mm: avoid setting up anonymous pages into file mapping
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
009dfd44 51#include <linux/balloon_compaction.h>
1da177e4 52
0f8053a5
NP
53#include "internal.h"
54
33906bc5
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/vmscan.h>
57
1da177e4 58struct scan_control {
1da177e4
LT
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
61
a79311c1
RR
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
64
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
7b51755c
KM
68 unsigned long hibernation_mode;
69
1da177e4 70 /* This context's GFP mask */
6daa0e28 71 gfp_t gfp_mask;
1da177e4
LT
72
73 int may_writepage;
74
a6dc60f8
JW
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
f1fd1067 77
2e2e4259
KM
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
80
5ad333eb 81 int order;
66e1707b 82
9e3b2f8c
KK
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
f16015fb
JW
86 /*
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
89 */
90 struct mem_cgroup *target_mem_cgroup;
66e1707b 91
327c0e96
KH
92 /*
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 * are scanned.
95 */
96 nodemask_t *nodemask;
1da177e4
LT
97};
98
1da177e4
LT
99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101#ifdef ARCH_HAS_PREFETCH
102#define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115#ifdef ARCH_HAS_PREFETCHW
116#define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129/*
130 * From 0 .. 100. Higher means more swappy.
131 */
132int vm_swappiness = 60;
b21e0b90 133unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
134
135static LIST_HEAD(shrinker_list);
136static DECLARE_RWSEM(shrinker_rwsem);
137
c255a458 138#ifdef CONFIG_MEMCG
89b5fae5
JW
139static bool global_reclaim(struct scan_control *sc)
140{
f16015fb 141 return !sc->target_mem_cgroup;
89b5fae5 142}
91a45470 143#else
89b5fae5
JW
144static bool global_reclaim(struct scan_control *sc)
145{
146 return true;
147}
91a45470
KH
148#endif
149
4d7dcca2 150static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 151{
c3c787e8 152 if (!mem_cgroup_disabled())
4d7dcca2 153 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 154
074291fe 155 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
156}
157
1da177e4
LT
158/*
159 * Add a shrinker callback to be called from the vm
160 */
8e1f936b 161void register_shrinker(struct shrinker *shrinker)
1da177e4 162{
83aeeada 163 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
164 down_write(&shrinker_rwsem);
165 list_add_tail(&shrinker->list, &shrinker_list);
166 up_write(&shrinker_rwsem);
1da177e4 167}
8e1f936b 168EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
169
170/*
171 * Remove one
172 */
8e1f936b 173void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
174{
175 down_write(&shrinker_rwsem);
176 list_del(&shrinker->list);
177 up_write(&shrinker_rwsem);
1da177e4 178}
8e1f936b 179EXPORT_SYMBOL(unregister_shrinker);
1da177e4 180
1495f230
YH
181static inline int do_shrinker_shrink(struct shrinker *shrinker,
182 struct shrink_control *sc,
183 unsigned long nr_to_scan)
184{
185 sc->nr_to_scan = nr_to_scan;
186 return (*shrinker->shrink)(shrinker, sc);
187}
188
1da177e4
LT
189#define SHRINK_BATCH 128
190/*
191 * Call the shrink functions to age shrinkable caches
192 *
193 * Here we assume it costs one seek to replace a lru page and that it also
194 * takes a seek to recreate a cache object. With this in mind we age equal
195 * percentages of the lru and ageable caches. This should balance the seeks
196 * generated by these structures.
197 *
183ff22b 198 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
199 * slab to avoid swapping.
200 *
201 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
202 *
203 * `lru_pages' represents the number of on-LRU pages in all the zones which
204 * are eligible for the caller's allocation attempt. It is used for balancing
205 * slab reclaim versus page reclaim.
b15e0905
AM
206 *
207 * Returns the number of slab objects which we shrunk.
1da177e4 208 */
a09ed5e0 209unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 210 unsigned long nr_pages_scanned,
a09ed5e0 211 unsigned long lru_pages)
1da177e4
LT
212{
213 struct shrinker *shrinker;
69e05944 214 unsigned long ret = 0;
1da177e4 215
1495f230
YH
216 if (nr_pages_scanned == 0)
217 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 218
f06590bd
MK
219 if (!down_read_trylock(&shrinker_rwsem)) {
220 /* Assume we'll be able to shrink next time */
221 ret = 1;
222 goto out;
223 }
1da177e4
LT
224
225 list_for_each_entry(shrinker, &shrinker_list, list) {
226 unsigned long long delta;
635697c6
KK
227 long total_scan;
228 long max_pass;
09576073 229 int shrink_ret = 0;
acf92b48
DC
230 long nr;
231 long new_nr;
e9299f50
DC
232 long batch_size = shrinker->batch ? shrinker->batch
233 : SHRINK_BATCH;
1da177e4 234
635697c6
KK
235 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
236 if (max_pass <= 0)
237 continue;
238
acf92b48
DC
239 /*
240 * copy the current shrinker scan count into a local variable
241 * and zero it so that other concurrent shrinker invocations
242 * don't also do this scanning work.
243 */
83aeeada 244 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
245
246 total_scan = nr;
1495f230 247 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 248 delta *= max_pass;
1da177e4 249 do_div(delta, lru_pages + 1);
acf92b48
DC
250 total_scan += delta;
251 if (total_scan < 0) {
88c3bd70
DR
252 printk(KERN_ERR "shrink_slab: %pF negative objects to "
253 "delete nr=%ld\n",
acf92b48
DC
254 shrinker->shrink, total_scan);
255 total_scan = max_pass;
ea164d73
AA
256 }
257
3567b59a
DC
258 /*
259 * We need to avoid excessive windup on filesystem shrinkers
260 * due to large numbers of GFP_NOFS allocations causing the
261 * shrinkers to return -1 all the time. This results in a large
262 * nr being built up so when a shrink that can do some work
263 * comes along it empties the entire cache due to nr >>>
264 * max_pass. This is bad for sustaining a working set in
265 * memory.
266 *
267 * Hence only allow the shrinker to scan the entire cache when
268 * a large delta change is calculated directly.
269 */
270 if (delta < max_pass / 4)
271 total_scan = min(total_scan, max_pass / 2);
272
ea164d73
AA
273 /*
274 * Avoid risking looping forever due to too large nr value:
275 * never try to free more than twice the estimate number of
276 * freeable entries.
277 */
acf92b48
DC
278 if (total_scan > max_pass * 2)
279 total_scan = max_pass * 2;
1da177e4 280
acf92b48 281 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
282 nr_pages_scanned, lru_pages,
283 max_pass, delta, total_scan);
284
e9299f50 285 while (total_scan >= batch_size) {
b15e0905 286 int nr_before;
1da177e4 287
1495f230
YH
288 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
289 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 290 batch_size);
1da177e4
LT
291 if (shrink_ret == -1)
292 break;
b15e0905
AM
293 if (shrink_ret < nr_before)
294 ret += nr_before - shrink_ret;
e9299f50
DC
295 count_vm_events(SLABS_SCANNED, batch_size);
296 total_scan -= batch_size;
1da177e4
LT
297
298 cond_resched();
299 }
300
acf92b48
DC
301 /*
302 * move the unused scan count back into the shrinker in a
303 * manner that handles concurrent updates. If we exhausted the
304 * scan, there is no need to do an update.
305 */
83aeeada
KK
306 if (total_scan > 0)
307 new_nr = atomic_long_add_return(total_scan,
308 &shrinker->nr_in_batch);
309 else
310 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
311
312 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
313 }
314 up_read(&shrinker_rwsem);
f06590bd
MK
315out:
316 cond_resched();
b15e0905 317 return ret;
1da177e4
LT
318}
319
1da177e4
LT
320static inline int is_page_cache_freeable(struct page *page)
321{
ceddc3a5
JW
322 /*
323 * A freeable page cache page is referenced only by the caller
324 * that isolated the page, the page cache radix tree and
325 * optional buffer heads at page->private.
326 */
edcf4748 327 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
328}
329
7d3579e8
KM
330static int may_write_to_queue(struct backing_dev_info *bdi,
331 struct scan_control *sc)
1da177e4 332{
930d9152 333 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
334 return 1;
335 if (!bdi_write_congested(bdi))
336 return 1;
337 if (bdi == current->backing_dev_info)
338 return 1;
339 return 0;
340}
341
342/*
343 * We detected a synchronous write error writing a page out. Probably
344 * -ENOSPC. We need to propagate that into the address_space for a subsequent
345 * fsync(), msync() or close().
346 *
347 * The tricky part is that after writepage we cannot touch the mapping: nothing
348 * prevents it from being freed up. But we have a ref on the page and once
349 * that page is locked, the mapping is pinned.
350 *
351 * We're allowed to run sleeping lock_page() here because we know the caller has
352 * __GFP_FS.
353 */
354static void handle_write_error(struct address_space *mapping,
355 struct page *page, int error)
356{
7eaceacc 357 lock_page(page);
3e9f45bd
GC
358 if (page_mapping(page) == mapping)
359 mapping_set_error(mapping, error);
1da177e4
LT
360 unlock_page(page);
361}
362
04e62a29
CL
363/* possible outcome of pageout() */
364typedef enum {
365 /* failed to write page out, page is locked */
366 PAGE_KEEP,
367 /* move page to the active list, page is locked */
368 PAGE_ACTIVATE,
369 /* page has been sent to the disk successfully, page is unlocked */
370 PAGE_SUCCESS,
371 /* page is clean and locked */
372 PAGE_CLEAN,
373} pageout_t;
374
1da177e4 375/*
1742f19f
AM
376 * pageout is called by shrink_page_list() for each dirty page.
377 * Calls ->writepage().
1da177e4 378 */
c661b078 379static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 380 struct scan_control *sc)
1da177e4
LT
381{
382 /*
383 * If the page is dirty, only perform writeback if that write
384 * will be non-blocking. To prevent this allocation from being
385 * stalled by pagecache activity. But note that there may be
386 * stalls if we need to run get_block(). We could test
387 * PagePrivate for that.
388 *
6aceb53b 389 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
390 * this page's queue, we can perform writeback even if that
391 * will block.
392 *
393 * If the page is swapcache, write it back even if that would
394 * block, for some throttling. This happens by accident, because
395 * swap_backing_dev_info is bust: it doesn't reflect the
396 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
397 */
398 if (!is_page_cache_freeable(page))
399 return PAGE_KEEP;
400 if (!mapping) {
401 /*
402 * Some data journaling orphaned pages can have
403 * page->mapping == NULL while being dirty with clean buffers.
404 */
266cf658 405 if (page_has_private(page)) {
1da177e4
LT
406 if (try_to_free_buffers(page)) {
407 ClearPageDirty(page);
d40cee24 408 printk("%s: orphaned page\n", __func__);
1da177e4
LT
409 return PAGE_CLEAN;
410 }
411 }
412 return PAGE_KEEP;
413 }
414 if (mapping->a_ops->writepage == NULL)
415 return PAGE_ACTIVATE;
0e093d99 416 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
417 return PAGE_KEEP;
418
419 if (clear_page_dirty_for_io(page)) {
420 int res;
421 struct writeback_control wbc = {
422 .sync_mode = WB_SYNC_NONE,
423 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
424 .range_start = 0,
425 .range_end = LLONG_MAX,
1da177e4
LT
426 .for_reclaim = 1,
427 };
428
429 SetPageReclaim(page);
430 res = mapping->a_ops->writepage(page, &wbc);
431 if (res < 0)
432 handle_write_error(mapping, page, res);
994fc28c 433 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
434 ClearPageReclaim(page);
435 return PAGE_ACTIVATE;
436 }
c661b078 437
1da177e4
LT
438 if (!PageWriteback(page)) {
439 /* synchronous write or broken a_ops? */
440 ClearPageReclaim(page);
441 }
23b9da55 442 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 443 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
444 return PAGE_SUCCESS;
445 }
446
447 return PAGE_CLEAN;
448}
449
a649fd92 450/*
e286781d
NP
451 * Same as remove_mapping, but if the page is removed from the mapping, it
452 * gets returned with a refcount of 0.
a649fd92 453 */
e286781d 454static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 455{
28e4d965
NP
456 BUG_ON(!PageLocked(page));
457 BUG_ON(mapping != page_mapping(page));
49d2e9cc 458
19fd6231 459 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 460 /*
0fd0e6b0
NP
461 * The non racy check for a busy page.
462 *
463 * Must be careful with the order of the tests. When someone has
464 * a ref to the page, it may be possible that they dirty it then
465 * drop the reference. So if PageDirty is tested before page_count
466 * here, then the following race may occur:
467 *
468 * get_user_pages(&page);
469 * [user mapping goes away]
470 * write_to(page);
471 * !PageDirty(page) [good]
472 * SetPageDirty(page);
473 * put_page(page);
474 * !page_count(page) [good, discard it]
475 *
476 * [oops, our write_to data is lost]
477 *
478 * Reversing the order of the tests ensures such a situation cannot
479 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
480 * load is not satisfied before that of page->_count.
481 *
482 * Note that if SetPageDirty is always performed via set_page_dirty,
483 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 484 */
e286781d 485 if (!page_freeze_refs(page, 2))
49d2e9cc 486 goto cannot_free;
e286781d
NP
487 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
488 if (unlikely(PageDirty(page))) {
489 page_unfreeze_refs(page, 2);
49d2e9cc 490 goto cannot_free;
e286781d 491 }
49d2e9cc
CL
492
493 if (PageSwapCache(page)) {
494 swp_entry_t swap = { .val = page_private(page) };
495 __delete_from_swap_cache(page);
19fd6231 496 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 497 swapcache_free(swap, page);
e286781d 498 } else {
6072d13c
LT
499 void (*freepage)(struct page *);
500
501 freepage = mapping->a_ops->freepage;
502
e64a782f 503 __delete_from_page_cache(page);
19fd6231 504 spin_unlock_irq(&mapping->tree_lock);
e767e056 505 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
506
507 if (freepage != NULL)
508 freepage(page);
49d2e9cc
CL
509 }
510
49d2e9cc
CL
511 return 1;
512
513cannot_free:
19fd6231 514 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
515 return 0;
516}
517
e286781d
NP
518/*
519 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
520 * someone else has a ref on the page, abort and return 0. If it was
521 * successfully detached, return 1. Assumes the caller has a single ref on
522 * this page.
523 */
524int remove_mapping(struct address_space *mapping, struct page *page)
525{
526 if (__remove_mapping(mapping, page)) {
527 /*
528 * Unfreezing the refcount with 1 rather than 2 effectively
529 * drops the pagecache ref for us without requiring another
530 * atomic operation.
531 */
532 page_unfreeze_refs(page, 1);
533 return 1;
534 }
535 return 0;
536}
537
894bc310
LS
538/**
539 * putback_lru_page - put previously isolated page onto appropriate LRU list
540 * @page: page to be put back to appropriate lru list
541 *
542 * Add previously isolated @page to appropriate LRU list.
543 * Page may still be unevictable for other reasons.
544 *
545 * lru_lock must not be held, interrupts must be enabled.
546 */
894bc310
LS
547void putback_lru_page(struct page *page)
548{
549 int lru;
550 int active = !!TestClearPageActive(page);
bbfd28ee 551 int was_unevictable = PageUnevictable(page);
894bc310
LS
552
553 VM_BUG_ON(PageLRU(page));
554
555redo:
556 ClearPageUnevictable(page);
557
39b5f29a 558 if (page_evictable(page)) {
894bc310
LS
559 /*
560 * For evictable pages, we can use the cache.
561 * In event of a race, worst case is we end up with an
562 * unevictable page on [in]active list.
563 * We know how to handle that.
564 */
401a8e1c 565 lru = active + page_lru_base_type(page);
894bc310
LS
566 lru_cache_add_lru(page, lru);
567 } else {
568 /*
569 * Put unevictable pages directly on zone's unevictable
570 * list.
571 */
572 lru = LRU_UNEVICTABLE;
573 add_page_to_unevictable_list(page);
6a7b9548 574 /*
21ee9f39
MK
575 * When racing with an mlock or AS_UNEVICTABLE clearing
576 * (page is unlocked) make sure that if the other thread
577 * does not observe our setting of PG_lru and fails
24513264 578 * isolation/check_move_unevictable_pages,
21ee9f39 579 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
580 * the page back to the evictable list.
581 *
21ee9f39 582 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
583 */
584 smp_mb();
894bc310 585 }
894bc310
LS
586
587 /*
588 * page's status can change while we move it among lru. If an evictable
589 * page is on unevictable list, it never be freed. To avoid that,
590 * check after we added it to the list, again.
591 */
39b5f29a 592 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
894bc310
LS
593 if (!isolate_lru_page(page)) {
594 put_page(page);
595 goto redo;
596 }
597 /* This means someone else dropped this page from LRU
598 * So, it will be freed or putback to LRU again. There is
599 * nothing to do here.
600 */
601 }
602
bbfd28ee
LS
603 if (was_unevictable && lru != LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGRESCUED);
605 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
606 count_vm_event(UNEVICTABLE_PGCULLED);
607
894bc310
LS
608 put_page(page); /* drop ref from isolate */
609}
610
dfc8d636
JW
611enum page_references {
612 PAGEREF_RECLAIM,
613 PAGEREF_RECLAIM_CLEAN,
64574746 614 PAGEREF_KEEP,
dfc8d636
JW
615 PAGEREF_ACTIVATE,
616};
617
618static enum page_references page_check_references(struct page *page,
619 struct scan_control *sc)
620{
64574746 621 int referenced_ptes, referenced_page;
dfc8d636 622 unsigned long vm_flags;
dfc8d636 623
c3ac9a8a
JW
624 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
625 &vm_flags);
64574746 626 referenced_page = TestClearPageReferenced(page);
dfc8d636 627
dfc8d636
JW
628 /*
629 * Mlock lost the isolation race with us. Let try_to_unmap()
630 * move the page to the unevictable list.
631 */
632 if (vm_flags & VM_LOCKED)
633 return PAGEREF_RECLAIM;
634
64574746 635 if (referenced_ptes) {
e4898273 636 if (PageSwapBacked(page))
64574746
JW
637 return PAGEREF_ACTIVATE;
638 /*
639 * All mapped pages start out with page table
640 * references from the instantiating fault, so we need
641 * to look twice if a mapped file page is used more
642 * than once.
643 *
644 * Mark it and spare it for another trip around the
645 * inactive list. Another page table reference will
646 * lead to its activation.
647 *
648 * Note: the mark is set for activated pages as well
649 * so that recently deactivated but used pages are
650 * quickly recovered.
651 */
652 SetPageReferenced(page);
653
34dbc67a 654 if (referenced_page || referenced_ptes > 1)
64574746
JW
655 return PAGEREF_ACTIVATE;
656
c909e993
KK
657 /*
658 * Activate file-backed executable pages after first usage.
659 */
660 if (vm_flags & VM_EXEC)
661 return PAGEREF_ACTIVATE;
662
64574746
JW
663 return PAGEREF_KEEP;
664 }
dfc8d636
JW
665
666 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 667 if (referenced_page && !PageSwapBacked(page))
64574746
JW
668 return PAGEREF_RECLAIM_CLEAN;
669
670 return PAGEREF_RECLAIM;
dfc8d636
JW
671}
672
1da177e4 673/*
1742f19f 674 * shrink_page_list() returns the number of reclaimed pages
1da177e4 675 */
1742f19f 676static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 677 struct zone *zone,
f84f6e2b 678 struct scan_control *sc,
02c6de8d 679 enum ttu_flags ttu_flags,
92df3a72 680 unsigned long *ret_nr_dirty,
02c6de8d
MK
681 unsigned long *ret_nr_writeback,
682 bool force_reclaim)
1da177e4
LT
683{
684 LIST_HEAD(ret_pages);
abe4c3b5 685 LIST_HEAD(free_pages);
1da177e4 686 int pgactivate = 0;
0e093d99
MG
687 unsigned long nr_dirty = 0;
688 unsigned long nr_congested = 0;
05ff5137 689 unsigned long nr_reclaimed = 0;
92df3a72 690 unsigned long nr_writeback = 0;
1da177e4
LT
691
692 cond_resched();
693
69980e31 694 mem_cgroup_uncharge_start();
1da177e4
LT
695 while (!list_empty(page_list)) {
696 struct address_space *mapping;
697 struct page *page;
698 int may_enter_fs;
02c6de8d 699 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1da177e4
LT
700
701 cond_resched();
702
703 page = lru_to_page(page_list);
704 list_del(&page->lru);
705
529ae9aa 706 if (!trylock_page(page))
1da177e4
LT
707 goto keep;
708
725d704e 709 VM_BUG_ON(PageActive(page));
6a18adb3 710 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
711
712 sc->nr_scanned++;
80e43426 713
39b5f29a 714 if (unlikely(!page_evictable(page)))
b291f000 715 goto cull_mlocked;
894bc310 716
a6dc60f8 717 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
718 goto keep_locked;
719
1da177e4
LT
720 /* Double the slab pressure for mapped and swapcache pages */
721 if (page_mapped(page) || PageSwapCache(page))
722 sc->nr_scanned++;
723
c661b078
AW
724 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
725 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
726
727 if (PageWriteback(page)) {
e62e384e
MH
728 /*
729 * memcg doesn't have any dirty pages throttling so we
730 * could easily OOM just because too many pages are in
c3b94f44 731 * writeback and there is nothing else to reclaim.
e62e384e 732 *
c3b94f44 733 * Check __GFP_IO, certainly because a loop driver
e62e384e
MH
734 * thread might enter reclaim, and deadlock if it waits
735 * on a page for which it is needed to do the write
736 * (loop masks off __GFP_IO|__GFP_FS for this reason);
737 * but more thought would probably show more reasons.
c3b94f44
HD
738 *
739 * Don't require __GFP_FS, since we're not going into
740 * the FS, just waiting on its writeback completion.
741 * Worryingly, ext4 gfs2 and xfs allocate pages with
742 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
743 * testing may_enter_fs here is liable to OOM on them.
e62e384e 744 */
c3b94f44
HD
745 if (global_reclaim(sc) ||
746 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
747 /*
748 * This is slightly racy - end_page_writeback()
749 * might have just cleared PageReclaim, then
750 * setting PageReclaim here end up interpreted
751 * as PageReadahead - but that does not matter
752 * enough to care. What we do want is for this
753 * page to have PageReclaim set next time memcg
754 * reclaim reaches the tests above, so it will
755 * then wait_on_page_writeback() to avoid OOM;
756 * and it's also appropriate in global reclaim.
757 */
758 SetPageReclaim(page);
e62e384e 759 nr_writeback++;
c3b94f44 760 goto keep_locked;
e62e384e 761 }
c3b94f44 762 wait_on_page_writeback(page);
c661b078 763 }
1da177e4 764
02c6de8d
MK
765 if (!force_reclaim)
766 references = page_check_references(page, sc);
767
dfc8d636
JW
768 switch (references) {
769 case PAGEREF_ACTIVATE:
1da177e4 770 goto activate_locked;
64574746
JW
771 case PAGEREF_KEEP:
772 goto keep_locked;
dfc8d636
JW
773 case PAGEREF_RECLAIM:
774 case PAGEREF_RECLAIM_CLEAN:
775 ; /* try to reclaim the page below */
776 }
1da177e4 777
1da177e4
LT
778 /*
779 * Anonymous process memory has backing store?
780 * Try to allocate it some swap space here.
781 */
b291f000 782 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
783 if (!(sc->gfp_mask & __GFP_IO))
784 goto keep_locked;
5bc7b8ac 785 if (!add_to_swap(page, page_list))
1da177e4 786 goto activate_locked;
63eb6b93 787 may_enter_fs = 1;
b291f000 788 }
1da177e4
LT
789
790 mapping = page_mapping(page);
1da177e4
LT
791
792 /*
793 * The page is mapped into the page tables of one or more
794 * processes. Try to unmap it here.
795 */
796 if (page_mapped(page) && mapping) {
02c6de8d 797 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
798 case SWAP_FAIL:
799 goto activate_locked;
800 case SWAP_AGAIN:
801 goto keep_locked;
b291f000
NP
802 case SWAP_MLOCK:
803 goto cull_mlocked;
1da177e4
LT
804 case SWAP_SUCCESS:
805 ; /* try to free the page below */
806 }
807 }
808
809 if (PageDirty(page)) {
0e093d99
MG
810 nr_dirty++;
811
ee72886d
MG
812 /*
813 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
814 * avoid risk of stack overflow but do not writeback
815 * unless under significant pressure.
ee72886d 816 */
f84f6e2b 817 if (page_is_file_cache(page) &&
9e3b2f8c
KK
818 (!current_is_kswapd() ||
819 sc->priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
820 /*
821 * Immediately reclaim when written back.
822 * Similar in principal to deactivate_page()
823 * except we already have the page isolated
824 * and know it's dirty
825 */
826 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
827 SetPageReclaim(page);
828
ee72886d
MG
829 goto keep_locked;
830 }
831
dfc8d636 832 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 833 goto keep_locked;
4dd4b920 834 if (!may_enter_fs)
1da177e4 835 goto keep_locked;
52a8363e 836 if (!sc->may_writepage)
1da177e4
LT
837 goto keep_locked;
838
839 /* Page is dirty, try to write it out here */
7d3579e8 840 switch (pageout(page, mapping, sc)) {
1da177e4 841 case PAGE_KEEP:
0e093d99 842 nr_congested++;
1da177e4
LT
843 goto keep_locked;
844 case PAGE_ACTIVATE:
845 goto activate_locked;
846 case PAGE_SUCCESS:
7d3579e8 847 if (PageWriteback(page))
41ac1999 848 goto keep;
7d3579e8 849 if (PageDirty(page))
1da177e4 850 goto keep;
7d3579e8 851
1da177e4
LT
852 /*
853 * A synchronous write - probably a ramdisk. Go
854 * ahead and try to reclaim the page.
855 */
529ae9aa 856 if (!trylock_page(page))
1da177e4
LT
857 goto keep;
858 if (PageDirty(page) || PageWriteback(page))
859 goto keep_locked;
860 mapping = page_mapping(page);
861 case PAGE_CLEAN:
862 ; /* try to free the page below */
863 }
864 }
865
866 /*
867 * If the page has buffers, try to free the buffer mappings
868 * associated with this page. If we succeed we try to free
869 * the page as well.
870 *
871 * We do this even if the page is PageDirty().
872 * try_to_release_page() does not perform I/O, but it is
873 * possible for a page to have PageDirty set, but it is actually
874 * clean (all its buffers are clean). This happens if the
875 * buffers were written out directly, with submit_bh(). ext3
894bc310 876 * will do this, as well as the blockdev mapping.
1da177e4
LT
877 * try_to_release_page() will discover that cleanness and will
878 * drop the buffers and mark the page clean - it can be freed.
879 *
880 * Rarely, pages can have buffers and no ->mapping. These are
881 * the pages which were not successfully invalidated in
882 * truncate_complete_page(). We try to drop those buffers here
883 * and if that worked, and the page is no longer mapped into
884 * process address space (page_count == 1) it can be freed.
885 * Otherwise, leave the page on the LRU so it is swappable.
886 */
266cf658 887 if (page_has_private(page)) {
1da177e4
LT
888 if (!try_to_release_page(page, sc->gfp_mask))
889 goto activate_locked;
e286781d
NP
890 if (!mapping && page_count(page) == 1) {
891 unlock_page(page);
892 if (put_page_testzero(page))
893 goto free_it;
894 else {
895 /*
896 * rare race with speculative reference.
897 * the speculative reference will free
898 * this page shortly, so we may
899 * increment nr_reclaimed here (and
900 * leave it off the LRU).
901 */
902 nr_reclaimed++;
903 continue;
904 }
905 }
1da177e4
LT
906 }
907
e286781d 908 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 909 goto keep_locked;
1da177e4 910
a978d6f5
NP
911 /*
912 * At this point, we have no other references and there is
913 * no way to pick any more up (removed from LRU, removed
914 * from pagecache). Can use non-atomic bitops now (and
915 * we obviously don't have to worry about waking up a process
916 * waiting on the page lock, because there are no references.
917 */
918 __clear_page_locked(page);
e286781d 919free_it:
05ff5137 920 nr_reclaimed++;
abe4c3b5
MG
921
922 /*
923 * Is there need to periodically free_page_list? It would
924 * appear not as the counts should be low
925 */
926 list_add(&page->lru, &free_pages);
1da177e4
LT
927 continue;
928
b291f000 929cull_mlocked:
63d6c5ad
HD
930 if (PageSwapCache(page))
931 try_to_free_swap(page);
b291f000
NP
932 unlock_page(page);
933 putback_lru_page(page);
934 continue;
935
1da177e4 936activate_locked:
68a22394
RR
937 /* Not a candidate for swapping, so reclaim swap space. */
938 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 939 try_to_free_swap(page);
894bc310 940 VM_BUG_ON(PageActive(page));
1da177e4
LT
941 SetPageActive(page);
942 pgactivate++;
943keep_locked:
944 unlock_page(page);
945keep:
946 list_add(&page->lru, &ret_pages);
b291f000 947 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 948 }
abe4c3b5 949
0e093d99
MG
950 /*
951 * Tag a zone as congested if all the dirty pages encountered were
952 * backed by a congested BDI. In this case, reclaimers should just
953 * back off and wait for congestion to clear because further reclaim
954 * will encounter the same problem
955 */
89b5fae5 956 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
6a18adb3 957 zone_set_flag(zone, ZONE_CONGESTED);
0e093d99 958
cc59850e 959 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 960
1da177e4 961 list_splice(&ret_pages, page_list);
f8891e5e 962 count_vm_events(PGACTIVATE, pgactivate);
69980e31 963 mem_cgroup_uncharge_end();
92df3a72
MG
964 *ret_nr_dirty += nr_dirty;
965 *ret_nr_writeback += nr_writeback;
05ff5137 966 return nr_reclaimed;
1da177e4
LT
967}
968
02c6de8d
MK
969unsigned long reclaim_clean_pages_from_list(struct zone *zone,
970 struct list_head *page_list)
971{
972 struct scan_control sc = {
973 .gfp_mask = GFP_KERNEL,
974 .priority = DEF_PRIORITY,
975 .may_unmap = 1,
976 };
977 unsigned long ret, dummy1, dummy2;
978 struct page *page, *next;
979 LIST_HEAD(clean_pages);
980
981 list_for_each_entry_safe(page, next, page_list, lru) {
009dfd44
RA
982 if (page_is_file_cache(page) && !PageDirty(page) &&
983 !isolated_balloon_page(page)) {
02c6de8d
MK
984 ClearPageActive(page);
985 list_move(&page->lru, &clean_pages);
986 }
987 }
988
989 ret = shrink_page_list(&clean_pages, zone, &sc,
990 TTU_UNMAP|TTU_IGNORE_ACCESS,
991 &dummy1, &dummy2, true);
992 list_splice(&clean_pages, page_list);
993 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
994 return ret;
995}
996
5ad333eb
AW
997/*
998 * Attempt to remove the specified page from its LRU. Only take this page
999 * if it is of the appropriate PageActive status. Pages which are being
1000 * freed elsewhere are also ignored.
1001 *
1002 * page: page to consider
1003 * mode: one of the LRU isolation modes defined above
1004 *
1005 * returns 0 on success, -ve errno on failure.
1006 */
f3fd4a61 1007int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1008{
1009 int ret = -EINVAL;
1010
1011 /* Only take pages on the LRU. */
1012 if (!PageLRU(page))
1013 return ret;
1014
e46a2879
MK
1015 /* Compaction should not handle unevictable pages but CMA can do so */
1016 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1017 return ret;
1018
5ad333eb 1019 ret = -EBUSY;
08e552c6 1020
c8244935
MG
1021 /*
1022 * To minimise LRU disruption, the caller can indicate that it only
1023 * wants to isolate pages it will be able to operate on without
1024 * blocking - clean pages for the most part.
1025 *
1026 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1027 * is used by reclaim when it is cannot write to backing storage
1028 *
1029 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1030 * that it is possible to migrate without blocking
1031 */
1032 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1033 /* All the caller can do on PageWriteback is block */
1034 if (PageWriteback(page))
1035 return ret;
1036
1037 if (PageDirty(page)) {
1038 struct address_space *mapping;
1039
1040 /* ISOLATE_CLEAN means only clean pages */
1041 if (mode & ISOLATE_CLEAN)
1042 return ret;
1043
1044 /*
1045 * Only pages without mappings or that have a
1046 * ->migratepage callback are possible to migrate
1047 * without blocking
1048 */
1049 mapping = page_mapping(page);
1050 if (mapping && !mapping->a_ops->migratepage)
1051 return ret;
1052 }
1053 }
39deaf85 1054
f80c0673
MK
1055 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1056 return ret;
1057
5ad333eb
AW
1058 if (likely(get_page_unless_zero(page))) {
1059 /*
1060 * Be careful not to clear PageLRU until after we're
1061 * sure the page is not being freed elsewhere -- the
1062 * page release code relies on it.
1063 */
1064 ClearPageLRU(page);
1065 ret = 0;
1066 }
1067
1068 return ret;
1069}
1070
1da177e4
LT
1071/*
1072 * zone->lru_lock is heavily contended. Some of the functions that
1073 * shrink the lists perform better by taking out a batch of pages
1074 * and working on them outside the LRU lock.
1075 *
1076 * For pagecache intensive workloads, this function is the hottest
1077 * spot in the kernel (apart from copy_*_user functions).
1078 *
1079 * Appropriate locks must be held before calling this function.
1080 *
1081 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1082 * @lruvec: The LRU vector to pull pages from.
1da177e4 1083 * @dst: The temp list to put pages on to.
f626012d 1084 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1085 * @sc: The scan_control struct for this reclaim session
5ad333eb 1086 * @mode: One of the LRU isolation modes
3cb99451 1087 * @lru: LRU list id for isolating
1da177e4
LT
1088 *
1089 * returns how many pages were moved onto *@dst.
1090 */
69e05944 1091static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1092 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1093 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1094 isolate_mode_t mode, enum lru_list lru)
1da177e4 1095{
75b00af7 1096 struct list_head *src = &lruvec->lists[lru];
69e05944 1097 unsigned long nr_taken = 0;
c9b02d97 1098 unsigned long scan;
1da177e4 1099
c9b02d97 1100 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1101 struct page *page;
fa9add64 1102 int nr_pages;
5ad333eb 1103
1da177e4
LT
1104 page = lru_to_page(src);
1105 prefetchw_prev_lru_page(page, src, flags);
1106
725d704e 1107 VM_BUG_ON(!PageLRU(page));
8d438f96 1108
f3fd4a61 1109 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1110 case 0:
fa9add64
HD
1111 nr_pages = hpage_nr_pages(page);
1112 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1113 list_move(&page->lru, dst);
fa9add64 1114 nr_taken += nr_pages;
5ad333eb
AW
1115 break;
1116
1117 case -EBUSY:
1118 /* else it is being freed elsewhere */
1119 list_move(&page->lru, src);
1120 continue;
46453a6e 1121
5ad333eb
AW
1122 default:
1123 BUG();
1124 }
1da177e4
LT
1125 }
1126
f626012d 1127 *nr_scanned = scan;
75b00af7
HD
1128 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1129 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1130 return nr_taken;
1131}
1132
62695a84
NP
1133/**
1134 * isolate_lru_page - tries to isolate a page from its LRU list
1135 * @page: page to isolate from its LRU list
1136 *
1137 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1138 * vmstat statistic corresponding to whatever LRU list the page was on.
1139 *
1140 * Returns 0 if the page was removed from an LRU list.
1141 * Returns -EBUSY if the page was not on an LRU list.
1142 *
1143 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1144 * the active list, it will have PageActive set. If it was found on
1145 * the unevictable list, it will have the PageUnevictable bit set. That flag
1146 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1147 *
1148 * The vmstat statistic corresponding to the list on which the page was
1149 * found will be decremented.
1150 *
1151 * Restrictions:
1152 * (1) Must be called with an elevated refcount on the page. This is a
1153 * fundamentnal difference from isolate_lru_pages (which is called
1154 * without a stable reference).
1155 * (2) the lru_lock must not be held.
1156 * (3) interrupts must be enabled.
1157 */
1158int isolate_lru_page(struct page *page)
1159{
1160 int ret = -EBUSY;
1161
0c917313
KK
1162 VM_BUG_ON(!page_count(page));
1163
62695a84
NP
1164 if (PageLRU(page)) {
1165 struct zone *zone = page_zone(page);
fa9add64 1166 struct lruvec *lruvec;
62695a84
NP
1167
1168 spin_lock_irq(&zone->lru_lock);
fa9add64 1169 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1170 if (PageLRU(page)) {
894bc310 1171 int lru = page_lru(page);
0c917313 1172 get_page(page);
62695a84 1173 ClearPageLRU(page);
fa9add64
HD
1174 del_page_from_lru_list(page, lruvec, lru);
1175 ret = 0;
62695a84
NP
1176 }
1177 spin_unlock_irq(&zone->lru_lock);
1178 }
1179 return ret;
1180}
1181
35cd7815 1182/*
d37dd5dc
FW
1183 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1184 * then get resheduled. When there are massive number of tasks doing page
1185 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1186 * the LRU list will go small and be scanned faster than necessary, leading to
1187 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1188 */
1189static int too_many_isolated(struct zone *zone, int file,
1190 struct scan_control *sc)
1191{
1192 unsigned long inactive, isolated;
1193
1194 if (current_is_kswapd())
1195 return 0;
1196
89b5fae5 1197 if (!global_reclaim(sc))
35cd7815
RR
1198 return 0;
1199
1200 if (file) {
1201 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1202 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1203 } else {
1204 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1205 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1206 }
1207
3cf23841
FW
1208 /*
1209 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1210 * won't get blocked by normal direct-reclaimers, forming a circular
1211 * deadlock.
1212 */
1213 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1214 inactive >>= 3;
1215
35cd7815
RR
1216 return isolated > inactive;
1217}
1218
66635629 1219static noinline_for_stack void
75b00af7 1220putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1221{
27ac81d8
KK
1222 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1223 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1224 LIST_HEAD(pages_to_free);
66635629 1225
66635629
MG
1226 /*
1227 * Put back any unfreeable pages.
1228 */
66635629 1229 while (!list_empty(page_list)) {
3f79768f 1230 struct page *page = lru_to_page(page_list);
66635629 1231 int lru;
3f79768f 1232
66635629
MG
1233 VM_BUG_ON(PageLRU(page));
1234 list_del(&page->lru);
39b5f29a 1235 if (unlikely(!page_evictable(page))) {
66635629
MG
1236 spin_unlock_irq(&zone->lru_lock);
1237 putback_lru_page(page);
1238 spin_lock_irq(&zone->lru_lock);
1239 continue;
1240 }
fa9add64
HD
1241
1242 lruvec = mem_cgroup_page_lruvec(page, zone);
1243
7a608572 1244 SetPageLRU(page);
66635629 1245 lru = page_lru(page);
fa9add64
HD
1246 add_page_to_lru_list(page, lruvec, lru);
1247
66635629
MG
1248 if (is_active_lru(lru)) {
1249 int file = is_file_lru(lru);
9992af10
RR
1250 int numpages = hpage_nr_pages(page);
1251 reclaim_stat->recent_rotated[file] += numpages;
66635629 1252 }
2bcf8879
HD
1253 if (put_page_testzero(page)) {
1254 __ClearPageLRU(page);
1255 __ClearPageActive(page);
fa9add64 1256 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1257
1258 if (unlikely(PageCompound(page))) {
1259 spin_unlock_irq(&zone->lru_lock);
1260 (*get_compound_page_dtor(page))(page);
1261 spin_lock_irq(&zone->lru_lock);
1262 } else
1263 list_add(&page->lru, &pages_to_free);
66635629
MG
1264 }
1265 }
66635629 1266
3f79768f
HD
1267 /*
1268 * To save our caller's stack, now use input list for pages to free.
1269 */
1270 list_splice(&pages_to_free, page_list);
66635629
MG
1271}
1272
1da177e4 1273/*
1742f19f
AM
1274 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1275 * of reclaimed pages
1da177e4 1276 */
66635629 1277static noinline_for_stack unsigned long
1a93be0e 1278shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1279 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1280{
1281 LIST_HEAD(page_list);
e247dbce 1282 unsigned long nr_scanned;
05ff5137 1283 unsigned long nr_reclaimed = 0;
e247dbce 1284 unsigned long nr_taken;
92df3a72
MG
1285 unsigned long nr_dirty = 0;
1286 unsigned long nr_writeback = 0;
f3fd4a61 1287 isolate_mode_t isolate_mode = 0;
3cb99451 1288 int file = is_file_lru(lru);
1a93be0e
KK
1289 struct zone *zone = lruvec_zone(lruvec);
1290 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1291
35cd7815 1292 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1293 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1294
1295 /* We are about to die and free our memory. Return now. */
1296 if (fatal_signal_pending(current))
1297 return SWAP_CLUSTER_MAX;
1298 }
1299
1da177e4 1300 lru_add_drain();
f80c0673
MK
1301
1302 if (!sc->may_unmap)
61317289 1303 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1304 if (!sc->may_writepage)
61317289 1305 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1306
1da177e4 1307 spin_lock_irq(&zone->lru_lock);
b35ea17b 1308
5dc35979
KK
1309 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1310 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1311
1312 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1313 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1314
89b5fae5 1315 if (global_reclaim(sc)) {
e247dbce
KM
1316 zone->pages_scanned += nr_scanned;
1317 if (current_is_kswapd())
75b00af7 1318 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1319 else
75b00af7 1320 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1321 }
d563c050 1322 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1323
d563c050 1324 if (nr_taken == 0)
66635629 1325 return 0;
5ad333eb 1326
02c6de8d
MK
1327 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1328 &nr_dirty, &nr_writeback, false);
c661b078 1329
3f79768f
HD
1330 spin_lock_irq(&zone->lru_lock);
1331
95d918fc 1332 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1333
904249aa
YH
1334 if (global_reclaim(sc)) {
1335 if (current_is_kswapd())
1336 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1337 nr_reclaimed);
1338 else
1339 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1340 nr_reclaimed);
1341 }
a74609fa 1342
27ac81d8 1343 putback_inactive_pages(lruvec, &page_list);
3f79768f 1344
95d918fc 1345 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1346
1347 spin_unlock_irq(&zone->lru_lock);
1348
1349 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1350
92df3a72
MG
1351 /*
1352 * If reclaim is isolating dirty pages under writeback, it implies
1353 * that the long-lived page allocation rate is exceeding the page
1354 * laundering rate. Either the global limits are not being effective
1355 * at throttling processes due to the page distribution throughout
1356 * zones or there is heavy usage of a slow backing device. The
1357 * only option is to throttle from reclaim context which is not ideal
1358 * as there is no guarantee the dirtying process is throttled in the
1359 * same way balance_dirty_pages() manages.
1360 *
1361 * This scales the number of dirty pages that must be under writeback
1362 * before throttling depending on priority. It is a simple backoff
1363 * function that has the most effect in the range DEF_PRIORITY to
1364 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1365 * in trouble and reclaim is considered to be in trouble.
1366 *
1367 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1368 * DEF_PRIORITY-1 50% must be PageWriteback
1369 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1370 * ...
1371 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1372 * isolated page is PageWriteback
1373 */
9e3b2f8c
KK
1374 if (nr_writeback && nr_writeback >=
1375 (nr_taken >> (DEF_PRIORITY - sc->priority)))
92df3a72
MG
1376 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1377
e11da5b4
MG
1378 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1379 zone_idx(zone),
1380 nr_scanned, nr_reclaimed,
9e3b2f8c 1381 sc->priority,
23b9da55 1382 trace_shrink_flags(file));
05ff5137 1383 return nr_reclaimed;
1da177e4
LT
1384}
1385
1386/*
1387 * This moves pages from the active list to the inactive list.
1388 *
1389 * We move them the other way if the page is referenced by one or more
1390 * processes, from rmap.
1391 *
1392 * If the pages are mostly unmapped, the processing is fast and it is
1393 * appropriate to hold zone->lru_lock across the whole operation. But if
1394 * the pages are mapped, the processing is slow (page_referenced()) so we
1395 * should drop zone->lru_lock around each page. It's impossible to balance
1396 * this, so instead we remove the pages from the LRU while processing them.
1397 * It is safe to rely on PG_active against the non-LRU pages in here because
1398 * nobody will play with that bit on a non-LRU page.
1399 *
1400 * The downside is that we have to touch page->_count against each page.
1401 * But we had to alter page->flags anyway.
1402 */
1cfb419b 1403
fa9add64 1404static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1405 struct list_head *list,
2bcf8879 1406 struct list_head *pages_to_free,
3eb4140f
WF
1407 enum lru_list lru)
1408{
fa9add64 1409 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1410 unsigned long pgmoved = 0;
3eb4140f 1411 struct page *page;
fa9add64 1412 int nr_pages;
3eb4140f 1413
3eb4140f
WF
1414 while (!list_empty(list)) {
1415 page = lru_to_page(list);
fa9add64 1416 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1417
1418 VM_BUG_ON(PageLRU(page));
1419 SetPageLRU(page);
1420
fa9add64
HD
1421 nr_pages = hpage_nr_pages(page);
1422 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1423 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1424 pgmoved += nr_pages;
3eb4140f 1425
2bcf8879
HD
1426 if (put_page_testzero(page)) {
1427 __ClearPageLRU(page);
1428 __ClearPageActive(page);
fa9add64 1429 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1430
1431 if (unlikely(PageCompound(page))) {
1432 spin_unlock_irq(&zone->lru_lock);
1433 (*get_compound_page_dtor(page))(page);
1434 spin_lock_irq(&zone->lru_lock);
1435 } else
1436 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1437 }
1438 }
1439 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1440 if (!is_active_lru(lru))
1441 __count_vm_events(PGDEACTIVATE, pgmoved);
1442}
1cfb419b 1443
f626012d 1444static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1445 struct lruvec *lruvec,
f16015fb 1446 struct scan_control *sc,
9e3b2f8c 1447 enum lru_list lru)
1da177e4 1448{
44c241f1 1449 unsigned long nr_taken;
f626012d 1450 unsigned long nr_scanned;
6fe6b7e3 1451 unsigned long vm_flags;
1da177e4 1452 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1453 LIST_HEAD(l_active);
b69408e8 1454 LIST_HEAD(l_inactive);
1da177e4 1455 struct page *page;
1a93be0e 1456 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1457 unsigned long nr_rotated = 0;
f3fd4a61 1458 isolate_mode_t isolate_mode = 0;
3cb99451 1459 int file = is_file_lru(lru);
1a93be0e 1460 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1461
1462 lru_add_drain();
f80c0673
MK
1463
1464 if (!sc->may_unmap)
61317289 1465 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1466 if (!sc->may_writepage)
61317289 1467 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1468
1da177e4 1469 spin_lock_irq(&zone->lru_lock);
925b7673 1470
5dc35979
KK
1471 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1472 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1473 if (global_reclaim(sc))
f626012d 1474 zone->pages_scanned += nr_scanned;
89b5fae5 1475
b7c46d15 1476 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1477
f626012d 1478 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1479 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1480 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1481 spin_unlock_irq(&zone->lru_lock);
1482
1da177e4
LT
1483 while (!list_empty(&l_hold)) {
1484 cond_resched();
1485 page = lru_to_page(&l_hold);
1486 list_del(&page->lru);
7e9cd484 1487
39b5f29a 1488 if (unlikely(!page_evictable(page))) {
894bc310
LS
1489 putback_lru_page(page);
1490 continue;
1491 }
1492
cc715d99
MG
1493 if (unlikely(buffer_heads_over_limit)) {
1494 if (page_has_private(page) && trylock_page(page)) {
1495 if (page_has_private(page))
1496 try_to_release_page(page, 0);
1497 unlock_page(page);
1498 }
1499 }
1500
c3ac9a8a
JW
1501 if (page_referenced(page, 0, sc->target_mem_cgroup,
1502 &vm_flags)) {
9992af10 1503 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1504 /*
1505 * Identify referenced, file-backed active pages and
1506 * give them one more trip around the active list. So
1507 * that executable code get better chances to stay in
1508 * memory under moderate memory pressure. Anon pages
1509 * are not likely to be evicted by use-once streaming
1510 * IO, plus JVM can create lots of anon VM_EXEC pages,
1511 * so we ignore them here.
1512 */
41e20983 1513 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1514 list_add(&page->lru, &l_active);
1515 continue;
1516 }
1517 }
7e9cd484 1518
5205e56e 1519 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1520 list_add(&page->lru, &l_inactive);
1521 }
1522
b555749a 1523 /*
8cab4754 1524 * Move pages back to the lru list.
b555749a 1525 */
2a1dc509 1526 spin_lock_irq(&zone->lru_lock);
556adecb 1527 /*
8cab4754
WF
1528 * Count referenced pages from currently used mappings as rotated,
1529 * even though only some of them are actually re-activated. This
1530 * helps balance scan pressure between file and anonymous pages in
1531 * get_scan_ratio.
7e9cd484 1532 */
b7c46d15 1533 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1534
fa9add64
HD
1535 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1536 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1537 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1538 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1539
1540 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1541}
1542
74e3f3c3 1543#ifdef CONFIG_SWAP
14797e23 1544static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1545{
1546 unsigned long active, inactive;
1547
1548 active = zone_page_state(zone, NR_ACTIVE_ANON);
1549 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1550
1551 if (inactive * zone->inactive_ratio < active)
1552 return 1;
1553
1554 return 0;
1555}
1556
14797e23
KM
1557/**
1558 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1559 * @lruvec: LRU vector to check
14797e23
KM
1560 *
1561 * Returns true if the zone does not have enough inactive anon pages,
1562 * meaning some active anon pages need to be deactivated.
1563 */
c56d5c7d 1564static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1565{
74e3f3c3
MK
1566 /*
1567 * If we don't have swap space, anonymous page deactivation
1568 * is pointless.
1569 */
1570 if (!total_swap_pages)
1571 return 0;
1572
c3c787e8 1573 if (!mem_cgroup_disabled())
c56d5c7d 1574 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1575
c56d5c7d 1576 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1577}
74e3f3c3 1578#else
c56d5c7d 1579static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1580{
1581 return 0;
1582}
1583#endif
14797e23 1584
56e49d21
RR
1585/**
1586 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1587 * @lruvec: LRU vector to check
56e49d21
RR
1588 *
1589 * When the system is doing streaming IO, memory pressure here
1590 * ensures that active file pages get deactivated, until more
1591 * than half of the file pages are on the inactive list.
1592 *
1593 * Once we get to that situation, protect the system's working
1594 * set from being evicted by disabling active file page aging.
1595 *
1596 * This uses a different ratio than the anonymous pages, because
1597 * the page cache uses a use-once replacement algorithm.
1598 */
c56d5c7d 1599static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1600{
e3790144
JW
1601 unsigned long inactive;
1602 unsigned long active;
1603
1604 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1605 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1606
e3790144 1607 return active > inactive;
56e49d21
RR
1608}
1609
75b00af7 1610static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1611{
75b00af7 1612 if (is_file_lru(lru))
c56d5c7d 1613 return inactive_file_is_low(lruvec);
b39415b2 1614 else
c56d5c7d 1615 return inactive_anon_is_low(lruvec);
b39415b2
RR
1616}
1617
4f98a2fe 1618static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1619 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1620{
b39415b2 1621 if (is_active_lru(lru)) {
75b00af7 1622 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1623 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1624 return 0;
1625 }
1626
1a93be0e 1627 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1628}
1629
3d58ab5c 1630static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1631{
89b5fae5 1632 if (global_reclaim(sc))
1f4c025b 1633 return vm_swappiness;
3d58ab5c 1634 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1635}
1636
9a265114
JW
1637enum scan_balance {
1638 SCAN_EQUAL,
1639 SCAN_FRACT,
1640 SCAN_ANON,
1641 SCAN_FILE,
1642};
1643
4f98a2fe
RR
1644/*
1645 * Determine how aggressively the anon and file LRU lists should be
1646 * scanned. The relative value of each set of LRU lists is determined
1647 * by looking at the fraction of the pages scanned we did rotate back
1648 * onto the active list instead of evict.
1649 *
be7bd59d
WL
1650 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1651 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1652 */
90126375 1653static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1654 unsigned long *nr)
4f98a2fe 1655{
9a265114
JW
1656 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1657 u64 fraction[2];
1658 u64 denominator = 0; /* gcc */
1659 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1660 unsigned long anon_prio, file_prio;
9a265114
JW
1661 enum scan_balance scan_balance;
1662 unsigned long anon, file, free;
1663 bool force_scan = false;
4f98a2fe 1664 unsigned long ap, fp;
4111304d 1665 enum lru_list lru;
246e87a9 1666
f11c0ca5
JW
1667 /*
1668 * If the zone or memcg is small, nr[l] can be 0. This
1669 * results in no scanning on this priority and a potential
1670 * priority drop. Global direct reclaim can go to the next
1671 * zone and tends to have no problems. Global kswapd is for
1672 * zone balancing and it needs to scan a minimum amount. When
1673 * reclaiming for a memcg, a priority drop can cause high
1674 * latencies, so it's better to scan a minimum amount there as
1675 * well.
1676 */
90126375 1677 if (current_is_kswapd() && zone->all_unreclaimable)
a4d3e9e7 1678 force_scan = true;
89b5fae5 1679 if (!global_reclaim(sc))
a4d3e9e7 1680 force_scan = true;
76a33fc3
SL
1681
1682 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1683 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1684 scan_balance = SCAN_FILE;
76a33fc3
SL
1685 goto out;
1686 }
4f98a2fe 1687
10316b31
JW
1688 /*
1689 * Global reclaim will swap to prevent OOM even with no
1690 * swappiness, but memcg users want to use this knob to
1691 * disable swapping for individual groups completely when
1692 * using the memory controller's swap limit feature would be
1693 * too expensive.
1694 */
1695 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1696 scan_balance = SCAN_FILE;
10316b31
JW
1697 goto out;
1698 }
1699
1700 /*
1701 * Do not apply any pressure balancing cleverness when the
1702 * system is close to OOM, scan both anon and file equally
1703 * (unless the swappiness setting disagrees with swapping).
1704 */
1705 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1706 scan_balance = SCAN_EQUAL;
10316b31
JW
1707 goto out;
1708 }
1709
4d7dcca2
HD
1710 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1711 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1712 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1713 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1714
11d16c25
JW
1715 /*
1716 * If it's foreseeable that reclaiming the file cache won't be
1717 * enough to get the zone back into a desirable shape, we have
1718 * to swap. Better start now and leave the - probably heavily
1719 * thrashing - remaining file pages alone.
1720 */
89b5fae5 1721 if (global_reclaim(sc)) {
11d16c25 1722 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1723 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1724 scan_balance = SCAN_ANON;
76a33fc3 1725 goto out;
eeee9a8c 1726 }
4f98a2fe
RR
1727 }
1728
7c5bd705
JW
1729 /*
1730 * There is enough inactive page cache, do not reclaim
1731 * anything from the anonymous working set right now.
1732 */
1733 if (!inactive_file_is_low(lruvec)) {
9a265114 1734 scan_balance = SCAN_FILE;
7c5bd705
JW
1735 goto out;
1736 }
1737
9a265114
JW
1738 scan_balance = SCAN_FRACT;
1739
58c37f6e
KM
1740 /*
1741 * With swappiness at 100, anonymous and file have the same priority.
1742 * This scanning priority is essentially the inverse of IO cost.
1743 */
3d58ab5c 1744 anon_prio = vmscan_swappiness(sc);
75b00af7 1745 file_prio = 200 - anon_prio;
58c37f6e 1746
4f98a2fe
RR
1747 /*
1748 * OK, so we have swap space and a fair amount of page cache
1749 * pages. We use the recently rotated / recently scanned
1750 * ratios to determine how valuable each cache is.
1751 *
1752 * Because workloads change over time (and to avoid overflow)
1753 * we keep these statistics as a floating average, which ends
1754 * up weighing recent references more than old ones.
1755 *
1756 * anon in [0], file in [1]
1757 */
90126375 1758 spin_lock_irq(&zone->lru_lock);
6e901571 1759 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1760 reclaim_stat->recent_scanned[0] /= 2;
1761 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1762 }
1763
6e901571 1764 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1765 reclaim_stat->recent_scanned[1] /= 2;
1766 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1767 }
1768
4f98a2fe 1769 /*
00d8089c
RR
1770 * The amount of pressure on anon vs file pages is inversely
1771 * proportional to the fraction of recently scanned pages on
1772 * each list that were recently referenced and in active use.
4f98a2fe 1773 */
fe35004f 1774 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1775 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1776
fe35004f 1777 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1778 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1779 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1780
76a33fc3
SL
1781 fraction[0] = ap;
1782 fraction[1] = fp;
1783 denominator = ap + fp + 1;
1784out:
4111304d
HD
1785 for_each_evictable_lru(lru) {
1786 int file = is_file_lru(lru);
d778df51 1787 unsigned long size;
76a33fc3 1788 unsigned long scan;
6e08a369 1789
d778df51 1790 size = get_lru_size(lruvec, lru);
10316b31 1791 scan = size >> sc->priority;
9a265114 1792
10316b31
JW
1793 if (!scan && force_scan)
1794 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1795
1796 switch (scan_balance) {
1797 case SCAN_EQUAL:
1798 /* Scan lists relative to size */
1799 break;
1800 case SCAN_FRACT:
1801 /*
1802 * Scan types proportional to swappiness and
1803 * their relative recent reclaim efficiency.
1804 */
1805 scan = div64_u64(scan * fraction[file], denominator);
1806 break;
1807 case SCAN_FILE:
1808 case SCAN_ANON:
1809 /* Scan one type exclusively */
1810 if ((scan_balance == SCAN_FILE) != file)
1811 scan = 0;
1812 break;
1813 default:
1814 /* Look ma, no brain */
1815 BUG();
1816 }
4111304d 1817 nr[lru] = scan;
76a33fc3 1818 }
6e08a369 1819}
4f98a2fe 1820
9b4f98cd
JW
1821/*
1822 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1823 */
1824static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1825{
1826 unsigned long nr[NR_LRU_LISTS];
1827 unsigned long nr_to_scan;
1828 enum lru_list lru;
1829 unsigned long nr_reclaimed = 0;
1830 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1831 struct blk_plug plug;
1832
1833 get_scan_count(lruvec, sc, nr);
1834
1835 blk_start_plug(&plug);
1836 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1837 nr[LRU_INACTIVE_FILE]) {
1838 for_each_evictable_lru(lru) {
1839 if (nr[lru]) {
1840 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1841 nr[lru] -= nr_to_scan;
1842
1843 nr_reclaimed += shrink_list(lru, nr_to_scan,
1844 lruvec, sc);
1845 }
1846 }
1847 /*
1848 * On large memory systems, scan >> priority can become
1849 * really large. This is fine for the starting priority;
1850 * we want to put equal scanning pressure on each zone.
1851 * However, if the VM has a harder time of freeing pages,
1852 * with multiple processes reclaiming pages, the total
1853 * freeing target can get unreasonably large.
1854 */
1855 if (nr_reclaimed >= nr_to_reclaim &&
1856 sc->priority < DEF_PRIORITY)
1857 break;
1858 }
1859 blk_finish_plug(&plug);
1860 sc->nr_reclaimed += nr_reclaimed;
1861
1862 /*
1863 * Even if we did not try to evict anon pages at all, we want to
1864 * rebalance the anon lru active/inactive ratio.
1865 */
1866 if (inactive_anon_is_low(lruvec))
1867 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1868 sc, LRU_ACTIVE_ANON);
1869
1870 throttle_vm_writeout(sc->gfp_mask);
1871}
1872
23b9da55 1873/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 1874static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 1875{
d84da3f9 1876 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 1877 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 1878 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
1879 return true;
1880
1881 return false;
1882}
1883
3e7d3449 1884/*
23b9da55
MG
1885 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1886 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1887 * true if more pages should be reclaimed such that when the page allocator
1888 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1889 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1890 */
9b4f98cd 1891static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
1892 unsigned long nr_reclaimed,
1893 unsigned long nr_scanned,
1894 struct scan_control *sc)
1895{
1896 unsigned long pages_for_compaction;
1897 unsigned long inactive_lru_pages;
1898
1899 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 1900 if (!in_reclaim_compaction(sc))
3e7d3449
MG
1901 return false;
1902
2876592f
MG
1903 /* Consider stopping depending on scan and reclaim activity */
1904 if (sc->gfp_mask & __GFP_REPEAT) {
1905 /*
1906 * For __GFP_REPEAT allocations, stop reclaiming if the
1907 * full LRU list has been scanned and we are still failing
1908 * to reclaim pages. This full LRU scan is potentially
1909 * expensive but a __GFP_REPEAT caller really wants to succeed
1910 */
1911 if (!nr_reclaimed && !nr_scanned)
1912 return false;
1913 } else {
1914 /*
1915 * For non-__GFP_REPEAT allocations which can presumably
1916 * fail without consequence, stop if we failed to reclaim
1917 * any pages from the last SWAP_CLUSTER_MAX number of
1918 * pages that were scanned. This will return to the
1919 * caller faster at the risk reclaim/compaction and
1920 * the resulting allocation attempt fails
1921 */
1922 if (!nr_reclaimed)
1923 return false;
1924 }
3e7d3449
MG
1925
1926 /*
1927 * If we have not reclaimed enough pages for compaction and the
1928 * inactive lists are large enough, continue reclaiming
1929 */
1930 pages_for_compaction = (2UL << sc->order);
9b4f98cd 1931 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 1932 if (get_nr_swap_pages() > 0)
9b4f98cd 1933 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
1934 if (sc->nr_reclaimed < pages_for_compaction &&
1935 inactive_lru_pages > pages_for_compaction)
1936 return true;
1937
1938 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 1939 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
1940 case COMPACT_PARTIAL:
1941 case COMPACT_CONTINUE:
1942 return false;
1943 default:
1944 return true;
1945 }
1946}
1947
9b4f98cd 1948static void shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 1949{
f0fdc5e8 1950 unsigned long nr_reclaimed, nr_scanned;
1da177e4 1951
9b4f98cd
JW
1952 do {
1953 struct mem_cgroup *root = sc->target_mem_cgroup;
1954 struct mem_cgroup_reclaim_cookie reclaim = {
1955 .zone = zone,
1956 .priority = sc->priority,
1957 };
1958 struct mem_cgroup *memcg;
3e7d3449 1959
9b4f98cd
JW
1960 nr_reclaimed = sc->nr_reclaimed;
1961 nr_scanned = sc->nr_scanned;
1da177e4 1962
9b4f98cd
JW
1963 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1964 do {
1965 struct lruvec *lruvec;
5660048c 1966
9b4f98cd 1967 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 1968
9b4f98cd 1969 shrink_lruvec(lruvec, sc);
f16015fb 1970
9b4f98cd 1971 /*
a394cb8e
MH
1972 * Direct reclaim and kswapd have to scan all memory
1973 * cgroups to fulfill the overall scan target for the
9b4f98cd 1974 * zone.
a394cb8e
MH
1975 *
1976 * Limit reclaim, on the other hand, only cares about
1977 * nr_to_reclaim pages to be reclaimed and it will
1978 * retry with decreasing priority if one round over the
1979 * whole hierarchy is not sufficient.
9b4f98cd 1980 */
a394cb8e
MH
1981 if (!global_reclaim(sc) &&
1982 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
1983 mem_cgroup_iter_break(root, memcg);
1984 break;
1985 }
1986 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1987 } while (memcg);
70ddf637
AV
1988
1989 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
1990 sc->nr_scanned - nr_scanned,
1991 sc->nr_reclaimed - nr_reclaimed);
1992
9b4f98cd
JW
1993 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
1994 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
1995}
1996
fe4b1b24
MG
1997/* Returns true if compaction should go ahead for a high-order request */
1998static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1999{
2000 unsigned long balance_gap, watermark;
2001 bool watermark_ok;
2002
2003 /* Do not consider compaction for orders reclaim is meant to satisfy */
2004 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2005 return false;
2006
2007 /*
2008 * Compaction takes time to run and there are potentially other
2009 * callers using the pages just freed. Continue reclaiming until
2010 * there is a buffer of free pages available to give compaction
2011 * a reasonable chance of completing and allocating the page
2012 */
2013 balance_gap = min(low_wmark_pages(zone),
b40da049 2014 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2015 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2016 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2017 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2018
2019 /*
2020 * If compaction is deferred, reclaim up to a point where
2021 * compaction will have a chance of success when re-enabled
2022 */
aff62249 2023 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2024 return watermark_ok;
2025
2026 /* If compaction is not ready to start, keep reclaiming */
2027 if (!compaction_suitable(zone, sc->order))
2028 return false;
2029
2030 return watermark_ok;
2031}
2032
1da177e4
LT
2033/*
2034 * This is the direct reclaim path, for page-allocating processes. We only
2035 * try to reclaim pages from zones which will satisfy the caller's allocation
2036 * request.
2037 *
41858966
MG
2038 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2039 * Because:
1da177e4
LT
2040 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2041 * allocation or
41858966
MG
2042 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2043 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2044 * zone defense algorithm.
1da177e4 2045 *
1da177e4
LT
2046 * If a zone is deemed to be full of pinned pages then just give it a light
2047 * scan then give up on it.
e0c23279
MG
2048 *
2049 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2050 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2051 * the caller that it should consider retrying the allocation instead of
2052 * further reclaim.
1da177e4 2053 */
9e3b2f8c 2054static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2055{
dd1a239f 2056 struct zoneref *z;
54a6eb5c 2057 struct zone *zone;
d149e3b2
YH
2058 unsigned long nr_soft_reclaimed;
2059 unsigned long nr_soft_scanned;
0cee34fd 2060 bool aborted_reclaim = false;
1cfb419b 2061
cc715d99
MG
2062 /*
2063 * If the number of buffer_heads in the machine exceeds the maximum
2064 * allowed level, force direct reclaim to scan the highmem zone as
2065 * highmem pages could be pinning lowmem pages storing buffer_heads
2066 */
2067 if (buffer_heads_over_limit)
2068 sc->gfp_mask |= __GFP_HIGHMEM;
2069
d4debc66
MG
2070 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2071 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2072 if (!populated_zone(zone))
1da177e4 2073 continue;
1cfb419b
KH
2074 /*
2075 * Take care memory controller reclaiming has small influence
2076 * to global LRU.
2077 */
89b5fae5 2078 if (global_reclaim(sc)) {
1cfb419b
KH
2079 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2080 continue;
9e3b2f8c
KK
2081 if (zone->all_unreclaimable &&
2082 sc->priority != DEF_PRIORITY)
1cfb419b 2083 continue; /* Let kswapd poll it */
d84da3f9 2084 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2085 /*
e0c23279
MG
2086 * If we already have plenty of memory free for
2087 * compaction in this zone, don't free any more.
2088 * Even though compaction is invoked for any
2089 * non-zero order, only frequent costly order
2090 * reclamation is disruptive enough to become a
c7cfa37b
CA
2091 * noticeable problem, like transparent huge
2092 * page allocations.
e0887c19 2093 */
fe4b1b24 2094 if (compaction_ready(zone, sc)) {
0cee34fd 2095 aborted_reclaim = true;
e0887c19 2096 continue;
e0c23279 2097 }
e0887c19 2098 }
ac34a1a3
KH
2099 /*
2100 * This steals pages from memory cgroups over softlimit
2101 * and returns the number of reclaimed pages and
2102 * scanned pages. This works for global memory pressure
2103 * and balancing, not for a memcg's limit.
2104 */
2105 nr_soft_scanned = 0;
2106 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2107 sc->order, sc->gfp_mask,
2108 &nr_soft_scanned);
2109 sc->nr_reclaimed += nr_soft_reclaimed;
2110 sc->nr_scanned += nr_soft_scanned;
2111 /* need some check for avoid more shrink_zone() */
1cfb419b 2112 }
408d8544 2113
9e3b2f8c 2114 shrink_zone(zone, sc);
1da177e4 2115 }
e0c23279 2116
0cee34fd 2117 return aborted_reclaim;
d1908362
MK
2118}
2119
48526149
JW
2120static unsigned long zone_reclaimable_pages(struct zone *zone)
2121{
2122 int nr;
2123
2124 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2125 zone_page_state(zone, NR_INACTIVE_FILE);
2126
2127 if (get_nr_swap_pages() > 0)
2128 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2129 zone_page_state(zone, NR_INACTIVE_ANON);
2130
2131 return nr;
2132}
2133
d1908362
MK
2134static bool zone_reclaimable(struct zone *zone)
2135{
2136 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2137}
2138
929bea7c 2139/* All zones in zonelist are unreclaimable? */
d1908362
MK
2140static bool all_unreclaimable(struct zonelist *zonelist,
2141 struct scan_control *sc)
2142{
2143 struct zoneref *z;
2144 struct zone *zone;
d1908362
MK
2145
2146 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2147 gfp_zone(sc->gfp_mask), sc->nodemask) {
2148 if (!populated_zone(zone))
2149 continue;
2150 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2151 continue;
929bea7c
KM
2152 if (!zone->all_unreclaimable)
2153 return false;
d1908362
MK
2154 }
2155
929bea7c 2156 return true;
1da177e4 2157}
4f98a2fe 2158
1da177e4
LT
2159/*
2160 * This is the main entry point to direct page reclaim.
2161 *
2162 * If a full scan of the inactive list fails to free enough memory then we
2163 * are "out of memory" and something needs to be killed.
2164 *
2165 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2166 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2167 * caller can't do much about. We kick the writeback threads and take explicit
2168 * naps in the hope that some of these pages can be written. But if the
2169 * allocating task holds filesystem locks which prevent writeout this might not
2170 * work, and the allocation attempt will fail.
a41f24ea
NA
2171 *
2172 * returns: 0, if no pages reclaimed
2173 * else, the number of pages reclaimed
1da177e4 2174 */
dac1d27b 2175static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2176 struct scan_control *sc,
2177 struct shrink_control *shrink)
1da177e4 2178{
69e05944 2179 unsigned long total_scanned = 0;
1da177e4 2180 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2181 struct zoneref *z;
54a6eb5c 2182 struct zone *zone;
22fba335 2183 unsigned long writeback_threshold;
0cee34fd 2184 bool aborted_reclaim;
1da177e4 2185
873b4771
KK
2186 delayacct_freepages_start();
2187
89b5fae5 2188 if (global_reclaim(sc))
1cfb419b 2189 count_vm_event(ALLOCSTALL);
1da177e4 2190
9e3b2f8c 2191 do {
70ddf637
AV
2192 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2193 sc->priority);
66e1707b 2194 sc->nr_scanned = 0;
9e3b2f8c 2195 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2196
66e1707b
BS
2197 /*
2198 * Don't shrink slabs when reclaiming memory from
2199 * over limit cgroups
2200 */
89b5fae5 2201 if (global_reclaim(sc)) {
c6a8a8c5 2202 unsigned long lru_pages = 0;
d4debc66
MG
2203 for_each_zone_zonelist(zone, z, zonelist,
2204 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2205 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2206 continue;
2207
2208 lru_pages += zone_reclaimable_pages(zone);
2209 }
2210
1495f230 2211 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2212 if (reclaim_state) {
a79311c1 2213 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2214 reclaim_state->reclaimed_slab = 0;
2215 }
1da177e4 2216 }
66e1707b 2217 total_scanned += sc->nr_scanned;
bb21c7ce 2218 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2219 goto out;
1da177e4 2220
0e50ce3b
MK
2221 /*
2222 * If we're getting trouble reclaiming, start doing
2223 * writepage even in laptop mode.
2224 */
2225 if (sc->priority < DEF_PRIORITY - 2)
2226 sc->may_writepage = 1;
2227
1da177e4
LT
2228 /*
2229 * Try to write back as many pages as we just scanned. This
2230 * tends to cause slow streaming writers to write data to the
2231 * disk smoothly, at the dirtying rate, which is nice. But
2232 * that's undesirable in laptop mode, where we *want* lumpy
2233 * writeout. So in laptop mode, write out the whole world.
2234 */
22fba335
KM
2235 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2236 if (total_scanned > writeback_threshold) {
0e175a18
CW
2237 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2238 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2239 sc->may_writepage = 1;
1da177e4
LT
2240 }
2241
2242 /* Take a nap, wait for some writeback to complete */
7b51755c 2243 if (!sc->hibernation_mode && sc->nr_scanned &&
9e3b2f8c 2244 sc->priority < DEF_PRIORITY - 2) {
0e093d99
MG
2245 struct zone *preferred_zone;
2246
2247 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2248 &cpuset_current_mems_allowed,
2249 &preferred_zone);
0e093d99
MG
2250 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2251 }
9e3b2f8c 2252 } while (--sc->priority >= 0);
bb21c7ce 2253
1da177e4 2254out:
873b4771
KK
2255 delayacct_freepages_end();
2256
bb21c7ce
KM
2257 if (sc->nr_reclaimed)
2258 return sc->nr_reclaimed;
2259
929bea7c
KM
2260 /*
2261 * As hibernation is going on, kswapd is freezed so that it can't mark
2262 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2263 * check.
2264 */
2265 if (oom_killer_disabled)
2266 return 0;
2267
0cee34fd
MG
2268 /* Aborted reclaim to try compaction? don't OOM, then */
2269 if (aborted_reclaim)
7335084d
MG
2270 return 1;
2271
bb21c7ce 2272 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2273 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2274 return 1;
2275
2276 return 0;
1da177e4
LT
2277}
2278
5515061d
MG
2279static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2280{
2281 struct zone *zone;
2282 unsigned long pfmemalloc_reserve = 0;
2283 unsigned long free_pages = 0;
2284 int i;
2285 bool wmark_ok;
2286
2287 for (i = 0; i <= ZONE_NORMAL; i++) {
2288 zone = &pgdat->node_zones[i];
16838de6
MG
2289 if (!populated_zone(zone))
2290 continue;
2291
5515061d
MG
2292 pfmemalloc_reserve += min_wmark_pages(zone);
2293 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2294 }
2295
16838de6
MG
2296 /* If there are no reserves (unexpected config) then do not throttle */
2297 if (!pfmemalloc_reserve)
2298 return true;
2299
5515061d
MG
2300 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2301
2302 /* kswapd must be awake if processes are being throttled */
2303 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2304 pgdat->classzone_idx = min(pgdat->classzone_idx,
2305 (enum zone_type)ZONE_NORMAL);
2306 wake_up_interruptible(&pgdat->kswapd_wait);
2307 }
2308
2309 return wmark_ok;
2310}
2311
2312/*
2313 * Throttle direct reclaimers if backing storage is backed by the network
2314 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2315 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2316 * when the low watermark is reached.
2317 *
2318 * Returns true if a fatal signal was delivered during throttling. If this
2319 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2320 */
50694c28 2321static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2322 nodemask_t *nodemask)
2323{
16838de6 2324 struct zoneref *z;
5515061d 2325 struct zone *zone;
16838de6 2326 pg_data_t *pgdat = NULL;
5515061d
MG
2327
2328 /*
2329 * Kernel threads should not be throttled as they may be indirectly
2330 * responsible for cleaning pages necessary for reclaim to make forward
2331 * progress. kjournald for example may enter direct reclaim while
2332 * committing a transaction where throttling it could forcing other
2333 * processes to block on log_wait_commit().
2334 */
2335 if (current->flags & PF_KTHREAD)
50694c28
MG
2336 goto out;
2337
2338 /*
2339 * If a fatal signal is pending, this process should not throttle.
2340 * It should return quickly so it can exit and free its memory
2341 */
2342 if (fatal_signal_pending(current))
2343 goto out;
5515061d 2344
16838de6
MG
2345 /*
2346 * Check if the pfmemalloc reserves are ok by finding the first node
2347 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2348 * GFP_KERNEL will be required for allocating network buffers when
2349 * swapping over the network so ZONE_HIGHMEM is unusable.
2350 *
2351 * Throttling is based on the first usable node and throttled processes
2352 * wait on a queue until kswapd makes progress and wakes them. There
2353 * is an affinity then between processes waking up and where reclaim
2354 * progress has been made assuming the process wakes on the same node.
2355 * More importantly, processes running on remote nodes will not compete
2356 * for remote pfmemalloc reserves and processes on different nodes
2357 * should make reasonable progress.
2358 */
2359 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2360 gfp_mask, nodemask) {
2361 if (zone_idx(zone) > ZONE_NORMAL)
2362 continue;
2363
2364 /* Throttle based on the first usable node */
2365 pgdat = zone->zone_pgdat;
2366 if (pfmemalloc_watermark_ok(pgdat))
2367 goto out;
2368 break;
2369 }
2370
2371 /* If no zone was usable by the allocation flags then do not throttle */
2372 if (!pgdat)
50694c28 2373 goto out;
5515061d 2374
68243e76
MG
2375 /* Account for the throttling */
2376 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2377
5515061d
MG
2378 /*
2379 * If the caller cannot enter the filesystem, it's possible that it
2380 * is due to the caller holding an FS lock or performing a journal
2381 * transaction in the case of a filesystem like ext[3|4]. In this case,
2382 * it is not safe to block on pfmemalloc_wait as kswapd could be
2383 * blocked waiting on the same lock. Instead, throttle for up to a
2384 * second before continuing.
2385 */
2386 if (!(gfp_mask & __GFP_FS)) {
2387 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2388 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2389
2390 goto check_pending;
5515061d
MG
2391 }
2392
2393 /* Throttle until kswapd wakes the process */
2394 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2395 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2396
2397check_pending:
2398 if (fatal_signal_pending(current))
2399 return true;
2400
2401out:
2402 return false;
5515061d
MG
2403}
2404
dac1d27b 2405unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2406 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2407{
33906bc5 2408 unsigned long nr_reclaimed;
66e1707b 2409 struct scan_control sc = {
21caf2fc 2410 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2411 .may_writepage = !laptop_mode,
22fba335 2412 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2413 .may_unmap = 1,
2e2e4259 2414 .may_swap = 1,
66e1707b 2415 .order = order,
9e3b2f8c 2416 .priority = DEF_PRIORITY,
f16015fb 2417 .target_mem_cgroup = NULL,
327c0e96 2418 .nodemask = nodemask,
66e1707b 2419 };
a09ed5e0
YH
2420 struct shrink_control shrink = {
2421 .gfp_mask = sc.gfp_mask,
2422 };
66e1707b 2423
5515061d 2424 /*
50694c28
MG
2425 * Do not enter reclaim if fatal signal was delivered while throttled.
2426 * 1 is returned so that the page allocator does not OOM kill at this
2427 * point.
5515061d 2428 */
50694c28 2429 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2430 return 1;
2431
33906bc5
MG
2432 trace_mm_vmscan_direct_reclaim_begin(order,
2433 sc.may_writepage,
2434 gfp_mask);
2435
a09ed5e0 2436 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2437
2438 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2439
2440 return nr_reclaimed;
66e1707b
BS
2441}
2442
c255a458 2443#ifdef CONFIG_MEMCG
66e1707b 2444
72835c86 2445unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2446 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2447 struct zone *zone,
2448 unsigned long *nr_scanned)
4e416953
BS
2449{
2450 struct scan_control sc = {
0ae5e89c 2451 .nr_scanned = 0,
b8f5c566 2452 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2453 .may_writepage = !laptop_mode,
2454 .may_unmap = 1,
2455 .may_swap = !noswap,
4e416953 2456 .order = 0,
9e3b2f8c 2457 .priority = 0,
72835c86 2458 .target_mem_cgroup = memcg,
4e416953 2459 };
f9be23d6 2460 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2461
4e416953
BS
2462 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2463 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2464
9e3b2f8c 2465 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2466 sc.may_writepage,
2467 sc.gfp_mask);
2468
4e416953
BS
2469 /*
2470 * NOTE: Although we can get the priority field, using it
2471 * here is not a good idea, since it limits the pages we can scan.
2472 * if we don't reclaim here, the shrink_zone from balance_pgdat
2473 * will pick up pages from other mem cgroup's as well. We hack
2474 * the priority and make it zero.
2475 */
f9be23d6 2476 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2477
2478 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2479
0ae5e89c 2480 *nr_scanned = sc.nr_scanned;
4e416953
BS
2481 return sc.nr_reclaimed;
2482}
2483
72835c86 2484unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2485 gfp_t gfp_mask,
185efc0f 2486 bool noswap)
66e1707b 2487{
4e416953 2488 struct zonelist *zonelist;
bdce6d9e 2489 unsigned long nr_reclaimed;
889976db 2490 int nid;
66e1707b 2491 struct scan_control sc = {
66e1707b 2492 .may_writepage = !laptop_mode,
a6dc60f8 2493 .may_unmap = 1,
2e2e4259 2494 .may_swap = !noswap,
22fba335 2495 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2496 .order = 0,
9e3b2f8c 2497 .priority = DEF_PRIORITY,
72835c86 2498 .target_mem_cgroup = memcg,
327c0e96 2499 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2500 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2501 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2502 };
2503 struct shrink_control shrink = {
2504 .gfp_mask = sc.gfp_mask,
66e1707b 2505 };
66e1707b 2506
889976db
YH
2507 /*
2508 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2509 * take care of from where we get pages. So the node where we start the
2510 * scan does not need to be the current node.
2511 */
72835c86 2512 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2513
2514 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2515
2516 trace_mm_vmscan_memcg_reclaim_begin(0,
2517 sc.may_writepage,
2518 sc.gfp_mask);
2519
a09ed5e0 2520 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2521
2522 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2523
2524 return nr_reclaimed;
66e1707b
BS
2525}
2526#endif
2527
9e3b2f8c 2528static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2529{
b95a2f2d 2530 struct mem_cgroup *memcg;
f16015fb 2531
b95a2f2d
JW
2532 if (!total_swap_pages)
2533 return;
2534
2535 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2536 do {
c56d5c7d 2537 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2538
c56d5c7d 2539 if (inactive_anon_is_low(lruvec))
1a93be0e 2540 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2541 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2542
2543 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2544 } while (memcg);
f16015fb
JW
2545}
2546
60cefed4
JW
2547static bool zone_balanced(struct zone *zone, int order,
2548 unsigned long balance_gap, int classzone_idx)
2549{
2550 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2551 balance_gap, classzone_idx, 0))
2552 return false;
2553
d84da3f9
KS
2554 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2555 !compaction_suitable(zone, order))
60cefed4
JW
2556 return false;
2557
2558 return true;
2559}
2560
1741c877 2561/*
4ae0a48b
ZC
2562 * pgdat_balanced() is used when checking if a node is balanced.
2563 *
2564 * For order-0, all zones must be balanced!
2565 *
2566 * For high-order allocations only zones that meet watermarks and are in a
2567 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2568 * total of balanced pages must be at least 25% of the zones allowed by
2569 * classzone_idx for the node to be considered balanced. Forcing all zones to
2570 * be balanced for high orders can cause excessive reclaim when there are
2571 * imbalanced zones.
1741c877
MG
2572 * The choice of 25% is due to
2573 * o a 16M DMA zone that is balanced will not balance a zone on any
2574 * reasonable sized machine
2575 * o On all other machines, the top zone must be at least a reasonable
25985edc 2576 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2577 * would need to be at least 256M for it to be balance a whole node.
2578 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2579 * to balance a node on its own. These seemed like reasonable ratios.
2580 */
4ae0a48b 2581static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2582{
b40da049 2583 unsigned long managed_pages = 0;
4ae0a48b 2584 unsigned long balanced_pages = 0;
1741c877
MG
2585 int i;
2586
4ae0a48b
ZC
2587 /* Check the watermark levels */
2588 for (i = 0; i <= classzone_idx; i++) {
2589 struct zone *zone = pgdat->node_zones + i;
1741c877 2590
4ae0a48b
ZC
2591 if (!populated_zone(zone))
2592 continue;
2593
b40da049 2594 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2595
2596 /*
2597 * A special case here:
2598 *
2599 * balance_pgdat() skips over all_unreclaimable after
2600 * DEF_PRIORITY. Effectively, it considers them balanced so
2601 * they must be considered balanced here as well!
2602 */
2603 if (zone->all_unreclaimable) {
b40da049 2604 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2605 continue;
2606 }
2607
2608 if (zone_balanced(zone, order, 0, i))
b40da049 2609 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2610 else if (!order)
2611 return false;
2612 }
2613
2614 if (order)
b40da049 2615 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2616 else
2617 return true;
1741c877
MG
2618}
2619
5515061d
MG
2620/*
2621 * Prepare kswapd for sleeping. This verifies that there are no processes
2622 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2623 *
2624 * Returns true if kswapd is ready to sleep
2625 */
2626static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2627 int classzone_idx)
f50de2d3 2628{
f50de2d3
MG
2629 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2630 if (remaining)
5515061d
MG
2631 return false;
2632
2633 /*
6bb148fb
VB
2634 * The throttled processes are normally woken up in balance_pgdat() as
2635 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2636 * race between when kswapd checks the watermarks and a process gets
2637 * throttled. There is also a potential race if processes get
2638 * throttled, kswapd wakes, a large process exits thereby balancing the
2639 * zones, which causes kswapd to exit balance_pgdat() before reaching
2640 * the wake up checks. If kswapd is going to sleep, no process should
2641 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2642 * the wake up is premature, processes will wake kswapd and get
2643 * throttled again. The difference from wake ups in balance_pgdat() is
2644 * that here we are under prepare_to_wait().
5515061d 2645 */
6bb148fb
VB
2646 if (waitqueue_active(&pgdat->pfmemalloc_wait))
2647 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 2648
4ae0a48b 2649 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2650}
2651
1da177e4
LT
2652/*
2653 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2654 * they are all at high_wmark_pages(zone).
1da177e4 2655 *
0abdee2b 2656 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2657 *
2658 * There is special handling here for zones which are full of pinned pages.
2659 * This can happen if the pages are all mlocked, or if they are all used by
2660 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2661 * What we do is to detect the case where all pages in the zone have been
2662 * scanned twice and there has been zero successful reclaim. Mark the zone as
2663 * dead and from now on, only perform a short scan. Basically we're polling
2664 * the zone for when the problem goes away.
2665 *
2666 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2667 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2668 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2669 * lower zones regardless of the number of free pages in the lower zones. This
2670 * interoperates with the page allocator fallback scheme to ensure that aging
2671 * of pages is balanced across the zones.
1da177e4 2672 */
99504748 2673static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2674 int *classzone_idx)
1da177e4 2675{
dafcb73e 2676 bool pgdat_is_balanced = false;
1da177e4 2677 int i;
99504748 2678 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1da177e4 2679 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2680 unsigned long nr_soft_reclaimed;
2681 unsigned long nr_soft_scanned;
179e9639
AM
2682 struct scan_control sc = {
2683 .gfp_mask = GFP_KERNEL,
a6dc60f8 2684 .may_unmap = 1,
2e2e4259 2685 .may_swap = 1,
22fba335
KM
2686 /*
2687 * kswapd doesn't want to be bailed out while reclaim. because
2688 * we want to put equal scanning pressure on each zone.
2689 */
2690 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2691 .order = order,
f16015fb 2692 .target_mem_cgroup = NULL,
179e9639 2693 };
a09ed5e0
YH
2694 struct shrink_control shrink = {
2695 .gfp_mask = sc.gfp_mask,
2696 };
1da177e4 2697loop_again:
9e3b2f8c 2698 sc.priority = DEF_PRIORITY;
a79311c1 2699 sc.nr_reclaimed = 0;
c0bbbc73 2700 sc.may_writepage = !laptop_mode;
f8891e5e 2701 count_vm_event(PAGEOUTRUN);
1da177e4 2702
9e3b2f8c 2703 do {
1da177e4 2704 unsigned long lru_pages = 0;
1da177e4 2705
d6277db4
RW
2706 /*
2707 * Scan in the highmem->dma direction for the highest
2708 * zone which needs scanning
2709 */
2710 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2711 struct zone *zone = pgdat->node_zones + i;
1da177e4 2712
d6277db4
RW
2713 if (!populated_zone(zone))
2714 continue;
1da177e4 2715
9e3b2f8c
KK
2716 if (zone->all_unreclaimable &&
2717 sc.priority != DEF_PRIORITY)
d6277db4 2718 continue;
1da177e4 2719
556adecb
RR
2720 /*
2721 * Do some background aging of the anon list, to give
2722 * pages a chance to be referenced before reclaiming.
2723 */
9e3b2f8c 2724 age_active_anon(zone, &sc);
556adecb 2725
cc715d99
MG
2726 /*
2727 * If the number of buffer_heads in the machine
2728 * exceeds the maximum allowed level and this node
2729 * has a highmem zone, force kswapd to reclaim from
2730 * it to relieve lowmem pressure.
2731 */
2732 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2733 end_zone = i;
2734 break;
2735 }
2736
60cefed4 2737 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2738 end_zone = i;
e1dbeda6 2739 break;
439423f6
SL
2740 } else {
2741 /* If balanced, clear the congested flag */
2742 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2743 }
1da177e4 2744 }
dafcb73e
ZC
2745
2746 if (i < 0) {
2747 pgdat_is_balanced = true;
e1dbeda6 2748 goto out;
dafcb73e 2749 }
e1dbeda6 2750
1da177e4
LT
2751 for (i = 0; i <= end_zone; i++) {
2752 struct zone *zone = pgdat->node_zones + i;
2753
adea02a1 2754 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2755 }
2756
2757 /*
2758 * Now scan the zone in the dma->highmem direction, stopping
2759 * at the last zone which needs scanning.
2760 *
2761 * We do this because the page allocator works in the opposite
2762 * direction. This prevents the page allocator from allocating
2763 * pages behind kswapd's direction of progress, which would
2764 * cause too much scanning of the lower zones.
2765 */
2766 for (i = 0; i <= end_zone; i++) {
2767 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2768 int nr_slab, testorder;
8afdcece 2769 unsigned long balance_gap;
1da177e4 2770
f3fe6512 2771 if (!populated_zone(zone))
1da177e4
LT
2772 continue;
2773
9e3b2f8c
KK
2774 if (zone->all_unreclaimable &&
2775 sc.priority != DEF_PRIORITY)
1da177e4
LT
2776 continue;
2777
1da177e4 2778 sc.nr_scanned = 0;
4e416953 2779
0ae5e89c 2780 nr_soft_scanned = 0;
4e416953
BS
2781 /*
2782 * Call soft limit reclaim before calling shrink_zone.
4e416953 2783 */
0ae5e89c
YH
2784 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2785 order, sc.gfp_mask,
2786 &nr_soft_scanned);
2787 sc.nr_reclaimed += nr_soft_reclaimed;
00918b6a 2788
32a4330d 2789 /*
8afdcece
MG
2790 * We put equal pressure on every zone, unless
2791 * one zone has way too many pages free
2792 * already. The "too many pages" is defined
2793 * as the high wmark plus a "gap" where the
2794 * gap is either the low watermark or 1%
2795 * of the zone, whichever is smaller.
32a4330d 2796 */
8afdcece 2797 balance_gap = min(low_wmark_pages(zone),
b40da049 2798 (zone->managed_pages +
8afdcece
MG
2799 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2800 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2801 /*
2802 * Kswapd reclaims only single pages with compaction
2803 * enabled. Trying too hard to reclaim until contiguous
2804 * free pages have become available can hurt performance
2805 * by evicting too much useful data from memory.
2806 * Do not reclaim more than needed for compaction.
2807 */
2808 testorder = order;
d84da3f9 2809 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
fe2c2a10
RR
2810 compaction_suitable(zone, order) !=
2811 COMPACT_SKIPPED)
2812 testorder = 0;
2813
cc715d99 2814 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
60cefed4
JW
2815 !zone_balanced(zone, testorder,
2816 balance_gap, end_zone)) {
9e3b2f8c 2817 shrink_zone(zone, &sc);
5a03b051 2818
d7868dae
MG
2819 reclaim_state->reclaimed_slab = 0;
2820 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2821 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
d7868dae
MG
2822
2823 if (nr_slab == 0 && !zone_reclaimable(zone))
2824 zone->all_unreclaimable = 1;
2825 }
2826
1da177e4 2827 /*
0e50ce3b
MK
2828 * If we're getting trouble reclaiming, start doing
2829 * writepage even in laptop mode.
1da177e4 2830 */
0e50ce3b 2831 if (sc.priority < DEF_PRIORITY - 2)
1da177e4 2832 sc.may_writepage = 1;
bb3ab596 2833
215ddd66
MG
2834 if (zone->all_unreclaimable) {
2835 if (end_zone && end_zone == i)
2836 end_zone--;
d7868dae 2837 continue;
215ddd66 2838 }
d7868dae 2839
258401a6 2840 if (zone_balanced(zone, testorder, 0, end_zone))
0e093d99
MG
2841 /*
2842 * If a zone reaches its high watermark,
2843 * consider it to be no longer congested. It's
2844 * possible there are dirty pages backed by
2845 * congested BDIs but as pressure is relieved,
ab8704b8 2846 * speculatively avoid congestion waits
0e093d99
MG
2847 */
2848 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2849 }
5515061d
MG
2850
2851 /*
2852 * If the low watermark is met there is no need for processes
2853 * to be throttled on pfmemalloc_wait as they should not be
2854 * able to safely make forward progress. Wake them
2855 */
2856 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2857 pfmemalloc_watermark_ok(pgdat))
2858 wake_up(&pgdat->pfmemalloc_wait);
2859
dafcb73e
ZC
2860 if (pgdat_balanced(pgdat, order, *classzone_idx)) {
2861 pgdat_is_balanced = true;
1da177e4 2862 break; /* kswapd: all done */
dafcb73e
ZC
2863 }
2864
1da177e4
LT
2865 /*
2866 * We do this so kswapd doesn't build up large priorities for
2867 * example when it is freeing in parallel with allocators. It
2868 * matches the direct reclaim path behaviour in terms of impact
2869 * on zone->*_priority.
2870 */
a79311c1 2871 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4 2872 break;
9e3b2f8c 2873 } while (--sc.priority >= 0);
99504748 2874
dafcb73e
ZC
2875out:
2876 if (!pgdat_is_balanced) {
1da177e4 2877 cond_resched();
8357376d
RW
2878
2879 try_to_freeze();
2880
73ce02e9
KM
2881 /*
2882 * Fragmentation may mean that the system cannot be
2883 * rebalanced for high-order allocations in all zones.
2884 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2885 * it means the zones have been fully scanned and are still
2886 * not balanced. For high-order allocations, there is
2887 * little point trying all over again as kswapd may
2888 * infinite loop.
2889 *
2890 * Instead, recheck all watermarks at order-0 as they
2891 * are the most important. If watermarks are ok, kswapd will go
2892 * back to sleep. High-order users can still perform direct
2893 * reclaim if they wish.
2894 */
2895 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2896 order = sc.order = 0;
2897
1da177e4
LT
2898 goto loop_again;
2899 }
2900
99504748
MG
2901 /*
2902 * If kswapd was reclaiming at a higher order, it has the option of
2903 * sleeping without all zones being balanced. Before it does, it must
2904 * ensure that the watermarks for order-0 on *all* zones are met and
2905 * that the congestion flags are cleared. The congestion flag must
2906 * be cleared as kswapd is the only mechanism that clears the flag
2907 * and it is potentially going to sleep here.
2908 */
2909 if (order) {
7be62de9
RR
2910 int zones_need_compaction = 1;
2911
99504748
MG
2912 for (i = 0; i <= end_zone; i++) {
2913 struct zone *zone = pgdat->node_zones + i;
2914
2915 if (!populated_zone(zone))
2916 continue;
2917
7be62de9
RR
2918 /* Check if the memory needs to be defragmented. */
2919 if (zone_watermark_ok(zone, order,
2920 low_wmark_pages(zone), *classzone_idx, 0))
2921 zones_need_compaction = 0;
99504748 2922 }
7be62de9
RR
2923
2924 if (zones_need_compaction)
2925 compact_pgdat(pgdat, order);
99504748
MG
2926 }
2927
0abdee2b 2928 /*
5515061d 2929 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
2930 * makes a decision on the order we were last reclaiming at. However,
2931 * if another caller entered the allocator slow path while kswapd
2932 * was awake, order will remain at the higher level
2933 */
dc83edd9 2934 *classzone_idx = end_zone;
0abdee2b 2935 return order;
1da177e4
LT
2936}
2937
dc83edd9 2938static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2939{
2940 long remaining = 0;
2941 DEFINE_WAIT(wait);
2942
2943 if (freezing(current) || kthread_should_stop())
2944 return;
2945
2946 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2947
2948 /* Try to sleep for a short interval */
5515061d 2949 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2950 remaining = schedule_timeout(HZ/10);
2951 finish_wait(&pgdat->kswapd_wait, &wait);
2952 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2953 }
2954
2955 /*
2956 * After a short sleep, check if it was a premature sleep. If not, then
2957 * go fully to sleep until explicitly woken up.
2958 */
5515061d 2959 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2960 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2961
2962 /*
2963 * vmstat counters are not perfectly accurate and the estimated
2964 * value for counters such as NR_FREE_PAGES can deviate from the
2965 * true value by nr_online_cpus * threshold. To avoid the zone
2966 * watermarks being breached while under pressure, we reduce the
2967 * per-cpu vmstat threshold while kswapd is awake and restore
2968 * them before going back to sleep.
2969 */
2970 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 2971
62997027
MG
2972 /*
2973 * Compaction records what page blocks it recently failed to
2974 * isolate pages from and skips them in the future scanning.
2975 * When kswapd is going to sleep, it is reasonable to assume
2976 * that pages and compaction may succeed so reset the cache.
2977 */
2978 reset_isolation_suitable(pgdat);
2979
1c7e7f6c
AK
2980 if (!kthread_should_stop())
2981 schedule();
2982
f0bc0a60
KM
2983 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2984 } else {
2985 if (remaining)
2986 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2987 else
2988 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2989 }
2990 finish_wait(&pgdat->kswapd_wait, &wait);
2991}
2992
1da177e4
LT
2993/*
2994 * The background pageout daemon, started as a kernel thread
4f98a2fe 2995 * from the init process.
1da177e4
LT
2996 *
2997 * This basically trickles out pages so that we have _some_
2998 * free memory available even if there is no other activity
2999 * that frees anything up. This is needed for things like routing
3000 * etc, where we otherwise might have all activity going on in
3001 * asynchronous contexts that cannot page things out.
3002 *
3003 * If there are applications that are active memory-allocators
3004 * (most normal use), this basically shouldn't matter.
3005 */
3006static int kswapd(void *p)
3007{
215ddd66 3008 unsigned long order, new_order;
d2ebd0f6 3009 unsigned balanced_order;
215ddd66 3010 int classzone_idx, new_classzone_idx;
d2ebd0f6 3011 int balanced_classzone_idx;
1da177e4
LT
3012 pg_data_t *pgdat = (pg_data_t*)p;
3013 struct task_struct *tsk = current;
f0bc0a60 3014
1da177e4
LT
3015 struct reclaim_state reclaim_state = {
3016 .reclaimed_slab = 0,
3017 };
a70f7302 3018 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3019
cf40bd16
NP
3020 lockdep_set_current_reclaim_state(GFP_KERNEL);
3021
174596a0 3022 if (!cpumask_empty(cpumask))
c5f59f08 3023 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3024 current->reclaim_state = &reclaim_state;
3025
3026 /*
3027 * Tell the memory management that we're a "memory allocator",
3028 * and that if we need more memory we should get access to it
3029 * regardless (see "__alloc_pages()"). "kswapd" should
3030 * never get caught in the normal page freeing logic.
3031 *
3032 * (Kswapd normally doesn't need memory anyway, but sometimes
3033 * you need a small amount of memory in order to be able to
3034 * page out something else, and this flag essentially protects
3035 * us from recursively trying to free more memory as we're
3036 * trying to free the first piece of memory in the first place).
3037 */
930d9152 3038 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3039 set_freezable();
1da177e4 3040
215ddd66 3041 order = new_order = 0;
d2ebd0f6 3042 balanced_order = 0;
215ddd66 3043 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3044 balanced_classzone_idx = classzone_idx;
1da177e4 3045 for ( ; ; ) {
6f6313d4 3046 bool ret;
3e1d1d28 3047
215ddd66
MG
3048 /*
3049 * If the last balance_pgdat was unsuccessful it's unlikely a
3050 * new request of a similar or harder type will succeed soon
3051 * so consider going to sleep on the basis we reclaimed at
3052 */
d2ebd0f6
AS
3053 if (balanced_classzone_idx >= new_classzone_idx &&
3054 balanced_order == new_order) {
215ddd66
MG
3055 new_order = pgdat->kswapd_max_order;
3056 new_classzone_idx = pgdat->classzone_idx;
3057 pgdat->kswapd_max_order = 0;
3058 pgdat->classzone_idx = pgdat->nr_zones - 1;
3059 }
3060
99504748 3061 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3062 /*
3063 * Don't sleep if someone wants a larger 'order'
99504748 3064 * allocation or has tigher zone constraints
1da177e4
LT
3065 */
3066 order = new_order;
99504748 3067 classzone_idx = new_classzone_idx;
1da177e4 3068 } else {
d2ebd0f6
AS
3069 kswapd_try_to_sleep(pgdat, balanced_order,
3070 balanced_classzone_idx);
1da177e4 3071 order = pgdat->kswapd_max_order;
99504748 3072 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3073 new_order = order;
3074 new_classzone_idx = classzone_idx;
4d40502e 3075 pgdat->kswapd_max_order = 0;
215ddd66 3076 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3077 }
1da177e4 3078
8fe23e05
DR
3079 ret = try_to_freeze();
3080 if (kthread_should_stop())
3081 break;
3082
3083 /*
3084 * We can speed up thawing tasks if we don't call balance_pgdat
3085 * after returning from the refrigerator
3086 */
33906bc5
MG
3087 if (!ret) {
3088 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3089 balanced_classzone_idx = classzone_idx;
3090 balanced_order = balance_pgdat(pgdat, order,
3091 &balanced_classzone_idx);
33906bc5 3092 }
1da177e4 3093 }
b0a8cc58 3094
f26bff27 3095 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3096 current->reclaim_state = NULL;
f26bff27
JW
3097 lockdep_clear_current_reclaim_state();
3098
1da177e4
LT
3099 return 0;
3100}
3101
3102/*
3103 * A zone is low on free memory, so wake its kswapd task to service it.
3104 */
99504748 3105void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3106{
3107 pg_data_t *pgdat;
3108
f3fe6512 3109 if (!populated_zone(zone))
1da177e4
LT
3110 return;
3111
88f5acf8 3112 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3113 return;
88f5acf8 3114 pgdat = zone->zone_pgdat;
99504748 3115 if (pgdat->kswapd_max_order < order) {
1da177e4 3116 pgdat->kswapd_max_order = order;
99504748
MG
3117 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3118 }
8d0986e2 3119 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3120 return;
88f5acf8
MG
3121 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3122 return;
3123
3124 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3125 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3126}
3127
c6f37f12 3128#ifdef CONFIG_HIBERNATION
1da177e4 3129/*
7b51755c 3130 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3131 * freed pages.
3132 *
3133 * Rather than trying to age LRUs the aim is to preserve the overall
3134 * LRU order by reclaiming preferentially
3135 * inactive > active > active referenced > active mapped
1da177e4 3136 */
7b51755c 3137unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3138{
d6277db4 3139 struct reclaim_state reclaim_state;
d6277db4 3140 struct scan_control sc = {
7b51755c
KM
3141 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3142 .may_swap = 1,
3143 .may_unmap = 1,
d6277db4 3144 .may_writepage = 1,
7b51755c
KM
3145 .nr_to_reclaim = nr_to_reclaim,
3146 .hibernation_mode = 1,
7b51755c 3147 .order = 0,
9e3b2f8c 3148 .priority = DEF_PRIORITY,
1da177e4 3149 };
a09ed5e0
YH
3150 struct shrink_control shrink = {
3151 .gfp_mask = sc.gfp_mask,
3152 };
3153 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3154 struct task_struct *p = current;
3155 unsigned long nr_reclaimed;
1da177e4 3156
7b51755c
KM
3157 p->flags |= PF_MEMALLOC;
3158 lockdep_set_current_reclaim_state(sc.gfp_mask);
3159 reclaim_state.reclaimed_slab = 0;
3160 p->reclaim_state = &reclaim_state;
d6277db4 3161
a09ed5e0 3162 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3163
7b51755c
KM
3164 p->reclaim_state = NULL;
3165 lockdep_clear_current_reclaim_state();
3166 p->flags &= ~PF_MEMALLOC;
d6277db4 3167
7b51755c 3168 return nr_reclaimed;
1da177e4 3169}
c6f37f12 3170#endif /* CONFIG_HIBERNATION */
1da177e4 3171
1da177e4
LT
3172/* It's optimal to keep kswapds on the same CPUs as their memory, but
3173 not required for correctness. So if the last cpu in a node goes
3174 away, we get changed to run anywhere: as the first one comes back,
3175 restore their cpu bindings. */
fcb35a9b
GKH
3176static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3177 void *hcpu)
1da177e4 3178{
58c0a4a7 3179 int nid;
1da177e4 3180
8bb78442 3181 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3182 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3183 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3184 const struct cpumask *mask;
3185
3186 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3187
3e597945 3188 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3189 /* One of our CPUs online: restore mask */
c5f59f08 3190 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3191 }
3192 }
3193 return NOTIFY_OK;
3194}
1da177e4 3195
3218ae14
YG
3196/*
3197 * This kswapd start function will be called by init and node-hot-add.
3198 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3199 */
3200int kswapd_run(int nid)
3201{
3202 pg_data_t *pgdat = NODE_DATA(nid);
3203 int ret = 0;
3204
3205 if (pgdat->kswapd)
3206 return 0;
3207
3208 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3209 if (IS_ERR(pgdat->kswapd)) {
3210 /* failure at boot is fatal */
3211 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3212 pr_err("Failed to start kswapd on node %d\n", nid);
3213 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3214 pgdat->kswapd = NULL;
3218ae14
YG
3215 }
3216 return ret;
3217}
3218
8fe23e05 3219/*
d8adde17
JL
3220 * Called by memory hotplug when all memory in a node is offlined. Caller must
3221 * hold lock_memory_hotplug().
8fe23e05
DR
3222 */
3223void kswapd_stop(int nid)
3224{
3225 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3226
d8adde17 3227 if (kswapd) {
8fe23e05 3228 kthread_stop(kswapd);
d8adde17
JL
3229 NODE_DATA(nid)->kswapd = NULL;
3230 }
8fe23e05
DR
3231}
3232
1da177e4
LT
3233static int __init kswapd_init(void)
3234{
3218ae14 3235 int nid;
69e05944 3236
1da177e4 3237 swap_setup();
48fb2e24 3238 for_each_node_state(nid, N_MEMORY)
3218ae14 3239 kswapd_run(nid);
1da177e4
LT
3240 hotcpu_notifier(cpu_callback, 0);
3241 return 0;
3242}
3243
3244module_init(kswapd_init)
9eeff239
CL
3245
3246#ifdef CONFIG_NUMA
3247/*
3248 * Zone reclaim mode
3249 *
3250 * If non-zero call zone_reclaim when the number of free pages falls below
3251 * the watermarks.
9eeff239
CL
3252 */
3253int zone_reclaim_mode __read_mostly;
3254
1b2ffb78 3255#define RECLAIM_OFF 0
7d03431c 3256#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3257#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3258#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3259
a92f7126
CL
3260/*
3261 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3262 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3263 * a zone.
3264 */
3265#define ZONE_RECLAIM_PRIORITY 4
3266
9614634f
CL
3267/*
3268 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3269 * occur.
3270 */
3271int sysctl_min_unmapped_ratio = 1;
3272
0ff38490
CL
3273/*
3274 * If the number of slab pages in a zone grows beyond this percentage then
3275 * slab reclaim needs to occur.
3276 */
3277int sysctl_min_slab_ratio = 5;
3278
90afa5de
MG
3279static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3280{
3281 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3282 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3283 zone_page_state(zone, NR_ACTIVE_FILE);
3284
3285 /*
3286 * It's possible for there to be more file mapped pages than
3287 * accounted for by the pages on the file LRU lists because
3288 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3289 */
3290 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3291}
3292
3293/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3294static long zone_pagecache_reclaimable(struct zone *zone)
3295{
3296 long nr_pagecache_reclaimable;
3297 long delta = 0;
3298
3299 /*
3300 * If RECLAIM_SWAP is set, then all file pages are considered
3301 * potentially reclaimable. Otherwise, we have to worry about
3302 * pages like swapcache and zone_unmapped_file_pages() provides
3303 * a better estimate
3304 */
3305 if (zone_reclaim_mode & RECLAIM_SWAP)
3306 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3307 else
3308 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3309
3310 /* If we can't clean pages, remove dirty pages from consideration */
3311 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3312 delta += zone_page_state(zone, NR_FILE_DIRTY);
3313
3314 /* Watch for any possible underflows due to delta */
3315 if (unlikely(delta > nr_pagecache_reclaimable))
3316 delta = nr_pagecache_reclaimable;
3317
3318 return nr_pagecache_reclaimable - delta;
3319}
3320
9eeff239
CL
3321/*
3322 * Try to free up some pages from this zone through reclaim.
3323 */
179e9639 3324static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3325{
7fb2d46d 3326 /* Minimum pages needed in order to stay on node */
69e05944 3327 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3328 struct task_struct *p = current;
3329 struct reclaim_state reclaim_state;
179e9639
AM
3330 struct scan_control sc = {
3331 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3332 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3333 .may_swap = 1,
62b726c1 3334 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3335 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3336 .order = order,
9e3b2f8c 3337 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3338 };
a09ed5e0
YH
3339 struct shrink_control shrink = {
3340 .gfp_mask = sc.gfp_mask,
3341 };
15748048 3342 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3343
9eeff239 3344 cond_resched();
d4f7796e
CL
3345 /*
3346 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3347 * and we also need to be able to write out pages for RECLAIM_WRITE
3348 * and RECLAIM_SWAP.
3349 */
3350 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3351 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3352 reclaim_state.reclaimed_slab = 0;
3353 p->reclaim_state = &reclaim_state;
c84db23c 3354
90afa5de 3355 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3356 /*
3357 * Free memory by calling shrink zone with increasing
3358 * priorities until we have enough memory freed.
3359 */
0ff38490 3360 do {
9e3b2f8c
KK
3361 shrink_zone(zone, &sc);
3362 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3363 }
c84db23c 3364
15748048
KM
3365 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3366 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3367 /*
7fb2d46d 3368 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3369 * many pages were freed in this zone. So we take the current
3370 * number of slab pages and shake the slab until it is reduced
3371 * by the same nr_pages that we used for reclaiming unmapped
3372 * pages.
2a16e3f4 3373 *
0ff38490
CL
3374 * Note that shrink_slab will free memory on all zones and may
3375 * take a long time.
2a16e3f4 3376 */
4dc4b3d9
KM
3377 for (;;) {
3378 unsigned long lru_pages = zone_reclaimable_pages(zone);
3379
3380 /* No reclaimable slab or very low memory pressure */
1495f230 3381 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3382 break;
3383
3384 /* Freed enough memory */
3385 nr_slab_pages1 = zone_page_state(zone,
3386 NR_SLAB_RECLAIMABLE);
3387 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3388 break;
3389 }
83e33a47
CL
3390
3391 /*
3392 * Update nr_reclaimed by the number of slab pages we
3393 * reclaimed from this zone.
3394 */
15748048
KM
3395 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3396 if (nr_slab_pages1 < nr_slab_pages0)
3397 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3398 }
3399
9eeff239 3400 p->reclaim_state = NULL;
d4f7796e 3401 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3402 lockdep_clear_current_reclaim_state();
a79311c1 3403 return sc.nr_reclaimed >= nr_pages;
9eeff239 3404}
179e9639
AM
3405
3406int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3407{
179e9639 3408 int node_id;
d773ed6b 3409 int ret;
179e9639
AM
3410
3411 /*
0ff38490
CL
3412 * Zone reclaim reclaims unmapped file backed pages and
3413 * slab pages if we are over the defined limits.
34aa1330 3414 *
9614634f
CL
3415 * A small portion of unmapped file backed pages is needed for
3416 * file I/O otherwise pages read by file I/O will be immediately
3417 * thrown out if the zone is overallocated. So we do not reclaim
3418 * if less than a specified percentage of the zone is used by
3419 * unmapped file backed pages.
179e9639 3420 */
90afa5de
MG
3421 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3422 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3423 return ZONE_RECLAIM_FULL;
179e9639 3424
93e4a89a 3425 if (zone->all_unreclaimable)
fa5e084e 3426 return ZONE_RECLAIM_FULL;
d773ed6b 3427
179e9639 3428 /*
d773ed6b 3429 * Do not scan if the allocation should not be delayed.
179e9639 3430 */
d773ed6b 3431 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3432 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3433
3434 /*
3435 * Only run zone reclaim on the local zone or on zones that do not
3436 * have associated processors. This will favor the local processor
3437 * over remote processors and spread off node memory allocations
3438 * as wide as possible.
3439 */
89fa3024 3440 node_id = zone_to_nid(zone);
37c0708d 3441 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3442 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3443
3444 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3445 return ZONE_RECLAIM_NOSCAN;
3446
d773ed6b
DR
3447 ret = __zone_reclaim(zone, gfp_mask, order);
3448 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3449
24cf7251
MG
3450 if (!ret)
3451 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3452
d773ed6b 3453 return ret;
179e9639 3454}
9eeff239 3455#endif
894bc310 3456
894bc310
LS
3457/*
3458 * page_evictable - test whether a page is evictable
3459 * @page: the page to test
894bc310
LS
3460 *
3461 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3462 * lists vs unevictable list.
894bc310
LS
3463 *
3464 * Reasons page might not be evictable:
ba9ddf49 3465 * (1) page's mapping marked unevictable
b291f000 3466 * (2) page is part of an mlocked VMA
ba9ddf49 3467 *
894bc310 3468 */
39b5f29a 3469int page_evictable(struct page *page)
894bc310 3470{
39b5f29a 3471 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3472}
89e004ea 3473
85046579 3474#ifdef CONFIG_SHMEM
89e004ea 3475/**
24513264
HD
3476 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3477 * @pages: array of pages to check
3478 * @nr_pages: number of pages to check
89e004ea 3479 *
24513264 3480 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3481 *
3482 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3483 */
24513264 3484void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3485{
925b7673 3486 struct lruvec *lruvec;
24513264
HD
3487 struct zone *zone = NULL;
3488 int pgscanned = 0;
3489 int pgrescued = 0;
3490 int i;
89e004ea 3491
24513264
HD
3492 for (i = 0; i < nr_pages; i++) {
3493 struct page *page = pages[i];
3494 struct zone *pagezone;
89e004ea 3495
24513264
HD
3496 pgscanned++;
3497 pagezone = page_zone(page);
3498 if (pagezone != zone) {
3499 if (zone)
3500 spin_unlock_irq(&zone->lru_lock);
3501 zone = pagezone;
3502 spin_lock_irq(&zone->lru_lock);
3503 }
fa9add64 3504 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3505
24513264
HD
3506 if (!PageLRU(page) || !PageUnevictable(page))
3507 continue;
89e004ea 3508
39b5f29a 3509 if (page_evictable(page)) {
24513264
HD
3510 enum lru_list lru = page_lru_base_type(page);
3511
3512 VM_BUG_ON(PageActive(page));
3513 ClearPageUnevictable(page);
fa9add64
HD
3514 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3515 add_page_to_lru_list(page, lruvec, lru);
24513264 3516 pgrescued++;
89e004ea 3517 }
24513264 3518 }
89e004ea 3519
24513264
HD
3520 if (zone) {
3521 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3522 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3523 spin_unlock_irq(&zone->lru_lock);
89e004ea 3524 }
89e004ea 3525}
85046579 3526#endif /* CONFIG_SHMEM */
af936a16 3527
264e56d8 3528static void warn_scan_unevictable_pages(void)
af936a16 3529{
264e56d8 3530 printk_once(KERN_WARNING
25bd91bd 3531 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3532 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3533 "one, please send an email to linux-mm@kvack.org.\n",
3534 current->comm);
af936a16
LS
3535}
3536
3537/*
3538 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3539 * all nodes' unevictable lists for evictable pages
3540 */
3541unsigned long scan_unevictable_pages;
3542
3543int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3544 void __user *buffer,
af936a16
LS
3545 size_t *length, loff_t *ppos)
3546{
264e56d8 3547 warn_scan_unevictable_pages();
8d65af78 3548 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3549 scan_unevictable_pages = 0;
3550 return 0;
3551}
3552
e4455abb 3553#ifdef CONFIG_NUMA
af936a16
LS
3554/*
3555 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3556 * a specified node's per zone unevictable lists for evictable pages.
3557 */
3558
10fbcf4c
KS
3559static ssize_t read_scan_unevictable_node(struct device *dev,
3560 struct device_attribute *attr,
af936a16
LS
3561 char *buf)
3562{
264e56d8 3563 warn_scan_unevictable_pages();
af936a16
LS
3564 return sprintf(buf, "0\n"); /* always zero; should fit... */
3565}
3566
10fbcf4c
KS
3567static ssize_t write_scan_unevictable_node(struct device *dev,
3568 struct device_attribute *attr,
af936a16
LS
3569 const char *buf, size_t count)
3570{
264e56d8 3571 warn_scan_unevictable_pages();
af936a16
LS
3572 return 1;
3573}
3574
3575
10fbcf4c 3576static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3577 read_scan_unevictable_node,
3578 write_scan_unevictable_node);
3579
3580int scan_unevictable_register_node(struct node *node)
3581{
10fbcf4c 3582 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3583}
3584
3585void scan_unevictable_unregister_node(struct node *node)
3586{
10fbcf4c 3587 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3588}
e4455abb 3589#endif