
1527 * Thus, find out where there is a mismatch (before cn->pos)
1528 * and verify that all the mismatching bits are zero in the
1529 * new tnode's key.
1530 */
19baf839 1531
a07f5f50
SH
1532 /*
1533 * Note: We aren't very concerned about the piece of
1534 * the key that precede pn->pos+pn->bits, since these
1535 * have already been checked. The bits after cn->pos
1536 * aren't checked since these are by definition
1537 * "unknown" at this point. Thus, what we want to see
1538 * is if we are about to enter the "prefix matching"
1539 * state, and in that case verify that the skipped
1540 * bits that will prevail throughout this subtree are
1541 * zero, as they have to be if we are to find a
1542 * matching prefix.
91b9a277
OJ
1543 */
1544
874ffa8f 1545 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1546
a07f5f50
SH
1547 /*
1548 * In short: If skipped bits in this node do not match
1549 * the search key, enter the "prefix matching"
1550 * state.directly.
91b9a277
OJ
1551 */
1552 if (pref_mismatch) {
79cda75a
ED
1553 /* fls(x) = __fls(x) + 1 */
1554 int mp = KEYLENGTH - __fls(pref_mismatch) - 1;
91b9a277 1555
874ffa8f 1556 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1557 goto backtrace;
1558
1559 if (current_prefix_length >= cn->pos)
1560 current_prefix_length = mp;
c877efb2 1561 }
a07f5f50 1562
91b9a277
OJ
1563 pn = (struct tnode *)n; /* Descend */
1564 chopped_off = 0;
1565 continue;
1566
19baf839
RO
1567backtrace:
1568 chopped_off++;
1569
1570 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1571 while ((chopped_off <= pn->bits)
1572 && !(cindex & (1<<(chopped_off-1))))
19baf839 1573 chopped_off++;
19baf839
RO
1574
1575 /* Decrease current_... with bits chopped off */
1576 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1577 current_prefix_length = pn->pos + pn->bits
1578 - chopped_off;
91b9a277 1579
19baf839 1580 /*
c877efb2 1581 * Either we do the actual chop off according or if we have
19baf839
RO
1582 * chopped off all bits in this tnode walk up to our parent.
1583 */
1584
91b9a277 1585 if (chopped_off <= pn->bits) {
19baf839 1586 cindex &= ~(1 << (chopped_off-1));
91b9a277 1587 } else {
b299e4f0 1588 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
06801916 1589 if (!parent)
19baf839 1590 goto failed;
91b9a277 1591
19baf839 1592 /* Get Child's index */
06801916
SH
1593 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1594 pn = parent;
19baf839
RO
1595 chopped_off = 0;
1596
1597#ifdef CONFIG_IP_FIB_TRIE_STATS
1598 t->stats.backtrack++;
1599#endif
1600 goto backtrace;
c877efb2 1601 }
19baf839
RO
1602 }
1603failed:
c877efb2 1604 ret = 1;
19baf839 1605found:
2373ce1c 1606 rcu_read_unlock();
19baf839
RO
1607 return ret;
1608}
6fc01438 1609EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1610
9195bef7
SH
1611/*
1612 * Remove the leaf and return parent.
1613 */
1614static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1615{
b299e4f0 1616 struct tnode *tp = node_parent((struct rt_trie_node *) l);
c877efb2 1617
9195bef7 1618 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1619
c877efb2 1620 if (tp) {
9195bef7 1621 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
61648d91 1622 put_child(tp, cindex, NULL);
7b85576d 1623 trie_rebalance(t, tp);
91b9a277 1624 } else
a9b3cd7f 1625 RCU_INIT_POINTER(t->trie, NULL);
19baf839 1626
387a5487 1627 free_leaf(l);
19baf839
RO
1628}
1629
d562f1f8
RO
1630/*
1631 * Caller must hold RTNL.
1632 */
16c6cf8b 1633int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1634{
1635 struct trie *t = (struct trie *) tb->tb_data;
1636 u32 key, mask;
4e902c57
TG
1637 int plen = cfg->fc_dst_len;
1638 u8 tos = cfg->fc_tos;
19baf839
RO
1639 struct fib_alias *fa, *fa_to_delete;
1640 struct list_head *fa_head;
1641 struct leaf *l;
91b9a277
OJ
1642 struct leaf_info *li;
1643
c877efb2 1644 if (plen > 32)
19baf839
RO
1645 return -EINVAL;
1646
4e902c57 1647 key = ntohl(cfg->fc_dst);
91b9a277 1648 mask = ntohl(inet_make_mask(plen));
19baf839 1649
c877efb2 1650 if (key & ~mask)
19baf839
RO
1651 return -EINVAL;
1652
1653 key = key & mask;
1654 l = fib_find_node(t, key);
1655
c877efb2 1656 if (!l)
19baf839
RO
1657 return -ESRCH;
1658
ad5b3102
IM
1659 li = find_leaf_info(l, plen);
1660
1661 if (!li)
1662 return -ESRCH;
1663
1664 fa_head = &li->falh;
19baf839
RO
1665 fa = fib_find_alias(fa_head, tos, 0);
1666
1667 if (!fa)
1668 return -ESRCH;
1669
0c7770c7 1670 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1671
1672 fa_to_delete = NULL;
936f6f8e
JA
1673 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1674 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1675 struct fib_info *fi = fa->fa_info;
1676
1677 if (fa->fa_tos != tos)
1678 break;
1679
4e902c57
TG
1680 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1681 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1682 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1683 (!cfg->fc_prefsrc ||
1684 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1685 (!cfg->fc_protocol ||
1686 fi->fib_protocol == cfg->fc_protocol) &&
1687 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1688 fa_to_delete = fa;
1689 break;
1690 }
1691 }
1692
91b9a277
OJ
1693 if (!fa_to_delete)
1694 return -ESRCH;
19baf839 1695
91b9a277 1696 fa = fa_to_delete;
4e902c57 1697 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1698 &cfg->fc_nlinfo, 0);
91b9a277 1699
2373ce1c 1700 list_del_rcu(&fa->fa_list);
19baf839 1701
21d8c49e
DM
1702 if (!plen)
1703 tb->tb_num_default--;
1704
91b9a277 1705 if (list_empty(fa_head)) {
2373ce1c 1706 hlist_del_rcu(&li->hlist);
91b9a277 1707 free_leaf_info(li);
2373ce1c 1708 }
19baf839 1709
91b9a277 1710 if (hlist_empty(&l->list))
9195bef7 1711 trie_leaf_remove(t, l);
19baf839 1712
91b9a277 1713 if (fa->fa_state & FA_S_ACCESSED)
4ccfe6d4 1714 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1715
2373ce1c
RO
1716 fib_release_info(fa->fa_info);
1717 alias_free_mem_rcu(fa);
91b9a277 1718 return 0;
19baf839
RO
1719}
1720
ef3660ce 1721static int trie_flush_list(struct list_head *head)
19baf839
RO
1722{
1723 struct fib_alias *fa, *fa_node;
1724 int found = 0;
1725
1726 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1727 struct fib_info *fi = fa->fa_info;
19baf839 1728
2373ce1c
RO
1729 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1730 list_del_rcu(&fa->fa_list);
1731 fib_release_info(fa->fa_info);
1732 alias_free_mem_rcu(fa);
19baf839
RO
1733 found++;
1734 }
1735 }
1736 return found;
1737}
1738
ef3660ce 1739static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1740{
1741 int found = 0;
1742 struct hlist_head *lih = &l->list;
1743 struct hlist_node *node, *tmp;
1744 struct leaf_info *li = NULL;
1745
1746 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1747 found += trie_flush_list(&li->falh);
19baf839
RO
1748
1749 if (list_empty(&li->falh)) {
2373ce1c 1750 hlist_del_rcu(&li->hlist);
19baf839
RO
1751 free_leaf_info(li);
1752 }
1753 }
1754 return found;
1755}
1756
82cfbb00
SH
1757/*
1758 * Scan for the next right leaf starting at node p->child[idx]
1759 * Since we have back pointer, no recursion necessary.
1760 */
b299e4f0 1761static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
19baf839 1762{
82cfbb00
SH
1763 do {
1764 t_key idx;
c877efb2 1765
c877efb2 1766 if (c)
82cfbb00 1767 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1768 else
82cfbb00 1769 idx = 0;
2373ce1c 1770
82cfbb00
SH
1771 while (idx < 1u << p->bits) {
1772 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1773 if (!c)
91b9a277
OJ
1774 continue;
1775
82cfbb00 1776 if (IS_LEAF(c)) {
0a5c0475 1777 prefetch(rcu_dereference_rtnl(p->child[idx]));
82cfbb00 1778 return (struct leaf *) c;
19baf839 1779 }
82cfbb00
SH
1780
1781 /* Rescan start scanning in new node */
1782 p = (struct tnode *) c;
1783 idx = 0;
19baf839 1784 }
82cfbb00
SH
1785
1786 /* Node empty, walk back up to parent */
b299e4f0 1787 c = (struct rt_trie_node *) p;
a034ee3c 1788 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1789
1790 return NULL; /* Root of trie */
1791}
1792
82cfbb00
SH
1793static struct leaf *trie_firstleaf(struct trie *t)
1794{
a034ee3c 1795 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1796
1797 if (!n)
1798 return NULL;
1799
1800 if (IS_LEAF(n)) /* trie is just a leaf */
1801 return (struct leaf *) n;
1802
1803 return leaf_walk_rcu(n, NULL);
1804}
1805
1806static struct leaf *trie_nextleaf(struct leaf *l)
1807{
b299e4f0 1808 struct rt_trie_node *c = (struct rt_trie_node *) l;
b902e573 1809 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1810
1811 if (!p)
1812 return NULL; /* trie with just one leaf */
1813
1814 return leaf_walk_rcu(p, c);
19baf839
RO
1815}
1816
71d67e66
SH
1817static struct leaf *trie_leafindex(struct trie *t, int index)
1818{
1819 struct leaf *l = trie_firstleaf(t);
1820
ec28cf73 1821 while (l && index-- > 0)
71d67e66 1822 l = trie_nextleaf(l);
ec28cf73 1823
71d67e66
SH
1824 return l;
1825}
1826
1827
d562f1f8
RO
1828/*
1829 * Caller must hold RTNL.
1830 */
16c6cf8b 1831int fib_table_flush(struct fib_table *tb)
19baf839
RO
1832{
1833 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1834 struct leaf *l, *ll = NULL;
82cfbb00 1835 int found = 0;
19baf839 1836
82cfbb00 1837 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1838 found += trie_flush_leaf(l);
19baf839
RO
1839
1840 if (ll && hlist_empty(&ll->list))
9195bef7 1841 trie_leaf_remove(t, ll);
19baf839
RO
1842 ll = l;
1843 }
1844
1845 if (ll && hlist_empty(&ll->list))
9195bef7 1846 trie_leaf_remove(t, ll);
19baf839 1847
0c7770c7 1848 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1849 return found;
1850}
1851
4aa2c466
PE
1852void fib_free_table(struct fib_table *tb)
1853{
1854 kfree(tb);
1855}
1856
a07f5f50
SH
1857static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1858 struct fib_table *tb,
19baf839
RO
1859 struct sk_buff *skb, struct netlink_callback *cb)
1860{
1861 int i, s_i;
1862 struct fib_alias *fa;
32ab5f80 1863 __be32 xkey = htonl(key);
19baf839 1864
71d67e66 1865 s_i = cb->args[5];
19baf839
RO
1866 i = 0;
1867
2373ce1c
RO
1868 /* rcu_read_lock is hold by caller */
1869
1870 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1871 if (i < s_i) {
1872 i++;
1873 continue;
1874 }
19baf839 1875
15e47304 1876 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1877 cb->nlh->nlmsg_seq,
1878 RTM_NEWROUTE,
1879 tb->tb_id,
1880 fa->fa_type,
be403ea1 1881 xkey,
19baf839
RO
1882 plen,
1883 fa->fa_tos,
64347f78 1884 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1885 cb->args[5] = i;
19baf839 1886 return -1;
91b9a277 1887 }
19baf839
RO
1888 i++;
1889 }
71d67e66 1890 cb->args[5] = i;
19baf839
RO
1891 return skb->len;
1892}
1893
a88ee229
SH
1894static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1895 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1896{
a88ee229
SH
1897 struct leaf_info *li;
1898 struct hlist_node *node;
1899 int i, s_i;
19baf839 1900
71d67e66 1901 s_i = cb->args[4];
a88ee229 1902 i = 0;
19baf839 1903
a88ee229
SH
1904 /* rcu_read_lock is hold by caller */
1905 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1906 if (i < s_i) {
1907 i++;
19baf839 1908 continue;
a88ee229 1909 }
91b9a277 1910
a88ee229 1911 if (i > s_i)
71d67e66 1912 cb->args[5] = 0;
19baf839 1913
a88ee229 1914 if (list_empty(&li->falh))
19baf839
RO
1915 continue;
1916
a88ee229 1917 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1918 cb->args[4] = i;
19baf839
RO
1919 return -1;
1920 }
a88ee229 1921 i++;
19baf839 1922 }
a88ee229 1923
71d67e66 1924 cb->args[4] = i;
19baf839
RO
1925 return skb->len;
1926}
1927
16c6cf8b
SH
1928int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1929 struct netlink_callback *cb)
19baf839 1930{
a88ee229 1931 struct leaf *l;
19baf839 1932 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1933 t_key key = cb->args[2];
71d67e66 1934 int count = cb->args[3];
19baf839 1935
2373ce1c 1936 rcu_read_lock();
d5ce8a0e
SH
1937 /* Dump starting at last key.
1938 * Note: 0.0.0.0/0 (ie default) is first key.
1939 */
71d67e66 1940 if (count == 0)
d5ce8a0e
SH
1941 l = trie_firstleaf(t);
1942 else {
71d67e66
SH
1943 /* Normally, continue from last key, but if that is missing
1944 * fallback to using slow rescan
1945 */
d5ce8a0e 1946 l = fib_find_node(t, key);
71d67e66
SH
1947 if (!l)
1948 l = trie_leafindex(t, count);
d5ce8a0e 1949 }
a88ee229 1950
d5ce8a0e
SH
1951 while (l) {
1952 cb->args[2] = l->key;
a88ee229 1953 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1954 cb->args[3] = count;
a88ee229 1955 rcu_read_unlock();
a88ee229 1956 return -1;
19baf839 1957 }
d5ce8a0e 1958
71d67e66 1959 ++count;
d5ce8a0e 1960 l = trie_nextleaf(l);
71d67e66
SH
1961 memset(&cb->args[4], 0,
1962 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1963 }
71d67e66 1964 cb->args[3] = count;
2373ce1c 1965 rcu_read_unlock();
a88ee229 1966
19baf839 1967 return skb->len;
19baf839
RO
1968}
1969
5348ba85 1970void __init fib_trie_init(void)
7f9b8052 1971{
a07f5f50
SH
1972 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1973 sizeof(struct fib_alias),
bc3c8c1e
SH
1974 0, SLAB_PANIC, NULL);
1975
1976 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1977 max(sizeof(struct leaf),
1978 sizeof(struct leaf_info)),
1979 0, SLAB_PANIC, NULL);
7f9b8052 1980}
19baf839 1981
7f9b8052 1982
5348ba85 1983struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1984{
1985 struct fib_table *tb;
1986 struct trie *t;
1987
19baf839
RO
1988 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1989 GFP_KERNEL);
1990 if (tb == NULL)
1991 return NULL;
1992
1993 tb->tb_id = id;
971b893e 1994 tb->tb_default = -1;
21d8c49e 1995 tb->tb_num_default = 0;
19baf839
RO
1996
1997 t = (struct trie *) tb->tb_data;
c28a1cf4 1998 memset(t, 0, sizeof(*t));
19baf839 1999
19baf839
RO
2000 return tb;
2001}
2002
cb7b593c
SH
2003#ifdef CONFIG_PROC_FS
2004/* Depth first Trie walk iterator */
2005struct fib_trie_iter {
1c340b2f 2006 struct seq_net_private p;
3d3b2d25 2007 struct fib_table *tb;
cb7b593c 2008 struct tnode *tnode;
a034ee3c
ED
2009 unsigned int index;
2010 unsigned int depth;
cb7b593c 2011};
19baf839 2012
b299e4f0 2013static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2014{
cb7b593c 2015 struct tnode *tn = iter->tnode;
a034ee3c 2016 unsigned int cindex = iter->index;
cb7b593c 2017 struct tnode *p;
19baf839 2018
6640e697
EB
2019 /* A single entry routing table */
2020 if (!tn)
2021 return NULL;
2022
cb7b593c
SH
2023 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2024 iter->tnode, iter->index, iter->depth);
2025rescan:
2026 while (cindex < (1<<tn->bits)) {
b299e4f0 2027 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2028
cb7b593c
SH
2029 if (n) {
2030 if (IS_LEAF(n)) {
2031 iter->tnode = tn;
2032 iter->index = cindex + 1;
2033 } else {
2034 /* push down one level */
2035 iter->tnode = (struct tnode *) n;
2036 iter->index = 0;
2037 ++iter->depth;
2038 }
2039 return n;
2040 }
19baf839 2041
cb7b593c
SH
2042 ++cindex;
2043 }
91b9a277 2044
cb7b593c 2045 /* Current node exhausted, pop back up */
b299e4f0 2046 p = node_parent_rcu((struct rt_trie_node *)tn);
cb7b593c
SH
2047 if (p) {
2048 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2049 tn = p;
2050 --iter->depth;
2051 goto rescan;
19baf839 2052 }
cb7b593c
SH
2053
2054 /* got root? */
2055 return NULL;
19baf839
RO
2056}
2057
b299e4f0 2058static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 2059 struct trie *t)
19baf839 2060{
b299e4f0 2061 struct rt_trie_node *n;
5ddf0eb2 2062
132adf54 2063 if (!t)
5ddf0eb2
RO
2064 return NULL;
2065
2066 n = rcu_dereference(t->trie);
3d3b2d25 2067 if (!n)
5ddf0eb2 2068 return NULL;
19baf839 2069
3d3b2d25
SH
2070 if (IS_TNODE(n)) {
2071 iter->tnode = (struct tnode *) n;
2072 iter->index = 0;
2073 iter->depth = 1;
2074 } else {
2075 iter->tnode = NULL;
2076 iter->index = 0;
2077 iter->depth = 0;
91b9a277 2078 }
3d3b2d25
SH
2079
2080 return n;
cb7b593c 2081}
91b9a277 2082
cb7b593c
SH
2083static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2084{
b299e4f0 2085 struct rt_trie_node *n;
cb7b593c 2086 struct fib_trie_iter iter;
91b9a277 2087
cb7b593c 2088 memset(s, 0, sizeof(*s));
91b9a277 2089
cb7b593c 2090 rcu_read_lock();
3d3b2d25 2091 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2092 if (IS_LEAF(n)) {
93672292
SH
2093 struct leaf *l = (struct leaf *)n;
2094 struct leaf_info *li;
2095 struct hlist_node *tmp;
2096
cb7b593c
SH
2097 s->leaves++;
2098 s->totdepth += iter.depth;
2099 if (iter.depth > s->maxdepth)
2100 s->maxdepth = iter.depth;
93672292
SH
2101
2102 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2103 ++s->prefixes;
cb7b593c
SH
2104 } else {
2105 const struct tnode *tn = (const struct tnode *) n;
2106 int i;
2107
2108 s->tnodes++;
132adf54 2109 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2110 s->nodesizes[tn->bits]++;
2111
cb7b593c
SH
2112 for (i = 0; i < (1<<tn->bits); i++)
2113 if (!tn->child[i])
2114 s->nullpointers++;
19baf839 2115 }
19baf839 2116 }
2373ce1c 2117 rcu_read_unlock();
19baf839
RO
2118}
2119
cb7b593c
SH
2120/*
2121 * This outputs /proc/net/fib_triestats
2122 */
2123static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2124{
a034ee3c 2125 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2126
cb7b593c
SH
2127 if (stat->leaves)
2128 avdepth = stat->totdepth*100 / stat->leaves;
2129 else
2130 avdepth = 0;
91b9a277 2131
a07f5f50
SH
2132 seq_printf(seq, "\tAver depth: %u.%02d\n",
2133 avdepth / 100, avdepth % 100);
cb7b593c 2134 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2135
cb7b593c 2136 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2137 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2138
2139 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2140 bytes += sizeof(struct leaf_info) * stat->prefixes;
2141
187b5188 2142 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2143 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2144
06ef921d
RO
2145 max = MAX_STAT_DEPTH;
2146 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2147 max--;
19baf839 2148
cb7b593c
SH
2149 pointers = 0;
2150 for (i = 1; i <= max; i++)
2151 if (stat->nodesizes[i] != 0) {
187b5188 2152 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2153 pointers += (1<<i) * stat->nodesizes[i];
2154 }
2155 seq_putc(seq, '\n');
187b5188 2156 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2157
b299e4f0 2158 bytes += sizeof(struct rt_trie_node *) * pointers;
187b5188
SH
2159 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2160 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2161}
2373ce1c 2162
cb7b593c 2163#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2164static void trie_show_usage(struct seq_file *seq,
2165 const struct trie_use_stats *stats)
2166{
2167 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2168 seq_printf(seq, "gets = %u\n", stats->gets);
2169 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2170 seq_printf(seq, "semantic match passed = %u\n",
2171 stats->semantic_match_passed);
2172 seq_printf(seq, "semantic match miss = %u\n",
2173 stats->semantic_match_miss);
2174 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2175 seq_printf(seq, "skipped node resize = %u\n\n",
2176 stats->resize_node_skipped);
cb7b593c 2177}
66a2f7fd
SH
2178#endif /* CONFIG_IP_FIB_TRIE_STATS */
2179
3d3b2d25 2180static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2181{
3d3b2d25
SH
2182 if (tb->tb_id == RT_TABLE_LOCAL)
2183 seq_puts(seq, "Local:\n");
2184 else if (tb->tb_id == RT_TABLE_MAIN)
2185 seq_puts(seq, "Main:\n");
2186 else
2187 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2188}
19baf839 2189
3d3b2d25 2190
cb7b593c
SH
2191static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2192{
1c340b2f 2193 struct net *net = (struct net *)seq->private;
3d3b2d25 2194 unsigned int h;
877a9bff 2195
d717a9a6 2196 seq_printf(seq,
a07f5f50
SH
2197 "Basic info: size of leaf:"
2198 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2199 sizeof(struct leaf), sizeof(struct tnode));
2200
3d3b2d25
SH
2201 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2202 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2203 struct hlist_node *node;
2204 struct fib_table *tb;
2205
2206 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2207 struct trie *t = (struct trie *) tb->tb_data;
2208 struct trie_stat stat;
877a9bff 2209
3d3b2d25
SH
2210 if (!t)
2211 continue;
2212
2213 fib_table_print(seq, tb);
2214
2215 trie_collect_stats(t, &stat);
2216 trie_show_stats(seq, &stat);
2217#ifdef CONFIG_IP_FIB_TRIE_STATS
2218 trie_show_usage(seq, &t->stats);
2219#endif
2220 }
2221 }
19baf839 2222
cb7b593c 2223 return 0;
19baf839
RO
2224}
2225
cb7b593c 2226static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2227{
de05c557 2228 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2229}
2230
9a32144e 2231static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2232 .owner = THIS_MODULE,
2233 .open = fib_triestat_seq_open,
2234 .read = seq_read,
2235 .llseek = seq_lseek,
b6fcbdb4 2236 .release = single_release_net,
cb7b593c
SH
2237};
2238
b299e4f0 2239static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2240{
1218854a
YH
2241 struct fib_trie_iter *iter = seq->private;
2242 struct net *net = seq_file_net(seq);
cb7b593c 2243 loff_t idx = 0;
3d3b2d25 2244 unsigned int h;
cb7b593c 2245
3d3b2d25
SH
2246 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2247 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2248 struct hlist_node *node;
2249 struct fib_table *tb;
cb7b593c 2250
3d3b2d25 2251 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
b299e4f0 2252 struct rt_trie_node *n;
3d3b2d25
SH
2253
2254 for (n = fib_trie_get_first(iter,
2255 (struct trie *) tb->tb_data);
2256 n; n = fib_trie_get_next(iter))
2257 if (pos == idx++) {
2258 iter->tb = tb;
2259 return n;
2260 }
2261 }
cb7b593c 2262 }
3d3b2d25 2263
19baf839
RO
2264 return NULL;
2265}
2266
cb7b593c 2267static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2268 __acquires(RCU)
19baf839 2269{
cb7b593c 2270 rcu_read_lock();
1218854a 2271 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2272}
2273
cb7b593c 2274static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2275{
cb7b593c 2276 struct fib_trie_iter *iter = seq->private;
1218854a 2277 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2278 struct fib_table *tb = iter->tb;
2279 struct hlist_node *tb_node;
2280 unsigned int h;
b299e4f0 2281 struct rt_trie_node *n;
cb7b593c 2282
19baf839 2283 ++*pos;
3d3b2d25
SH
2284 /* next node in same table */
2285 n = fib_trie_get_next(iter);
2286 if (n)
2287 return n;
19baf839 2288
3d3b2d25
SH
2289 /* walk rest of this hash chain */
2290 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2291 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2292 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2293 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2294 if (n)
2295 goto found;
2296 }
19baf839 2297
3d3b2d25
SH
2298 /* new hash chain */
2299 while (++h < FIB_TABLE_HASHSZ) {
2300 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2301 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2302 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2303 if (n)
2304 goto found;
2305 }
2306 }
cb7b593c 2307 return NULL;
3d3b2d25
SH
2308
2309found:
2310 iter->tb = tb;
2311 return n;
cb7b593c 2312}
19baf839 2313
cb7b593c 2314static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2315 __releases(RCU)
19baf839 2316{
cb7b593c
SH
2317 rcu_read_unlock();
2318}
91b9a277 2319
cb7b593c
SH
2320static void seq_indent(struct seq_file *seq, int n)
2321{
a034ee3c
ED
2322 while (n-- > 0)
2323 seq_puts(seq, " ");
cb7b593c 2324}
19baf839 2325
28d36e37 2326static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2327{
132adf54 2328 switch (s) {
cb7b593c
SH
2329 case RT_SCOPE_UNIVERSE: return "universe";
2330 case RT_SCOPE_SITE: return "site";
2331 case RT_SCOPE_LINK: return "link";
2332 case RT_SCOPE_HOST: return "host";
2333 case RT_SCOPE_NOWHERE: return "nowhere";
2334 default:
28d36e37 2335 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2336 return buf;
2337 }
2338}
19baf839 2339
36cbd3dc 2340static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2341 [RTN_UNSPEC] = "UNSPEC",
2342 [RTN_UNICAST] = "UNICAST",
2343 [RTN_LOCAL] = "LOCAL",
2344 [RTN_BROADCAST] = "BROADCAST",
2345 [RTN_ANYCAST] = "ANYCAST",
2346 [RTN_MULTICAST] = "MULTICAST",
2347 [RTN_BLACKHOLE] = "BLACKHOLE",
2348 [RTN_UNREACHABLE] = "UNREACHABLE",
2349 [RTN_PROHIBIT] = "PROHIBIT",
2350 [RTN_THROW] = "THROW",
2351 [RTN_NAT] = "NAT",
2352 [RTN_XRESOLVE] = "XRESOLVE",
2353};
19baf839 2354
a034ee3c 2355static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2356{
cb7b593c
SH
2357 if (t < __RTN_MAX && rtn_type_names[t])
2358 return rtn_type_names[t];
28d36e37 2359 snprintf(buf, len, "type %u", t);
cb7b593c 2360 return buf;
19baf839
RO
2361}
2362
cb7b593c
SH
2363/* Pretty print the trie */
2364static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2365{
cb7b593c 2366 const struct fib_trie_iter *iter = seq->private;
b299e4f0 2367 struct rt_trie_node *n = v;
c877efb2 2368
3d3b2d25
SH
2369 if (!node_parent_rcu(n))
2370 fib_table_print(seq, iter->tb);
095b8501 2371
cb7b593c
SH
2372 if (IS_TNODE(n)) {
2373 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2374 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2375
1d25cd6c 2376 seq_indent(seq, iter->depth-1);
673d57e7
HH
2377 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2378 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2379 tn->empty_children);
e905a9ed 2380
cb7b593c
SH
2381 } else {
2382 struct leaf *l = (struct leaf *) n;
1328042e
SH
2383 struct leaf_info *li;
2384 struct hlist_node *node;
32ab5f80 2385 __be32 val = htonl(l->key);
cb7b593c
SH
2386
2387 seq_indent(seq, iter->depth);
673d57e7 2388 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2389
2390 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2391 struct fib_alias *fa;
2392
2393 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2394 char buf1[32], buf2[32];
2395
2396 seq_indent(seq, iter->depth+1);
2397 seq_printf(seq, " /%d %s %s", li->plen,
2398 rtn_scope(buf1, sizeof(buf1),
37e826c5 2399 fa->fa_info->fib_scope),
1328042e
SH
2400 rtn_type(buf2, sizeof(buf2),
2401 fa->fa_type));
2402 if (fa->fa_tos)
b9c4d82a 2403 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2404 seq_putc(seq, '\n');
cb7b593c
SH
2405 }
2406 }
19baf839 2407 }
cb7b593c 2408
19baf839
RO
2409 return 0;
2410}
2411
f690808e 2412static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2413 .start = fib_trie_seq_start,
2414 .next = fib_trie_seq_next,
2415 .stop = fib_trie_seq_stop,
2416 .show = fib_trie_seq_show,
19baf839
RO
2417};
2418
cb7b593c 2419static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2420{
1c340b2f
DL
2421 return seq_open_net(inode, file, &fib_trie_seq_ops,
2422 sizeof(struct fib_trie_iter));
19baf839
RO
2423}
2424
9a32144e 2425static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2426 .owner = THIS_MODULE,
2427 .open = fib_trie_seq_open,
2428 .read = seq_read,
2429 .llseek = seq_lseek,
1c340b2f 2430 .release = seq_release_net,
19baf839
RO
2431};
2432
8315f5d8
SH
2433struct fib_route_iter {
2434 struct seq_net_private p;
2435 struct trie *main_trie;
2436 loff_t pos;
2437 t_key key;
2438};
2439
2440static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2441{
2442 struct leaf *l = NULL;
2443 struct trie *t = iter->main_trie;
2444
2445 /* use cache location of last found key */
2446 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2447 pos -= iter->pos;
2448 else {
2449 iter->pos = 0;
2450 l = trie_firstleaf(t);
2451 }
2452
2453 while (l && pos-- > 0) {
2454 iter->pos++;
2455 l = trie_nextleaf(l);
2456 }
2457
2458 if (l)
2459 iter->key = pos; /* remember it */
2460 else
2461 iter->pos = 0; /* forget it */
2462
2463 return l;
2464}
2465
2466static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2467 __acquires(RCU)
2468{
2469 struct fib_route_iter *iter = seq->private;
2470 struct fib_table *tb;
2471
2472 rcu_read_lock();
1218854a 2473 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2474 if (!tb)
2475 return NULL;
2476
2477 iter->main_trie = (struct trie *) tb->tb_data;
2478 if (*pos == 0)
2479 return SEQ_START_TOKEN;
2480 else
2481 return fib_route_get_idx(iter, *pos - 1);
2482}
2483
2484static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2485{
2486 struct fib_route_iter *iter = seq->private;
2487 struct leaf *l = v;
2488
2489 ++*pos;
2490 if (v == SEQ_START_TOKEN) {
2491 iter->pos = 0;
2492 l = trie_firstleaf(iter->main_trie);
2493 } else {
2494 iter->pos++;
2495 l = trie_nextleaf(l);
2496 }
2497
2498 if (l)
2499 iter->key = l->key;
2500 else
2501 iter->pos = 0;
2502 return l;
2503}
2504
2505static void fib_route_seq_stop(struct seq_file *seq, void *v)
2506 __releases(RCU)
2507{
2508 rcu_read_unlock();
2509}
2510
a034ee3c 2511static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2512{
a034ee3c 2513 unsigned int flags = 0;
19baf839 2514
a034ee3c
ED
2515 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2516 flags = RTF_REJECT;
cb7b593c
SH
2517 if (fi && fi->fib_nh->nh_gw)
2518 flags |= RTF_GATEWAY;
32ab5f80 2519 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2520 flags |= RTF_HOST;
2521 flags |= RTF_UP;
2522 return flags;
19baf839
RO
2523}
2524
cb7b593c
SH
2525/*
2526 * This outputs /proc/net/route.
2527 * The format of the file is not supposed to be changed
a034ee3c 2528 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2529 * legacy utilities
2530 */
2531static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2532{
cb7b593c 2533 struct leaf *l = v;
1328042e
SH
2534 struct leaf_info *li;
2535 struct hlist_node *node;
19baf839 2536
cb7b593c
SH
2537 if (v == SEQ_START_TOKEN) {
2538 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2539 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2540 "\tWindow\tIRTT");
2541 return 0;
2542 }
19baf839 2543
1328042e 2544 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2545 struct fib_alias *fa;
32ab5f80 2546 __be32 mask, prefix;
91b9a277 2547
cb7b593c
SH
2548 mask = inet_make_mask(li->plen);
2549 prefix = htonl(l->key);
19baf839 2550
cb7b593c 2551 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2552 const struct fib_info *fi = fa->fa_info;
a034ee3c 2553 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2554 int len;
19baf839 2555
cb7b593c
SH
2556 if (fa->fa_type == RTN_BROADCAST
2557 || fa->fa_type == RTN_MULTICAST)
2558 continue;
19baf839 2559
cb7b593c 2560 if (fi)
5e659e4c
PE
2561 seq_printf(seq,
2562 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2563 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2564 fi->fib_dev ? fi->fib_dev->name : "*",
2565 prefix,
2566 fi->fib_nh->nh_gw, flags, 0, 0,
2567 fi->fib_priority,
2568 mask,
a07f5f50
SH
2569 (fi->fib_advmss ?
2570 fi->fib_advmss + 40 : 0),
cb7b593c 2571 fi->fib_window,
5e659e4c 2572 fi->fib_rtt >> 3, &len);
cb7b593c 2573 else
5e659e4c
PE
2574 seq_printf(seq,
2575 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2576 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2577 prefix, 0, flags, 0, 0, 0,
5e659e4c 2578 mask, 0, 0, 0, &len);
19baf839 2579
5e659e4c 2580 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2581 }
19baf839
RO
2582 }
2583
2584 return 0;
2585}
2586
f690808e 2587static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2588 .start = fib_route_seq_start,
2589 .next = fib_route_seq_next,
2590 .stop = fib_route_seq_stop,
cb7b593c 2591 .show = fib_route_seq_show,
19baf839
RO
2592};
2593
cb7b593c 2594static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2595{
1c340b2f 2596 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2597 sizeof(struct fib_route_iter));
19baf839
RO
2598}
2599
9a32144e 2600static const struct file_operations fib_route_fops = {
cb7b593c
SH
2601 .owner = THIS_MODULE,
2602 .open = fib_route_seq_open,
2603 .read = seq_read,
2604 .llseek = seq_lseek,
1c340b2f 2605 .release = seq_release_net,
19baf839
RO
2606};
2607
61a02653 2608int __net_init fib_proc_init(struct net *net)
19baf839 2609{
61a02653 2610 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2611 goto out1;
2612
61a02653
DL
2613 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2614 &fib_triestat_fops))
cb7b593c
SH
2615 goto out2;
2616
61a02653 2617 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2618 goto out3;
2619
19baf839 2620 return 0;
cb7b593c
SH
2621
2622out3:
61a02653 2623 proc_net_remove(net, "fib_triestat");
cb7b593c 2624out2:
61a02653 2625 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2626out1:
2627 return -ENOMEM;
19baf839
RO
2628}
2629
61a02653 2630void __net_exit fib_proc_exit(struct net *net)
19baf839 2631{
61a02653
DL
2632 proc_net_remove(net, "fib_trie");
2633 proc_net_remove(net, "fib_triestat");
2634 proc_net_remove(net, "route");
19baf839
RO
2635}
2636
2637#endif /* CONFIG_PROC_FS */