tmpfs: don't undo fallocate past its last page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
27a7faa0 41#include <linux/page_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
ec8acf20 54static atomic_t highest_priority_index = ATOMIC_INIT(-1);
1da177e4 55
1da177e4
LT
56static const char Bad_file[] = "Bad swap file entry ";
57static const char Unused_file[] = "Unused swap file entry ";
58static const char Bad_offset[] = "Bad swap offset entry ";
59static const char Unused_offset[] = "Unused swap offset entry ";
60
38b5faf4 61struct swap_list_t swap_list = {-1, -1};
1da177e4 62
38b5faf4 63struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 64
fc0abb14 65static DEFINE_MUTEX(swapon_mutex);
1da177e4 66
66d7dd51
KS
67static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68/* Activity counter to indicate that a swapon or swapoff has occurred */
69static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
8d69aaee 71static inline unsigned char swap_count(unsigned char ent)
355cfa73 72{
570a335b 73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
74}
75
efa90a98 76/* returns 1 if swap entry is freed */
c9e44410
KH
77static int
78__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79{
efa90a98 80 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
81 struct page *page;
82 int ret = 0;
83
33806f06 84 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
85 if (!page)
86 return 0;
87 /*
88 * This function is called from scan_swap_map() and it's called
89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 * We have to use trylock for avoiding deadlock. This is a special
91 * case and you should use try_to_free_swap() with explicit lock_page()
92 * in usual operations.
93 */
94 if (trylock_page(page)) {
95 ret = try_to_free_swap(page);
96 unlock_page(page);
97 }
98 page_cache_release(page);
99 return ret;
100}
355cfa73 101
6a6ba831
HD
102/*
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
105 */
106static int discard_swap(struct swap_info_struct *si)
107{
108 struct swap_extent *se;
9625a5f2
HD
109 sector_t start_block;
110 sector_t nr_blocks;
6a6ba831
HD
111 int err = 0;
112
9625a5f2
HD
113 /* Do not discard the swap header page! */
114 se = &si->first_swap_extent;
115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 if (nr_blocks) {
118 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 119 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
120 if (err)
121 return err;
122 cond_resched();
123 }
6a6ba831 124
9625a5f2
HD
125 list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 start_block = se->start_block << (PAGE_SHIFT - 9);
127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
128
129 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 130 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
131 if (err)
132 break;
133
134 cond_resched();
135 }
136 return err; /* That will often be -EOPNOTSUPP */
137}
138
7992fde7
HD
139/*
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
142 */
143static void discard_swap_cluster(struct swap_info_struct *si,
144 pgoff_t start_page, pgoff_t nr_pages)
145{
146 struct swap_extent *se = si->curr_swap_extent;
147 int found_extent = 0;
148
149 while (nr_pages) {
150 struct list_head *lh;
151
152 if (se->start_page <= start_page &&
153 start_page < se->start_page + se->nr_pages) {
154 pgoff_t offset = start_page - se->start_page;
155 sector_t start_block = se->start_block + offset;
858a2990 156 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
157
158 if (nr_blocks > nr_pages)
159 nr_blocks = nr_pages;
160 start_page += nr_blocks;
161 nr_pages -= nr_blocks;
162
163 if (!found_extent++)
164 si->curr_swap_extent = se;
165
166 start_block <<= PAGE_SHIFT - 9;
167 nr_blocks <<= PAGE_SHIFT - 9;
168 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 169 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
170 break;
171 }
172
173 lh = se->list.next;
7992fde7
HD
174 se = list_entry(lh, struct swap_extent, list);
175 }
176}
177
178static int wait_for_discard(void *word)
179{
180 schedule();
181 return 0;
182}
183
048c27fd
HD
184#define SWAPFILE_CLUSTER 256
185#define LATENCY_LIMIT 256
186
24b8ff7c
CEB
187static unsigned long scan_swap_map(struct swap_info_struct *si,
188 unsigned char usage)
1da177e4 189{
ebebbbe9 190 unsigned long offset;
c60aa176 191 unsigned long scan_base;
7992fde7 192 unsigned long last_in_cluster = 0;
048c27fd 193 int latency_ration = LATENCY_LIMIT;
7992fde7 194 int found_free_cluster = 0;
7dfad418 195
886bb7e9 196 /*
7dfad418
HD
197 * We try to cluster swap pages by allocating them sequentially
198 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
199 * way, however, we resort to first-free allocation, starting
200 * a new cluster. This prevents us from scattering swap pages
201 * all over the entire swap partition, so that we reduce
202 * overall disk seek times between swap pages. -- sct
203 * But we do now try to find an empty cluster. -Andrea
c60aa176 204 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
205 */
206
52b7efdb 207 si->flags += SWP_SCANNING;
c60aa176 208 scan_base = offset = si->cluster_next;
ebebbbe9
HD
209
210 if (unlikely(!si->cluster_nr--)) {
211 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
212 si->cluster_nr = SWAPFILE_CLUSTER - 1;
213 goto checks;
214 }
7992fde7
HD
215 if (si->flags & SWP_DISCARDABLE) {
216 /*
217 * Start range check on racing allocations, in case
218 * they overlap the cluster we eventually decide on
219 * (we scan without swap_lock to allow preemption).
220 * It's hardly conceivable that cluster_nr could be
221 * wrapped during our scan, but don't depend on it.
222 */
223 if (si->lowest_alloc)
224 goto checks;
225 si->lowest_alloc = si->max;
226 si->highest_alloc = 0;
227 }
ec8acf20 228 spin_unlock(&si->lock);
7dfad418 229
c60aa176
HD
230 /*
231 * If seek is expensive, start searching for new cluster from
232 * start of partition, to minimize the span of allocated swap.
233 * But if seek is cheap, search from our current position, so
234 * that swap is allocated from all over the partition: if the
235 * Flash Translation Layer only remaps within limited zones,
236 * we don't want to wear out the first zone too quickly.
237 */
238 if (!(si->flags & SWP_SOLIDSTATE))
239 scan_base = offset = si->lowest_bit;
7dfad418
HD
240 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
241
242 /* Locate the first empty (unaligned) cluster */
243 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 244 if (si->swap_map[offset])
7dfad418
HD
245 last_in_cluster = offset + SWAPFILE_CLUSTER;
246 else if (offset == last_in_cluster) {
ec8acf20 247 spin_lock(&si->lock);
ebebbbe9
HD
248 offset -= SWAPFILE_CLUSTER - 1;
249 si->cluster_next = offset;
250 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 251 found_free_cluster = 1;
ebebbbe9 252 goto checks;
1da177e4 253 }
048c27fd
HD
254 if (unlikely(--latency_ration < 0)) {
255 cond_resched();
256 latency_ration = LATENCY_LIMIT;
257 }
7dfad418 258 }
ebebbbe9
HD
259
260 offset = si->lowest_bit;
c60aa176
HD
261 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
262
263 /* Locate the first empty (unaligned) cluster */
264 for (; last_in_cluster < scan_base; offset++) {
265 if (si->swap_map[offset])
266 last_in_cluster = offset + SWAPFILE_CLUSTER;
267 else if (offset == last_in_cluster) {
ec8acf20 268 spin_lock(&si->lock);
c60aa176
HD
269 offset -= SWAPFILE_CLUSTER - 1;
270 si->cluster_next = offset;
271 si->cluster_nr = SWAPFILE_CLUSTER - 1;
272 found_free_cluster = 1;
273 goto checks;
274 }
275 if (unlikely(--latency_ration < 0)) {
276 cond_resched();
277 latency_ration = LATENCY_LIMIT;
278 }
279 }
280
281 offset = scan_base;
ec8acf20 282 spin_lock(&si->lock);
ebebbbe9 283 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 284 si->lowest_alloc = 0;
1da177e4 285 }
7dfad418 286
ebebbbe9
HD
287checks:
288 if (!(si->flags & SWP_WRITEOK))
52b7efdb 289 goto no_page;
7dfad418
HD
290 if (!si->highest_bit)
291 goto no_page;
ebebbbe9 292 if (offset > si->highest_bit)
c60aa176 293 scan_base = offset = si->lowest_bit;
c9e44410 294
b73d7fce
HD
295 /* reuse swap entry of cache-only swap if not busy. */
296 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 297 int swap_was_freed;
ec8acf20 298 spin_unlock(&si->lock);
c9e44410 299 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 300 spin_lock(&si->lock);
c9e44410
KH
301 /* entry was freed successfully, try to use this again */
302 if (swap_was_freed)
303 goto checks;
304 goto scan; /* check next one */
305 }
306
ebebbbe9
HD
307 if (si->swap_map[offset])
308 goto scan;
309
310 if (offset == si->lowest_bit)
311 si->lowest_bit++;
312 if (offset == si->highest_bit)
313 si->highest_bit--;
314 si->inuse_pages++;
315 if (si->inuse_pages == si->pages) {
316 si->lowest_bit = si->max;
317 si->highest_bit = 0;
1da177e4 318 }
253d553b 319 si->swap_map[offset] = usage;
ebebbbe9
HD
320 si->cluster_next = offset + 1;
321 si->flags -= SWP_SCANNING;
7992fde7
HD
322
323 if (si->lowest_alloc) {
324 /*
325 * Only set when SWP_DISCARDABLE, and there's a scan
326 * for a free cluster in progress or just completed.
327 */
328 if (found_free_cluster) {
329 /*
330 * To optimize wear-levelling, discard the
331 * old data of the cluster, taking care not to
332 * discard any of its pages that have already
333 * been allocated by racing tasks (offset has
334 * already stepped over any at the beginning).
335 */
336 if (offset < si->highest_alloc &&
337 si->lowest_alloc <= last_in_cluster)
338 last_in_cluster = si->lowest_alloc - 1;
339 si->flags |= SWP_DISCARDING;
ec8acf20 340 spin_unlock(&si->lock);
7992fde7
HD
341
342 if (offset < last_in_cluster)
343 discard_swap_cluster(si, offset,
344 last_in_cluster - offset + 1);
345
ec8acf20 346 spin_lock(&si->lock);
7992fde7
HD
347 si->lowest_alloc = 0;
348 si->flags &= ~SWP_DISCARDING;
349
350 smp_mb(); /* wake_up_bit advises this */
351 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
352
353 } else if (si->flags & SWP_DISCARDING) {
354 /*
355 * Delay using pages allocated by racing tasks
356 * until the whole discard has been issued. We
357 * could defer that delay until swap_writepage,
358 * but it's easier to keep this self-contained.
359 */
ec8acf20 360 spin_unlock(&si->lock);
7992fde7
HD
361 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
362 wait_for_discard, TASK_UNINTERRUPTIBLE);
ec8acf20 363 spin_lock(&si->lock);
7992fde7
HD
364 } else {
365 /*
366 * Note pages allocated by racing tasks while
367 * scan for a free cluster is in progress, so
368 * that its final discard can exclude them.
369 */
370 if (offset < si->lowest_alloc)
371 si->lowest_alloc = offset;
372 if (offset > si->highest_alloc)
373 si->highest_alloc = offset;
374 }
375 }
ebebbbe9 376 return offset;
7dfad418 377
ebebbbe9 378scan:
ec8acf20 379 spin_unlock(&si->lock);
7dfad418 380 while (++offset <= si->highest_bit) {
52b7efdb 381 if (!si->swap_map[offset]) {
ec8acf20 382 spin_lock(&si->lock);
52b7efdb
HD
383 goto checks;
384 }
c9e44410 385 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 386 spin_lock(&si->lock);
c9e44410
KH
387 goto checks;
388 }
048c27fd
HD
389 if (unlikely(--latency_ration < 0)) {
390 cond_resched();
391 latency_ration = LATENCY_LIMIT;
392 }
7dfad418 393 }
c60aa176
HD
394 offset = si->lowest_bit;
395 while (++offset < scan_base) {
396 if (!si->swap_map[offset]) {
ec8acf20 397 spin_lock(&si->lock);
c60aa176
HD
398 goto checks;
399 }
c9e44410 400 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 401 spin_lock(&si->lock);
c9e44410
KH
402 goto checks;
403 }
c60aa176
HD
404 if (unlikely(--latency_ration < 0)) {
405 cond_resched();
406 latency_ration = LATENCY_LIMIT;
407 }
408 }
ec8acf20 409 spin_lock(&si->lock);
7dfad418
HD
410
411no_page:
52b7efdb 412 si->flags -= SWP_SCANNING;
1da177e4
LT
413 return 0;
414}
415
416swp_entry_t get_swap_page(void)
417{
fb4f88dc
HD
418 struct swap_info_struct *si;
419 pgoff_t offset;
420 int type, next;
421 int wrapped = 0;
ec8acf20 422 int hp_index;
1da177e4 423
5d337b91 424 spin_lock(&swap_lock);
ec8acf20 425 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 426 goto noswap;
ec8acf20 427 atomic_long_dec(&nr_swap_pages);
fb4f88dc
HD
428
429 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
ec8acf20
SL
430 hp_index = atomic_xchg(&highest_priority_index, -1);
431 /*
432 * highest_priority_index records current highest priority swap
433 * type which just frees swap entries. If its priority is
434 * higher than that of swap_list.next swap type, we use it. It
435 * isn't protected by swap_lock, so it can be an invalid value
436 * if the corresponding swap type is swapoff. We double check
437 * the flags here. It's even possible the swap type is swapoff
438 * and swapon again and its priority is changed. In such rare
439 * case, low prority swap type might be used, but eventually
440 * high priority swap will be used after several rounds of
441 * swap.
442 */
443 if (hp_index != -1 && hp_index != type &&
444 swap_info[type]->prio < swap_info[hp_index]->prio &&
445 (swap_info[hp_index]->flags & SWP_WRITEOK)) {
446 type = hp_index;
447 swap_list.next = type;
448 }
449
efa90a98 450 si = swap_info[type];
fb4f88dc
HD
451 next = si->next;
452 if (next < 0 ||
efa90a98 453 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
454 next = swap_list.head;
455 wrapped++;
1da177e4 456 }
fb4f88dc 457
ec8acf20
SL
458 spin_lock(&si->lock);
459 if (!si->highest_bit) {
460 spin_unlock(&si->lock);
fb4f88dc 461 continue;
ec8acf20
SL
462 }
463 if (!(si->flags & SWP_WRITEOK)) {
464 spin_unlock(&si->lock);
fb4f88dc 465 continue;
ec8acf20 466 }
fb4f88dc
HD
467
468 swap_list.next = next;
ec8acf20
SL
469
470 spin_unlock(&swap_lock);
355cfa73 471 /* This is called for allocating swap entry for cache */
253d553b 472 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
473 spin_unlock(&si->lock);
474 if (offset)
fb4f88dc 475 return swp_entry(type, offset);
ec8acf20 476 spin_lock(&swap_lock);
fb4f88dc 477 next = swap_list.next;
1da177e4 478 }
fb4f88dc 479
ec8acf20 480 atomic_long_inc(&nr_swap_pages);
fb4f88dc 481noswap:
5d337b91 482 spin_unlock(&swap_lock);
fb4f88dc 483 return (swp_entry_t) {0};
1da177e4
LT
484}
485
910321ea
HD
486/* The only caller of this function is now susupend routine */
487swp_entry_t get_swap_page_of_type(int type)
488{
489 struct swap_info_struct *si;
490 pgoff_t offset;
491
910321ea 492 si = swap_info[type];
ec8acf20 493 spin_lock(&si->lock);
910321ea 494 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 495 atomic_long_dec(&nr_swap_pages);
910321ea
HD
496 /* This is called for allocating swap entry, not cache */
497 offset = scan_swap_map(si, 1);
498 if (offset) {
ec8acf20 499 spin_unlock(&si->lock);
910321ea
HD
500 return swp_entry(type, offset);
501 }
ec8acf20 502 atomic_long_inc(&nr_swap_pages);
910321ea 503 }
ec8acf20 504 spin_unlock(&si->lock);
910321ea
HD
505 return (swp_entry_t) {0};
506}
507
73c34b6a 508static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 509{
73c34b6a 510 struct swap_info_struct *p;
1da177e4
LT
511 unsigned long offset, type;
512
513 if (!entry.val)
514 goto out;
515 type = swp_type(entry);
516 if (type >= nr_swapfiles)
517 goto bad_nofile;
efa90a98 518 p = swap_info[type];
1da177e4
LT
519 if (!(p->flags & SWP_USED))
520 goto bad_device;
521 offset = swp_offset(entry);
522 if (offset >= p->max)
523 goto bad_offset;
524 if (!p->swap_map[offset])
525 goto bad_free;
ec8acf20 526 spin_lock(&p->lock);
1da177e4
LT
527 return p;
528
529bad_free:
530 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 goto out;
532bad_offset:
533 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 goto out;
535bad_device:
536 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 goto out;
538bad_nofile:
539 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540out:
541 return NULL;
886bb7e9 542}
1da177e4 543
ec8acf20
SL
544/*
545 * This swap type frees swap entry, check if it is the highest priority swap
546 * type which just frees swap entry. get_swap_page() uses
547 * highest_priority_index to search highest priority swap type. The
548 * swap_info_struct.lock can't protect us if there are multiple swap types
549 * active, so we use atomic_cmpxchg.
550 */
551static void set_highest_priority_index(int type)
552{
553 int old_hp_index, new_hp_index;
554
555 do {
556 old_hp_index = atomic_read(&highest_priority_index);
557 if (old_hp_index != -1 &&
558 swap_info[old_hp_index]->prio >= swap_info[type]->prio)
559 break;
560 new_hp_index = type;
561 } while (atomic_cmpxchg(&highest_priority_index,
562 old_hp_index, new_hp_index) != old_hp_index);
563}
564
8d69aaee
HD
565static unsigned char swap_entry_free(struct swap_info_struct *p,
566 swp_entry_t entry, unsigned char usage)
1da177e4 567{
253d553b 568 unsigned long offset = swp_offset(entry);
8d69aaee
HD
569 unsigned char count;
570 unsigned char has_cache;
355cfa73 571
253d553b
HD
572 count = p->swap_map[offset];
573 has_cache = count & SWAP_HAS_CACHE;
574 count &= ~SWAP_HAS_CACHE;
355cfa73 575
253d553b 576 if (usage == SWAP_HAS_CACHE) {
355cfa73 577 VM_BUG_ON(!has_cache);
253d553b 578 has_cache = 0;
aaa46865
HD
579 } else if (count == SWAP_MAP_SHMEM) {
580 /*
581 * Or we could insist on shmem.c using a special
582 * swap_shmem_free() and free_shmem_swap_and_cache()...
583 */
584 count = 0;
570a335b
HD
585 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
586 if (count == COUNT_CONTINUED) {
587 if (swap_count_continued(p, offset, count))
588 count = SWAP_MAP_MAX | COUNT_CONTINUED;
589 else
590 count = SWAP_MAP_MAX;
591 } else
592 count--;
593 }
253d553b
HD
594
595 if (!count)
596 mem_cgroup_uncharge_swap(entry);
597
598 usage = count | has_cache;
599 p->swap_map[offset] = usage;
355cfa73 600
355cfa73 601 /* free if no reference */
253d553b 602 if (!usage) {
355cfa73
KH
603 if (offset < p->lowest_bit)
604 p->lowest_bit = offset;
605 if (offset > p->highest_bit)
606 p->highest_bit = offset;
ec8acf20
SL
607 set_highest_priority_index(p->type);
608 atomic_long_inc(&nr_swap_pages);
355cfa73 609 p->inuse_pages--;
38b5faf4 610 frontswap_invalidate_page(p->type, offset);
73744923
MG
611 if (p->flags & SWP_BLKDEV) {
612 struct gendisk *disk = p->bdev->bd_disk;
613 if (disk->fops->swap_slot_free_notify)
614 disk->fops->swap_slot_free_notify(p->bdev,
615 offset);
616 }
1da177e4 617 }
253d553b
HD
618
619 return usage;
1da177e4
LT
620}
621
622/*
623 * Caller has made sure that the swapdevice corresponding to entry
624 * is still around or has not been recycled.
625 */
626void swap_free(swp_entry_t entry)
627{
73c34b6a 628 struct swap_info_struct *p;
1da177e4
LT
629
630 p = swap_info_get(entry);
631 if (p) {
253d553b 632 swap_entry_free(p, entry, 1);
ec8acf20 633 spin_unlock(&p->lock);
1da177e4
LT
634 }
635}
636
cb4b86ba
KH
637/*
638 * Called after dropping swapcache to decrease refcnt to swap entries.
639 */
640void swapcache_free(swp_entry_t entry, struct page *page)
641{
355cfa73 642 struct swap_info_struct *p;
8d69aaee 643 unsigned char count;
355cfa73 644
355cfa73
KH
645 p = swap_info_get(entry);
646 if (p) {
253d553b
HD
647 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
648 if (page)
649 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
ec8acf20 650 spin_unlock(&p->lock);
355cfa73 651 }
cb4b86ba
KH
652}
653
1da177e4 654/*
c475a8ab 655 * How many references to page are currently swapped out?
570a335b
HD
656 * This does not give an exact answer when swap count is continued,
657 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 658 */
bde05d1c 659int page_swapcount(struct page *page)
1da177e4 660{
c475a8ab
HD
661 int count = 0;
662 struct swap_info_struct *p;
1da177e4
LT
663 swp_entry_t entry;
664
4c21e2f2 665 entry.val = page_private(page);
1da177e4
LT
666 p = swap_info_get(entry);
667 if (p) {
355cfa73 668 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 669 spin_unlock(&p->lock);
1da177e4 670 }
c475a8ab 671 return count;
1da177e4
LT
672}
673
674/*
7b1fe597
HD
675 * We can write to an anon page without COW if there are no other references
676 * to it. And as a side-effect, free up its swap: because the old content
677 * on disk will never be read, and seeking back there to write new content
678 * later would only waste time away from clustering.
1da177e4 679 */
7b1fe597 680int reuse_swap_page(struct page *page)
1da177e4 681{
c475a8ab
HD
682 int count;
683
51726b12 684 VM_BUG_ON(!PageLocked(page));
5ad64688
HD
685 if (unlikely(PageKsm(page)))
686 return 0;
c475a8ab 687 count = page_mapcount(page);
7b1fe597 688 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 689 count += page_swapcount(page);
7b1fe597
HD
690 if (count == 1 && !PageWriteback(page)) {
691 delete_from_swap_cache(page);
692 SetPageDirty(page);
693 }
694 }
5ad64688 695 return count <= 1;
1da177e4
LT
696}
697
698/*
a2c43eed
HD
699 * If swap is getting full, or if there are no more mappings of this page,
700 * then try_to_free_swap is called to free its swap space.
1da177e4 701 */
a2c43eed 702int try_to_free_swap(struct page *page)
1da177e4 703{
51726b12 704 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
705
706 if (!PageSwapCache(page))
707 return 0;
708 if (PageWriteback(page))
709 return 0;
a2c43eed 710 if (page_swapcount(page))
1da177e4
LT
711 return 0;
712
b73d7fce
HD
713 /*
714 * Once hibernation has begun to create its image of memory,
715 * there's a danger that one of the calls to try_to_free_swap()
716 * - most probably a call from __try_to_reclaim_swap() while
717 * hibernation is allocating its own swap pages for the image,
718 * but conceivably even a call from memory reclaim - will free
719 * the swap from a page which has already been recorded in the
720 * image as a clean swapcache page, and then reuse its swap for
721 * another page of the image. On waking from hibernation, the
722 * original page might be freed under memory pressure, then
723 * later read back in from swap, now with the wrong data.
724 *
f90ac398
MG
725 * Hibration suspends storage while it is writing the image
726 * to disk so check that here.
b73d7fce 727 */
f90ac398 728 if (pm_suspended_storage())
b73d7fce
HD
729 return 0;
730
a2c43eed
HD
731 delete_from_swap_cache(page);
732 SetPageDirty(page);
733 return 1;
68a22394
RR
734}
735
1da177e4
LT
736/*
737 * Free the swap entry like above, but also try to
738 * free the page cache entry if it is the last user.
739 */
2509ef26 740int free_swap_and_cache(swp_entry_t entry)
1da177e4 741{
2509ef26 742 struct swap_info_struct *p;
1da177e4
LT
743 struct page *page = NULL;
744
a7420aa5 745 if (non_swap_entry(entry))
2509ef26 746 return 1;
0697212a 747
1da177e4
LT
748 p = swap_info_get(entry);
749 if (p) {
253d553b 750 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
751 page = find_get_page(swap_address_space(entry),
752 entry.val);
8413ac9d 753 if (page && !trylock_page(page)) {
93fac704
NP
754 page_cache_release(page);
755 page = NULL;
756 }
757 }
ec8acf20 758 spin_unlock(&p->lock);
1da177e4
LT
759 }
760 if (page) {
a2c43eed
HD
761 /*
762 * Not mapped elsewhere, or swap space full? Free it!
763 * Also recheck PageSwapCache now page is locked (above).
764 */
93fac704 765 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 766 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
767 delete_from_swap_cache(page);
768 SetPageDirty(page);
769 }
770 unlock_page(page);
771 page_cache_release(page);
772 }
2509ef26 773 return p != NULL;
1da177e4
LT
774}
775
b0cb1a19 776#ifdef CONFIG_HIBERNATION
f577eb30 777/*
915bae9e 778 * Find the swap type that corresponds to given device (if any).
f577eb30 779 *
915bae9e
RW
780 * @offset - number of the PAGE_SIZE-sized block of the device, starting
781 * from 0, in which the swap header is expected to be located.
782 *
783 * This is needed for the suspend to disk (aka swsusp).
f577eb30 784 */
7bf23687 785int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 786{
915bae9e 787 struct block_device *bdev = NULL;
efa90a98 788 int type;
f577eb30 789
915bae9e
RW
790 if (device)
791 bdev = bdget(device);
792
f577eb30 793 spin_lock(&swap_lock);
efa90a98
HD
794 for (type = 0; type < nr_swapfiles; type++) {
795 struct swap_info_struct *sis = swap_info[type];
f577eb30 796
915bae9e 797 if (!(sis->flags & SWP_WRITEOK))
f577eb30 798 continue;
b6b5bce3 799
915bae9e 800 if (!bdev) {
7bf23687 801 if (bdev_p)
dddac6a7 802 *bdev_p = bdgrab(sis->bdev);
7bf23687 803
6e1819d6 804 spin_unlock(&swap_lock);
efa90a98 805 return type;
6e1819d6 806 }
915bae9e 807 if (bdev == sis->bdev) {
9625a5f2 808 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 809
915bae9e 810 if (se->start_block == offset) {
7bf23687 811 if (bdev_p)
dddac6a7 812 *bdev_p = bdgrab(sis->bdev);
7bf23687 813
915bae9e
RW
814 spin_unlock(&swap_lock);
815 bdput(bdev);
efa90a98 816 return type;
915bae9e 817 }
f577eb30
RW
818 }
819 }
820 spin_unlock(&swap_lock);
915bae9e
RW
821 if (bdev)
822 bdput(bdev);
823
f577eb30
RW
824 return -ENODEV;
825}
826
73c34b6a
HD
827/*
828 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
829 * corresponding to given index in swap_info (swap type).
830 */
831sector_t swapdev_block(int type, pgoff_t offset)
832{
833 struct block_device *bdev;
834
835 if ((unsigned int)type >= nr_swapfiles)
836 return 0;
837 if (!(swap_info[type]->flags & SWP_WRITEOK))
838 return 0;
d4906e1a 839 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
840}
841
f577eb30
RW
842/*
843 * Return either the total number of swap pages of given type, or the number
844 * of free pages of that type (depending on @free)
845 *
846 * This is needed for software suspend
847 */
848unsigned int count_swap_pages(int type, int free)
849{
850 unsigned int n = 0;
851
efa90a98
HD
852 spin_lock(&swap_lock);
853 if ((unsigned int)type < nr_swapfiles) {
854 struct swap_info_struct *sis = swap_info[type];
855
ec8acf20 856 spin_lock(&sis->lock);
efa90a98
HD
857 if (sis->flags & SWP_WRITEOK) {
858 n = sis->pages;
f577eb30 859 if (free)
efa90a98 860 n -= sis->inuse_pages;
f577eb30 861 }
ec8acf20 862 spin_unlock(&sis->lock);
f577eb30 863 }
efa90a98 864 spin_unlock(&swap_lock);
f577eb30
RW
865 return n;
866}
73c34b6a 867#endif /* CONFIG_HIBERNATION */
f577eb30 868
1da177e4 869/*
72866f6f
HD
870 * No need to decide whether this PTE shares the swap entry with others,
871 * just let do_wp_page work it out if a write is requested later - to
872 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 873 */
044d66c1 874static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
875 unsigned long addr, swp_entry_t entry, struct page *page)
876{
9e16b7fb 877 struct page *swapcache;
72835c86 878 struct mem_cgroup *memcg;
044d66c1
HD
879 spinlock_t *ptl;
880 pte_t *pte;
881 int ret = 1;
882
9e16b7fb
HD
883 swapcache = page;
884 page = ksm_might_need_to_copy(page, vma, addr);
885 if (unlikely(!page))
886 return -ENOMEM;
887
72835c86
JW
888 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
889 GFP_KERNEL, &memcg)) {
044d66c1 890 ret = -ENOMEM;
85d9fc89
KH
891 goto out_nolock;
892 }
044d66c1
HD
893
894 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
895 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
5d84c776 896 mem_cgroup_cancel_charge_swapin(memcg);
044d66c1
HD
897 ret = 0;
898 goto out;
899 }
8a9f3ccd 900
b084d435 901 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 902 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
903 get_page(page);
904 set_pte_at(vma->vm_mm, addr, pte,
905 pte_mkold(mk_pte(page, vma->vm_page_prot)));
9e16b7fb
HD
906 if (page == swapcache)
907 page_add_anon_rmap(page, vma, addr);
908 else /* ksm created a completely new copy */
909 page_add_new_anon_rmap(page, vma, addr);
72835c86 910 mem_cgroup_commit_charge_swapin(page, memcg);
1da177e4
LT
911 swap_free(entry);
912 /*
913 * Move the page to the active list so it is not
914 * immediately swapped out again after swapon.
915 */
916 activate_page(page);
044d66c1
HD
917out:
918 pte_unmap_unlock(pte, ptl);
85d9fc89 919out_nolock:
9e16b7fb
HD
920 if (page != swapcache) {
921 unlock_page(page);
922 put_page(page);
923 }
044d66c1 924 return ret;
1da177e4
LT
925}
926
927static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
928 unsigned long addr, unsigned long end,
929 swp_entry_t entry, struct page *page)
930{
1da177e4 931 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 932 pte_t *pte;
8a9f3ccd 933 int ret = 0;
1da177e4 934
044d66c1
HD
935 /*
936 * We don't actually need pte lock while scanning for swp_pte: since
937 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
938 * page table while we're scanning; though it could get zapped, and on
939 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
940 * of unmatched parts which look like swp_pte, so unuse_pte must
941 * recheck under pte lock. Scanning without pte lock lets it be
942 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
943 */
944 pte = pte_offset_map(pmd, addr);
1da177e4
LT
945 do {
946 /*
947 * swapoff spends a _lot_ of time in this loop!
948 * Test inline before going to call unuse_pte.
949 */
950 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
951 pte_unmap(pte);
952 ret = unuse_pte(vma, pmd, addr, entry, page);
953 if (ret)
954 goto out;
955 pte = pte_offset_map(pmd, addr);
1da177e4
LT
956 }
957 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
958 pte_unmap(pte - 1);
959out:
8a9f3ccd 960 return ret;
1da177e4
LT
961}
962
963static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
964 unsigned long addr, unsigned long end,
965 swp_entry_t entry, struct page *page)
966{
967 pmd_t *pmd;
968 unsigned long next;
8a9f3ccd 969 int ret;
1da177e4
LT
970
971 pmd = pmd_offset(pud, addr);
972 do {
973 next = pmd_addr_end(addr, end);
1a5a9906 974 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 975 continue;
8a9f3ccd
BS
976 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
977 if (ret)
978 return ret;
1da177e4
LT
979 } while (pmd++, addr = next, addr != end);
980 return 0;
981}
982
983static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
984 unsigned long addr, unsigned long end,
985 swp_entry_t entry, struct page *page)
986{
987 pud_t *pud;
988 unsigned long next;
8a9f3ccd 989 int ret;
1da177e4
LT
990
991 pud = pud_offset(pgd, addr);
992 do {
993 next = pud_addr_end(addr, end);
994 if (pud_none_or_clear_bad(pud))
995 continue;
8a9f3ccd
BS
996 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
997 if (ret)
998 return ret;
1da177e4
LT
999 } while (pud++, addr = next, addr != end);
1000 return 0;
1001}
1002
1003static int unuse_vma(struct vm_area_struct *vma,
1004 swp_entry_t entry, struct page *page)
1005{
1006 pgd_t *pgd;
1007 unsigned long addr, end, next;
8a9f3ccd 1008 int ret;
1da177e4 1009
3ca7b3c5 1010 if (page_anon_vma(page)) {
1da177e4
LT
1011 addr = page_address_in_vma(page, vma);
1012 if (addr == -EFAULT)
1013 return 0;
1014 else
1015 end = addr + PAGE_SIZE;
1016 } else {
1017 addr = vma->vm_start;
1018 end = vma->vm_end;
1019 }
1020
1021 pgd = pgd_offset(vma->vm_mm, addr);
1022 do {
1023 next = pgd_addr_end(addr, end);
1024 if (pgd_none_or_clear_bad(pgd))
1025 continue;
8a9f3ccd
BS
1026 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1027 if (ret)
1028 return ret;
1da177e4
LT
1029 } while (pgd++, addr = next, addr != end);
1030 return 0;
1031}
1032
1033static int unuse_mm(struct mm_struct *mm,
1034 swp_entry_t entry, struct page *page)
1035{
1036 struct vm_area_struct *vma;
8a9f3ccd 1037 int ret = 0;
1da177e4
LT
1038
1039 if (!down_read_trylock(&mm->mmap_sem)) {
1040 /*
7d03431c
FLVC
1041 * Activate page so shrink_inactive_list is unlikely to unmap
1042 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1043 */
c475a8ab 1044 activate_page(page);
1da177e4
LT
1045 unlock_page(page);
1046 down_read(&mm->mmap_sem);
1047 lock_page(page);
1048 }
1da177e4 1049 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1050 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1051 break;
1052 }
1da177e4 1053 up_read(&mm->mmap_sem);
8a9f3ccd 1054 return (ret < 0)? ret: 0;
1da177e4
LT
1055}
1056
1057/*
38b5faf4
DM
1058 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1059 * from current position to next entry still in use.
1da177e4
LT
1060 * Recycle to start on reaching the end, returning 0 when empty.
1061 */
6eb396dc 1062static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1063 unsigned int prev, bool frontswap)
1da177e4 1064{
6eb396dc
HD
1065 unsigned int max = si->max;
1066 unsigned int i = prev;
8d69aaee 1067 unsigned char count;
1da177e4
LT
1068
1069 /*
5d337b91 1070 * No need for swap_lock here: we're just looking
1da177e4
LT
1071 * for whether an entry is in use, not modifying it; false
1072 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1073 * allocations from this area (while holding swap_lock).
1da177e4
LT
1074 */
1075 for (;;) {
1076 if (++i >= max) {
1077 if (!prev) {
1078 i = 0;
1079 break;
1080 }
1081 /*
1082 * No entries in use at top of swap_map,
1083 * loop back to start and recheck there.
1084 */
1085 max = prev + 1;
1086 prev = 0;
1087 i = 1;
1088 }
38b5faf4
DM
1089 if (frontswap) {
1090 if (frontswap_test(si, i))
1091 break;
1092 else
1093 continue;
1094 }
1da177e4 1095 count = si->swap_map[i];
355cfa73 1096 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1097 break;
1098 }
1099 return i;
1100}
1101
1102/*
1103 * We completely avoid races by reading each swap page in advance,
1104 * and then search for the process using it. All the necessary
1105 * page table adjustments can then be made atomically.
38b5faf4
DM
1106 *
1107 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1108 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1109 */
38b5faf4
DM
1110int try_to_unuse(unsigned int type, bool frontswap,
1111 unsigned long pages_to_unuse)
1da177e4 1112{
efa90a98 1113 struct swap_info_struct *si = swap_info[type];
1da177e4 1114 struct mm_struct *start_mm;
8d69aaee
HD
1115 unsigned char *swap_map;
1116 unsigned char swcount;
1da177e4
LT
1117 struct page *page;
1118 swp_entry_t entry;
6eb396dc 1119 unsigned int i = 0;
1da177e4 1120 int retval = 0;
1da177e4
LT
1121
1122 /*
1123 * When searching mms for an entry, a good strategy is to
1124 * start at the first mm we freed the previous entry from
1125 * (though actually we don't notice whether we or coincidence
1126 * freed the entry). Initialize this start_mm with a hold.
1127 *
1128 * A simpler strategy would be to start at the last mm we
1129 * freed the previous entry from; but that would take less
1130 * advantage of mmlist ordering, which clusters forked mms
1131 * together, child after parent. If we race with dup_mmap(), we
1132 * prefer to resolve parent before child, lest we miss entries
1133 * duplicated after we scanned child: using last mm would invert
570a335b 1134 * that.
1da177e4
LT
1135 */
1136 start_mm = &init_mm;
1137 atomic_inc(&init_mm.mm_users);
1138
1139 /*
1140 * Keep on scanning until all entries have gone. Usually,
1141 * one pass through swap_map is enough, but not necessarily:
1142 * there are races when an instance of an entry might be missed.
1143 */
38b5faf4 1144 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1145 if (signal_pending(current)) {
1146 retval = -EINTR;
1147 break;
1148 }
1149
886bb7e9 1150 /*
1da177e4
LT
1151 * Get a page for the entry, using the existing swap
1152 * cache page if there is one. Otherwise, get a clean
886bb7e9 1153 * page and read the swap into it.
1da177e4
LT
1154 */
1155 swap_map = &si->swap_map[i];
1156 entry = swp_entry(type, i);
02098fea
HD
1157 page = read_swap_cache_async(entry,
1158 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1159 if (!page) {
1160 /*
1161 * Either swap_duplicate() failed because entry
1162 * has been freed independently, and will not be
1163 * reused since sys_swapoff() already disabled
1164 * allocation from here, or alloc_page() failed.
1165 */
1166 if (!*swap_map)
1167 continue;
1168 retval = -ENOMEM;
1169 break;
1170 }
1171
1172 /*
1173 * Don't hold on to start_mm if it looks like exiting.
1174 */
1175 if (atomic_read(&start_mm->mm_users) == 1) {
1176 mmput(start_mm);
1177 start_mm = &init_mm;
1178 atomic_inc(&init_mm.mm_users);
1179 }
1180
1181 /*
1182 * Wait for and lock page. When do_swap_page races with
1183 * try_to_unuse, do_swap_page can handle the fault much
1184 * faster than try_to_unuse can locate the entry. This
1185 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1186 * defer to do_swap_page in such a case - in some tests,
1187 * do_swap_page and try_to_unuse repeatedly compete.
1188 */
1189 wait_on_page_locked(page);
1190 wait_on_page_writeback(page);
1191 lock_page(page);
1192 wait_on_page_writeback(page);
1193
1194 /*
1195 * Remove all references to entry.
1da177e4 1196 */
1da177e4 1197 swcount = *swap_map;
aaa46865
HD
1198 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1199 retval = shmem_unuse(entry, page);
1200 /* page has already been unlocked and released */
1201 if (retval < 0)
1202 break;
1203 continue;
1da177e4 1204 }
aaa46865
HD
1205 if (swap_count(swcount) && start_mm != &init_mm)
1206 retval = unuse_mm(start_mm, entry, page);
1207
355cfa73 1208 if (swap_count(*swap_map)) {
1da177e4
LT
1209 int set_start_mm = (*swap_map >= swcount);
1210 struct list_head *p = &start_mm->mmlist;
1211 struct mm_struct *new_start_mm = start_mm;
1212 struct mm_struct *prev_mm = start_mm;
1213 struct mm_struct *mm;
1214
1215 atomic_inc(&new_start_mm->mm_users);
1216 atomic_inc(&prev_mm->mm_users);
1217 spin_lock(&mmlist_lock);
aaa46865 1218 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1219 (p = p->next) != &start_mm->mmlist) {
1220 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1221 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1222 continue;
1da177e4
LT
1223 spin_unlock(&mmlist_lock);
1224 mmput(prev_mm);
1225 prev_mm = mm;
1226
1227 cond_resched();
1228
1229 swcount = *swap_map;
355cfa73 1230 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1231 ;
aaa46865 1232 else if (mm == &init_mm)
1da177e4 1233 set_start_mm = 1;
aaa46865 1234 else
1da177e4 1235 retval = unuse_mm(mm, entry, page);
355cfa73 1236
32c5fc10 1237 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1238 mmput(new_start_mm);
1239 atomic_inc(&mm->mm_users);
1240 new_start_mm = mm;
1241 set_start_mm = 0;
1242 }
1243 spin_lock(&mmlist_lock);
1244 }
1245 spin_unlock(&mmlist_lock);
1246 mmput(prev_mm);
1247 mmput(start_mm);
1248 start_mm = new_start_mm;
1249 }
1250 if (retval) {
1251 unlock_page(page);
1252 page_cache_release(page);
1253 break;
1254 }
1255
1da177e4
LT
1256 /*
1257 * If a reference remains (rare), we would like to leave
1258 * the page in the swap cache; but try_to_unmap could
1259 * then re-duplicate the entry once we drop page lock,
1260 * so we might loop indefinitely; also, that page could
1261 * not be swapped out to other storage meanwhile. So:
1262 * delete from cache even if there's another reference,
1263 * after ensuring that the data has been saved to disk -
1264 * since if the reference remains (rarer), it will be
1265 * read from disk into another page. Splitting into two
1266 * pages would be incorrect if swap supported "shared
1267 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1268 *
1269 * Given how unuse_vma() targets one particular offset
1270 * in an anon_vma, once the anon_vma has been determined,
1271 * this splitting happens to be just what is needed to
1272 * handle where KSM pages have been swapped out: re-reading
1273 * is unnecessarily slow, but we can fix that later on.
1da177e4 1274 */
355cfa73
KH
1275 if (swap_count(*swap_map) &&
1276 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1277 struct writeback_control wbc = {
1278 .sync_mode = WB_SYNC_NONE,
1279 };
1280
1281 swap_writepage(page, &wbc);
1282 lock_page(page);
1283 wait_on_page_writeback(page);
1284 }
68bdc8d6
HD
1285
1286 /*
1287 * It is conceivable that a racing task removed this page from
1288 * swap cache just before we acquired the page lock at the top,
1289 * or while we dropped it in unuse_mm(). The page might even
1290 * be back in swap cache on another swap area: that we must not
1291 * delete, since it may not have been written out to swap yet.
1292 */
1293 if (PageSwapCache(page) &&
1294 likely(page_private(page) == entry.val))
2e0e26c7 1295 delete_from_swap_cache(page);
1da177e4
LT
1296
1297 /*
1298 * So we could skip searching mms once swap count went
1299 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1300 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1301 */
1302 SetPageDirty(page);
1303 unlock_page(page);
1304 page_cache_release(page);
1305
1306 /*
1307 * Make sure that we aren't completely killing
1308 * interactive performance.
1309 */
1310 cond_resched();
38b5faf4
DM
1311 if (frontswap && pages_to_unuse > 0) {
1312 if (!--pages_to_unuse)
1313 break;
1314 }
1da177e4
LT
1315 }
1316
1317 mmput(start_mm);
1da177e4
LT
1318 return retval;
1319}
1320
1321/*
5d337b91
HD
1322 * After a successful try_to_unuse, if no swap is now in use, we know
1323 * we can empty the mmlist. swap_lock must be held on entry and exit.
1324 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1325 * added to the mmlist just after page_duplicate - before would be racy.
1326 */
1327static void drain_mmlist(void)
1328{
1329 struct list_head *p, *next;
efa90a98 1330 unsigned int type;
1da177e4 1331
efa90a98
HD
1332 for (type = 0; type < nr_swapfiles; type++)
1333 if (swap_info[type]->inuse_pages)
1da177e4
LT
1334 return;
1335 spin_lock(&mmlist_lock);
1336 list_for_each_safe(p, next, &init_mm.mmlist)
1337 list_del_init(p);
1338 spin_unlock(&mmlist_lock);
1339}
1340
1341/*
1342 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1343 * corresponds to page offset for the specified swap entry.
1344 * Note that the type of this function is sector_t, but it returns page offset
1345 * into the bdev, not sector offset.
1da177e4 1346 */
d4906e1a 1347static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1348{
f29ad6a9
HD
1349 struct swap_info_struct *sis;
1350 struct swap_extent *start_se;
1351 struct swap_extent *se;
1352 pgoff_t offset;
1353
efa90a98 1354 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1355 *bdev = sis->bdev;
1356
1357 offset = swp_offset(entry);
1358 start_se = sis->curr_swap_extent;
1359 se = start_se;
1da177e4
LT
1360
1361 for ( ; ; ) {
1362 struct list_head *lh;
1363
1364 if (se->start_page <= offset &&
1365 offset < (se->start_page + se->nr_pages)) {
1366 return se->start_block + (offset - se->start_page);
1367 }
11d31886 1368 lh = se->list.next;
1da177e4
LT
1369 se = list_entry(lh, struct swap_extent, list);
1370 sis->curr_swap_extent = se;
1371 BUG_ON(se == start_se); /* It *must* be present */
1372 }
1373}
1374
d4906e1a
LS
1375/*
1376 * Returns the page offset into bdev for the specified page's swap entry.
1377 */
1378sector_t map_swap_page(struct page *page, struct block_device **bdev)
1379{
1380 swp_entry_t entry;
1381 entry.val = page_private(page);
1382 return map_swap_entry(entry, bdev);
1383}
1384
1da177e4
LT
1385/*
1386 * Free all of a swapdev's extent information
1387 */
1388static void destroy_swap_extents(struct swap_info_struct *sis)
1389{
9625a5f2 1390 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1391 struct swap_extent *se;
1392
9625a5f2 1393 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1394 struct swap_extent, list);
1395 list_del(&se->list);
1396 kfree(se);
1397 }
62c230bc
MG
1398
1399 if (sis->flags & SWP_FILE) {
1400 struct file *swap_file = sis->swap_file;
1401 struct address_space *mapping = swap_file->f_mapping;
1402
1403 sis->flags &= ~SWP_FILE;
1404 mapping->a_ops->swap_deactivate(swap_file);
1405 }
1da177e4
LT
1406}
1407
1408/*
1409 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1410 * extent list. The extent list is kept sorted in page order.
1da177e4 1411 *
11d31886 1412 * This function rather assumes that it is called in ascending page order.
1da177e4 1413 */
a509bc1a 1414int
1da177e4
LT
1415add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1416 unsigned long nr_pages, sector_t start_block)
1417{
1418 struct swap_extent *se;
1419 struct swap_extent *new_se;
1420 struct list_head *lh;
1421
9625a5f2
HD
1422 if (start_page == 0) {
1423 se = &sis->first_swap_extent;
1424 sis->curr_swap_extent = se;
1425 se->start_page = 0;
1426 se->nr_pages = nr_pages;
1427 se->start_block = start_block;
1428 return 1;
1429 } else {
1430 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1431 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1432 BUG_ON(se->start_page + se->nr_pages != start_page);
1433 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1434 /* Merge it */
1435 se->nr_pages += nr_pages;
1436 return 0;
1437 }
1da177e4
LT
1438 }
1439
1440 /*
1441 * No merge. Insert a new extent, preserving ordering.
1442 */
1443 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1444 if (new_se == NULL)
1445 return -ENOMEM;
1446 new_se->start_page = start_page;
1447 new_se->nr_pages = nr_pages;
1448 new_se->start_block = start_block;
1449
9625a5f2 1450 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1451 return 1;
1da177e4
LT
1452}
1453
1454/*
1455 * A `swap extent' is a simple thing which maps a contiguous range of pages
1456 * onto a contiguous range of disk blocks. An ordered list of swap extents
1457 * is built at swapon time and is then used at swap_writepage/swap_readpage
1458 * time for locating where on disk a page belongs.
1459 *
1460 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1461 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1462 * swap files identically.
1463 *
1464 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1465 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1466 * swapfiles are handled *identically* after swapon time.
1467 *
1468 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1469 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1470 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1471 * requirements, they are simply tossed out - we will never use those blocks
1472 * for swapping.
1473 *
b0d9bcd4 1474 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1475 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1476 * which will scribble on the fs.
1477 *
1478 * The amount of disk space which a single swap extent represents varies.
1479 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1480 * extents in the list. To avoid much list walking, we cache the previous
1481 * search location in `curr_swap_extent', and start new searches from there.
1482 * This is extremely effective. The average number of iterations in
1483 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1484 */
53092a74 1485static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1486{
62c230bc
MG
1487 struct file *swap_file = sis->swap_file;
1488 struct address_space *mapping = swap_file->f_mapping;
1489 struct inode *inode = mapping->host;
1da177e4
LT
1490 int ret;
1491
1da177e4
LT
1492 if (S_ISBLK(inode->i_mode)) {
1493 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1494 *span = sis->pages;
a509bc1a 1495 return ret;
1da177e4
LT
1496 }
1497
62c230bc 1498 if (mapping->a_ops->swap_activate) {
a509bc1a 1499 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1500 if (!ret) {
1501 sis->flags |= SWP_FILE;
1502 ret = add_swap_extent(sis, 0, sis->max, 0);
1503 *span = sis->pages;
1504 }
a509bc1a 1505 return ret;
62c230bc
MG
1506 }
1507
a509bc1a 1508 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1509}
1510
cf0cac0a 1511static void _enable_swap_info(struct swap_info_struct *p, int prio,
4f89849d 1512 unsigned char *swap_map)
40531542
CEB
1513{
1514 int i, prev;
1515
40531542
CEB
1516 if (prio >= 0)
1517 p->prio = prio;
1518 else
1519 p->prio = --least_priority;
1520 p->swap_map = swap_map;
1521 p->flags |= SWP_WRITEOK;
ec8acf20 1522 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1523 total_swap_pages += p->pages;
1524
1525 /* insert swap space into swap_list: */
1526 prev = -1;
1527 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1528 if (p->prio >= swap_info[i]->prio)
1529 break;
1530 prev = i;
1531 }
1532 p->next = i;
1533 if (prev < 0)
1534 swap_list.head = swap_list.next = p->type;
1535 else
1536 swap_info[prev]->next = p->type;
cf0cac0a
CEB
1537}
1538
1539static void enable_swap_info(struct swap_info_struct *p, int prio,
1540 unsigned char *swap_map,
1541 unsigned long *frontswap_map)
1542{
4f89849d 1543 frontswap_init(p->type, frontswap_map);
cf0cac0a 1544 spin_lock(&swap_lock);
ec8acf20 1545 spin_lock(&p->lock);
4f89849d 1546 _enable_swap_info(p, prio, swap_map);
ec8acf20 1547 spin_unlock(&p->lock);
cf0cac0a
CEB
1548 spin_unlock(&swap_lock);
1549}
1550
1551static void reinsert_swap_info(struct swap_info_struct *p)
1552{
1553 spin_lock(&swap_lock);
ec8acf20 1554 spin_lock(&p->lock);
4f89849d 1555 _enable_swap_info(p, p->prio, p->swap_map);
ec8acf20 1556 spin_unlock(&p->lock);
40531542
CEB
1557 spin_unlock(&swap_lock);
1558}
1559
c4ea37c2 1560SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1561{
73c34b6a 1562 struct swap_info_struct *p = NULL;
8d69aaee 1563 unsigned char *swap_map;
4f89849d 1564 unsigned long *frontswap_map;
1da177e4
LT
1565 struct file *swap_file, *victim;
1566 struct address_space *mapping;
1567 struct inode *inode;
91a27b2a 1568 struct filename *pathname;
1da177e4
LT
1569 int i, type, prev;
1570 int err;
886bb7e9 1571
1da177e4
LT
1572 if (!capable(CAP_SYS_ADMIN))
1573 return -EPERM;
1574
191c5424
AV
1575 BUG_ON(!current->mm);
1576
1da177e4 1577 pathname = getname(specialfile);
1da177e4 1578 if (IS_ERR(pathname))
f58b59c1 1579 return PTR_ERR(pathname);
1da177e4 1580
669abf4e 1581 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1582 err = PTR_ERR(victim);
1583 if (IS_ERR(victim))
1584 goto out;
1585
1586 mapping = victim->f_mapping;
1587 prev = -1;
5d337b91 1588 spin_lock(&swap_lock);
efa90a98
HD
1589 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1590 p = swap_info[type];
22c6f8fd 1591 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1592 if (p->swap_file->f_mapping == mapping)
1593 break;
1594 }
1595 prev = type;
1596 }
1597 if (type < 0) {
1598 err = -EINVAL;
5d337b91 1599 spin_unlock(&swap_lock);
1da177e4
LT
1600 goto out_dput;
1601 }
191c5424 1602 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1603 vm_unacct_memory(p->pages);
1604 else {
1605 err = -ENOMEM;
5d337b91 1606 spin_unlock(&swap_lock);
1da177e4
LT
1607 goto out_dput;
1608 }
efa90a98 1609 if (prev < 0)
1da177e4 1610 swap_list.head = p->next;
efa90a98
HD
1611 else
1612 swap_info[prev]->next = p->next;
1da177e4
LT
1613 if (type == swap_list.next) {
1614 /* just pick something that's safe... */
1615 swap_list.next = swap_list.head;
1616 }
ec8acf20 1617 spin_lock(&p->lock);
78ecba08 1618 if (p->prio < 0) {
efa90a98
HD
1619 for (i = p->next; i >= 0; i = swap_info[i]->next)
1620 swap_info[i]->prio = p->prio--;
78ecba08
HD
1621 least_priority++;
1622 }
ec8acf20 1623 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1624 total_swap_pages -= p->pages;
1625 p->flags &= ~SWP_WRITEOK;
ec8acf20 1626 spin_unlock(&p->lock);
5d337b91 1627 spin_unlock(&swap_lock);
fb4f88dc 1628
e1e12d2f 1629 set_current_oom_origin();
38b5faf4 1630 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
e1e12d2f 1631 clear_current_oom_origin();
1da177e4 1632
1da177e4
LT
1633 if (err) {
1634 /* re-insert swap space back into swap_list */
cf0cac0a 1635 reinsert_swap_info(p);
1da177e4
LT
1636 goto out_dput;
1637 }
52b7efdb 1638
5d337b91 1639 destroy_swap_extents(p);
570a335b
HD
1640 if (p->flags & SWP_CONTINUED)
1641 free_swap_count_continuations(p);
1642
fc0abb14 1643 mutex_lock(&swapon_mutex);
5d337b91 1644 spin_lock(&swap_lock);
ec8acf20 1645 spin_lock(&p->lock);
5d337b91
HD
1646 drain_mmlist();
1647
52b7efdb 1648 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1649 p->highest_bit = 0; /* cuts scans short */
1650 while (p->flags >= SWP_SCANNING) {
ec8acf20 1651 spin_unlock(&p->lock);
5d337b91 1652 spin_unlock(&swap_lock);
13e4b57f 1653 schedule_timeout_uninterruptible(1);
5d337b91 1654 spin_lock(&swap_lock);
ec8acf20 1655 spin_lock(&p->lock);
52b7efdb 1656 }
52b7efdb 1657
1da177e4
LT
1658 swap_file = p->swap_file;
1659 p->swap_file = NULL;
1660 p->max = 0;
1661 swap_map = p->swap_map;
1662 p->swap_map = NULL;
1663 p->flags = 0;
4f89849d
MK
1664 frontswap_map = frontswap_map_get(p);
1665 frontswap_map_set(p, NULL);
ec8acf20 1666 spin_unlock(&p->lock);
5d337b91 1667 spin_unlock(&swap_lock);
4f89849d 1668 frontswap_invalidate_area(type);
fc0abb14 1669 mutex_unlock(&swapon_mutex);
1da177e4 1670 vfree(swap_map);
4f89849d 1671 vfree(frontswap_map);
27a7faa0
KH
1672 /* Destroy swap account informatin */
1673 swap_cgroup_swapoff(type);
1674
1da177e4
LT
1675 inode = mapping->host;
1676 if (S_ISBLK(inode->i_mode)) {
1677 struct block_device *bdev = I_BDEV(inode);
1678 set_blocksize(bdev, p->old_block_size);
e525fd89 1679 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1680 } else {
1b1dcc1b 1681 mutex_lock(&inode->i_mutex);
1da177e4 1682 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1683 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1684 }
1685 filp_close(swap_file, NULL);
1686 err = 0;
66d7dd51
KS
1687 atomic_inc(&proc_poll_event);
1688 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1689
1690out_dput:
1691 filp_close(victim, NULL);
1692out:
f58b59c1 1693 putname(pathname);
1da177e4
LT
1694 return err;
1695}
1696
1697#ifdef CONFIG_PROC_FS
66d7dd51
KS
1698static unsigned swaps_poll(struct file *file, poll_table *wait)
1699{
f1514638 1700 struct seq_file *seq = file->private_data;
66d7dd51
KS
1701
1702 poll_wait(file, &proc_poll_wait, wait);
1703
f1514638
KS
1704 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1705 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
1706 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1707 }
1708
1709 return POLLIN | POLLRDNORM;
1710}
1711
1da177e4
LT
1712/* iterator */
1713static void *swap_start(struct seq_file *swap, loff_t *pos)
1714{
efa90a98
HD
1715 struct swap_info_struct *si;
1716 int type;
1da177e4
LT
1717 loff_t l = *pos;
1718
fc0abb14 1719 mutex_lock(&swapon_mutex);
1da177e4 1720
881e4aab
SS
1721 if (!l)
1722 return SEQ_START_TOKEN;
1723
efa90a98
HD
1724 for (type = 0; type < nr_swapfiles; type++) {
1725 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1726 si = swap_info[type];
1727 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1728 continue;
881e4aab 1729 if (!--l)
efa90a98 1730 return si;
1da177e4
LT
1731 }
1732
1733 return NULL;
1734}
1735
1736static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1737{
efa90a98
HD
1738 struct swap_info_struct *si = v;
1739 int type;
1da177e4 1740
881e4aab 1741 if (v == SEQ_START_TOKEN)
efa90a98
HD
1742 type = 0;
1743 else
1744 type = si->type + 1;
881e4aab 1745
efa90a98
HD
1746 for (; type < nr_swapfiles; type++) {
1747 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1748 si = swap_info[type];
1749 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1750 continue;
1751 ++*pos;
efa90a98 1752 return si;
1da177e4
LT
1753 }
1754
1755 return NULL;
1756}
1757
1758static void swap_stop(struct seq_file *swap, void *v)
1759{
fc0abb14 1760 mutex_unlock(&swapon_mutex);
1da177e4
LT
1761}
1762
1763static int swap_show(struct seq_file *swap, void *v)
1764{
efa90a98 1765 struct swap_info_struct *si = v;
1da177e4
LT
1766 struct file *file;
1767 int len;
1768
efa90a98 1769 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1770 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1771 return 0;
1772 }
1da177e4 1773
efa90a98 1774 file = si->swap_file;
c32c2f63 1775 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1776 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 1777 len < 40 ? 40 - len : 1, " ",
496ad9aa 1778 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 1779 "partition" : "file\t",
efa90a98
HD
1780 si->pages << (PAGE_SHIFT - 10),
1781 si->inuse_pages << (PAGE_SHIFT - 10),
1782 si->prio);
1da177e4
LT
1783 return 0;
1784}
1785
15ad7cdc 1786static const struct seq_operations swaps_op = {
1da177e4
LT
1787 .start = swap_start,
1788 .next = swap_next,
1789 .stop = swap_stop,
1790 .show = swap_show
1791};
1792
1793static int swaps_open(struct inode *inode, struct file *file)
1794{
f1514638 1795 struct seq_file *seq;
66d7dd51
KS
1796 int ret;
1797
66d7dd51 1798 ret = seq_open(file, &swaps_op);
f1514638 1799 if (ret)
66d7dd51 1800 return ret;
66d7dd51 1801
f1514638
KS
1802 seq = file->private_data;
1803 seq->poll_event = atomic_read(&proc_poll_event);
1804 return 0;
1da177e4
LT
1805}
1806
15ad7cdc 1807static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1808 .open = swaps_open,
1809 .read = seq_read,
1810 .llseek = seq_lseek,
1811 .release = seq_release,
66d7dd51 1812 .poll = swaps_poll,
1da177e4
LT
1813};
1814
1815static int __init procswaps_init(void)
1816{
3d71f86f 1817 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1818 return 0;
1819}
1820__initcall(procswaps_init);
1821#endif /* CONFIG_PROC_FS */
1822
1796316a
JB
1823#ifdef MAX_SWAPFILES_CHECK
1824static int __init max_swapfiles_check(void)
1825{
1826 MAX_SWAPFILES_CHECK();
1827 return 0;
1828}
1829late_initcall(max_swapfiles_check);
1830#endif
1831
53cbb243 1832static struct swap_info_struct *alloc_swap_info(void)
1da177e4 1833{
73c34b6a 1834 struct swap_info_struct *p;
1da177e4 1835 unsigned int type;
efa90a98
HD
1836
1837 p = kzalloc(sizeof(*p), GFP_KERNEL);
1838 if (!p)
53cbb243 1839 return ERR_PTR(-ENOMEM);
efa90a98 1840
5d337b91 1841 spin_lock(&swap_lock);
efa90a98
HD
1842 for (type = 0; type < nr_swapfiles; type++) {
1843 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 1844 break;
efa90a98 1845 }
0697212a 1846 if (type >= MAX_SWAPFILES) {
5d337b91 1847 spin_unlock(&swap_lock);
efa90a98 1848 kfree(p);
730c0581 1849 return ERR_PTR(-EPERM);
1da177e4 1850 }
efa90a98
HD
1851 if (type >= nr_swapfiles) {
1852 p->type = type;
1853 swap_info[type] = p;
1854 /*
1855 * Write swap_info[type] before nr_swapfiles, in case a
1856 * racing procfs swap_start() or swap_next() is reading them.
1857 * (We never shrink nr_swapfiles, we never free this entry.)
1858 */
1859 smp_wmb();
1860 nr_swapfiles++;
1861 } else {
1862 kfree(p);
1863 p = swap_info[type];
1864 /*
1865 * Do not memset this entry: a racing procfs swap_next()
1866 * would be relying on p->type to remain valid.
1867 */
1868 }
9625a5f2 1869 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 1870 p->flags = SWP_USED;
1da177e4 1871 p->next = -1;
5d337b91 1872 spin_unlock(&swap_lock);
ec8acf20 1873 spin_lock_init(&p->lock);
efa90a98 1874
53cbb243 1875 return p;
53cbb243
CEB
1876}
1877
4d0e1e10
CEB
1878static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1879{
1880 int error;
1881
1882 if (S_ISBLK(inode->i_mode)) {
1883 p->bdev = bdgrab(I_BDEV(inode));
1884 error = blkdev_get(p->bdev,
1885 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1886 sys_swapon);
1887 if (error < 0) {
1888 p->bdev = NULL;
87ade72a 1889 return -EINVAL;
4d0e1e10
CEB
1890 }
1891 p->old_block_size = block_size(p->bdev);
1892 error = set_blocksize(p->bdev, PAGE_SIZE);
1893 if (error < 0)
87ade72a 1894 return error;
4d0e1e10
CEB
1895 p->flags |= SWP_BLKDEV;
1896 } else if (S_ISREG(inode->i_mode)) {
1897 p->bdev = inode->i_sb->s_bdev;
1898 mutex_lock(&inode->i_mutex);
87ade72a
CEB
1899 if (IS_SWAPFILE(inode))
1900 return -EBUSY;
1901 } else
1902 return -EINVAL;
4d0e1e10
CEB
1903
1904 return 0;
4d0e1e10
CEB
1905}
1906
ca8bd38b
CEB
1907static unsigned long read_swap_header(struct swap_info_struct *p,
1908 union swap_header *swap_header,
1909 struct inode *inode)
1910{
1911 int i;
1912 unsigned long maxpages;
1913 unsigned long swapfilepages;
1914
1915 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1916 printk(KERN_ERR "Unable to find swap-space signature\n");
38719025 1917 return 0;
ca8bd38b
CEB
1918 }
1919
1920 /* swap partition endianess hack... */
1921 if (swab32(swap_header->info.version) == 1) {
1922 swab32s(&swap_header->info.version);
1923 swab32s(&swap_header->info.last_page);
1924 swab32s(&swap_header->info.nr_badpages);
1925 for (i = 0; i < swap_header->info.nr_badpages; i++)
1926 swab32s(&swap_header->info.badpages[i]);
1927 }
1928 /* Check the swap header's sub-version */
1929 if (swap_header->info.version != 1) {
1930 printk(KERN_WARNING
1931 "Unable to handle swap header version %d\n",
1932 swap_header->info.version);
38719025 1933 return 0;
ca8bd38b
CEB
1934 }
1935
1936 p->lowest_bit = 1;
1937 p->cluster_next = 1;
1938 p->cluster_nr = 0;
1939
1940 /*
1941 * Find out how many pages are allowed for a single swap
9b15b817 1942 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
1943 * of bits for the swap offset in the swp_entry_t type, and
1944 * 2) the number of bits in the swap pte as defined by the
9b15b817 1945 * different architectures. In order to find the
a2c16d6c 1946 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 1947 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 1948 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
1949 * offset is extracted. This will mask all the bits from
1950 * the initial ~0UL mask that can't be encoded in either
1951 * the swp_entry_t or the architecture definition of a
9b15b817 1952 * swap pte.
ca8bd38b
CEB
1953 */
1954 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 1955 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
ca8bd38b
CEB
1956 if (maxpages > swap_header->info.last_page) {
1957 maxpages = swap_header->info.last_page + 1;
1958 /* p->max is an unsigned int: don't overflow it */
1959 if ((unsigned int)maxpages == 0)
1960 maxpages = UINT_MAX;
1961 }
1962 p->highest_bit = maxpages - 1;
1963
1964 if (!maxpages)
38719025 1965 return 0;
ca8bd38b
CEB
1966 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1967 if (swapfilepages && maxpages > swapfilepages) {
1968 printk(KERN_WARNING
1969 "Swap area shorter than signature indicates\n");
38719025 1970 return 0;
ca8bd38b
CEB
1971 }
1972 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 1973 return 0;
ca8bd38b 1974 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 1975 return 0;
ca8bd38b
CEB
1976
1977 return maxpages;
ca8bd38b
CEB
1978}
1979
915d4d7b
CEB
1980static int setup_swap_map_and_extents(struct swap_info_struct *p,
1981 union swap_header *swap_header,
1982 unsigned char *swap_map,
1983 unsigned long maxpages,
1984 sector_t *span)
1985{
1986 int i;
915d4d7b
CEB
1987 unsigned int nr_good_pages;
1988 int nr_extents;
1989
1990 nr_good_pages = maxpages - 1; /* omit header page */
1991
1992 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1993 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
1994 if (page_nr == 0 || page_nr > swap_header->info.last_page)
1995 return -EINVAL;
915d4d7b
CEB
1996 if (page_nr < maxpages) {
1997 swap_map[page_nr] = SWAP_MAP_BAD;
1998 nr_good_pages--;
1999 }
2000 }
2001
2002 if (nr_good_pages) {
2003 swap_map[0] = SWAP_MAP_BAD;
2004 p->max = maxpages;
2005 p->pages = nr_good_pages;
2006 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2007 if (nr_extents < 0)
2008 return nr_extents;
915d4d7b
CEB
2009 nr_good_pages = p->pages;
2010 }
2011 if (!nr_good_pages) {
2012 printk(KERN_WARNING "Empty swap-file\n");
bdb8e3f6 2013 return -EINVAL;
915d4d7b
CEB
2014 }
2015
2016 return nr_extents;
915d4d7b
CEB
2017}
2018
53cbb243
CEB
2019SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2020{
2021 struct swap_info_struct *p;
91a27b2a 2022 struct filename *name;
53cbb243
CEB
2023 struct file *swap_file = NULL;
2024 struct address_space *mapping;
40531542
CEB
2025 int i;
2026 int prio;
53cbb243
CEB
2027 int error;
2028 union swap_header *swap_header;
915d4d7b 2029 int nr_extents;
53cbb243
CEB
2030 sector_t span;
2031 unsigned long maxpages;
53cbb243 2032 unsigned char *swap_map = NULL;
38b5faf4 2033 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2034 struct page *page = NULL;
2035 struct inode *inode = NULL;
53cbb243 2036
d15cab97
HD
2037 if (swap_flags & ~SWAP_FLAGS_VALID)
2038 return -EINVAL;
2039
53cbb243
CEB
2040 if (!capable(CAP_SYS_ADMIN))
2041 return -EPERM;
2042
2043 p = alloc_swap_info();
2542e513
CEB
2044 if (IS_ERR(p))
2045 return PTR_ERR(p);
53cbb243 2046
1da177e4 2047 name = getname(specialfile);
1da177e4 2048 if (IS_ERR(name)) {
7de7fb6b 2049 error = PTR_ERR(name);
1da177e4 2050 name = NULL;
bd69010b 2051 goto bad_swap;
1da177e4 2052 }
669abf4e 2053 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2054 if (IS_ERR(swap_file)) {
7de7fb6b 2055 error = PTR_ERR(swap_file);
1da177e4 2056 swap_file = NULL;
bd69010b 2057 goto bad_swap;
1da177e4
LT
2058 }
2059
2060 p->swap_file = swap_file;
2061 mapping = swap_file->f_mapping;
1da177e4 2062
1da177e4 2063 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 2064 struct swap_info_struct *q = swap_info[i];
1da177e4 2065
e8e6c2ec 2066 if (q == p || !q->swap_file)
1da177e4 2067 continue;
7de7fb6b
CEB
2068 if (mapping == q->swap_file->f_mapping) {
2069 error = -EBUSY;
1da177e4 2070 goto bad_swap;
7de7fb6b 2071 }
1da177e4
LT
2072 }
2073
2130781e
CEB
2074 inode = mapping->host;
2075 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2076 error = claim_swapfile(p, inode);
2077 if (unlikely(error))
1da177e4 2078 goto bad_swap;
1da177e4 2079
1da177e4
LT
2080 /*
2081 * Read the swap header.
2082 */
2083 if (!mapping->a_ops->readpage) {
2084 error = -EINVAL;
2085 goto bad_swap;
2086 }
090d2b18 2087 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2088 if (IS_ERR(page)) {
2089 error = PTR_ERR(page);
2090 goto bad_swap;
2091 }
81e33971 2092 swap_header = kmap(page);
1da177e4 2093
ca8bd38b
CEB
2094 maxpages = read_swap_header(p, swap_header, inode);
2095 if (unlikely(!maxpages)) {
1da177e4
LT
2096 error = -EINVAL;
2097 goto bad_swap;
2098 }
886bb7e9 2099
81e33971 2100 /* OK, set up the swap map and apply the bad block list */
803d0c83 2101 swap_map = vzalloc(maxpages);
81e33971
HD
2102 if (!swap_map) {
2103 error = -ENOMEM;
2104 goto bad_swap;
2105 }
1da177e4 2106
1421ef3c
CEB
2107 error = swap_cgroup_swapon(p->type, maxpages);
2108 if (error)
2109 goto bad_swap;
2110
915d4d7b
CEB
2111 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2112 maxpages, &span);
2113 if (unlikely(nr_extents < 0)) {
2114 error = nr_extents;
1da177e4
LT
2115 goto bad_swap;
2116 }
38b5faf4
DM
2117 /* frontswap enabled? set up bit-per-page map for frontswap */
2118 if (frontswap_enabled)
7b57976d 2119 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2120
3bd0f0c7
SJ
2121 if (p->bdev) {
2122 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2123 p->flags |= SWP_SOLIDSTATE;
d3d30417 2124 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3bd0f0c7 2125 }
052b1987 2126 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
3bd0f0c7 2127 p->flags |= SWP_DISCARDABLE;
20137a49 2128 }
6a6ba831 2129
fc0abb14 2130 mutex_lock(&swapon_mutex);
40531542 2131 prio = -1;
78ecba08 2132 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2133 prio =
78ecba08 2134 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
38b5faf4 2135 enable_swap_info(p, prio, swap_map, frontswap_map);
c69dbfb8
CEB
2136
2137 printk(KERN_INFO "Adding %uk swap on %s. "
38b5faf4 2138 "Priority:%d extents:%d across:%lluk %s%s%s\n",
91a27b2a 2139 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2140 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2141 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4
DM
2142 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2143 (frontswap_map) ? "FS" : "");
c69dbfb8 2144
fc0abb14 2145 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2146 atomic_inc(&proc_poll_event);
2147 wake_up_interruptible(&proc_poll_wait);
2148
9b01c350
CEB
2149 if (S_ISREG(inode->i_mode))
2150 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2151 error = 0;
2152 goto out;
2153bad_swap:
bd69010b 2154 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2155 set_blocksize(p->bdev, p->old_block_size);
2156 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2157 }
4cd3bb10 2158 destroy_swap_extents(p);
e8e6c2ec 2159 swap_cgroup_swapoff(p->type);
5d337b91 2160 spin_lock(&swap_lock);
1da177e4 2161 p->swap_file = NULL;
1da177e4 2162 p->flags = 0;
5d337b91 2163 spin_unlock(&swap_lock);
1da177e4 2164 vfree(swap_map);
52c50567 2165 if (swap_file) {
2130781e 2166 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2167 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2168 inode = NULL;
2169 }
1da177e4 2170 filp_close(swap_file, NULL);
52c50567 2171 }
1da177e4
LT
2172out:
2173 if (page && !IS_ERR(page)) {
2174 kunmap(page);
2175 page_cache_release(page);
2176 }
2177 if (name)
2178 putname(name);
9b01c350 2179 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2180 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2181 return error;
2182}
2183
2184void si_swapinfo(struct sysinfo *val)
2185{
efa90a98 2186 unsigned int type;
1da177e4
LT
2187 unsigned long nr_to_be_unused = 0;
2188
5d337b91 2189 spin_lock(&swap_lock);
efa90a98
HD
2190 for (type = 0; type < nr_swapfiles; type++) {
2191 struct swap_info_struct *si = swap_info[type];
2192
2193 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2194 nr_to_be_unused += si->inuse_pages;
1da177e4 2195 }
ec8acf20 2196 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2197 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2198 spin_unlock(&swap_lock);
1da177e4
LT
2199}
2200
2201/*
2202 * Verify that a swap entry is valid and increment its swap map count.
2203 *
355cfa73
KH
2204 * Returns error code in following case.
2205 * - success -> 0
2206 * - swp_entry is invalid -> EINVAL
2207 * - swp_entry is migration entry -> EINVAL
2208 * - swap-cache reference is requested but there is already one. -> EEXIST
2209 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2210 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2211 */
8d69aaee 2212static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2213{
73c34b6a 2214 struct swap_info_struct *p;
1da177e4 2215 unsigned long offset, type;
8d69aaee
HD
2216 unsigned char count;
2217 unsigned char has_cache;
253d553b 2218 int err = -EINVAL;
1da177e4 2219
a7420aa5 2220 if (non_swap_entry(entry))
253d553b 2221 goto out;
0697212a 2222
1da177e4
LT
2223 type = swp_type(entry);
2224 if (type >= nr_swapfiles)
2225 goto bad_file;
efa90a98 2226 p = swap_info[type];
1da177e4
LT
2227 offset = swp_offset(entry);
2228
ec8acf20 2229 spin_lock(&p->lock);
355cfa73
KH
2230 if (unlikely(offset >= p->max))
2231 goto unlock_out;
2232
253d553b
HD
2233 count = p->swap_map[offset];
2234 has_cache = count & SWAP_HAS_CACHE;
2235 count &= ~SWAP_HAS_CACHE;
2236 err = 0;
355cfa73 2237
253d553b 2238 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2239
2240 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2241 if (!has_cache && count)
2242 has_cache = SWAP_HAS_CACHE;
2243 else if (has_cache) /* someone else added cache */
2244 err = -EEXIST;
2245 else /* no users remaining */
2246 err = -ENOENT;
355cfa73
KH
2247
2248 } else if (count || has_cache) {
253d553b 2249
570a335b
HD
2250 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2251 count += usage;
2252 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2253 err = -EINVAL;
570a335b
HD
2254 else if (swap_count_continued(p, offset, count))
2255 count = COUNT_CONTINUED;
2256 else
2257 err = -ENOMEM;
355cfa73 2258 } else
253d553b
HD
2259 err = -ENOENT; /* unused swap entry */
2260
2261 p->swap_map[offset] = count | has_cache;
2262
355cfa73 2263unlock_out:
ec8acf20 2264 spin_unlock(&p->lock);
1da177e4 2265out:
253d553b 2266 return err;
1da177e4
LT
2267
2268bad_file:
2269 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2270 goto out;
2271}
253d553b 2272
aaa46865
HD
2273/*
2274 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2275 * (in which case its reference count is never incremented).
2276 */
2277void swap_shmem_alloc(swp_entry_t entry)
2278{
2279 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2280}
2281
355cfa73 2282/*
08259d58
HD
2283 * Increase reference count of swap entry by 1.
2284 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2285 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2286 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2287 * might occur if a page table entry has got corrupted.
355cfa73 2288 */
570a335b 2289int swap_duplicate(swp_entry_t entry)
355cfa73 2290{
570a335b
HD
2291 int err = 0;
2292
2293 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2294 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2295 return err;
355cfa73 2296}
1da177e4 2297
cb4b86ba 2298/*
355cfa73
KH
2299 * @entry: swap entry for which we allocate swap cache.
2300 *
73c34b6a 2301 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2302 * This can return error codes. Returns 0 at success.
2303 * -EBUSY means there is a swap cache.
2304 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2305 */
2306int swapcache_prepare(swp_entry_t entry)
2307{
253d553b 2308 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2309}
2310
f981c595
MG
2311struct swap_info_struct *page_swap_info(struct page *page)
2312{
2313 swp_entry_t swap = { .val = page_private(page) };
2314 BUG_ON(!PageSwapCache(page));
2315 return swap_info[swp_type(swap)];
2316}
2317
2318/*
2319 * out-of-line __page_file_ methods to avoid include hell.
2320 */
2321struct address_space *__page_file_mapping(struct page *page)
2322{
2323 VM_BUG_ON(!PageSwapCache(page));
2324 return page_swap_info(page)->swap_file->f_mapping;
2325}
2326EXPORT_SYMBOL_GPL(__page_file_mapping);
2327
2328pgoff_t __page_file_index(struct page *page)
2329{
2330 swp_entry_t swap = { .val = page_private(page) };
2331 VM_BUG_ON(!PageSwapCache(page));
2332 return swp_offset(swap);
2333}
2334EXPORT_SYMBOL_GPL(__page_file_index);
2335
570a335b
HD
2336/*
2337 * add_swap_count_continuation - called when a swap count is duplicated
2338 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2339 * page of the original vmalloc'ed swap_map, to hold the continuation count
2340 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2341 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2342 *
2343 * These continuation pages are seldom referenced: the common paths all work
2344 * on the original swap_map, only referring to a continuation page when the
2345 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2346 *
2347 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2348 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2349 * can be called after dropping locks.
2350 */
2351int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2352{
2353 struct swap_info_struct *si;
2354 struct page *head;
2355 struct page *page;
2356 struct page *list_page;
2357 pgoff_t offset;
2358 unsigned char count;
2359
2360 /*
2361 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2362 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2363 */
2364 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2365
2366 si = swap_info_get(entry);
2367 if (!si) {
2368 /*
2369 * An acceptable race has occurred since the failing
2370 * __swap_duplicate(): the swap entry has been freed,
2371 * perhaps even the whole swap_map cleared for swapoff.
2372 */
2373 goto outer;
2374 }
2375
2376 offset = swp_offset(entry);
2377 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2378
2379 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2380 /*
2381 * The higher the swap count, the more likely it is that tasks
2382 * will race to add swap count continuation: we need to avoid
2383 * over-provisioning.
2384 */
2385 goto out;
2386 }
2387
2388 if (!page) {
ec8acf20 2389 spin_unlock(&si->lock);
570a335b
HD
2390 return -ENOMEM;
2391 }
2392
2393 /*
2394 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2395 * no architecture is using highmem pages for kernel pagetables: so it
2396 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2397 */
2398 head = vmalloc_to_page(si->swap_map + offset);
2399 offset &= ~PAGE_MASK;
2400
2401 /*
2402 * Page allocation does not initialize the page's lru field,
2403 * but it does always reset its private field.
2404 */
2405 if (!page_private(head)) {
2406 BUG_ON(count & COUNT_CONTINUED);
2407 INIT_LIST_HEAD(&head->lru);
2408 set_page_private(head, SWP_CONTINUED);
2409 si->flags |= SWP_CONTINUED;
2410 }
2411
2412 list_for_each_entry(list_page, &head->lru, lru) {
2413 unsigned char *map;
2414
2415 /*
2416 * If the previous map said no continuation, but we've found
2417 * a continuation page, free our allocation and use this one.
2418 */
2419 if (!(count & COUNT_CONTINUED))
2420 goto out;
2421
9b04c5fe 2422 map = kmap_atomic(list_page) + offset;
570a335b 2423 count = *map;
9b04c5fe 2424 kunmap_atomic(map);
570a335b
HD
2425
2426 /*
2427 * If this continuation count now has some space in it,
2428 * free our allocation and use this one.
2429 */
2430 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2431 goto out;
2432 }
2433
2434 list_add_tail(&page->lru, &head->lru);
2435 page = NULL; /* now it's attached, don't free it */
2436out:
ec8acf20 2437 spin_unlock(&si->lock);
570a335b
HD
2438outer:
2439 if (page)
2440 __free_page(page);
2441 return 0;
2442}
2443
2444/*
2445 * swap_count_continued - when the original swap_map count is incremented
2446 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2447 * into, carry if so, or else fail until a new continuation page is allocated;
2448 * when the original swap_map count is decremented from 0 with continuation,
2449 * borrow from the continuation and report whether it still holds more.
2450 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2451 */
2452static bool swap_count_continued(struct swap_info_struct *si,
2453 pgoff_t offset, unsigned char count)
2454{
2455 struct page *head;
2456 struct page *page;
2457 unsigned char *map;
2458
2459 head = vmalloc_to_page(si->swap_map + offset);
2460 if (page_private(head) != SWP_CONTINUED) {
2461 BUG_ON(count & COUNT_CONTINUED);
2462 return false; /* need to add count continuation */
2463 }
2464
2465 offset &= ~PAGE_MASK;
2466 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2467 map = kmap_atomic(page) + offset;
570a335b
HD
2468
2469 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2470 goto init_map; /* jump over SWAP_CONT_MAX checks */
2471
2472 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2473 /*
2474 * Think of how you add 1 to 999
2475 */
2476 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2477 kunmap_atomic(map);
570a335b
HD
2478 page = list_entry(page->lru.next, struct page, lru);
2479 BUG_ON(page == head);
9b04c5fe 2480 map = kmap_atomic(page) + offset;
570a335b
HD
2481 }
2482 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2483 kunmap_atomic(map);
570a335b
HD
2484 page = list_entry(page->lru.next, struct page, lru);
2485 if (page == head)
2486 return false; /* add count continuation */
9b04c5fe 2487 map = kmap_atomic(page) + offset;
570a335b
HD
2488init_map: *map = 0; /* we didn't zero the page */
2489 }
2490 *map += 1;
9b04c5fe 2491 kunmap_atomic(map);
570a335b
HD
2492 page = list_entry(page->lru.prev, struct page, lru);
2493 while (page != head) {
9b04c5fe 2494 map = kmap_atomic(page) + offset;
570a335b 2495 *map = COUNT_CONTINUED;
9b04c5fe 2496 kunmap_atomic(map);
570a335b
HD
2497 page = list_entry(page->lru.prev, struct page, lru);
2498 }
2499 return true; /* incremented */
2500
2501 } else { /* decrementing */
2502 /*
2503 * Think of how you subtract 1 from 1000
2504 */
2505 BUG_ON(count != COUNT_CONTINUED);
2506 while (*map == COUNT_CONTINUED) {
9b04c5fe 2507 kunmap_atomic(map);
570a335b
HD
2508 page = list_entry(page->lru.next, struct page, lru);
2509 BUG_ON(page == head);
9b04c5fe 2510 map = kmap_atomic(page) + offset;
570a335b
HD
2511 }
2512 BUG_ON(*map == 0);
2513 *map -= 1;
2514 if (*map == 0)
2515 count = 0;
9b04c5fe 2516 kunmap_atomic(map);
570a335b
HD
2517 page = list_entry(page->lru.prev, struct page, lru);
2518 while (page != head) {
9b04c5fe 2519 map = kmap_atomic(page) + offset;
570a335b
HD
2520 *map = SWAP_CONT_MAX | count;
2521 count = COUNT_CONTINUED;
9b04c5fe 2522 kunmap_atomic(map);
570a335b
HD
2523 page = list_entry(page->lru.prev, struct page, lru);
2524 }
2525 return count == COUNT_CONTINUED;
2526 }
2527}
2528
2529/*
2530 * free_swap_count_continuations - swapoff free all the continuation pages
2531 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2532 */
2533static void free_swap_count_continuations(struct swap_info_struct *si)
2534{
2535 pgoff_t offset;
2536
2537 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2538 struct page *head;
2539 head = vmalloc_to_page(si->swap_map + offset);
2540 if (page_private(head)) {
2541 struct list_head *this, *next;
2542 list_for_each_safe(this, next, &head->lru) {
2543 struct page *page;
2544 page = list_entry(this, struct page, lru);
2545 list_del(this);
2546 __free_page(page);
2547 }
2548 }
2549 }
2550}