tmpfs: don't undo fallocate past its last page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
81819f0f
CL
126/*
127 * Issues still to be resolved:
128 *
81819f0f
CL
129 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
130 *
81819f0f
CL
131 * - Variable sizing of the per node arrays
132 */
133
134/* Enable to test recovery from slab corruption on boot */
135#undef SLUB_RESILIENCY_TEST
136
b789ef51
CL
137/* Enable to log cmpxchg failures */
138#undef SLUB_DEBUG_CMPXCHG
139
2086d26a
CL
140/*
141 * Mininum number of partial slabs. These will be left on the partial
142 * lists even if they are empty. kmem_cache_shrink may reclaim them.
143 */
76be8950 144#define MIN_PARTIAL 5
e95eed57 145
2086d26a
CL
146/*
147 * Maximum number of desirable partial slabs.
148 * The existence of more partial slabs makes kmem_cache_shrink
149 * sort the partial list by the number of objects in the.
150 */
151#define MAX_PARTIAL 10
152
81819f0f
CL
153#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
154 SLAB_POISON | SLAB_STORE_USER)
672bba3a 155
fa5ec8a1 156/*
3de47213
DR
157 * Debugging flags that require metadata to be stored in the slab. These get
158 * disabled when slub_debug=O is used and a cache's min order increases with
159 * metadata.
fa5ec8a1 160 */
3de47213 161#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 162
81819f0f
CL
163/*
164 * Set of flags that will prevent slab merging
165 */
166#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
167 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
168 SLAB_FAILSLAB)
81819f0f
CL
169
170#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 171 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
204static void sysfs_slab_remove(struct kmem_cache *);
107dab5c 205static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 206#else
0c710013
CL
207static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
db265eca 210static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 211
107dab5c 212static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
213#endif
214
4fdccdfb 215static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
216{
217#ifdef CONFIG_SLUB_STATS
84e554e6 218 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
219#endif
220}
221
81819f0f
CL
222/********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
81819f0f
CL
226static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
227{
81819f0f 228 return s->node[node];
81819f0f
CL
229}
230
6446faa2 231/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
232static inline int check_valid_pointer(struct kmem_cache *s,
233 struct page *page, const void *object)
234{
235 void *base;
236
a973e9dd 237 if (!object)
02cbc874
CL
238 return 1;
239
a973e9dd 240 base = page_address(page);
39b26464 241 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
242 (object - base) % s->size) {
243 return 0;
244 }
245
246 return 1;
247}
248
7656c72b
CL
249static inline void *get_freepointer(struct kmem_cache *s, void *object)
250{
251 return *(void **)(object + s->offset);
252}
253
0ad9500e
ED
254static void prefetch_freepointer(const struct kmem_cache *s, void *object)
255{
256 prefetch(object + s->offset);
257}
258
1393d9a1
CL
259static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
260{
261 void *p;
262
263#ifdef CONFIG_DEBUG_PAGEALLOC
264 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
265#else
266 p = get_freepointer(s, object);
267#endif
268 return p;
269}
270
7656c72b
CL
271static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
272{
273 *(void **)(object + s->offset) = fp;
274}
275
276/* Loop over all objects in a slab */
224a88be
CL
277#define for_each_object(__p, __s, __addr, __objects) \
278 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
279 __p += (__s)->size)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
341 bit_spin_lock(PG_locked, &page->flags);
342}
343
344static __always_inline void slab_unlock(struct page *page)
345{
346 __bit_spin_unlock(PG_locked, &page->flags);
347}
348
1d07171c
CL
349/* Interrupts must be disabled (for the fallback code to work right) */
350static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
351 void *freelist_old, unsigned long counters_old,
352 void *freelist_new, unsigned long counters_new,
353 const char *n)
354{
355 VM_BUG_ON(!irqs_disabled());
2565409f
HC
356#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 358 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 359 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
360 freelist_old, counters_old,
361 freelist_new, counters_new))
362 return 1;
363 } else
364#endif
365 {
366 slab_lock(page);
367 if (page->freelist == freelist_old && page->counters == counters_old) {
368 page->freelist = freelist_new;
369 page->counters = counters_new;
370 slab_unlock(page);
371 return 1;
372 }
373 slab_unlock(page);
374 }
375
376 cpu_relax();
377 stat(s, CMPXCHG_DOUBLE_FAIL);
378
379#ifdef SLUB_DEBUG_CMPXCHG
380 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
381#endif
382
383 return 0;
384}
385
b789ef51
CL
386static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
387 void *freelist_old, unsigned long counters_old,
388 void *freelist_new, unsigned long counters_new,
389 const char *n)
390{
2565409f
HC
391#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
392 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 393 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 394 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
395 freelist_old, counters_old,
396 freelist_new, counters_new))
397 return 1;
398 } else
399#endif
400 {
1d07171c
CL
401 unsigned long flags;
402
403 local_irq_save(flags);
881db7fb 404 slab_lock(page);
b789ef51
CL
405 if (page->freelist == freelist_old && page->counters == counters_old) {
406 page->freelist = freelist_new;
407 page->counters = counters_new;
881db7fb 408 slab_unlock(page);
1d07171c 409 local_irq_restore(flags);
b789ef51
CL
410 return 1;
411 }
881db7fb 412 slab_unlock(page);
1d07171c 413 local_irq_restore(flags);
b789ef51
CL
414 }
415
416 cpu_relax();
417 stat(s, CMPXCHG_DOUBLE_FAIL);
418
419#ifdef SLUB_DEBUG_CMPXCHG
420 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
421#endif
422
423 return 0;
424}
425
41ecc55b 426#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
427/*
428 * Determine a map of object in use on a page.
429 *
881db7fb 430 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
431 * not vanish from under us.
432 */
433static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
434{
435 void *p;
436 void *addr = page_address(page);
437
438 for (p = page->freelist; p; p = get_freepointer(s, p))
439 set_bit(slab_index(p, s, addr), map);
440}
441
41ecc55b
CL
442/*
443 * Debug settings:
444 */
f0630fff
CL
445#ifdef CONFIG_SLUB_DEBUG_ON
446static int slub_debug = DEBUG_DEFAULT_FLAGS;
447#else
41ecc55b 448static int slub_debug;
f0630fff 449#endif
41ecc55b
CL
450
451static char *slub_debug_slabs;
fa5ec8a1 452static int disable_higher_order_debug;
41ecc55b 453
81819f0f
CL
454/*
455 * Object debugging
456 */
457static void print_section(char *text, u8 *addr, unsigned int length)
458{
ffc79d28
SAS
459 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
460 length, 1);
81819f0f
CL
461}
462
81819f0f
CL
463static struct track *get_track(struct kmem_cache *s, void *object,
464 enum track_item alloc)
465{
466 struct track *p;
467
468 if (s->offset)
469 p = object + s->offset + sizeof(void *);
470 else
471 p = object + s->inuse;
472
473 return p + alloc;
474}
475
476static void set_track(struct kmem_cache *s, void *object,
ce71e27c 477 enum track_item alloc, unsigned long addr)
81819f0f 478{
1a00df4a 479 struct track *p = get_track(s, object, alloc);
81819f0f 480
81819f0f 481 if (addr) {
d6543e39
BG
482#ifdef CONFIG_STACKTRACE
483 struct stack_trace trace;
484 int i;
485
486 trace.nr_entries = 0;
487 trace.max_entries = TRACK_ADDRS_COUNT;
488 trace.entries = p->addrs;
489 trace.skip = 3;
490 save_stack_trace(&trace);
491
492 /* See rant in lockdep.c */
493 if (trace.nr_entries != 0 &&
494 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
495 trace.nr_entries--;
496
497 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
498 p->addrs[i] = 0;
499#endif
81819f0f
CL
500 p->addr = addr;
501 p->cpu = smp_processor_id();
88e4ccf2 502 p->pid = current->pid;
81819f0f
CL
503 p->when = jiffies;
504 } else
505 memset(p, 0, sizeof(struct track));
506}
507
81819f0f
CL
508static void init_tracking(struct kmem_cache *s, void *object)
509{
24922684
CL
510 if (!(s->flags & SLAB_STORE_USER))
511 return;
512
ce71e27c
EGM
513 set_track(s, object, TRACK_FREE, 0UL);
514 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
515}
516
517static void print_track(const char *s, struct track *t)
518{
519 if (!t->addr)
520 return;
521
7daf705f 522 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 523 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
524#ifdef CONFIG_STACKTRACE
525 {
526 int i;
527 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
528 if (t->addrs[i])
529 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
530 else
531 break;
532 }
533#endif
24922684
CL
534}
535
536static void print_tracking(struct kmem_cache *s, void *object)
537{
538 if (!(s->flags & SLAB_STORE_USER))
539 return;
540
541 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
542 print_track("Freed", get_track(s, object, TRACK_FREE));
543}
544
545static void print_page_info(struct page *page)
546{
39b26464
CL
547 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
548 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
549
550}
551
552static void slab_bug(struct kmem_cache *s, char *fmt, ...)
553{
554 va_list args;
555 char buf[100];
556
557 va_start(args, fmt);
558 vsnprintf(buf, sizeof(buf), fmt, args);
559 va_end(args);
560 printk(KERN_ERR "========================================"
561 "=====================================\n");
265d47e7 562 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
563 printk(KERN_ERR "----------------------------------------"
564 "-------------------------------------\n\n");
645df230 565
373d4d09 566 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
567}
568
24922684
CL
569static void slab_fix(struct kmem_cache *s, char *fmt, ...)
570{
571 va_list args;
572 char buf[100];
573
574 va_start(args, fmt);
575 vsnprintf(buf, sizeof(buf), fmt, args);
576 va_end(args);
577 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
578}
579
580static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
581{
582 unsigned int off; /* Offset of last byte */
a973e9dd 583 u8 *addr = page_address(page);
24922684
CL
584
585 print_tracking(s, p);
586
587 print_page_info(page);
588
589 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
590 p, p - addr, get_freepointer(s, p));
591
592 if (p > addr + 16)
ffc79d28 593 print_section("Bytes b4 ", p - 16, 16);
81819f0f 594
3b0efdfa 595 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 596 PAGE_SIZE));
81819f0f 597 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
598 print_section("Redzone ", p + s->object_size,
599 s->inuse - s->object_size);
81819f0f 600
81819f0f
CL
601 if (s->offset)
602 off = s->offset + sizeof(void *);
603 else
604 off = s->inuse;
605
24922684 606 if (s->flags & SLAB_STORE_USER)
81819f0f 607 off += 2 * sizeof(struct track);
81819f0f
CL
608
609 if (off != s->size)
610 /* Beginning of the filler is the free pointer */
ffc79d28 611 print_section("Padding ", p + off, s->size - off);
24922684
CL
612
613 dump_stack();
81819f0f
CL
614}
615
616static void object_err(struct kmem_cache *s, struct page *page,
617 u8 *object, char *reason)
618{
3dc50637 619 slab_bug(s, "%s", reason);
24922684 620 print_trailer(s, page, object);
81819f0f
CL
621}
622
945cf2b6 623static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
81819f0f
CL
624{
625 va_list args;
626 char buf[100];
627
24922684
CL
628 va_start(args, fmt);
629 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 630 va_end(args);
3dc50637 631 slab_bug(s, "%s", buf);
24922684 632 print_page_info(page);
81819f0f
CL
633 dump_stack();
634}
635
f7cb1933 636static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
637{
638 u8 *p = object;
639
640 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
641 memset(p, POISON_FREE, s->object_size - 1);
642 p[s->object_size - 1] = POISON_END;
81819f0f
CL
643 }
644
645 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 646 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
647}
648
24922684
CL
649static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
650 void *from, void *to)
651{
652 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
653 memset(from, data, to - from);
654}
655
656static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
657 u8 *object, char *what,
06428780 658 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
659{
660 u8 *fault;
661 u8 *end;
662
79824820 663 fault = memchr_inv(start, value, bytes);
24922684
CL
664 if (!fault)
665 return 1;
666
667 end = start + bytes;
668 while (end > fault && end[-1] == value)
669 end--;
670
671 slab_bug(s, "%s overwritten", what);
672 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
673 fault, end - 1, fault[0], value);
674 print_trailer(s, page, object);
675
676 restore_bytes(s, what, value, fault, end);
677 return 0;
81819f0f
CL
678}
679
81819f0f
CL
680/*
681 * Object layout:
682 *
683 * object address
684 * Bytes of the object to be managed.
685 * If the freepointer may overlay the object then the free
686 * pointer is the first word of the object.
672bba3a 687 *
81819f0f
CL
688 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
689 * 0xa5 (POISON_END)
690 *
3b0efdfa 691 * object + s->object_size
81819f0f 692 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 693 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 694 * object_size == inuse.
672bba3a 695 *
81819f0f
CL
696 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
697 * 0xcc (RED_ACTIVE) for objects in use.
698 *
699 * object + s->inuse
672bba3a
CL
700 * Meta data starts here.
701 *
81819f0f
CL
702 * A. Free pointer (if we cannot overwrite object on free)
703 * B. Tracking data for SLAB_STORE_USER
672bba3a 704 * C. Padding to reach required alignment boundary or at mininum
6446faa2 705 * one word if debugging is on to be able to detect writes
672bba3a
CL
706 * before the word boundary.
707 *
708 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
709 *
710 * object + s->size
672bba3a 711 * Nothing is used beyond s->size.
81819f0f 712 *
3b0efdfa 713 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 714 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
715 * may be used with merged slabcaches.
716 */
717
81819f0f
CL
718static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
719{
720 unsigned long off = s->inuse; /* The end of info */
721
722 if (s->offset)
723 /* Freepointer is placed after the object. */
724 off += sizeof(void *);
725
726 if (s->flags & SLAB_STORE_USER)
727 /* We also have user information there */
728 off += 2 * sizeof(struct track);
729
730 if (s->size == off)
731 return 1;
732
24922684
CL
733 return check_bytes_and_report(s, page, p, "Object padding",
734 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
735}
736
39b26464 737/* Check the pad bytes at the end of a slab page */
81819f0f
CL
738static int slab_pad_check(struct kmem_cache *s, struct page *page)
739{
24922684
CL
740 u8 *start;
741 u8 *fault;
742 u8 *end;
743 int length;
744 int remainder;
81819f0f
CL
745
746 if (!(s->flags & SLAB_POISON))
747 return 1;
748
a973e9dd 749 start = page_address(page);
ab9a0f19 750 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
751 end = start + length;
752 remainder = length % s->size;
81819f0f
CL
753 if (!remainder)
754 return 1;
755
79824820 756 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
757 if (!fault)
758 return 1;
759 while (end > fault && end[-1] == POISON_INUSE)
760 end--;
761
762 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 763 print_section("Padding ", end - remainder, remainder);
24922684 764
8a3d271d 765 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 766 return 0;
81819f0f
CL
767}
768
769static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 770 void *object, u8 val)
81819f0f
CL
771{
772 u8 *p = object;
3b0efdfa 773 u8 *endobject = object + s->object_size;
81819f0f
CL
774
775 if (s->flags & SLAB_RED_ZONE) {
24922684 776 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 777 endobject, val, s->inuse - s->object_size))
81819f0f 778 return 0;
81819f0f 779 } else {
3b0efdfa 780 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 781 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 782 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 783 }
81819f0f
CL
784 }
785
786 if (s->flags & SLAB_POISON) {
f7cb1933 787 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 788 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 789 POISON_FREE, s->object_size - 1) ||
24922684 790 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 791 p + s->object_size - 1, POISON_END, 1)))
81819f0f 792 return 0;
81819f0f
CL
793 /*
794 * check_pad_bytes cleans up on its own.
795 */
796 check_pad_bytes(s, page, p);
797 }
798
f7cb1933 799 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
800 /*
801 * Object and freepointer overlap. Cannot check
802 * freepointer while object is allocated.
803 */
804 return 1;
805
806 /* Check free pointer validity */
807 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
808 object_err(s, page, p, "Freepointer corrupt");
809 /*
9f6c708e 810 * No choice but to zap it and thus lose the remainder
81819f0f 811 * of the free objects in this slab. May cause
672bba3a 812 * another error because the object count is now wrong.
81819f0f 813 */
a973e9dd 814 set_freepointer(s, p, NULL);
81819f0f
CL
815 return 0;
816 }
817 return 1;
818}
819
820static int check_slab(struct kmem_cache *s, struct page *page)
821{
39b26464
CL
822 int maxobj;
823
81819f0f
CL
824 VM_BUG_ON(!irqs_disabled());
825
826 if (!PageSlab(page)) {
24922684 827 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
828 return 0;
829 }
39b26464 830
ab9a0f19 831 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
832 if (page->objects > maxobj) {
833 slab_err(s, page, "objects %u > max %u",
834 s->name, page->objects, maxobj);
835 return 0;
836 }
837 if (page->inuse > page->objects) {
24922684 838 slab_err(s, page, "inuse %u > max %u",
39b26464 839 s->name, page->inuse, page->objects);
81819f0f
CL
840 return 0;
841 }
842 /* Slab_pad_check fixes things up after itself */
843 slab_pad_check(s, page);
844 return 1;
845}
846
847/*
672bba3a
CL
848 * Determine if a certain object on a page is on the freelist. Must hold the
849 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
850 */
851static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
852{
853 int nr = 0;
881db7fb 854 void *fp;
81819f0f 855 void *object = NULL;
224a88be 856 unsigned long max_objects;
81819f0f 857
881db7fb 858 fp = page->freelist;
39b26464 859 while (fp && nr <= page->objects) {
81819f0f
CL
860 if (fp == search)
861 return 1;
862 if (!check_valid_pointer(s, page, fp)) {
863 if (object) {
864 object_err(s, page, object,
865 "Freechain corrupt");
a973e9dd 866 set_freepointer(s, object, NULL);
81819f0f
CL
867 break;
868 } else {
24922684 869 slab_err(s, page, "Freepointer corrupt");
a973e9dd 870 page->freelist = NULL;
39b26464 871 page->inuse = page->objects;
24922684 872 slab_fix(s, "Freelist cleared");
81819f0f
CL
873 return 0;
874 }
875 break;
876 }
877 object = fp;
878 fp = get_freepointer(s, object);
879 nr++;
880 }
881
ab9a0f19 882 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
883 if (max_objects > MAX_OBJS_PER_PAGE)
884 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
885
886 if (page->objects != max_objects) {
887 slab_err(s, page, "Wrong number of objects. Found %d but "
888 "should be %d", page->objects, max_objects);
889 page->objects = max_objects;
890 slab_fix(s, "Number of objects adjusted.");
891 }
39b26464 892 if (page->inuse != page->objects - nr) {
70d71228 893 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
894 "counted were %d", page->inuse, page->objects - nr);
895 page->inuse = page->objects - nr;
24922684 896 slab_fix(s, "Object count adjusted.");
81819f0f
CL
897 }
898 return search == NULL;
899}
900
0121c619
CL
901static void trace(struct kmem_cache *s, struct page *page, void *object,
902 int alloc)
3ec09742
CL
903{
904 if (s->flags & SLAB_TRACE) {
905 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
906 s->name,
907 alloc ? "alloc" : "free",
908 object, page->inuse,
909 page->freelist);
910
911 if (!alloc)
3b0efdfa 912 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
913
914 dump_stack();
915 }
916}
917
c016b0bd
CL
918/*
919 * Hooks for other subsystems that check memory allocations. In a typical
920 * production configuration these hooks all should produce no code at all.
921 */
922static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
923{
c1d50836 924 flags &= gfp_allowed_mask;
c016b0bd
CL
925 lockdep_trace_alloc(flags);
926 might_sleep_if(flags & __GFP_WAIT);
927
3b0efdfa 928 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
929}
930
931static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
932{
c1d50836 933 flags &= gfp_allowed_mask;
b3d41885 934 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 935 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
936}
937
938static inline void slab_free_hook(struct kmem_cache *s, void *x)
939{
940 kmemleak_free_recursive(x, s->flags);
c016b0bd 941
d3f661d6
CL
942 /*
943 * Trouble is that we may no longer disable interupts in the fast path
944 * So in order to make the debug calls that expect irqs to be
945 * disabled we need to disable interrupts temporarily.
946 */
947#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
948 {
949 unsigned long flags;
950
951 local_irq_save(flags);
3b0efdfa
CL
952 kmemcheck_slab_free(s, x, s->object_size);
953 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
954 local_irq_restore(flags);
955 }
956#endif
f9b615de 957 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 958 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
959}
960
643b1138 961/*
672bba3a 962 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
963 *
964 * list_lock must be held.
643b1138 965 */
5cc6eee8
CL
966static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
643b1138 968{
5cc6eee8
CL
969 if (!(s->flags & SLAB_STORE_USER))
970 return;
971
643b1138 972 list_add(&page->lru, &n->full);
643b1138
CL
973}
974
5cc6eee8
CL
975/*
976 * list_lock must be held.
977 */
643b1138
CL
978static void remove_full(struct kmem_cache *s, struct page *page)
979{
643b1138
CL
980 if (!(s->flags & SLAB_STORE_USER))
981 return;
982
643b1138 983 list_del(&page->lru);
643b1138
CL
984}
985
0f389ec6
CL
986/* Tracking of the number of slabs for debugging purposes */
987static inline unsigned long slabs_node(struct kmem_cache *s, int node)
988{
989 struct kmem_cache_node *n = get_node(s, node);
990
991 return atomic_long_read(&n->nr_slabs);
992}
993
26c02cf0
AB
994static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
995{
996 return atomic_long_read(&n->nr_slabs);
997}
998
205ab99d 999static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1000{
1001 struct kmem_cache_node *n = get_node(s, node);
1002
1003 /*
1004 * May be called early in order to allocate a slab for the
1005 * kmem_cache_node structure. Solve the chicken-egg
1006 * dilemma by deferring the increment of the count during
1007 * bootstrap (see early_kmem_cache_node_alloc).
1008 */
338b2642 1009 if (likely(n)) {
0f389ec6 1010 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1011 atomic_long_add(objects, &n->total_objects);
1012 }
0f389ec6 1013}
205ab99d 1014static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1015{
1016 struct kmem_cache_node *n = get_node(s, node);
1017
1018 atomic_long_dec(&n->nr_slabs);
205ab99d 1019 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1020}
1021
1022/* Object debug checks for alloc/free paths */
3ec09742
CL
1023static void setup_object_debug(struct kmem_cache *s, struct page *page,
1024 void *object)
1025{
1026 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1027 return;
1028
f7cb1933 1029 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1030 init_tracking(s, object);
1031}
1032
1537066c 1033static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1034 void *object, unsigned long addr)
81819f0f
CL
1035{
1036 if (!check_slab(s, page))
1037 goto bad;
1038
81819f0f
CL
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1041 goto bad;
81819f0f
CL
1042 }
1043
f7cb1933 1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1045 goto bad;
81819f0f 1046
3ec09742
CL
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
f7cb1933 1051 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1052 return 1;
3ec09742 1053
81819f0f
CL
1054bad:
1055 if (PageSlab(page)) {
1056 /*
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
672bba3a 1059 * as used avoids touching the remaining objects.
81819f0f 1060 */
24922684 1061 slab_fix(s, "Marking all objects used");
39b26464 1062 page->inuse = page->objects;
a973e9dd 1063 page->freelist = NULL;
81819f0f
CL
1064 }
1065 return 0;
1066}
1067
19c7ff9e
CL
1068static noinline struct kmem_cache_node *free_debug_processing(
1069 struct kmem_cache *s, struct page *page, void *object,
1070 unsigned long addr, unsigned long *flags)
81819f0f 1071{
19c7ff9e 1072 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1073
19c7ff9e 1074 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1075 slab_lock(page);
1076
81819f0f
CL
1077 if (!check_slab(s, page))
1078 goto fail;
1079
1080 if (!check_valid_pointer(s, page, object)) {
70d71228 1081 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1082 goto fail;
1083 }
1084
1085 if (on_freelist(s, page, object)) {
24922684 1086 object_err(s, page, object, "Object already free");
81819f0f
CL
1087 goto fail;
1088 }
1089
f7cb1933 1090 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1091 goto out;
81819f0f 1092
1b4f59e3 1093 if (unlikely(s != page->slab_cache)) {
3adbefee 1094 if (!PageSlab(page)) {
70d71228
CL
1095 slab_err(s, page, "Attempt to free object(0x%p) "
1096 "outside of slab", object);
1b4f59e3 1097 } else if (!page->slab_cache) {
81819f0f 1098 printk(KERN_ERR
70d71228 1099 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1100 object);
70d71228 1101 dump_stack();
06428780 1102 } else
24922684
CL
1103 object_err(s, page, object,
1104 "page slab pointer corrupt.");
81819f0f
CL
1105 goto fail;
1106 }
3ec09742 1107
3ec09742
CL
1108 if (s->flags & SLAB_STORE_USER)
1109 set_track(s, object, TRACK_FREE, addr);
1110 trace(s, page, object, 0);
f7cb1933 1111 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1112out:
881db7fb 1113 slab_unlock(page);
19c7ff9e
CL
1114 /*
1115 * Keep node_lock to preserve integrity
1116 * until the object is actually freed
1117 */
1118 return n;
3ec09742 1119
81819f0f 1120fail:
19c7ff9e
CL
1121 slab_unlock(page);
1122 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1123 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1124 return NULL;
81819f0f
CL
1125}
1126
41ecc55b
CL
1127static int __init setup_slub_debug(char *str)
1128{
f0630fff
CL
1129 slub_debug = DEBUG_DEFAULT_FLAGS;
1130 if (*str++ != '=' || !*str)
1131 /*
1132 * No options specified. Switch on full debugging.
1133 */
1134 goto out;
1135
1136 if (*str == ',')
1137 /*
1138 * No options but restriction on slabs. This means full
1139 * debugging for slabs matching a pattern.
1140 */
1141 goto check_slabs;
1142
fa5ec8a1
DR
1143 if (tolower(*str) == 'o') {
1144 /*
1145 * Avoid enabling debugging on caches if its minimum order
1146 * would increase as a result.
1147 */
1148 disable_higher_order_debug = 1;
1149 goto out;
1150 }
1151
f0630fff
CL
1152 slub_debug = 0;
1153 if (*str == '-')
1154 /*
1155 * Switch off all debugging measures.
1156 */
1157 goto out;
1158
1159 /*
1160 * Determine which debug features should be switched on
1161 */
06428780 1162 for (; *str && *str != ','; str++) {
f0630fff
CL
1163 switch (tolower(*str)) {
1164 case 'f':
1165 slub_debug |= SLAB_DEBUG_FREE;
1166 break;
1167 case 'z':
1168 slub_debug |= SLAB_RED_ZONE;
1169 break;
1170 case 'p':
1171 slub_debug |= SLAB_POISON;
1172 break;
1173 case 'u':
1174 slub_debug |= SLAB_STORE_USER;
1175 break;
1176 case 't':
1177 slub_debug |= SLAB_TRACE;
1178 break;
4c13dd3b
DM
1179 case 'a':
1180 slub_debug |= SLAB_FAILSLAB;
1181 break;
f0630fff
CL
1182 default:
1183 printk(KERN_ERR "slub_debug option '%c' "
06428780 1184 "unknown. skipped\n", *str);
f0630fff 1185 }
41ecc55b
CL
1186 }
1187
f0630fff 1188check_slabs:
41ecc55b
CL
1189 if (*str == ',')
1190 slub_debug_slabs = str + 1;
f0630fff 1191out:
41ecc55b
CL
1192 return 1;
1193}
1194
1195__setup("slub_debug", setup_slub_debug);
1196
3b0efdfa 1197static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1198 unsigned long flags, const char *name,
51cc5068 1199 void (*ctor)(void *))
41ecc55b
CL
1200{
1201 /*
e153362a 1202 * Enable debugging if selected on the kernel commandline.
41ecc55b 1203 */
fe76407d
CL
1204 if (slub_debug && (!slub_debug_slabs || (name &&
1205 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1206 flags |= slub_debug;
ba0268a8
CL
1207
1208 return flags;
41ecc55b
CL
1209}
1210#else
3ec09742
CL
1211static inline void setup_object_debug(struct kmem_cache *s,
1212 struct page *page, void *object) {}
41ecc55b 1213
3ec09742 1214static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1215 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1216
19c7ff9e
CL
1217static inline struct kmem_cache_node *free_debug_processing(
1218 struct kmem_cache *s, struct page *page, void *object,
1219 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1220
41ecc55b
CL
1221static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1222 { return 1; }
1223static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1224 void *object, u8 val) { return 1; }
5cc6eee8
CL
1225static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1226 struct page *page) {}
2cfb7455 1227static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1228static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1229 unsigned long flags, const char *name,
51cc5068 1230 void (*ctor)(void *))
ba0268a8
CL
1231{
1232 return flags;
1233}
41ecc55b 1234#define slub_debug 0
0f389ec6 1235
fdaa45e9
IM
1236#define disable_higher_order_debug 0
1237
0f389ec6
CL
1238static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1239 { return 0; }
26c02cf0
AB
1240static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1241 { return 0; }
205ab99d
CL
1242static inline void inc_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
1244static inline void dec_slabs_node(struct kmem_cache *s, int node,
1245 int objects) {}
7d550c56
CL
1246
1247static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1248 { return 0; }
1249
1250static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1251 void *object) {}
1252
1253static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1254
ab4d5ed5 1255#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1256
81819f0f
CL
1257/*
1258 * Slab allocation and freeing
1259 */
65c3376a
CL
1260static inline struct page *alloc_slab_page(gfp_t flags, int node,
1261 struct kmem_cache_order_objects oo)
1262{
1263 int order = oo_order(oo);
1264
b1eeab67
VN
1265 flags |= __GFP_NOTRACK;
1266
2154a336 1267 if (node == NUMA_NO_NODE)
65c3376a
CL
1268 return alloc_pages(flags, order);
1269 else
6b65aaf3 1270 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1271}
1272
81819f0f
CL
1273static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1274{
06428780 1275 struct page *page;
834f3d11 1276 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1277 gfp_t alloc_gfp;
81819f0f 1278
7e0528da
CL
1279 flags &= gfp_allowed_mask;
1280
1281 if (flags & __GFP_WAIT)
1282 local_irq_enable();
1283
b7a49f0d 1284 flags |= s->allocflags;
e12ba74d 1285
ba52270d
PE
1286 /*
1287 * Let the initial higher-order allocation fail under memory pressure
1288 * so we fall-back to the minimum order allocation.
1289 */
1290 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1291
1292 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1293 if (unlikely(!page)) {
1294 oo = s->min;
1295 /*
1296 * Allocation may have failed due to fragmentation.
1297 * Try a lower order alloc if possible
1298 */
1299 page = alloc_slab_page(flags, node, oo);
81819f0f 1300
7e0528da
CL
1301 if (page)
1302 stat(s, ORDER_FALLBACK);
65c3376a 1303 }
5a896d9e 1304
737b719e 1305 if (kmemcheck_enabled && page
5086c389 1306 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1307 int pages = 1 << oo_order(oo);
1308
1309 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1310
1311 /*
1312 * Objects from caches that have a constructor don't get
1313 * cleared when they're allocated, so we need to do it here.
1314 */
1315 if (s->ctor)
1316 kmemcheck_mark_uninitialized_pages(page, pages);
1317 else
1318 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1319 }
1320
737b719e
DR
1321 if (flags & __GFP_WAIT)
1322 local_irq_disable();
1323 if (!page)
1324 return NULL;
1325
834f3d11 1326 page->objects = oo_objects(oo);
81819f0f
CL
1327 mod_zone_page_state(page_zone(page),
1328 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1329 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1330 1 << oo_order(oo));
81819f0f
CL
1331
1332 return page;
1333}
1334
1335static void setup_object(struct kmem_cache *s, struct page *page,
1336 void *object)
1337{
3ec09742 1338 setup_object_debug(s, page, object);
4f104934 1339 if (unlikely(s->ctor))
51cc5068 1340 s->ctor(object);
81819f0f
CL
1341}
1342
1343static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1344{
1345 struct page *page;
81819f0f 1346 void *start;
81819f0f
CL
1347 void *last;
1348 void *p;
1f458cbf 1349 int order;
81819f0f 1350
6cb06229 1351 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1352
6cb06229
CL
1353 page = allocate_slab(s,
1354 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1355 if (!page)
1356 goto out;
1357
1f458cbf 1358 order = compound_order(page);
205ab99d 1359 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1360 memcg_bind_pages(s, order);
1b4f59e3 1361 page->slab_cache = s;
c03f94cc 1362 __SetPageSlab(page);
072bb0aa
MG
1363 if (page->pfmemalloc)
1364 SetPageSlabPfmemalloc(page);
81819f0f
CL
1365
1366 start = page_address(page);
81819f0f
CL
1367
1368 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1369 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1370
1371 last = start;
224a88be 1372 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1373 setup_object(s, page, last);
1374 set_freepointer(s, last, p);
1375 last = p;
1376 }
1377 setup_object(s, page, last);
a973e9dd 1378 set_freepointer(s, last, NULL);
81819f0f
CL
1379
1380 page->freelist = start;
e6e82ea1 1381 page->inuse = page->objects;
8cb0a506 1382 page->frozen = 1;
81819f0f 1383out:
81819f0f
CL
1384 return page;
1385}
1386
1387static void __free_slab(struct kmem_cache *s, struct page *page)
1388{
834f3d11
CL
1389 int order = compound_order(page);
1390 int pages = 1 << order;
81819f0f 1391
af537b0a 1392 if (kmem_cache_debug(s)) {
81819f0f
CL
1393 void *p;
1394
1395 slab_pad_check(s, page);
224a88be
CL
1396 for_each_object(p, s, page_address(page),
1397 page->objects)
f7cb1933 1398 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1399 }
1400
b1eeab67 1401 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1402
81819f0f
CL
1403 mod_zone_page_state(page_zone(page),
1404 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1405 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1406 -pages);
81819f0f 1407
072bb0aa 1408 __ClearPageSlabPfmemalloc(page);
49bd5221 1409 __ClearPageSlab(page);
1f458cbf
GC
1410
1411 memcg_release_pages(s, order);
22b751c3 1412 page_mapcount_reset(page);
1eb5ac64
NP
1413 if (current->reclaim_state)
1414 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1415 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1416}
1417
da9a638c
LJ
1418#define need_reserve_slab_rcu \
1419 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1420
81819f0f
CL
1421static void rcu_free_slab(struct rcu_head *h)
1422{
1423 struct page *page;
1424
da9a638c
LJ
1425 if (need_reserve_slab_rcu)
1426 page = virt_to_head_page(h);
1427 else
1428 page = container_of((struct list_head *)h, struct page, lru);
1429
1b4f59e3 1430 __free_slab(page->slab_cache, page);
81819f0f
CL
1431}
1432
1433static void free_slab(struct kmem_cache *s, struct page *page)
1434{
1435 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1436 struct rcu_head *head;
1437
1438 if (need_reserve_slab_rcu) {
1439 int order = compound_order(page);
1440 int offset = (PAGE_SIZE << order) - s->reserved;
1441
1442 VM_BUG_ON(s->reserved != sizeof(*head));
1443 head = page_address(page) + offset;
1444 } else {
1445 /*
1446 * RCU free overloads the RCU head over the LRU
1447 */
1448 head = (void *)&page->lru;
1449 }
81819f0f
CL
1450
1451 call_rcu(head, rcu_free_slab);
1452 } else
1453 __free_slab(s, page);
1454}
1455
1456static void discard_slab(struct kmem_cache *s, struct page *page)
1457{
205ab99d 1458 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1459 free_slab(s, page);
1460}
1461
1462/*
5cc6eee8
CL
1463 * Management of partially allocated slabs.
1464 *
1465 * list_lock must be held.
81819f0f 1466 */
5cc6eee8 1467static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1468 struct page *page, int tail)
81819f0f 1469{
e95eed57 1470 n->nr_partial++;
136333d1 1471 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1472 list_add_tail(&page->lru, &n->partial);
1473 else
1474 list_add(&page->lru, &n->partial);
81819f0f
CL
1475}
1476
5cc6eee8
CL
1477/*
1478 * list_lock must be held.
1479 */
1480static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1481 struct page *page)
1482{
1483 list_del(&page->lru);
1484 n->nr_partial--;
1485}
1486
81819f0f 1487/*
7ced3719
CL
1488 * Remove slab from the partial list, freeze it and
1489 * return the pointer to the freelist.
81819f0f 1490 *
497b66f2
CL
1491 * Returns a list of objects or NULL if it fails.
1492 *
7ced3719 1493 * Must hold list_lock since we modify the partial list.
81819f0f 1494 */
497b66f2 1495static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1496 struct kmem_cache_node *n, struct page *page,
633b0764 1497 int mode, int *objects)
81819f0f 1498{
2cfb7455
CL
1499 void *freelist;
1500 unsigned long counters;
1501 struct page new;
1502
2cfb7455
CL
1503 /*
1504 * Zap the freelist and set the frozen bit.
1505 * The old freelist is the list of objects for the
1506 * per cpu allocation list.
1507 */
7ced3719
CL
1508 freelist = page->freelist;
1509 counters = page->counters;
1510 new.counters = counters;
633b0764 1511 *objects = new.objects - new.inuse;
23910c50 1512 if (mode) {
7ced3719 1513 new.inuse = page->objects;
23910c50
PE
1514 new.freelist = NULL;
1515 } else {
1516 new.freelist = freelist;
1517 }
2cfb7455 1518
7ced3719
CL
1519 VM_BUG_ON(new.frozen);
1520 new.frozen = 1;
2cfb7455 1521
7ced3719 1522 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1523 freelist, counters,
02d7633f 1524 new.freelist, new.counters,
7ced3719 1525 "acquire_slab"))
7ced3719 1526 return NULL;
2cfb7455
CL
1527
1528 remove_partial(n, page);
7ced3719 1529 WARN_ON(!freelist);
49e22585 1530 return freelist;
81819f0f
CL
1531}
1532
633b0764 1533static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1534static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1535
81819f0f 1536/*
672bba3a 1537 * Try to allocate a partial slab from a specific node.
81819f0f 1538 */
8ba00bb6
JK
1539static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1540 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1541{
49e22585
CL
1542 struct page *page, *page2;
1543 void *object = NULL;
633b0764
JK
1544 int available = 0;
1545 int objects;
81819f0f
CL
1546
1547 /*
1548 * Racy check. If we mistakenly see no partial slabs then we
1549 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1550 * partial slab and there is none available then get_partials()
1551 * will return NULL.
81819f0f
CL
1552 */
1553 if (!n || !n->nr_partial)
1554 return NULL;
1555
1556 spin_lock(&n->list_lock);
49e22585 1557 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1558 void *t;
49e22585 1559
8ba00bb6
JK
1560 if (!pfmemalloc_match(page, flags))
1561 continue;
1562
633b0764 1563 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1564 if (!t)
1565 break;
1566
633b0764 1567 available += objects;
12d79634 1568 if (!object) {
49e22585 1569 c->page = page;
49e22585 1570 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1571 object = t;
49e22585 1572 } else {
633b0764 1573 put_cpu_partial(s, page, 0);
8028dcea 1574 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1575 }
1576 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1577 break;
1578
497b66f2 1579 }
81819f0f 1580 spin_unlock(&n->list_lock);
497b66f2 1581 return object;
81819f0f
CL
1582}
1583
1584/*
672bba3a 1585 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1586 */
de3ec035 1587static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1588 struct kmem_cache_cpu *c)
81819f0f
CL
1589{
1590#ifdef CONFIG_NUMA
1591 struct zonelist *zonelist;
dd1a239f 1592 struct zoneref *z;
54a6eb5c
MG
1593 struct zone *zone;
1594 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1595 void *object;
cc9a6c87 1596 unsigned int cpuset_mems_cookie;
81819f0f
CL
1597
1598 /*
672bba3a
CL
1599 * The defrag ratio allows a configuration of the tradeoffs between
1600 * inter node defragmentation and node local allocations. A lower
1601 * defrag_ratio increases the tendency to do local allocations
1602 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1603 *
672bba3a
CL
1604 * If the defrag_ratio is set to 0 then kmalloc() always
1605 * returns node local objects. If the ratio is higher then kmalloc()
1606 * may return off node objects because partial slabs are obtained
1607 * from other nodes and filled up.
81819f0f 1608 *
6446faa2 1609 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1610 * defrag_ratio = 1000) then every (well almost) allocation will
1611 * first attempt to defrag slab caches on other nodes. This means
1612 * scanning over all nodes to look for partial slabs which may be
1613 * expensive if we do it every time we are trying to find a slab
1614 * with available objects.
81819f0f 1615 */
9824601e
CL
1616 if (!s->remote_node_defrag_ratio ||
1617 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1618 return NULL;
1619
cc9a6c87
MG
1620 do {
1621 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1622 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1623 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1624 struct kmem_cache_node *n;
1625
1626 n = get_node(s, zone_to_nid(zone));
1627
1628 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1629 n->nr_partial > s->min_partial) {
8ba00bb6 1630 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1631 if (object) {
1632 /*
1633 * Return the object even if
1634 * put_mems_allowed indicated that
1635 * the cpuset mems_allowed was
1636 * updated in parallel. It's a
1637 * harmless race between the alloc
1638 * and the cpuset update.
1639 */
1640 put_mems_allowed(cpuset_mems_cookie);
1641 return object;
1642 }
c0ff7453 1643 }
81819f0f 1644 }
cc9a6c87 1645 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1646#endif
1647 return NULL;
1648}
1649
1650/*
1651 * Get a partial page, lock it and return it.
1652 */
497b66f2 1653static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1654 struct kmem_cache_cpu *c)
81819f0f 1655{
497b66f2 1656 void *object;
2154a336 1657 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1658
8ba00bb6 1659 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1660 if (object || node != NUMA_NO_NODE)
1661 return object;
81819f0f 1662
acd19fd1 1663 return get_any_partial(s, flags, c);
81819f0f
CL
1664}
1665
8a5ec0ba
CL
1666#ifdef CONFIG_PREEMPT
1667/*
1668 * Calculate the next globally unique transaction for disambiguiation
1669 * during cmpxchg. The transactions start with the cpu number and are then
1670 * incremented by CONFIG_NR_CPUS.
1671 */
1672#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1673#else
1674/*
1675 * No preemption supported therefore also no need to check for
1676 * different cpus.
1677 */
1678#define TID_STEP 1
1679#endif
1680
1681static inline unsigned long next_tid(unsigned long tid)
1682{
1683 return tid + TID_STEP;
1684}
1685
1686static inline unsigned int tid_to_cpu(unsigned long tid)
1687{
1688 return tid % TID_STEP;
1689}
1690
1691static inline unsigned long tid_to_event(unsigned long tid)
1692{
1693 return tid / TID_STEP;
1694}
1695
1696static inline unsigned int init_tid(int cpu)
1697{
1698 return cpu;
1699}
1700
1701static inline void note_cmpxchg_failure(const char *n,
1702 const struct kmem_cache *s, unsigned long tid)
1703{
1704#ifdef SLUB_DEBUG_CMPXCHG
1705 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1706
1707 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1708
1709#ifdef CONFIG_PREEMPT
1710 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1711 printk("due to cpu change %d -> %d\n",
1712 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1713 else
1714#endif
1715 if (tid_to_event(tid) != tid_to_event(actual_tid))
1716 printk("due to cpu running other code. Event %ld->%ld\n",
1717 tid_to_event(tid), tid_to_event(actual_tid));
1718 else
1719 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1720 actual_tid, tid, next_tid(tid));
1721#endif
4fdccdfb 1722 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1723}
1724
788e1aad 1725static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1726{
8a5ec0ba
CL
1727 int cpu;
1728
1729 for_each_possible_cpu(cpu)
1730 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1731}
2cfb7455 1732
81819f0f
CL
1733/*
1734 * Remove the cpu slab
1735 */
c17dda40 1736static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1737{
2cfb7455 1738 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1739 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1740 int lock = 0;
1741 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1742 void *nextfree;
136333d1 1743 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1744 struct page new;
1745 struct page old;
1746
1747 if (page->freelist) {
84e554e6 1748 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1749 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1750 }
1751
894b8788 1752 /*
2cfb7455
CL
1753 * Stage one: Free all available per cpu objects back
1754 * to the page freelist while it is still frozen. Leave the
1755 * last one.
1756 *
1757 * There is no need to take the list->lock because the page
1758 * is still frozen.
1759 */
1760 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1761 void *prior;
1762 unsigned long counters;
1763
1764 do {
1765 prior = page->freelist;
1766 counters = page->counters;
1767 set_freepointer(s, freelist, prior);
1768 new.counters = counters;
1769 new.inuse--;
1770 VM_BUG_ON(!new.frozen);
1771
1d07171c 1772 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1773 prior, counters,
1774 freelist, new.counters,
1775 "drain percpu freelist"));
1776
1777 freelist = nextfree;
1778 }
1779
894b8788 1780 /*
2cfb7455
CL
1781 * Stage two: Ensure that the page is unfrozen while the
1782 * list presence reflects the actual number of objects
1783 * during unfreeze.
1784 *
1785 * We setup the list membership and then perform a cmpxchg
1786 * with the count. If there is a mismatch then the page
1787 * is not unfrozen but the page is on the wrong list.
1788 *
1789 * Then we restart the process which may have to remove
1790 * the page from the list that we just put it on again
1791 * because the number of objects in the slab may have
1792 * changed.
894b8788 1793 */
2cfb7455 1794redo:
894b8788 1795
2cfb7455
CL
1796 old.freelist = page->freelist;
1797 old.counters = page->counters;
1798 VM_BUG_ON(!old.frozen);
7c2e132c 1799
2cfb7455
CL
1800 /* Determine target state of the slab */
1801 new.counters = old.counters;
1802 if (freelist) {
1803 new.inuse--;
1804 set_freepointer(s, freelist, old.freelist);
1805 new.freelist = freelist;
1806 } else
1807 new.freelist = old.freelist;
1808
1809 new.frozen = 0;
1810
81107188 1811 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1812 m = M_FREE;
1813 else if (new.freelist) {
1814 m = M_PARTIAL;
1815 if (!lock) {
1816 lock = 1;
1817 /*
1818 * Taking the spinlock removes the possiblity
1819 * that acquire_slab() will see a slab page that
1820 * is frozen
1821 */
1822 spin_lock(&n->list_lock);
1823 }
1824 } else {
1825 m = M_FULL;
1826 if (kmem_cache_debug(s) && !lock) {
1827 lock = 1;
1828 /*
1829 * This also ensures that the scanning of full
1830 * slabs from diagnostic functions will not see
1831 * any frozen slabs.
1832 */
1833 spin_lock(&n->list_lock);
1834 }
1835 }
1836
1837 if (l != m) {
1838
1839 if (l == M_PARTIAL)
1840
1841 remove_partial(n, page);
1842
1843 else if (l == M_FULL)
894b8788 1844
2cfb7455
CL
1845 remove_full(s, page);
1846
1847 if (m == M_PARTIAL) {
1848
1849 add_partial(n, page, tail);
136333d1 1850 stat(s, tail);
2cfb7455
CL
1851
1852 } else if (m == M_FULL) {
894b8788 1853
2cfb7455
CL
1854 stat(s, DEACTIVATE_FULL);
1855 add_full(s, n, page);
1856
1857 }
1858 }
1859
1860 l = m;
1d07171c 1861 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1862 old.freelist, old.counters,
1863 new.freelist, new.counters,
1864 "unfreezing slab"))
1865 goto redo;
1866
2cfb7455
CL
1867 if (lock)
1868 spin_unlock(&n->list_lock);
1869
1870 if (m == M_FREE) {
1871 stat(s, DEACTIVATE_EMPTY);
1872 discard_slab(s, page);
1873 stat(s, FREE_SLAB);
894b8788 1874 }
81819f0f
CL
1875}
1876
d24ac77f
JK
1877/*
1878 * Unfreeze all the cpu partial slabs.
1879 *
59a09917
CL
1880 * This function must be called with interrupts disabled
1881 * for the cpu using c (or some other guarantee must be there
1882 * to guarantee no concurrent accesses).
d24ac77f 1883 */
59a09917
CL
1884static void unfreeze_partials(struct kmem_cache *s,
1885 struct kmem_cache_cpu *c)
49e22585 1886{
43d77867 1887 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1888 struct page *page, *discard_page = NULL;
49e22585
CL
1889
1890 while ((page = c->partial)) {
49e22585
CL
1891 struct page new;
1892 struct page old;
1893
1894 c->partial = page->next;
43d77867
JK
1895
1896 n2 = get_node(s, page_to_nid(page));
1897 if (n != n2) {
1898 if (n)
1899 spin_unlock(&n->list_lock);
1900
1901 n = n2;
1902 spin_lock(&n->list_lock);
1903 }
49e22585
CL
1904
1905 do {
1906
1907 old.freelist = page->freelist;
1908 old.counters = page->counters;
1909 VM_BUG_ON(!old.frozen);
1910
1911 new.counters = old.counters;
1912 new.freelist = old.freelist;
1913
1914 new.frozen = 0;
1915
d24ac77f 1916 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1917 old.freelist, old.counters,
1918 new.freelist, new.counters,
1919 "unfreezing slab"));
1920
43d77867 1921 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1922 page->next = discard_page;
1923 discard_page = page;
43d77867
JK
1924 } else {
1925 add_partial(n, page, DEACTIVATE_TO_TAIL);
1926 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1927 }
1928 }
1929
1930 if (n)
1931 spin_unlock(&n->list_lock);
9ada1934
SL
1932
1933 while (discard_page) {
1934 page = discard_page;
1935 discard_page = discard_page->next;
1936
1937 stat(s, DEACTIVATE_EMPTY);
1938 discard_slab(s, page);
1939 stat(s, FREE_SLAB);
1940 }
49e22585
CL
1941}
1942
1943/*
1944 * Put a page that was just frozen (in __slab_free) into a partial page
1945 * slot if available. This is done without interrupts disabled and without
1946 * preemption disabled. The cmpxchg is racy and may put the partial page
1947 * onto a random cpus partial slot.
1948 *
1949 * If we did not find a slot then simply move all the partials to the
1950 * per node partial list.
1951 */
633b0764 1952static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585
CL
1953{
1954 struct page *oldpage;
1955 int pages;
1956 int pobjects;
1957
1958 do {
1959 pages = 0;
1960 pobjects = 0;
1961 oldpage = this_cpu_read(s->cpu_slab->partial);
1962
1963 if (oldpage) {
1964 pobjects = oldpage->pobjects;
1965 pages = oldpage->pages;
1966 if (drain && pobjects > s->cpu_partial) {
1967 unsigned long flags;
1968 /*
1969 * partial array is full. Move the existing
1970 * set to the per node partial list.
1971 */
1972 local_irq_save(flags);
59a09917 1973 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 1974 local_irq_restore(flags);
e24fc410 1975 oldpage = NULL;
49e22585
CL
1976 pobjects = 0;
1977 pages = 0;
8028dcea 1978 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1979 }
1980 }
1981
1982 pages++;
1983 pobjects += page->objects - page->inuse;
1984
1985 page->pages = pages;
1986 page->pobjects = pobjects;
1987 page->next = oldpage;
1988
933393f5 1989 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1990}
1991
dfb4f096 1992static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1993{
84e554e6 1994 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1995 deactivate_slab(s, c->page, c->freelist);
1996
1997 c->tid = next_tid(c->tid);
1998 c->page = NULL;
1999 c->freelist = NULL;
81819f0f
CL
2000}
2001
2002/*
2003 * Flush cpu slab.
6446faa2 2004 *
81819f0f
CL
2005 * Called from IPI handler with interrupts disabled.
2006 */
0c710013 2007static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2008{
9dfc6e68 2009 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2010
49e22585
CL
2011 if (likely(c)) {
2012 if (c->page)
2013 flush_slab(s, c);
2014
59a09917 2015 unfreeze_partials(s, c);
49e22585 2016 }
81819f0f
CL
2017}
2018
2019static void flush_cpu_slab(void *d)
2020{
2021 struct kmem_cache *s = d;
81819f0f 2022
dfb4f096 2023 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2024}
2025
a8364d55
GBY
2026static bool has_cpu_slab(int cpu, void *info)
2027{
2028 struct kmem_cache *s = info;
2029 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2030
02e1a9cd 2031 return c->page || c->partial;
a8364d55
GBY
2032}
2033
81819f0f
CL
2034static void flush_all(struct kmem_cache *s)
2035{
a8364d55 2036 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2037}
2038
dfb4f096
CL
2039/*
2040 * Check if the objects in a per cpu structure fit numa
2041 * locality expectations.
2042 */
57d437d2 2043static inline int node_match(struct page *page, int node)
dfb4f096
CL
2044{
2045#ifdef CONFIG_NUMA
4d7868e6 2046 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2047 return 0;
2048#endif
2049 return 1;
2050}
2051
781b2ba6
PE
2052static int count_free(struct page *page)
2053{
2054 return page->objects - page->inuse;
2055}
2056
2057static unsigned long count_partial(struct kmem_cache_node *n,
2058 int (*get_count)(struct page *))
2059{
2060 unsigned long flags;
2061 unsigned long x = 0;
2062 struct page *page;
2063
2064 spin_lock_irqsave(&n->list_lock, flags);
2065 list_for_each_entry(page, &n->partial, lru)
2066 x += get_count(page);
2067 spin_unlock_irqrestore(&n->list_lock, flags);
2068 return x;
2069}
2070
26c02cf0
AB
2071static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2072{
2073#ifdef CONFIG_SLUB_DEBUG
2074 return atomic_long_read(&n->total_objects);
2075#else
2076 return 0;
2077#endif
2078}
2079
781b2ba6
PE
2080static noinline void
2081slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2082{
2083 int node;
2084
2085 printk(KERN_WARNING
2086 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2087 nid, gfpflags);
2088 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2089 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2090 s->size, oo_order(s->oo), oo_order(s->min));
2091
3b0efdfa 2092 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2093 printk(KERN_WARNING " %s debugging increased min order, use "
2094 "slub_debug=O to disable.\n", s->name);
2095
781b2ba6
PE
2096 for_each_online_node(node) {
2097 struct kmem_cache_node *n = get_node(s, node);
2098 unsigned long nr_slabs;
2099 unsigned long nr_objs;
2100 unsigned long nr_free;
2101
2102 if (!n)
2103 continue;
2104
26c02cf0
AB
2105 nr_free = count_partial(n, count_free);
2106 nr_slabs = node_nr_slabs(n);
2107 nr_objs = node_nr_objs(n);
781b2ba6
PE
2108
2109 printk(KERN_WARNING
2110 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2111 node, nr_slabs, nr_objs, nr_free);
2112 }
2113}
2114
497b66f2
CL
2115static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2116 int node, struct kmem_cache_cpu **pc)
2117{
6faa6833 2118 void *freelist;
188fd063
CL
2119 struct kmem_cache_cpu *c = *pc;
2120 struct page *page;
497b66f2 2121
188fd063 2122 freelist = get_partial(s, flags, node, c);
497b66f2 2123
188fd063
CL
2124 if (freelist)
2125 return freelist;
2126
2127 page = new_slab(s, flags, node);
497b66f2
CL
2128 if (page) {
2129 c = __this_cpu_ptr(s->cpu_slab);
2130 if (c->page)
2131 flush_slab(s, c);
2132
2133 /*
2134 * No other reference to the page yet so we can
2135 * muck around with it freely without cmpxchg
2136 */
6faa6833 2137 freelist = page->freelist;
497b66f2
CL
2138 page->freelist = NULL;
2139
2140 stat(s, ALLOC_SLAB);
497b66f2
CL
2141 c->page = page;
2142 *pc = c;
2143 } else
6faa6833 2144 freelist = NULL;
497b66f2 2145
6faa6833 2146 return freelist;
497b66f2
CL
2147}
2148
072bb0aa
MG
2149static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2150{
2151 if (unlikely(PageSlabPfmemalloc(page)))
2152 return gfp_pfmemalloc_allowed(gfpflags);
2153
2154 return true;
2155}
2156
213eeb9f
CL
2157/*
2158 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2159 * or deactivate the page.
2160 *
2161 * The page is still frozen if the return value is not NULL.
2162 *
2163 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2164 *
2165 * This function must be called with interrupt disabled.
213eeb9f
CL
2166 */
2167static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2168{
2169 struct page new;
2170 unsigned long counters;
2171 void *freelist;
2172
2173 do {
2174 freelist = page->freelist;
2175 counters = page->counters;
6faa6833 2176
213eeb9f
CL
2177 new.counters = counters;
2178 VM_BUG_ON(!new.frozen);
2179
2180 new.inuse = page->objects;
2181 new.frozen = freelist != NULL;
2182
d24ac77f 2183 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2184 freelist, counters,
2185 NULL, new.counters,
2186 "get_freelist"));
2187
2188 return freelist;
2189}
2190
81819f0f 2191/*
894b8788
CL
2192 * Slow path. The lockless freelist is empty or we need to perform
2193 * debugging duties.
2194 *
894b8788
CL
2195 * Processing is still very fast if new objects have been freed to the
2196 * regular freelist. In that case we simply take over the regular freelist
2197 * as the lockless freelist and zap the regular freelist.
81819f0f 2198 *
894b8788
CL
2199 * If that is not working then we fall back to the partial lists. We take the
2200 * first element of the freelist as the object to allocate now and move the
2201 * rest of the freelist to the lockless freelist.
81819f0f 2202 *
894b8788 2203 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2204 * we need to allocate a new slab. This is the slowest path since it involves
2205 * a call to the page allocator and the setup of a new slab.
81819f0f 2206 */
ce71e27c
EGM
2207static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2208 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2209{
6faa6833 2210 void *freelist;
f6e7def7 2211 struct page *page;
8a5ec0ba
CL
2212 unsigned long flags;
2213
2214 local_irq_save(flags);
2215#ifdef CONFIG_PREEMPT
2216 /*
2217 * We may have been preempted and rescheduled on a different
2218 * cpu before disabling interrupts. Need to reload cpu area
2219 * pointer.
2220 */
2221 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2222#endif
81819f0f 2223
f6e7def7
CL
2224 page = c->page;
2225 if (!page)
81819f0f 2226 goto new_slab;
49e22585 2227redo:
6faa6833 2228
57d437d2 2229 if (unlikely(!node_match(page, node))) {
e36a2652 2230 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2231 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2232 c->page = NULL;
2233 c->freelist = NULL;
fc59c053
CL
2234 goto new_slab;
2235 }
6446faa2 2236
072bb0aa
MG
2237 /*
2238 * By rights, we should be searching for a slab page that was
2239 * PFMEMALLOC but right now, we are losing the pfmemalloc
2240 * information when the page leaves the per-cpu allocator
2241 */
2242 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2243 deactivate_slab(s, page, c->freelist);
2244 c->page = NULL;
2245 c->freelist = NULL;
2246 goto new_slab;
2247 }
2248
73736e03 2249 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2250 freelist = c->freelist;
2251 if (freelist)
73736e03 2252 goto load_freelist;
03e404af 2253
2cfb7455 2254 stat(s, ALLOC_SLOWPATH);
03e404af 2255
f6e7def7 2256 freelist = get_freelist(s, page);
6446faa2 2257
6faa6833 2258 if (!freelist) {
03e404af
CL
2259 c->page = NULL;
2260 stat(s, DEACTIVATE_BYPASS);
fc59c053 2261 goto new_slab;
03e404af 2262 }
6446faa2 2263
84e554e6 2264 stat(s, ALLOC_REFILL);
6446faa2 2265
894b8788 2266load_freelist:
507effea
CL
2267 /*
2268 * freelist is pointing to the list of objects to be used.
2269 * page is pointing to the page from which the objects are obtained.
2270 * That page must be frozen for per cpu allocations to work.
2271 */
2272 VM_BUG_ON(!c->page->frozen);
6faa6833 2273 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2274 c->tid = next_tid(c->tid);
2275 local_irq_restore(flags);
6faa6833 2276 return freelist;
81819f0f 2277
81819f0f 2278new_slab:
2cfb7455 2279
49e22585 2280 if (c->partial) {
f6e7def7
CL
2281 page = c->page = c->partial;
2282 c->partial = page->next;
49e22585
CL
2283 stat(s, CPU_PARTIAL_ALLOC);
2284 c->freelist = NULL;
2285 goto redo;
81819f0f
CL
2286 }
2287
188fd063 2288 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2289
f4697436
CL
2290 if (unlikely(!freelist)) {
2291 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2292 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2293
f4697436
CL
2294 local_irq_restore(flags);
2295 return NULL;
81819f0f 2296 }
2cfb7455 2297
f6e7def7 2298 page = c->page;
5091b74a 2299 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2300 goto load_freelist;
2cfb7455 2301
497b66f2 2302 /* Only entered in the debug case */
5091b74a 2303 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2304 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2305
f6e7def7 2306 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2307 c->page = NULL;
2308 c->freelist = NULL;
a71ae47a 2309 local_irq_restore(flags);
6faa6833 2310 return freelist;
894b8788
CL
2311}
2312
2313/*
2314 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2315 * have the fastpath folded into their functions. So no function call
2316 * overhead for requests that can be satisfied on the fastpath.
2317 *
2318 * The fastpath works by first checking if the lockless freelist can be used.
2319 * If not then __slab_alloc is called for slow processing.
2320 *
2321 * Otherwise we can simply pick the next object from the lockless free list.
2322 */
2b847c3c 2323static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2324 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2325{
894b8788 2326 void **object;
dfb4f096 2327 struct kmem_cache_cpu *c;
57d437d2 2328 struct page *page;
8a5ec0ba 2329 unsigned long tid;
1f84260c 2330
c016b0bd 2331 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2332 return NULL;
1f84260c 2333
d79923fa 2334 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2335redo:
8a5ec0ba
CL
2336 /*
2337 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2338 * enabled. We may switch back and forth between cpus while
2339 * reading from one cpu area. That does not matter as long
2340 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2341 *
2342 * Preemption is disabled for the retrieval of the tid because that
2343 * must occur from the current processor. We cannot allow rescheduling
2344 * on a different processor between the determination of the pointer
2345 * and the retrieval of the tid.
8a5ec0ba 2346 */
7cccd80b 2347 preempt_disable();
9dfc6e68 2348 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2349
8a5ec0ba
CL
2350 /*
2351 * The transaction ids are globally unique per cpu and per operation on
2352 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2353 * occurs on the right processor and that there was no operation on the
2354 * linked list in between.
2355 */
2356 tid = c->tid;
7cccd80b 2357 preempt_enable();
8a5ec0ba 2358
9dfc6e68 2359 object = c->freelist;
57d437d2 2360 page = c->page;
5091b74a 2361 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2362 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2363
2364 else {
0ad9500e
ED
2365 void *next_object = get_freepointer_safe(s, object);
2366
8a5ec0ba 2367 /*
25985edc 2368 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2369 * operation and if we are on the right processor.
2370 *
2371 * The cmpxchg does the following atomically (without lock semantics!)
2372 * 1. Relocate first pointer to the current per cpu area.
2373 * 2. Verify that tid and freelist have not been changed
2374 * 3. If they were not changed replace tid and freelist
2375 *
2376 * Since this is without lock semantics the protection is only against
2377 * code executing on this cpu *not* from access by other cpus.
2378 */
933393f5 2379 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2380 s->cpu_slab->freelist, s->cpu_slab->tid,
2381 object, tid,
0ad9500e 2382 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2383
2384 note_cmpxchg_failure("slab_alloc", s, tid);
2385 goto redo;
2386 }
0ad9500e 2387 prefetch_freepointer(s, next_object);
84e554e6 2388 stat(s, ALLOC_FASTPATH);
894b8788 2389 }
8a5ec0ba 2390
74e2134f 2391 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2392 memset(object, 0, s->object_size);
d07dbea4 2393
c016b0bd 2394 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2395
894b8788 2396 return object;
81819f0f
CL
2397}
2398
2b847c3c
EG
2399static __always_inline void *slab_alloc(struct kmem_cache *s,
2400 gfp_t gfpflags, unsigned long addr)
2401{
2402 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2403}
2404
81819f0f
CL
2405void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2406{
2b847c3c 2407 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2408
3b0efdfa 2409 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2410
2411 return ret;
81819f0f
CL
2412}
2413EXPORT_SYMBOL(kmem_cache_alloc);
2414
0f24f128 2415#ifdef CONFIG_TRACING
4a92379b
RK
2416void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2417{
2b847c3c 2418 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2419 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2420 return ret;
2421}
2422EXPORT_SYMBOL(kmem_cache_alloc_trace);
2423
2424void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2425{
4a92379b
RK
2426 void *ret = kmalloc_order(size, flags, order);
2427 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2428 return ret;
5b882be4 2429}
4a92379b 2430EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2431#endif
2432
81819f0f
CL
2433#ifdef CONFIG_NUMA
2434void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2435{
2b847c3c 2436 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2437
ca2b84cb 2438 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2439 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2440
2441 return ret;
81819f0f
CL
2442}
2443EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2444
0f24f128 2445#ifdef CONFIG_TRACING
4a92379b 2446void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2447 gfp_t gfpflags,
4a92379b 2448 int node, size_t size)
5b882be4 2449{
2b847c3c 2450 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2451
2452 trace_kmalloc_node(_RET_IP_, ret,
2453 size, s->size, gfpflags, node);
2454 return ret;
5b882be4 2455}
4a92379b 2456EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2457#endif
5d1f57e4 2458#endif
5b882be4 2459
81819f0f 2460/*
894b8788
CL
2461 * Slow patch handling. This may still be called frequently since objects
2462 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2463 *
894b8788
CL
2464 * So we still attempt to reduce cache line usage. Just take the slab
2465 * lock and free the item. If there is no additional partial page
2466 * handling required then we can return immediately.
81819f0f 2467 */
894b8788 2468static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2469 void *x, unsigned long addr)
81819f0f
CL
2470{
2471 void *prior;
2472 void **object = (void *)x;
2cfb7455 2473 int was_frozen;
2cfb7455
CL
2474 struct page new;
2475 unsigned long counters;
2476 struct kmem_cache_node *n = NULL;
61728d1e 2477 unsigned long uninitialized_var(flags);
81819f0f 2478
8a5ec0ba 2479 stat(s, FREE_SLOWPATH);
81819f0f 2480
19c7ff9e
CL
2481 if (kmem_cache_debug(s) &&
2482 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2483 return;
6446faa2 2484
2cfb7455 2485 do {
837d678d
JK
2486 if (unlikely(n)) {
2487 spin_unlock_irqrestore(&n->list_lock, flags);
2488 n = NULL;
2489 }
2cfb7455
CL
2490 prior = page->freelist;
2491 counters = page->counters;
2492 set_freepointer(s, object, prior);
2493 new.counters = counters;
2494 was_frozen = new.frozen;
2495 new.inuse--;
837d678d 2496 if ((!new.inuse || !prior) && !was_frozen) {
49e22585
CL
2497
2498 if (!kmem_cache_debug(s) && !prior)
2499
2500 /*
2501 * Slab was on no list before and will be partially empty
2502 * We can defer the list move and instead freeze it.
2503 */
2504 new.frozen = 1;
2505
2506 else { /* Needs to be taken off a list */
2507
2508 n = get_node(s, page_to_nid(page));
2509 /*
2510 * Speculatively acquire the list_lock.
2511 * If the cmpxchg does not succeed then we may
2512 * drop the list_lock without any processing.
2513 *
2514 * Otherwise the list_lock will synchronize with
2515 * other processors updating the list of slabs.
2516 */
2517 spin_lock_irqsave(&n->list_lock, flags);
2518
2519 }
2cfb7455 2520 }
81819f0f 2521
2cfb7455
CL
2522 } while (!cmpxchg_double_slab(s, page,
2523 prior, counters,
2524 object, new.counters,
2525 "__slab_free"));
81819f0f 2526
2cfb7455 2527 if (likely(!n)) {
49e22585
CL
2528
2529 /*
2530 * If we just froze the page then put it onto the
2531 * per cpu partial list.
2532 */
8028dcea 2533 if (new.frozen && !was_frozen) {
49e22585 2534 put_cpu_partial(s, page, 1);
8028dcea
AS
2535 stat(s, CPU_PARTIAL_FREE);
2536 }
49e22585 2537 /*
2cfb7455
CL
2538 * The list lock was not taken therefore no list
2539 * activity can be necessary.
2540 */
2541 if (was_frozen)
2542 stat(s, FREE_FROZEN);
80f08c19 2543 return;
2cfb7455 2544 }
81819f0f 2545
837d678d
JK
2546 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2547 goto slab_empty;
2548
81819f0f 2549 /*
837d678d
JK
2550 * Objects left in the slab. If it was not on the partial list before
2551 * then add it.
81819f0f 2552 */
837d678d
JK
2553 if (kmem_cache_debug(s) && unlikely(!prior)) {
2554 remove_full(s, page);
2555 add_partial(n, page, DEACTIVATE_TO_TAIL);
2556 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2557 }
80f08c19 2558 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2559 return;
2560
2561slab_empty:
a973e9dd 2562 if (prior) {
81819f0f 2563 /*
6fbabb20 2564 * Slab on the partial list.
81819f0f 2565 */
5cc6eee8 2566 remove_partial(n, page);
84e554e6 2567 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2568 } else
2569 /* Slab must be on the full list */
2570 remove_full(s, page);
2cfb7455 2571
80f08c19 2572 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2573 stat(s, FREE_SLAB);
81819f0f 2574 discard_slab(s, page);
81819f0f
CL
2575}
2576
894b8788
CL
2577/*
2578 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2579 * can perform fastpath freeing without additional function calls.
2580 *
2581 * The fastpath is only possible if we are freeing to the current cpu slab
2582 * of this processor. This typically the case if we have just allocated
2583 * the item before.
2584 *
2585 * If fastpath is not possible then fall back to __slab_free where we deal
2586 * with all sorts of special processing.
2587 */
06428780 2588static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2589 struct page *page, void *x, unsigned long addr)
894b8788
CL
2590{
2591 void **object = (void *)x;
dfb4f096 2592 struct kmem_cache_cpu *c;
8a5ec0ba 2593 unsigned long tid;
1f84260c 2594
c016b0bd
CL
2595 slab_free_hook(s, x);
2596
8a5ec0ba
CL
2597redo:
2598 /*
2599 * Determine the currently cpus per cpu slab.
2600 * The cpu may change afterward. However that does not matter since
2601 * data is retrieved via this pointer. If we are on the same cpu
2602 * during the cmpxchg then the free will succedd.
2603 */
7cccd80b 2604 preempt_disable();
9dfc6e68 2605 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2606
8a5ec0ba 2607 tid = c->tid;
7cccd80b 2608 preempt_enable();
c016b0bd 2609
442b06bc 2610 if (likely(page == c->page)) {
ff12059e 2611 set_freepointer(s, object, c->freelist);
8a5ec0ba 2612
933393f5 2613 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2614 s->cpu_slab->freelist, s->cpu_slab->tid,
2615 c->freelist, tid,
2616 object, next_tid(tid)))) {
2617
2618 note_cmpxchg_failure("slab_free", s, tid);
2619 goto redo;
2620 }
84e554e6 2621 stat(s, FREE_FASTPATH);
894b8788 2622 } else
ff12059e 2623 __slab_free(s, page, x, addr);
894b8788 2624
894b8788
CL
2625}
2626
81819f0f
CL
2627void kmem_cache_free(struct kmem_cache *s, void *x)
2628{
b9ce5ef4
GC
2629 s = cache_from_obj(s, x);
2630 if (!s)
79576102 2631 return;
b9ce5ef4 2632 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2633 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2634}
2635EXPORT_SYMBOL(kmem_cache_free);
2636
81819f0f 2637/*
672bba3a
CL
2638 * Object placement in a slab is made very easy because we always start at
2639 * offset 0. If we tune the size of the object to the alignment then we can
2640 * get the required alignment by putting one properly sized object after
2641 * another.
81819f0f
CL
2642 *
2643 * Notice that the allocation order determines the sizes of the per cpu
2644 * caches. Each processor has always one slab available for allocations.
2645 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2646 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2647 * locking overhead.
81819f0f
CL
2648 */
2649
2650/*
2651 * Mininum / Maximum order of slab pages. This influences locking overhead
2652 * and slab fragmentation. A higher order reduces the number of partial slabs
2653 * and increases the number of allocations possible without having to
2654 * take the list_lock.
2655 */
2656static int slub_min_order;
114e9e89 2657static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2658static int slub_min_objects;
81819f0f
CL
2659
2660/*
2661 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2662 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2663 */
2664static int slub_nomerge;
2665
81819f0f
CL
2666/*
2667 * Calculate the order of allocation given an slab object size.
2668 *
672bba3a
CL
2669 * The order of allocation has significant impact on performance and other
2670 * system components. Generally order 0 allocations should be preferred since
2671 * order 0 does not cause fragmentation in the page allocator. Larger objects
2672 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2673 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2674 * would be wasted.
2675 *
2676 * In order to reach satisfactory performance we must ensure that a minimum
2677 * number of objects is in one slab. Otherwise we may generate too much
2678 * activity on the partial lists which requires taking the list_lock. This is
2679 * less a concern for large slabs though which are rarely used.
81819f0f 2680 *
672bba3a
CL
2681 * slub_max_order specifies the order where we begin to stop considering the
2682 * number of objects in a slab as critical. If we reach slub_max_order then
2683 * we try to keep the page order as low as possible. So we accept more waste
2684 * of space in favor of a small page order.
81819f0f 2685 *
672bba3a
CL
2686 * Higher order allocations also allow the placement of more objects in a
2687 * slab and thereby reduce object handling overhead. If the user has
2688 * requested a higher mininum order then we start with that one instead of
2689 * the smallest order which will fit the object.
81819f0f 2690 */
5e6d444e 2691static inline int slab_order(int size, int min_objects,
ab9a0f19 2692 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2693{
2694 int order;
2695 int rem;
6300ea75 2696 int min_order = slub_min_order;
81819f0f 2697
ab9a0f19 2698 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2699 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2700
6300ea75 2701 for (order = max(min_order,
5e6d444e
CL
2702 fls(min_objects * size - 1) - PAGE_SHIFT);
2703 order <= max_order; order++) {
81819f0f 2704
5e6d444e 2705 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2706
ab9a0f19 2707 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2708 continue;
2709
ab9a0f19 2710 rem = (slab_size - reserved) % size;
81819f0f 2711
5e6d444e 2712 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2713 break;
2714
2715 }
672bba3a 2716
81819f0f
CL
2717 return order;
2718}
2719
ab9a0f19 2720static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2721{
2722 int order;
2723 int min_objects;
2724 int fraction;
e8120ff1 2725 int max_objects;
5e6d444e
CL
2726
2727 /*
2728 * Attempt to find best configuration for a slab. This
2729 * works by first attempting to generate a layout with
2730 * the best configuration and backing off gradually.
2731 *
2732 * First we reduce the acceptable waste in a slab. Then
2733 * we reduce the minimum objects required in a slab.
2734 */
2735 min_objects = slub_min_objects;
9b2cd506
CL
2736 if (!min_objects)
2737 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2738 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2739 min_objects = min(min_objects, max_objects);
2740
5e6d444e 2741 while (min_objects > 1) {
c124f5b5 2742 fraction = 16;
5e6d444e
CL
2743 while (fraction >= 4) {
2744 order = slab_order(size, min_objects,
ab9a0f19 2745 slub_max_order, fraction, reserved);
5e6d444e
CL
2746 if (order <= slub_max_order)
2747 return order;
2748 fraction /= 2;
2749 }
5086c389 2750 min_objects--;
5e6d444e
CL
2751 }
2752
2753 /*
2754 * We were unable to place multiple objects in a slab. Now
2755 * lets see if we can place a single object there.
2756 */
ab9a0f19 2757 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2758 if (order <= slub_max_order)
2759 return order;
2760
2761 /*
2762 * Doh this slab cannot be placed using slub_max_order.
2763 */
ab9a0f19 2764 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2765 if (order < MAX_ORDER)
5e6d444e
CL
2766 return order;
2767 return -ENOSYS;
2768}
2769
5595cffc 2770static void
4053497d 2771init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2772{
2773 n->nr_partial = 0;
81819f0f
CL
2774 spin_lock_init(&n->list_lock);
2775 INIT_LIST_HEAD(&n->partial);
8ab1372f 2776#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2777 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2778 atomic_long_set(&n->total_objects, 0);
643b1138 2779 INIT_LIST_HEAD(&n->full);
8ab1372f 2780#endif
81819f0f
CL
2781}
2782
55136592 2783static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2784{
6c182dc0 2785 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2786 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2787
8a5ec0ba 2788 /*
d4d84fef
CM
2789 * Must align to double word boundary for the double cmpxchg
2790 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2791 */
d4d84fef
CM
2792 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2793 2 * sizeof(void *));
8a5ec0ba
CL
2794
2795 if (!s->cpu_slab)
2796 return 0;
2797
2798 init_kmem_cache_cpus(s);
4c93c355 2799
8a5ec0ba 2800 return 1;
4c93c355 2801}
4c93c355 2802
51df1142
CL
2803static struct kmem_cache *kmem_cache_node;
2804
81819f0f
CL
2805/*
2806 * No kmalloc_node yet so do it by hand. We know that this is the first
2807 * slab on the node for this slabcache. There are no concurrent accesses
2808 * possible.
2809 *
2810 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2811 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2812 * memory on a fresh node that has no slab structures yet.
81819f0f 2813 */
55136592 2814static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2815{
2816 struct page *page;
2817 struct kmem_cache_node *n;
2818
51df1142 2819 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2820
51df1142 2821 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2822
2823 BUG_ON(!page);
a2f92ee7
CL
2824 if (page_to_nid(page) != node) {
2825 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2826 "node %d\n", node);
2827 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2828 "in order to be able to continue\n");
2829 }
2830
81819f0f
CL
2831 n = page->freelist;
2832 BUG_ON(!n);
51df1142 2833 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2834 page->inuse = 1;
8cb0a506 2835 page->frozen = 0;
51df1142 2836 kmem_cache_node->node[node] = n;
8ab1372f 2837#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2838 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2839 init_tracking(kmem_cache_node, n);
8ab1372f 2840#endif
4053497d 2841 init_kmem_cache_node(n);
51df1142 2842 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2843
136333d1 2844 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2845}
2846
2847static void free_kmem_cache_nodes(struct kmem_cache *s)
2848{
2849 int node;
2850
f64dc58c 2851 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2852 struct kmem_cache_node *n = s->node[node];
51df1142 2853
73367bd8 2854 if (n)
51df1142
CL
2855 kmem_cache_free(kmem_cache_node, n);
2856
81819f0f
CL
2857 s->node[node] = NULL;
2858 }
2859}
2860
55136592 2861static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2862{
2863 int node;
81819f0f 2864
f64dc58c 2865 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2866 struct kmem_cache_node *n;
2867
73367bd8 2868 if (slab_state == DOWN) {
55136592 2869 early_kmem_cache_node_alloc(node);
73367bd8
AD
2870 continue;
2871 }
51df1142 2872 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2873 GFP_KERNEL, node);
81819f0f 2874
73367bd8
AD
2875 if (!n) {
2876 free_kmem_cache_nodes(s);
2877 return 0;
81819f0f 2878 }
73367bd8 2879
81819f0f 2880 s->node[node] = n;
4053497d 2881 init_kmem_cache_node(n);
81819f0f
CL
2882 }
2883 return 1;
2884}
81819f0f 2885
c0bdb232 2886static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2887{
2888 if (min < MIN_PARTIAL)
2889 min = MIN_PARTIAL;
2890 else if (min > MAX_PARTIAL)
2891 min = MAX_PARTIAL;
2892 s->min_partial = min;
2893}
2894
81819f0f
CL
2895/*
2896 * calculate_sizes() determines the order and the distribution of data within
2897 * a slab object.
2898 */
06b285dc 2899static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2900{
2901 unsigned long flags = s->flags;
3b0efdfa 2902 unsigned long size = s->object_size;
834f3d11 2903 int order;
81819f0f 2904
d8b42bf5
CL
2905 /*
2906 * Round up object size to the next word boundary. We can only
2907 * place the free pointer at word boundaries and this determines
2908 * the possible location of the free pointer.
2909 */
2910 size = ALIGN(size, sizeof(void *));
2911
2912#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2913 /*
2914 * Determine if we can poison the object itself. If the user of
2915 * the slab may touch the object after free or before allocation
2916 * then we should never poison the object itself.
2917 */
2918 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2919 !s->ctor)
81819f0f
CL
2920 s->flags |= __OBJECT_POISON;
2921 else
2922 s->flags &= ~__OBJECT_POISON;
2923
81819f0f
CL
2924
2925 /*
672bba3a 2926 * If we are Redzoning then check if there is some space between the
81819f0f 2927 * end of the object and the free pointer. If not then add an
672bba3a 2928 * additional word to have some bytes to store Redzone information.
81819f0f 2929 */
3b0efdfa 2930 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2931 size += sizeof(void *);
41ecc55b 2932#endif
81819f0f
CL
2933
2934 /*
672bba3a
CL
2935 * With that we have determined the number of bytes in actual use
2936 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2937 */
2938 s->inuse = size;
2939
2940 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2941 s->ctor)) {
81819f0f
CL
2942 /*
2943 * Relocate free pointer after the object if it is not
2944 * permitted to overwrite the first word of the object on
2945 * kmem_cache_free.
2946 *
2947 * This is the case if we do RCU, have a constructor or
2948 * destructor or are poisoning the objects.
2949 */
2950 s->offset = size;
2951 size += sizeof(void *);
2952 }
2953
c12b3c62 2954#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2955 if (flags & SLAB_STORE_USER)
2956 /*
2957 * Need to store information about allocs and frees after
2958 * the object.
2959 */
2960 size += 2 * sizeof(struct track);
2961
be7b3fbc 2962 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2963 /*
2964 * Add some empty padding so that we can catch
2965 * overwrites from earlier objects rather than let
2966 * tracking information or the free pointer be
0211a9c8 2967 * corrupted if a user writes before the start
81819f0f
CL
2968 * of the object.
2969 */
2970 size += sizeof(void *);
41ecc55b 2971#endif
672bba3a 2972
81819f0f
CL
2973 /*
2974 * SLUB stores one object immediately after another beginning from
2975 * offset 0. In order to align the objects we have to simply size
2976 * each object to conform to the alignment.
2977 */
45906855 2978 size = ALIGN(size, s->align);
81819f0f 2979 s->size = size;
06b285dc
CL
2980 if (forced_order >= 0)
2981 order = forced_order;
2982 else
ab9a0f19 2983 order = calculate_order(size, s->reserved);
81819f0f 2984
834f3d11 2985 if (order < 0)
81819f0f
CL
2986 return 0;
2987
b7a49f0d 2988 s->allocflags = 0;
834f3d11 2989 if (order)
b7a49f0d
CL
2990 s->allocflags |= __GFP_COMP;
2991
2992 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 2993 s->allocflags |= GFP_DMA;
b7a49f0d
CL
2994
2995 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2996 s->allocflags |= __GFP_RECLAIMABLE;
2997
81819f0f
CL
2998 /*
2999 * Determine the number of objects per slab
3000 */
ab9a0f19
LJ
3001 s->oo = oo_make(order, size, s->reserved);
3002 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3003 if (oo_objects(s->oo) > oo_objects(s->max))
3004 s->max = s->oo;
81819f0f 3005
834f3d11 3006 return !!oo_objects(s->oo);
81819f0f
CL
3007}
3008
8a13a4cc 3009static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3010{
8a13a4cc 3011 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3012 s->reserved = 0;
81819f0f 3013
da9a638c
LJ
3014 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3015 s->reserved = sizeof(struct rcu_head);
81819f0f 3016
06b285dc 3017 if (!calculate_sizes(s, -1))
81819f0f 3018 goto error;
3de47213
DR
3019 if (disable_higher_order_debug) {
3020 /*
3021 * Disable debugging flags that store metadata if the min slab
3022 * order increased.
3023 */
3b0efdfa 3024 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3025 s->flags &= ~DEBUG_METADATA_FLAGS;
3026 s->offset = 0;
3027 if (!calculate_sizes(s, -1))
3028 goto error;
3029 }
3030 }
81819f0f 3031
2565409f
HC
3032#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3033 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3034 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3035 /* Enable fast mode */
3036 s->flags |= __CMPXCHG_DOUBLE;
3037#endif
3038
3b89d7d8
DR
3039 /*
3040 * The larger the object size is, the more pages we want on the partial
3041 * list to avoid pounding the page allocator excessively.
3042 */
49e22585
CL
3043 set_min_partial(s, ilog2(s->size) / 2);
3044
3045 /*
3046 * cpu_partial determined the maximum number of objects kept in the
3047 * per cpu partial lists of a processor.
3048 *
3049 * Per cpu partial lists mainly contain slabs that just have one
3050 * object freed. If they are used for allocation then they can be
3051 * filled up again with minimal effort. The slab will never hit the
3052 * per node partial lists and therefore no locking will be required.
3053 *
3054 * This setting also determines
3055 *
3056 * A) The number of objects from per cpu partial slabs dumped to the
3057 * per node list when we reach the limit.
9f264904 3058 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3059 * per node list when we run out of per cpu objects. We only fetch 50%
3060 * to keep some capacity around for frees.
3061 */
8f1e33da
CL
3062 if (kmem_cache_debug(s))
3063 s->cpu_partial = 0;
3064 else if (s->size >= PAGE_SIZE)
49e22585
CL
3065 s->cpu_partial = 2;
3066 else if (s->size >= 1024)
3067 s->cpu_partial = 6;
3068 else if (s->size >= 256)
3069 s->cpu_partial = 13;
3070 else
3071 s->cpu_partial = 30;
3072
81819f0f 3073#ifdef CONFIG_NUMA
e2cb96b7 3074 s->remote_node_defrag_ratio = 1000;
81819f0f 3075#endif
55136592 3076 if (!init_kmem_cache_nodes(s))
dfb4f096 3077 goto error;
81819f0f 3078
55136592 3079 if (alloc_kmem_cache_cpus(s))
278b1bb1 3080 return 0;
ff12059e 3081
4c93c355 3082 free_kmem_cache_nodes(s);
81819f0f
CL
3083error:
3084 if (flags & SLAB_PANIC)
3085 panic("Cannot create slab %s size=%lu realsize=%u "
3086 "order=%u offset=%u flags=%lx\n",
8a13a4cc 3087 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
81819f0f 3088 s->offset, flags);
278b1bb1 3089 return -EINVAL;
81819f0f 3090}
81819f0f 3091
33b12c38
CL
3092static void list_slab_objects(struct kmem_cache *s, struct page *page,
3093 const char *text)
3094{
3095#ifdef CONFIG_SLUB_DEBUG
3096 void *addr = page_address(page);
3097 void *p;
a5dd5c11
NK
3098 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3099 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3100 if (!map)
3101 return;
945cf2b6 3102 slab_err(s, page, text, s->name);
33b12c38 3103 slab_lock(page);
33b12c38 3104
5f80b13a 3105 get_map(s, page, map);
33b12c38
CL
3106 for_each_object(p, s, addr, page->objects) {
3107
3108 if (!test_bit(slab_index(p, s, addr), map)) {
3109 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3110 p, p - addr);
3111 print_tracking(s, p);
3112 }
3113 }
3114 slab_unlock(page);
bbd7d57b 3115 kfree(map);
33b12c38
CL
3116#endif
3117}
3118
81819f0f 3119/*
599870b1 3120 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3121 * This is called from kmem_cache_close(). We must be the last thread
3122 * using the cache and therefore we do not need to lock anymore.
81819f0f 3123 */
599870b1 3124static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3125{
81819f0f
CL
3126 struct page *page, *h;
3127
33b12c38 3128 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3129 if (!page->inuse) {
5cc6eee8 3130 remove_partial(n, page);
81819f0f 3131 discard_slab(s, page);
33b12c38
CL
3132 } else {
3133 list_slab_objects(s, page,
945cf2b6 3134 "Objects remaining in %s on kmem_cache_close()");
599870b1 3135 }
33b12c38 3136 }
81819f0f
CL
3137}
3138
3139/*
672bba3a 3140 * Release all resources used by a slab cache.
81819f0f 3141 */
0c710013 3142static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3143{
3144 int node;
3145
3146 flush_all(s);
81819f0f 3147 /* Attempt to free all objects */
f64dc58c 3148 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3149 struct kmem_cache_node *n = get_node(s, node);
3150
599870b1
CL
3151 free_partial(s, n);
3152 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3153 return 1;
3154 }
945cf2b6 3155 free_percpu(s->cpu_slab);
81819f0f
CL
3156 free_kmem_cache_nodes(s);
3157 return 0;
3158}
3159
945cf2b6 3160int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3161{
12c3667f 3162 int rc = kmem_cache_close(s);
945cf2b6 3163
5413dfba
GC
3164 if (!rc) {
3165 /*
3166 * We do the same lock strategy around sysfs_slab_add, see
3167 * __kmem_cache_create. Because this is pretty much the last
3168 * operation we do and the lock will be released shortly after
3169 * that in slab_common.c, we could just move sysfs_slab_remove
3170 * to a later point in common code. We should do that when we
3171 * have a common sysfs framework for all allocators.
3172 */
3173 mutex_unlock(&slab_mutex);
81819f0f 3174 sysfs_slab_remove(s);
5413dfba
GC
3175 mutex_lock(&slab_mutex);
3176 }
12c3667f
CL
3177
3178 return rc;
81819f0f 3179}
81819f0f
CL
3180
3181/********************************************************************
3182 * Kmalloc subsystem
3183 *******************************************************************/
3184
81819f0f
CL
3185static int __init setup_slub_min_order(char *str)
3186{
06428780 3187 get_option(&str, &slub_min_order);
81819f0f
CL
3188
3189 return 1;
3190}
3191
3192__setup("slub_min_order=", setup_slub_min_order);
3193
3194static int __init setup_slub_max_order(char *str)
3195{
06428780 3196 get_option(&str, &slub_max_order);
818cf590 3197 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3198
3199 return 1;
3200}
3201
3202__setup("slub_max_order=", setup_slub_max_order);
3203
3204static int __init setup_slub_min_objects(char *str)
3205{
06428780 3206 get_option(&str, &slub_min_objects);
81819f0f
CL
3207
3208 return 1;
3209}
3210
3211__setup("slub_min_objects=", setup_slub_min_objects);
3212
3213static int __init setup_slub_nomerge(char *str)
3214{
3215 slub_nomerge = 1;
3216 return 1;
3217}
3218
3219__setup("slub_nomerge", setup_slub_nomerge);
3220
81819f0f
CL
3221void *__kmalloc(size_t size, gfp_t flags)
3222{
aadb4bc4 3223 struct kmem_cache *s;
5b882be4 3224 void *ret;
81819f0f 3225
95a05b42 3226 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3227 return kmalloc_large(size, flags);
aadb4bc4 3228
2c59dd65 3229 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3230
3231 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3232 return s;
3233
2b847c3c 3234 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3235
ca2b84cb 3236 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3237
3238 return ret;
81819f0f
CL
3239}
3240EXPORT_SYMBOL(__kmalloc);
3241
5d1f57e4 3242#ifdef CONFIG_NUMA
f619cfe1
CL
3243static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3244{
b1eeab67 3245 struct page *page;
e4f7c0b4 3246 void *ptr = NULL;
f619cfe1 3247
d79923fa 3248 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3249 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3250 if (page)
e4f7c0b4
CM
3251 ptr = page_address(page);
3252
3253 kmemleak_alloc(ptr, size, 1, flags);
3254 return ptr;
f619cfe1
CL
3255}
3256
81819f0f
CL
3257void *__kmalloc_node(size_t size, gfp_t flags, int node)
3258{
aadb4bc4 3259 struct kmem_cache *s;
5b882be4 3260 void *ret;
81819f0f 3261
95a05b42 3262 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3263 ret = kmalloc_large_node(size, flags, node);
3264
ca2b84cb
EGM
3265 trace_kmalloc_node(_RET_IP_, ret,
3266 size, PAGE_SIZE << get_order(size),
3267 flags, node);
5b882be4
EGM
3268
3269 return ret;
3270 }
aadb4bc4 3271
2c59dd65 3272 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3273
3274 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3275 return s;
3276
2b847c3c 3277 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3278
ca2b84cb 3279 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3280
3281 return ret;
81819f0f
CL
3282}
3283EXPORT_SYMBOL(__kmalloc_node);
3284#endif
3285
3286size_t ksize(const void *object)
3287{
272c1d21 3288 struct page *page;
81819f0f 3289
ef8b4520 3290 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3291 return 0;
3292
294a80a8 3293 page = virt_to_head_page(object);
294a80a8 3294
76994412
PE
3295 if (unlikely(!PageSlab(page))) {
3296 WARN_ON(!PageCompound(page));
294a80a8 3297 return PAGE_SIZE << compound_order(page);
76994412 3298 }
81819f0f 3299
1b4f59e3 3300 return slab_ksize(page->slab_cache);
81819f0f 3301}
b1aabecd 3302EXPORT_SYMBOL(ksize);
81819f0f 3303
d18a90dd
BG
3304#ifdef CONFIG_SLUB_DEBUG
3305bool verify_mem_not_deleted(const void *x)
3306{
3307 struct page *page;
3308 void *object = (void *)x;
3309 unsigned long flags;
3310 bool rv;
3311
3312 if (unlikely(ZERO_OR_NULL_PTR(x)))
3313 return false;
3314
3315 local_irq_save(flags);
3316
3317 page = virt_to_head_page(x);
3318 if (unlikely(!PageSlab(page))) {
3319 /* maybe it was from stack? */
3320 rv = true;
3321 goto out_unlock;
3322 }
3323
3324 slab_lock(page);
1b4f59e3
GC
3325 if (on_freelist(page->slab_cache, page, object)) {
3326 object_err(page->slab_cache, page, object, "Object is on free-list");
d18a90dd
BG
3327 rv = false;
3328 } else {
3329 rv = true;
3330 }
3331 slab_unlock(page);
3332
3333out_unlock:
3334 local_irq_restore(flags);
3335 return rv;
3336}
3337EXPORT_SYMBOL(verify_mem_not_deleted);
3338#endif
3339
81819f0f
CL
3340void kfree(const void *x)
3341{
81819f0f 3342 struct page *page;
5bb983b0 3343 void *object = (void *)x;
81819f0f 3344
2121db74
PE
3345 trace_kfree(_RET_IP_, x);
3346
2408c550 3347 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3348 return;
3349
b49af68f 3350 page = virt_to_head_page(x);
aadb4bc4 3351 if (unlikely(!PageSlab(page))) {
0937502a 3352 BUG_ON(!PageCompound(page));
e4f7c0b4 3353 kmemleak_free(x);
d79923fa 3354 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3355 return;
3356 }
1b4f59e3 3357 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3358}
3359EXPORT_SYMBOL(kfree);
3360
2086d26a 3361/*
672bba3a
CL
3362 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3363 * the remaining slabs by the number of items in use. The slabs with the
3364 * most items in use come first. New allocations will then fill those up
3365 * and thus they can be removed from the partial lists.
3366 *
3367 * The slabs with the least items are placed last. This results in them
3368 * being allocated from last increasing the chance that the last objects
3369 * are freed in them.
2086d26a
CL
3370 */
3371int kmem_cache_shrink(struct kmem_cache *s)
3372{
3373 int node;
3374 int i;
3375 struct kmem_cache_node *n;
3376 struct page *page;
3377 struct page *t;
205ab99d 3378 int objects = oo_objects(s->max);
2086d26a 3379 struct list_head *slabs_by_inuse =
834f3d11 3380 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3381 unsigned long flags;
3382
3383 if (!slabs_by_inuse)
3384 return -ENOMEM;
3385
3386 flush_all(s);
f64dc58c 3387 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3388 n = get_node(s, node);
3389
3390 if (!n->nr_partial)
3391 continue;
3392
834f3d11 3393 for (i = 0; i < objects; i++)
2086d26a
CL
3394 INIT_LIST_HEAD(slabs_by_inuse + i);
3395
3396 spin_lock_irqsave(&n->list_lock, flags);
3397
3398 /*
672bba3a 3399 * Build lists indexed by the items in use in each slab.
2086d26a 3400 *
672bba3a
CL
3401 * Note that concurrent frees may occur while we hold the
3402 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3403 */
3404 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3405 list_move(&page->lru, slabs_by_inuse + page->inuse);
3406 if (!page->inuse)
3407 n->nr_partial--;
2086d26a
CL
3408 }
3409
2086d26a 3410 /*
672bba3a
CL
3411 * Rebuild the partial list with the slabs filled up most
3412 * first and the least used slabs at the end.
2086d26a 3413 */
69cb8e6b 3414 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3415 list_splice(slabs_by_inuse + i, n->partial.prev);
3416
2086d26a 3417 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3418
3419 /* Release empty slabs */
3420 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3421 discard_slab(s, page);
2086d26a
CL
3422 }
3423
3424 kfree(slabs_by_inuse);
3425 return 0;
3426}
3427EXPORT_SYMBOL(kmem_cache_shrink);
3428
b9049e23
YG
3429static int slab_mem_going_offline_callback(void *arg)
3430{
3431 struct kmem_cache *s;
3432
18004c5d 3433 mutex_lock(&slab_mutex);
b9049e23
YG
3434 list_for_each_entry(s, &slab_caches, list)
3435 kmem_cache_shrink(s);
18004c5d 3436 mutex_unlock(&slab_mutex);
b9049e23
YG
3437
3438 return 0;
3439}
3440
3441static void slab_mem_offline_callback(void *arg)
3442{
3443 struct kmem_cache_node *n;
3444 struct kmem_cache *s;
3445 struct memory_notify *marg = arg;
3446 int offline_node;
3447
b9d5ab25 3448 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3449
3450 /*
3451 * If the node still has available memory. we need kmem_cache_node
3452 * for it yet.
3453 */
3454 if (offline_node < 0)
3455 return;
3456
18004c5d 3457 mutex_lock(&slab_mutex);
b9049e23
YG
3458 list_for_each_entry(s, &slab_caches, list) {
3459 n = get_node(s, offline_node);
3460 if (n) {
3461 /*
3462 * if n->nr_slabs > 0, slabs still exist on the node
3463 * that is going down. We were unable to free them,
c9404c9c 3464 * and offline_pages() function shouldn't call this
b9049e23
YG
3465 * callback. So, we must fail.
3466 */
0f389ec6 3467 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3468
3469 s->node[offline_node] = NULL;
8de66a0c 3470 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3471 }
3472 }
18004c5d 3473 mutex_unlock(&slab_mutex);
b9049e23
YG
3474}
3475
3476static int slab_mem_going_online_callback(void *arg)
3477{
3478 struct kmem_cache_node *n;
3479 struct kmem_cache *s;
3480 struct memory_notify *marg = arg;
b9d5ab25 3481 int nid = marg->status_change_nid_normal;
b9049e23
YG
3482 int ret = 0;
3483
3484 /*
3485 * If the node's memory is already available, then kmem_cache_node is
3486 * already created. Nothing to do.
3487 */
3488 if (nid < 0)
3489 return 0;
3490
3491 /*
0121c619 3492 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3493 * allocate a kmem_cache_node structure in order to bring the node
3494 * online.
3495 */
18004c5d 3496 mutex_lock(&slab_mutex);
b9049e23
YG
3497 list_for_each_entry(s, &slab_caches, list) {
3498 /*
3499 * XXX: kmem_cache_alloc_node will fallback to other nodes
3500 * since memory is not yet available from the node that
3501 * is brought up.
3502 */
8de66a0c 3503 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3504 if (!n) {
3505 ret = -ENOMEM;
3506 goto out;
3507 }
4053497d 3508 init_kmem_cache_node(n);
b9049e23
YG
3509 s->node[nid] = n;
3510 }
3511out:
18004c5d 3512 mutex_unlock(&slab_mutex);
b9049e23
YG
3513 return ret;
3514}
3515
3516static int slab_memory_callback(struct notifier_block *self,
3517 unsigned long action, void *arg)
3518{
3519 int ret = 0;
3520
3521 switch (action) {
3522 case MEM_GOING_ONLINE:
3523 ret = slab_mem_going_online_callback(arg);
3524 break;
3525 case MEM_GOING_OFFLINE:
3526 ret = slab_mem_going_offline_callback(arg);
3527 break;
3528 case MEM_OFFLINE:
3529 case MEM_CANCEL_ONLINE:
3530 slab_mem_offline_callback(arg);
3531 break;
3532 case MEM_ONLINE:
3533 case MEM_CANCEL_OFFLINE:
3534 break;
3535 }
dc19f9db
KH
3536 if (ret)
3537 ret = notifier_from_errno(ret);
3538 else
3539 ret = NOTIFY_OK;
b9049e23
YG
3540 return ret;
3541}
3542
3ac38faa
AM
3543static struct notifier_block slab_memory_callback_nb = {
3544 .notifier_call = slab_memory_callback,
3545 .priority = SLAB_CALLBACK_PRI,
3546};
b9049e23 3547
81819f0f
CL
3548/********************************************************************
3549 * Basic setup of slabs
3550 *******************************************************************/
3551
51df1142
CL
3552/*
3553 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3554 * the page allocator. Allocate them properly then fix up the pointers
3555 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3556 */
3557
dffb4d60 3558static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3559{
3560 int node;
dffb4d60 3561 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3562
dffb4d60 3563 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3564
7d557b3c
GC
3565 /*
3566 * This runs very early, and only the boot processor is supposed to be
3567 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3568 * IPIs around.
3569 */
3570 __flush_cpu_slab(s, smp_processor_id());
51df1142
CL
3571 for_each_node_state(node, N_NORMAL_MEMORY) {
3572 struct kmem_cache_node *n = get_node(s, node);
3573 struct page *p;
3574
3575 if (n) {
3576 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3577 p->slab_cache = s;
51df1142 3578
607bf324 3579#ifdef CONFIG_SLUB_DEBUG
51df1142 3580 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3581 p->slab_cache = s;
51df1142
CL
3582#endif
3583 }
3584 }
dffb4d60
CL
3585 list_add(&s->list, &slab_caches);
3586 return s;
51df1142
CL
3587}
3588
81819f0f
CL
3589void __init kmem_cache_init(void)
3590{
dffb4d60
CL
3591 static __initdata struct kmem_cache boot_kmem_cache,
3592 boot_kmem_cache_node;
51df1142 3593
fc8d8620
SG
3594 if (debug_guardpage_minorder())
3595 slub_max_order = 0;
3596
dffb4d60
CL
3597 kmem_cache_node = &boot_kmem_cache_node;
3598 kmem_cache = &boot_kmem_cache;
51df1142 3599
dffb4d60
CL
3600 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3601 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3602
3ac38faa 3603 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3604
3605 /* Able to allocate the per node structures */
3606 slab_state = PARTIAL;
3607
dffb4d60
CL
3608 create_boot_cache(kmem_cache, "kmem_cache",
3609 offsetof(struct kmem_cache, node) +
3610 nr_node_ids * sizeof(struct kmem_cache_node *),
3611 SLAB_HWCACHE_ALIGN);
8a13a4cc 3612
dffb4d60 3613 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3614
51df1142
CL
3615 /*
3616 * Allocate kmem_cache_node properly from the kmem_cache slab.
3617 * kmem_cache_node is separately allocated so no need to
3618 * update any list pointers.
3619 */
dffb4d60 3620 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3621
3622 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3623 create_kmalloc_caches(0);
81819f0f
CL
3624
3625#ifdef CONFIG_SMP
3626 register_cpu_notifier(&slab_notifier);
9dfc6e68 3627#endif
81819f0f 3628
3adbefee 3629 printk(KERN_INFO
f97d5f63 3630 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0 3631 " CPUs=%d, Nodes=%d\n",
f97d5f63 3632 cache_line_size(),
81819f0f
CL
3633 slub_min_order, slub_max_order, slub_min_objects,
3634 nr_cpu_ids, nr_node_ids);
3635}
3636
7e85ee0c
PE
3637void __init kmem_cache_init_late(void)
3638{
7e85ee0c
PE
3639}
3640
81819f0f
CL
3641/*
3642 * Find a mergeable slab cache
3643 */
3644static int slab_unmergeable(struct kmem_cache *s)
3645{
3646 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3647 return 1;
3648
c59def9f 3649 if (s->ctor)
81819f0f
CL
3650 return 1;
3651
8ffa6875
CL
3652 /*
3653 * We may have set a slab to be unmergeable during bootstrap.
3654 */
3655 if (s->refcount < 0)
3656 return 1;
3657
81819f0f
CL
3658 return 0;
3659}
3660
2633d7a0 3661static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
ba0268a8 3662 size_t align, unsigned long flags, const char *name,
51cc5068 3663 void (*ctor)(void *))
81819f0f 3664{
5b95a4ac 3665 struct kmem_cache *s;
81819f0f
CL
3666
3667 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3668 return NULL;
3669
c59def9f 3670 if (ctor)
81819f0f
CL
3671 return NULL;
3672
3673 size = ALIGN(size, sizeof(void *));
3674 align = calculate_alignment(flags, align, size);
3675 size = ALIGN(size, align);
ba0268a8 3676 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3677
5b95a4ac 3678 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3679 if (slab_unmergeable(s))
3680 continue;
3681
3682 if (size > s->size)
3683 continue;
3684
ba0268a8 3685 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3686 continue;
3687 /*
3688 * Check if alignment is compatible.
3689 * Courtesy of Adrian Drzewiecki
3690 */
06428780 3691 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3692 continue;
3693
3694 if (s->size - size >= sizeof(void *))
3695 continue;
3696
2633d7a0
GC
3697 if (!cache_match_memcg(s, memcg))
3698 continue;
3699
81819f0f
CL
3700 return s;
3701 }
3702 return NULL;
3703}
3704
2633d7a0
GC
3705struct kmem_cache *
3706__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3707 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3708{
3709 struct kmem_cache *s;
3710
2633d7a0 3711 s = find_mergeable(memcg, size, align, flags, name, ctor);
81819f0f
CL
3712 if (s) {
3713 s->refcount++;
3714 /*
3715 * Adjust the object sizes so that we clear
3716 * the complete object on kzalloc.
3717 */
3b0efdfa 3718 s->object_size = max(s->object_size, (int)size);
81819f0f 3719 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3720
7b8f3b66 3721 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3722 s->refcount--;
cbb79694 3723 s = NULL;
7b8f3b66 3724 }
a0e1d1be 3725 }
6446faa2 3726
cbb79694
CL
3727 return s;
3728}
84c1cf62 3729
8a13a4cc 3730int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3731{
aac3a166
PE
3732 int err;
3733
3734 err = kmem_cache_open(s, flags);
3735 if (err)
3736 return err;
20cea968 3737
45530c44
CL
3738 /* Mutex is not taken during early boot */
3739 if (slab_state <= UP)
3740 return 0;
3741
107dab5c 3742 memcg_propagate_slab_attrs(s);
aac3a166
PE
3743 mutex_unlock(&slab_mutex);
3744 err = sysfs_slab_add(s);
3745 mutex_lock(&slab_mutex);
20cea968 3746
aac3a166
PE
3747 if (err)
3748 kmem_cache_close(s);
20cea968 3749
aac3a166 3750 return err;
81819f0f 3751}
81819f0f 3752
81819f0f 3753#ifdef CONFIG_SMP
81819f0f 3754/*
672bba3a
CL
3755 * Use the cpu notifier to insure that the cpu slabs are flushed when
3756 * necessary.
81819f0f
CL
3757 */
3758static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3759 unsigned long action, void *hcpu)
3760{
3761 long cpu = (long)hcpu;
5b95a4ac
CL
3762 struct kmem_cache *s;
3763 unsigned long flags;
81819f0f
CL
3764
3765 switch (action) {
3766 case CPU_UP_CANCELED:
8bb78442 3767 case CPU_UP_CANCELED_FROZEN:
81819f0f 3768 case CPU_DEAD:
8bb78442 3769 case CPU_DEAD_FROZEN:
18004c5d 3770 mutex_lock(&slab_mutex);
5b95a4ac
CL
3771 list_for_each_entry(s, &slab_caches, list) {
3772 local_irq_save(flags);
3773 __flush_cpu_slab(s, cpu);
3774 local_irq_restore(flags);
3775 }
18004c5d 3776 mutex_unlock(&slab_mutex);
81819f0f
CL
3777 break;
3778 default:
3779 break;
3780 }
3781 return NOTIFY_OK;
3782}
3783
06428780 3784static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3785 .notifier_call = slab_cpuup_callback
06428780 3786};
81819f0f
CL
3787
3788#endif
3789
ce71e27c 3790void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3791{
aadb4bc4 3792 struct kmem_cache *s;
94b528d0 3793 void *ret;
aadb4bc4 3794
95a05b42 3795 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3796 return kmalloc_large(size, gfpflags);
3797
2c59dd65 3798 s = kmalloc_slab(size, gfpflags);
81819f0f 3799
2408c550 3800 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3801 return s;
81819f0f 3802
2b847c3c 3803 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3804
25985edc 3805 /* Honor the call site pointer we received. */
ca2b84cb 3806 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3807
3808 return ret;
81819f0f
CL
3809}
3810
5d1f57e4 3811#ifdef CONFIG_NUMA
81819f0f 3812void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3813 int node, unsigned long caller)
81819f0f 3814{
aadb4bc4 3815 struct kmem_cache *s;
94b528d0 3816 void *ret;
aadb4bc4 3817
95a05b42 3818 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3819 ret = kmalloc_large_node(size, gfpflags, node);
3820
3821 trace_kmalloc_node(caller, ret,
3822 size, PAGE_SIZE << get_order(size),
3823 gfpflags, node);
3824
3825 return ret;
3826 }
eada35ef 3827
2c59dd65 3828 s = kmalloc_slab(size, gfpflags);
81819f0f 3829
2408c550 3830 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3831 return s;
81819f0f 3832
2b847c3c 3833 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3834
25985edc 3835 /* Honor the call site pointer we received. */
ca2b84cb 3836 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3837
3838 return ret;
81819f0f 3839}
5d1f57e4 3840#endif
81819f0f 3841
ab4d5ed5 3842#ifdef CONFIG_SYSFS
205ab99d
CL
3843static int count_inuse(struct page *page)
3844{
3845 return page->inuse;
3846}
3847
3848static int count_total(struct page *page)
3849{
3850 return page->objects;
3851}
ab4d5ed5 3852#endif
205ab99d 3853
ab4d5ed5 3854#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3855static int validate_slab(struct kmem_cache *s, struct page *page,
3856 unsigned long *map)
53e15af0
CL
3857{
3858 void *p;
a973e9dd 3859 void *addr = page_address(page);
53e15af0
CL
3860
3861 if (!check_slab(s, page) ||
3862 !on_freelist(s, page, NULL))
3863 return 0;
3864
3865 /* Now we know that a valid freelist exists */
39b26464 3866 bitmap_zero(map, page->objects);
53e15af0 3867
5f80b13a
CL
3868 get_map(s, page, map);
3869 for_each_object(p, s, addr, page->objects) {
3870 if (test_bit(slab_index(p, s, addr), map))
3871 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3872 return 0;
53e15af0
CL
3873 }
3874
224a88be 3875 for_each_object(p, s, addr, page->objects)
7656c72b 3876 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3877 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3878 return 0;
3879 return 1;
3880}
3881
434e245d
CL
3882static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3883 unsigned long *map)
53e15af0 3884{
881db7fb
CL
3885 slab_lock(page);
3886 validate_slab(s, page, map);
3887 slab_unlock(page);
53e15af0
CL
3888}
3889
434e245d
CL
3890static int validate_slab_node(struct kmem_cache *s,
3891 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3892{
3893 unsigned long count = 0;
3894 struct page *page;
3895 unsigned long flags;
3896
3897 spin_lock_irqsave(&n->list_lock, flags);
3898
3899 list_for_each_entry(page, &n->partial, lru) {
434e245d 3900 validate_slab_slab(s, page, map);
53e15af0
CL
3901 count++;
3902 }
3903 if (count != n->nr_partial)
3904 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3905 "counter=%ld\n", s->name, count, n->nr_partial);
3906
3907 if (!(s->flags & SLAB_STORE_USER))
3908 goto out;
3909
3910 list_for_each_entry(page, &n->full, lru) {
434e245d 3911 validate_slab_slab(s, page, map);
53e15af0
CL
3912 count++;
3913 }
3914 if (count != atomic_long_read(&n->nr_slabs))
3915 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3916 "counter=%ld\n", s->name, count,
3917 atomic_long_read(&n->nr_slabs));
3918
3919out:
3920 spin_unlock_irqrestore(&n->list_lock, flags);
3921 return count;
3922}
3923
434e245d 3924static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3925{
3926 int node;
3927 unsigned long count = 0;
205ab99d 3928 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3929 sizeof(unsigned long), GFP_KERNEL);
3930
3931 if (!map)
3932 return -ENOMEM;
53e15af0
CL
3933
3934 flush_all(s);
f64dc58c 3935 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3936 struct kmem_cache_node *n = get_node(s, node);
3937
434e245d 3938 count += validate_slab_node(s, n, map);
53e15af0 3939 }
434e245d 3940 kfree(map);
53e15af0
CL
3941 return count;
3942}
88a420e4 3943/*
672bba3a 3944 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3945 * and freed.
3946 */
3947
3948struct location {
3949 unsigned long count;
ce71e27c 3950 unsigned long addr;
45edfa58
CL
3951 long long sum_time;
3952 long min_time;
3953 long max_time;
3954 long min_pid;
3955 long max_pid;
174596a0 3956 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3957 nodemask_t nodes;
88a420e4
CL
3958};
3959
3960struct loc_track {
3961 unsigned long max;
3962 unsigned long count;
3963 struct location *loc;
3964};
3965
3966static void free_loc_track(struct loc_track *t)
3967{
3968 if (t->max)
3969 free_pages((unsigned long)t->loc,
3970 get_order(sizeof(struct location) * t->max));
3971}
3972
68dff6a9 3973static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3974{
3975 struct location *l;
3976 int order;
3977
88a420e4
CL
3978 order = get_order(sizeof(struct location) * max);
3979
68dff6a9 3980 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3981 if (!l)
3982 return 0;
3983
3984 if (t->count) {
3985 memcpy(l, t->loc, sizeof(struct location) * t->count);
3986 free_loc_track(t);
3987 }
3988 t->max = max;
3989 t->loc = l;
3990 return 1;
3991}
3992
3993static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3994 const struct track *track)
88a420e4
CL
3995{
3996 long start, end, pos;
3997 struct location *l;
ce71e27c 3998 unsigned long caddr;
45edfa58 3999 unsigned long age = jiffies - track->when;
88a420e4
CL
4000
4001 start = -1;
4002 end = t->count;
4003
4004 for ( ; ; ) {
4005 pos = start + (end - start + 1) / 2;
4006
4007 /*
4008 * There is nothing at "end". If we end up there
4009 * we need to add something to before end.
4010 */
4011 if (pos == end)
4012 break;
4013
4014 caddr = t->loc[pos].addr;
45edfa58
CL
4015 if (track->addr == caddr) {
4016
4017 l = &t->loc[pos];
4018 l->count++;
4019 if (track->when) {
4020 l->sum_time += age;
4021 if (age < l->min_time)
4022 l->min_time = age;
4023 if (age > l->max_time)
4024 l->max_time = age;
4025
4026 if (track->pid < l->min_pid)
4027 l->min_pid = track->pid;
4028 if (track->pid > l->max_pid)
4029 l->max_pid = track->pid;
4030
174596a0
RR
4031 cpumask_set_cpu(track->cpu,
4032 to_cpumask(l->cpus));
45edfa58
CL
4033 }
4034 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4035 return 1;
4036 }
4037
45edfa58 4038 if (track->addr < caddr)
88a420e4
CL
4039 end = pos;
4040 else
4041 start = pos;
4042 }
4043
4044 /*
672bba3a 4045 * Not found. Insert new tracking element.
88a420e4 4046 */
68dff6a9 4047 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4048 return 0;
4049
4050 l = t->loc + pos;
4051 if (pos < t->count)
4052 memmove(l + 1, l,
4053 (t->count - pos) * sizeof(struct location));
4054 t->count++;
4055 l->count = 1;
45edfa58
CL
4056 l->addr = track->addr;
4057 l->sum_time = age;
4058 l->min_time = age;
4059 l->max_time = age;
4060 l->min_pid = track->pid;
4061 l->max_pid = track->pid;
174596a0
RR
4062 cpumask_clear(to_cpumask(l->cpus));
4063 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4064 nodes_clear(l->nodes);
4065 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4066 return 1;
4067}
4068
4069static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4070 struct page *page, enum track_item alloc,
a5dd5c11 4071 unsigned long *map)
88a420e4 4072{
a973e9dd 4073 void *addr = page_address(page);
88a420e4
CL
4074 void *p;
4075
39b26464 4076 bitmap_zero(map, page->objects);
5f80b13a 4077 get_map(s, page, map);
88a420e4 4078
224a88be 4079 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4080 if (!test_bit(slab_index(p, s, addr), map))
4081 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4082}
4083
4084static int list_locations(struct kmem_cache *s, char *buf,
4085 enum track_item alloc)
4086{
e374d483 4087 int len = 0;
88a420e4 4088 unsigned long i;
68dff6a9 4089 struct loc_track t = { 0, 0, NULL };
88a420e4 4090 int node;
bbd7d57b
ED
4091 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4092 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4093
bbd7d57b
ED
4094 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4095 GFP_TEMPORARY)) {
4096 kfree(map);
68dff6a9 4097 return sprintf(buf, "Out of memory\n");
bbd7d57b 4098 }
88a420e4
CL
4099 /* Push back cpu slabs */
4100 flush_all(s);
4101
f64dc58c 4102 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4103 struct kmem_cache_node *n = get_node(s, node);
4104 unsigned long flags;
4105 struct page *page;
4106
9e86943b 4107 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4108 continue;
4109
4110 spin_lock_irqsave(&n->list_lock, flags);
4111 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4112 process_slab(&t, s, page, alloc, map);
88a420e4 4113 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4114 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4115 spin_unlock_irqrestore(&n->list_lock, flags);
4116 }
4117
4118 for (i = 0; i < t.count; i++) {
45edfa58 4119 struct location *l = &t.loc[i];
88a420e4 4120
9c246247 4121 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4122 break;
e374d483 4123 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4124
4125 if (l->addr)
62c70bce 4126 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4127 else
e374d483 4128 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4129
4130 if (l->sum_time != l->min_time) {
e374d483 4131 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4132 l->min_time,
4133 (long)div_u64(l->sum_time, l->count),
4134 l->max_time);
45edfa58 4135 } else
e374d483 4136 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4137 l->min_time);
4138
4139 if (l->min_pid != l->max_pid)
e374d483 4140 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4141 l->min_pid, l->max_pid);
4142 else
e374d483 4143 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4144 l->min_pid);
4145
174596a0
RR
4146 if (num_online_cpus() > 1 &&
4147 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4148 len < PAGE_SIZE - 60) {
4149 len += sprintf(buf + len, " cpus=");
4150 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4151 to_cpumask(l->cpus));
45edfa58
CL
4152 }
4153
62bc62a8 4154 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4155 len < PAGE_SIZE - 60) {
4156 len += sprintf(buf + len, " nodes=");
4157 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4158 l->nodes);
4159 }
4160
e374d483 4161 len += sprintf(buf + len, "\n");
88a420e4
CL
4162 }
4163
4164 free_loc_track(&t);
bbd7d57b 4165 kfree(map);
88a420e4 4166 if (!t.count)
e374d483
HH
4167 len += sprintf(buf, "No data\n");
4168 return len;
88a420e4 4169}
ab4d5ed5 4170#endif
88a420e4 4171
a5a84755
CL
4172#ifdef SLUB_RESILIENCY_TEST
4173static void resiliency_test(void)
4174{
4175 u8 *p;
4176
95a05b42 4177 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755
CL
4178
4179 printk(KERN_ERR "SLUB resiliency testing\n");
4180 printk(KERN_ERR "-----------------------\n");
4181 printk(KERN_ERR "A. Corruption after allocation\n");
4182
4183 p = kzalloc(16, GFP_KERNEL);
4184 p[16] = 0x12;
4185 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4186 " 0x12->0x%p\n\n", p + 16);
4187
4188 validate_slab_cache(kmalloc_caches[4]);
4189
4190 /* Hmmm... The next two are dangerous */
4191 p = kzalloc(32, GFP_KERNEL);
4192 p[32 + sizeof(void *)] = 0x34;
4193 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4194 " 0x34 -> -0x%p\n", p);
4195 printk(KERN_ERR
4196 "If allocated object is overwritten then not detectable\n\n");
4197
4198 validate_slab_cache(kmalloc_caches[5]);
4199 p = kzalloc(64, GFP_KERNEL);
4200 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4201 *p = 0x56;
4202 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4203 p);
4204 printk(KERN_ERR
4205 "If allocated object is overwritten then not detectable\n\n");
4206 validate_slab_cache(kmalloc_caches[6]);
4207
4208 printk(KERN_ERR "\nB. Corruption after free\n");
4209 p = kzalloc(128, GFP_KERNEL);
4210 kfree(p);
4211 *p = 0x78;
4212 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4213 validate_slab_cache(kmalloc_caches[7]);
4214
4215 p = kzalloc(256, GFP_KERNEL);
4216 kfree(p);
4217 p[50] = 0x9a;
4218 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4219 p);
4220 validate_slab_cache(kmalloc_caches[8]);
4221
4222 p = kzalloc(512, GFP_KERNEL);
4223 kfree(p);
4224 p[512] = 0xab;
4225 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4226 validate_slab_cache(kmalloc_caches[9]);
4227}
4228#else
4229#ifdef CONFIG_SYSFS
4230static void resiliency_test(void) {};
4231#endif
4232#endif
4233
ab4d5ed5 4234#ifdef CONFIG_SYSFS
81819f0f 4235enum slab_stat_type {
205ab99d
CL
4236 SL_ALL, /* All slabs */
4237 SL_PARTIAL, /* Only partially allocated slabs */
4238 SL_CPU, /* Only slabs used for cpu caches */
4239 SL_OBJECTS, /* Determine allocated objects not slabs */
4240 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4241};
4242
205ab99d 4243#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4244#define SO_PARTIAL (1 << SL_PARTIAL)
4245#define SO_CPU (1 << SL_CPU)
4246#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4247#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4248
62e5c4b4
CG
4249static ssize_t show_slab_objects(struct kmem_cache *s,
4250 char *buf, unsigned long flags)
81819f0f
CL
4251{
4252 unsigned long total = 0;
81819f0f
CL
4253 int node;
4254 int x;
4255 unsigned long *nodes;
4256 unsigned long *per_cpu;
4257
4258 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4259 if (!nodes)
4260 return -ENOMEM;
81819f0f
CL
4261 per_cpu = nodes + nr_node_ids;
4262
205ab99d
CL
4263 if (flags & SO_CPU) {
4264 int cpu;
81819f0f 4265
205ab99d 4266 for_each_possible_cpu(cpu) {
9dfc6e68 4267 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4268 int node;
49e22585 4269 struct page *page;
dfb4f096 4270
bc6697d8 4271 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4272 if (!page)
4273 continue;
205ab99d 4274
ec3ab083
CL
4275 node = page_to_nid(page);
4276 if (flags & SO_TOTAL)
4277 x = page->objects;
4278 else if (flags & SO_OBJECTS)
4279 x = page->inuse;
4280 else
4281 x = 1;
49e22585 4282
ec3ab083
CL
4283 total += x;
4284 nodes[node] += x;
4285
4286 page = ACCESS_ONCE(c->partial);
49e22585 4287 if (page) {
d6d76c66
LZ
4288 node = page_to_nid(page);
4289 if (flags & SO_TOTAL)
4290 WARN_ON_ONCE(1);
4291 else if (flags & SO_OBJECTS)
4292 WARN_ON_ONCE(1);
4293 else
4294 x = page->pages;
bc6697d8
ED
4295 total += x;
4296 nodes[node] += x;
49e22585 4297 }
ec3ab083 4298
bc6697d8 4299 per_cpu[node]++;
81819f0f
CL
4300 }
4301 }
4302
04d94879 4303 lock_memory_hotplug();
ab4d5ed5 4304#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4305 if (flags & SO_ALL) {
4306 for_each_node_state(node, N_NORMAL_MEMORY) {
4307 struct kmem_cache_node *n = get_node(s, node);
4308
4309 if (flags & SO_TOTAL)
4310 x = atomic_long_read(&n->total_objects);
4311 else if (flags & SO_OBJECTS)
4312 x = atomic_long_read(&n->total_objects) -
4313 count_partial(n, count_free);
81819f0f 4314
81819f0f 4315 else
205ab99d 4316 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4317 total += x;
4318 nodes[node] += x;
4319 }
4320
ab4d5ed5
CL
4321 } else
4322#endif
4323 if (flags & SO_PARTIAL) {
205ab99d
CL
4324 for_each_node_state(node, N_NORMAL_MEMORY) {
4325 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4326
205ab99d
CL
4327 if (flags & SO_TOTAL)
4328 x = count_partial(n, count_total);
4329 else if (flags & SO_OBJECTS)
4330 x = count_partial(n, count_inuse);
81819f0f 4331 else
205ab99d 4332 x = n->nr_partial;
81819f0f
CL
4333 total += x;
4334 nodes[node] += x;
4335 }
4336 }
81819f0f
CL
4337 x = sprintf(buf, "%lu", total);
4338#ifdef CONFIG_NUMA
f64dc58c 4339 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4340 if (nodes[node])
4341 x += sprintf(buf + x, " N%d=%lu",
4342 node, nodes[node]);
4343#endif
04d94879 4344 unlock_memory_hotplug();
81819f0f
CL
4345 kfree(nodes);
4346 return x + sprintf(buf + x, "\n");
4347}
4348
ab4d5ed5 4349#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4350static int any_slab_objects(struct kmem_cache *s)
4351{
4352 int node;
81819f0f 4353
dfb4f096 4354 for_each_online_node(node) {
81819f0f
CL
4355 struct kmem_cache_node *n = get_node(s, node);
4356
dfb4f096
CL
4357 if (!n)
4358 continue;
4359
4ea33e2d 4360 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4361 return 1;
4362 }
4363 return 0;
4364}
ab4d5ed5 4365#endif
81819f0f
CL
4366
4367#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4368#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4369
4370struct slab_attribute {
4371 struct attribute attr;
4372 ssize_t (*show)(struct kmem_cache *s, char *buf);
4373 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4374};
4375
4376#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4377 static struct slab_attribute _name##_attr = \
4378 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4379
4380#define SLAB_ATTR(_name) \
4381 static struct slab_attribute _name##_attr = \
ab067e99 4382 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4383
81819f0f
CL
4384static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4385{
4386 return sprintf(buf, "%d\n", s->size);
4387}
4388SLAB_ATTR_RO(slab_size);
4389
4390static ssize_t align_show(struct kmem_cache *s, char *buf)
4391{
4392 return sprintf(buf, "%d\n", s->align);
4393}
4394SLAB_ATTR_RO(align);
4395
4396static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4397{
3b0efdfa 4398 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4399}
4400SLAB_ATTR_RO(object_size);
4401
4402static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4403{
834f3d11 4404 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4405}
4406SLAB_ATTR_RO(objs_per_slab);
4407
06b285dc
CL
4408static ssize_t order_store(struct kmem_cache *s,
4409 const char *buf, size_t length)
4410{
0121c619
CL
4411 unsigned long order;
4412 int err;
4413
4414 err = strict_strtoul(buf, 10, &order);
4415 if (err)
4416 return err;
06b285dc
CL
4417
4418 if (order > slub_max_order || order < slub_min_order)
4419 return -EINVAL;
4420
4421 calculate_sizes(s, order);
4422 return length;
4423}
4424
81819f0f
CL
4425static ssize_t order_show(struct kmem_cache *s, char *buf)
4426{
834f3d11 4427 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4428}
06b285dc 4429SLAB_ATTR(order);
81819f0f 4430
73d342b1
DR
4431static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4432{
4433 return sprintf(buf, "%lu\n", s->min_partial);
4434}
4435
4436static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4437 size_t length)
4438{
4439 unsigned long min;
4440 int err;
4441
4442 err = strict_strtoul(buf, 10, &min);
4443 if (err)
4444 return err;
4445
c0bdb232 4446 set_min_partial(s, min);
73d342b1
DR
4447 return length;
4448}
4449SLAB_ATTR(min_partial);
4450
49e22585
CL
4451static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4452{
4453 return sprintf(buf, "%u\n", s->cpu_partial);
4454}
4455
4456static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4457 size_t length)
4458{
4459 unsigned long objects;
4460 int err;
4461
4462 err = strict_strtoul(buf, 10, &objects);
4463 if (err)
4464 return err;
74ee4ef1
DR
4465 if (objects && kmem_cache_debug(s))
4466 return -EINVAL;
49e22585
CL
4467
4468 s->cpu_partial = objects;
4469 flush_all(s);
4470 return length;
4471}
4472SLAB_ATTR(cpu_partial);
4473
81819f0f
CL
4474static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4475{
62c70bce
JP
4476 if (!s->ctor)
4477 return 0;
4478 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4479}
4480SLAB_ATTR_RO(ctor);
4481
81819f0f
CL
4482static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4483{
4484 return sprintf(buf, "%d\n", s->refcount - 1);
4485}
4486SLAB_ATTR_RO(aliases);
4487
81819f0f
CL
4488static ssize_t partial_show(struct kmem_cache *s, char *buf)
4489{
d9acf4b7 4490 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4491}
4492SLAB_ATTR_RO(partial);
4493
4494static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4495{
d9acf4b7 4496 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4497}
4498SLAB_ATTR_RO(cpu_slabs);
4499
4500static ssize_t objects_show(struct kmem_cache *s, char *buf)
4501{
205ab99d 4502 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4503}
4504SLAB_ATTR_RO(objects);
4505
205ab99d
CL
4506static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4507{
4508 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4509}
4510SLAB_ATTR_RO(objects_partial);
4511
49e22585
CL
4512static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4513{
4514 int objects = 0;
4515 int pages = 0;
4516 int cpu;
4517 int len;
4518
4519 for_each_online_cpu(cpu) {
4520 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4521
4522 if (page) {
4523 pages += page->pages;
4524 objects += page->pobjects;
4525 }
4526 }
4527
4528 len = sprintf(buf, "%d(%d)", objects, pages);
4529
4530#ifdef CONFIG_SMP
4531 for_each_online_cpu(cpu) {
4532 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4533
4534 if (page && len < PAGE_SIZE - 20)
4535 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4536 page->pobjects, page->pages);
4537 }
4538#endif
4539 return len + sprintf(buf + len, "\n");
4540}
4541SLAB_ATTR_RO(slabs_cpu_partial);
4542
a5a84755
CL
4543static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4544{
4545 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4546}
4547
4548static ssize_t reclaim_account_store(struct kmem_cache *s,
4549 const char *buf, size_t length)
4550{
4551 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4552 if (buf[0] == '1')
4553 s->flags |= SLAB_RECLAIM_ACCOUNT;
4554 return length;
4555}
4556SLAB_ATTR(reclaim_account);
4557
4558static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4559{
4560 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4561}
4562SLAB_ATTR_RO(hwcache_align);
4563
4564#ifdef CONFIG_ZONE_DMA
4565static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4566{
4567 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4568}
4569SLAB_ATTR_RO(cache_dma);
4570#endif
4571
4572static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4573{
4574 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4575}
4576SLAB_ATTR_RO(destroy_by_rcu);
4577
ab9a0f19
LJ
4578static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4579{
4580 return sprintf(buf, "%d\n", s->reserved);
4581}
4582SLAB_ATTR_RO(reserved);
4583
ab4d5ed5 4584#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4585static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4586{
4587 return show_slab_objects(s, buf, SO_ALL);
4588}
4589SLAB_ATTR_RO(slabs);
4590
205ab99d
CL
4591static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4592{
4593 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4594}
4595SLAB_ATTR_RO(total_objects);
4596
81819f0f
CL
4597static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4598{
4599 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4600}
4601
4602static ssize_t sanity_checks_store(struct kmem_cache *s,
4603 const char *buf, size_t length)
4604{
4605 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4606 if (buf[0] == '1') {
4607 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4608 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4609 }
81819f0f
CL
4610 return length;
4611}
4612SLAB_ATTR(sanity_checks);
4613
4614static ssize_t trace_show(struct kmem_cache *s, char *buf)
4615{
4616 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4617}
4618
4619static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4620 size_t length)
4621{
4622 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4623 if (buf[0] == '1') {
4624 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4625 s->flags |= SLAB_TRACE;
b789ef51 4626 }
81819f0f
CL
4627 return length;
4628}
4629SLAB_ATTR(trace);
4630
81819f0f
CL
4631static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4632{
4633 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4634}
4635
4636static ssize_t red_zone_store(struct kmem_cache *s,
4637 const char *buf, size_t length)
4638{
4639 if (any_slab_objects(s))
4640 return -EBUSY;
4641
4642 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4643 if (buf[0] == '1') {
4644 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4645 s->flags |= SLAB_RED_ZONE;
b789ef51 4646 }
06b285dc 4647 calculate_sizes(s, -1);
81819f0f
CL
4648 return length;
4649}
4650SLAB_ATTR(red_zone);
4651
4652static ssize_t poison_show(struct kmem_cache *s, char *buf)
4653{
4654 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4655}
4656
4657static ssize_t poison_store(struct kmem_cache *s,
4658 const char *buf, size_t length)
4659{
4660 if (any_slab_objects(s))
4661 return -EBUSY;
4662
4663 s->flags &= ~SLAB_POISON;
b789ef51
CL
4664 if (buf[0] == '1') {
4665 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4666 s->flags |= SLAB_POISON;
b789ef51 4667 }
06b285dc 4668 calculate_sizes(s, -1);
81819f0f
CL
4669 return length;
4670}
4671SLAB_ATTR(poison);
4672
4673static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4674{
4675 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4676}
4677
4678static ssize_t store_user_store(struct kmem_cache *s,
4679 const char *buf, size_t length)
4680{
4681 if (any_slab_objects(s))
4682 return -EBUSY;
4683
4684 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4685 if (buf[0] == '1') {
4686 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4687 s->flags |= SLAB_STORE_USER;
b789ef51 4688 }
06b285dc 4689 calculate_sizes(s, -1);
81819f0f
CL
4690 return length;
4691}
4692SLAB_ATTR(store_user);
4693
53e15af0
CL
4694static ssize_t validate_show(struct kmem_cache *s, char *buf)
4695{
4696 return 0;
4697}
4698
4699static ssize_t validate_store(struct kmem_cache *s,
4700 const char *buf, size_t length)
4701{
434e245d
CL
4702 int ret = -EINVAL;
4703
4704 if (buf[0] == '1') {
4705 ret = validate_slab_cache(s);
4706 if (ret >= 0)
4707 ret = length;
4708 }
4709 return ret;
53e15af0
CL
4710}
4711SLAB_ATTR(validate);
a5a84755
CL
4712
4713static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4714{
4715 if (!(s->flags & SLAB_STORE_USER))
4716 return -ENOSYS;
4717 return list_locations(s, buf, TRACK_ALLOC);
4718}
4719SLAB_ATTR_RO(alloc_calls);
4720
4721static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4722{
4723 if (!(s->flags & SLAB_STORE_USER))
4724 return -ENOSYS;
4725 return list_locations(s, buf, TRACK_FREE);
4726}
4727SLAB_ATTR_RO(free_calls);
4728#endif /* CONFIG_SLUB_DEBUG */
4729
4730#ifdef CONFIG_FAILSLAB
4731static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4732{
4733 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4734}
4735
4736static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4737 size_t length)
4738{
4739 s->flags &= ~SLAB_FAILSLAB;
4740 if (buf[0] == '1')
4741 s->flags |= SLAB_FAILSLAB;
4742 return length;
4743}
4744SLAB_ATTR(failslab);
ab4d5ed5 4745#endif
53e15af0 4746
2086d26a
CL
4747static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4748{
4749 return 0;
4750}
4751
4752static ssize_t shrink_store(struct kmem_cache *s,
4753 const char *buf, size_t length)
4754{
4755 if (buf[0] == '1') {
4756 int rc = kmem_cache_shrink(s);
4757
4758 if (rc)
4759 return rc;
4760 } else
4761 return -EINVAL;
4762 return length;
4763}
4764SLAB_ATTR(shrink);
4765
81819f0f 4766#ifdef CONFIG_NUMA
9824601e 4767static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4768{
9824601e 4769 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4770}
4771
9824601e 4772static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4773 const char *buf, size_t length)
4774{
0121c619
CL
4775 unsigned long ratio;
4776 int err;
4777
4778 err = strict_strtoul(buf, 10, &ratio);
4779 if (err)
4780 return err;
4781
e2cb96b7 4782 if (ratio <= 100)
0121c619 4783 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4784
81819f0f
CL
4785 return length;
4786}
9824601e 4787SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4788#endif
4789
8ff12cfc 4790#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4791static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4792{
4793 unsigned long sum = 0;
4794 int cpu;
4795 int len;
4796 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4797
4798 if (!data)
4799 return -ENOMEM;
4800
4801 for_each_online_cpu(cpu) {
9dfc6e68 4802 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4803
4804 data[cpu] = x;
4805 sum += x;
4806 }
4807
4808 len = sprintf(buf, "%lu", sum);
4809
50ef37b9 4810#ifdef CONFIG_SMP
8ff12cfc
CL
4811 for_each_online_cpu(cpu) {
4812 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4813 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4814 }
50ef37b9 4815#endif
8ff12cfc
CL
4816 kfree(data);
4817 return len + sprintf(buf + len, "\n");
4818}
4819
78eb00cc
DR
4820static void clear_stat(struct kmem_cache *s, enum stat_item si)
4821{
4822 int cpu;
4823
4824 for_each_online_cpu(cpu)
9dfc6e68 4825 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4826}
4827
8ff12cfc
CL
4828#define STAT_ATTR(si, text) \
4829static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4830{ \
4831 return show_stat(s, buf, si); \
4832} \
78eb00cc
DR
4833static ssize_t text##_store(struct kmem_cache *s, \
4834 const char *buf, size_t length) \
4835{ \
4836 if (buf[0] != '0') \
4837 return -EINVAL; \
4838 clear_stat(s, si); \
4839 return length; \
4840} \
4841SLAB_ATTR(text); \
8ff12cfc
CL
4842
4843STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4844STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4845STAT_ATTR(FREE_FASTPATH, free_fastpath);
4846STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4847STAT_ATTR(FREE_FROZEN, free_frozen);
4848STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4849STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4850STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4851STAT_ATTR(ALLOC_SLAB, alloc_slab);
4852STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4853STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4854STAT_ATTR(FREE_SLAB, free_slab);
4855STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4856STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4857STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4858STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4859STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4860STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4861STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4862STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4863STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4864STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4865STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4866STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4867STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4868STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4869#endif
4870
06428780 4871static struct attribute *slab_attrs[] = {
81819f0f
CL
4872 &slab_size_attr.attr,
4873 &object_size_attr.attr,
4874 &objs_per_slab_attr.attr,
4875 &order_attr.attr,
73d342b1 4876 &min_partial_attr.attr,
49e22585 4877 &cpu_partial_attr.attr,
81819f0f 4878 &objects_attr.attr,
205ab99d 4879 &objects_partial_attr.attr,
81819f0f
CL
4880 &partial_attr.attr,
4881 &cpu_slabs_attr.attr,
4882 &ctor_attr.attr,
81819f0f
CL
4883 &aliases_attr.attr,
4884 &align_attr.attr,
81819f0f
CL
4885 &hwcache_align_attr.attr,
4886 &reclaim_account_attr.attr,
4887 &destroy_by_rcu_attr.attr,
a5a84755 4888 &shrink_attr.attr,
ab9a0f19 4889 &reserved_attr.attr,
49e22585 4890 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4891#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4892 &total_objects_attr.attr,
4893 &slabs_attr.attr,
4894 &sanity_checks_attr.attr,
4895 &trace_attr.attr,
81819f0f
CL
4896 &red_zone_attr.attr,
4897 &poison_attr.attr,
4898 &store_user_attr.attr,
53e15af0 4899 &validate_attr.attr,
88a420e4
CL
4900 &alloc_calls_attr.attr,
4901 &free_calls_attr.attr,
ab4d5ed5 4902#endif
81819f0f
CL
4903#ifdef CONFIG_ZONE_DMA
4904 &cache_dma_attr.attr,
4905#endif
4906#ifdef CONFIG_NUMA
9824601e 4907 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4908#endif
4909#ifdef CONFIG_SLUB_STATS
4910 &alloc_fastpath_attr.attr,
4911 &alloc_slowpath_attr.attr,
4912 &free_fastpath_attr.attr,
4913 &free_slowpath_attr.attr,
4914 &free_frozen_attr.attr,
4915 &free_add_partial_attr.attr,
4916 &free_remove_partial_attr.attr,
4917 &alloc_from_partial_attr.attr,
4918 &alloc_slab_attr.attr,
4919 &alloc_refill_attr.attr,
e36a2652 4920 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4921 &free_slab_attr.attr,
4922 &cpuslab_flush_attr.attr,
4923 &deactivate_full_attr.attr,
4924 &deactivate_empty_attr.attr,
4925 &deactivate_to_head_attr.attr,
4926 &deactivate_to_tail_attr.attr,
4927 &deactivate_remote_frees_attr.attr,
03e404af 4928 &deactivate_bypass_attr.attr,
65c3376a 4929 &order_fallback_attr.attr,
b789ef51
CL
4930 &cmpxchg_double_fail_attr.attr,
4931 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4932 &cpu_partial_alloc_attr.attr,
4933 &cpu_partial_free_attr.attr,
8028dcea
AS
4934 &cpu_partial_node_attr.attr,
4935 &cpu_partial_drain_attr.attr,
81819f0f 4936#endif
4c13dd3b
DM
4937#ifdef CONFIG_FAILSLAB
4938 &failslab_attr.attr,
4939#endif
4940
81819f0f
CL
4941 NULL
4942};
4943
4944static struct attribute_group slab_attr_group = {
4945 .attrs = slab_attrs,
4946};
4947
4948static ssize_t slab_attr_show(struct kobject *kobj,
4949 struct attribute *attr,
4950 char *buf)
4951{
4952 struct slab_attribute *attribute;
4953 struct kmem_cache *s;
4954 int err;
4955
4956 attribute = to_slab_attr(attr);
4957 s = to_slab(kobj);
4958
4959 if (!attribute->show)
4960 return -EIO;
4961
4962 err = attribute->show(s, buf);
4963
4964 return err;
4965}
4966
4967static ssize_t slab_attr_store(struct kobject *kobj,
4968 struct attribute *attr,
4969 const char *buf, size_t len)
4970{
4971 struct slab_attribute *attribute;
4972 struct kmem_cache *s;
4973 int err;
4974
4975 attribute = to_slab_attr(attr);
4976 s = to_slab(kobj);
4977
4978 if (!attribute->store)
4979 return -EIO;
4980
4981 err = attribute->store(s, buf, len);
107dab5c
GC
4982#ifdef CONFIG_MEMCG_KMEM
4983 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4984 int i;
81819f0f 4985
107dab5c
GC
4986 mutex_lock(&slab_mutex);
4987 if (s->max_attr_size < len)
4988 s->max_attr_size = len;
4989
ebe945c2
GC
4990 /*
4991 * This is a best effort propagation, so this function's return
4992 * value will be determined by the parent cache only. This is
4993 * basically because not all attributes will have a well
4994 * defined semantics for rollbacks - most of the actions will
4995 * have permanent effects.
4996 *
4997 * Returning the error value of any of the children that fail
4998 * is not 100 % defined, in the sense that users seeing the
4999 * error code won't be able to know anything about the state of
5000 * the cache.
5001 *
5002 * Only returning the error code for the parent cache at least
5003 * has well defined semantics. The cache being written to
5004 * directly either failed or succeeded, in which case we loop
5005 * through the descendants with best-effort propagation.
5006 */
107dab5c
GC
5007 for_each_memcg_cache_index(i) {
5008 struct kmem_cache *c = cache_from_memcg(s, i);
107dab5c
GC
5009 if (c)
5010 attribute->store(c, buf, len);
5011 }
5012 mutex_unlock(&slab_mutex);
5013 }
5014#endif
81819f0f
CL
5015 return err;
5016}
5017
107dab5c
GC
5018static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5019{
5020#ifdef CONFIG_MEMCG_KMEM
5021 int i;
5022 char *buffer = NULL;
5023
5024 if (!is_root_cache(s))
5025 return;
5026
5027 /*
5028 * This mean this cache had no attribute written. Therefore, no point
5029 * in copying default values around
5030 */
5031 if (!s->max_attr_size)
5032 return;
5033
5034 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5035 char mbuf[64];
5036 char *buf;
5037 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5038
5039 if (!attr || !attr->store || !attr->show)
5040 continue;
5041
5042 /*
5043 * It is really bad that we have to allocate here, so we will
5044 * do it only as a fallback. If we actually allocate, though,
5045 * we can just use the allocated buffer until the end.
5046 *
5047 * Most of the slub attributes will tend to be very small in
5048 * size, but sysfs allows buffers up to a page, so they can
5049 * theoretically happen.
5050 */
5051 if (buffer)
5052 buf = buffer;
5053 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5054 buf = mbuf;
5055 else {
5056 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5057 if (WARN_ON(!buffer))
5058 continue;
5059 buf = buffer;
5060 }
5061
5062 attr->show(s->memcg_params->root_cache, buf);
5063 attr->store(s, buf, strlen(buf));
5064 }
5065
5066 if (buffer)
5067 free_page((unsigned long)buffer);
5068#endif
5069}
5070
52cf25d0 5071static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5072 .show = slab_attr_show,
5073 .store = slab_attr_store,
5074};
5075
5076static struct kobj_type slab_ktype = {
5077 .sysfs_ops = &slab_sysfs_ops,
5078};
5079
5080static int uevent_filter(struct kset *kset, struct kobject *kobj)
5081{
5082 struct kobj_type *ktype = get_ktype(kobj);
5083
5084 if (ktype == &slab_ktype)
5085 return 1;
5086 return 0;
5087}
5088
9cd43611 5089static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5090 .filter = uevent_filter,
5091};
5092
27c3a314 5093static struct kset *slab_kset;
81819f0f
CL
5094
5095#define ID_STR_LENGTH 64
5096
5097/* Create a unique string id for a slab cache:
6446faa2
CL
5098 *
5099 * Format :[flags-]size
81819f0f
CL
5100 */
5101static char *create_unique_id(struct kmem_cache *s)
5102{
5103 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5104 char *p = name;
5105
5106 BUG_ON(!name);
5107
5108 *p++ = ':';
5109 /*
5110 * First flags affecting slabcache operations. We will only
5111 * get here for aliasable slabs so we do not need to support
5112 * too many flags. The flags here must cover all flags that
5113 * are matched during merging to guarantee that the id is
5114 * unique.
5115 */
5116 if (s->flags & SLAB_CACHE_DMA)
5117 *p++ = 'd';
5118 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5119 *p++ = 'a';
5120 if (s->flags & SLAB_DEBUG_FREE)
5121 *p++ = 'F';
5a896d9e
VN
5122 if (!(s->flags & SLAB_NOTRACK))
5123 *p++ = 't';
81819f0f
CL
5124 if (p != name + 1)
5125 *p++ = '-';
5126 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5127
5128#ifdef CONFIG_MEMCG_KMEM
5129 if (!is_root_cache(s))
5130 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5131#endif
5132
81819f0f
CL
5133 BUG_ON(p > name + ID_STR_LENGTH - 1);
5134 return name;
5135}
5136
5137static int sysfs_slab_add(struct kmem_cache *s)
5138{
5139 int err;
5140 const char *name;
45530c44 5141 int unmergeable = slab_unmergeable(s);
81819f0f 5142
81819f0f
CL
5143 if (unmergeable) {
5144 /*
5145 * Slabcache can never be merged so we can use the name proper.
5146 * This is typically the case for debug situations. In that
5147 * case we can catch duplicate names easily.
5148 */
27c3a314 5149 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5150 name = s->name;
5151 } else {
5152 /*
5153 * Create a unique name for the slab as a target
5154 * for the symlinks.
5155 */
5156 name = create_unique_id(s);
5157 }
5158
27c3a314 5159 s->kobj.kset = slab_kset;
1eada11c
GKH
5160 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5161 if (err) {
5162 kobject_put(&s->kobj);
81819f0f 5163 return err;
1eada11c 5164 }
81819f0f
CL
5165
5166 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5167 if (err) {
5168 kobject_del(&s->kobj);
5169 kobject_put(&s->kobj);
81819f0f 5170 return err;
5788d8ad 5171 }
81819f0f
CL
5172 kobject_uevent(&s->kobj, KOBJ_ADD);
5173 if (!unmergeable) {
5174 /* Setup first alias */
5175 sysfs_slab_alias(s, s->name);
5176 kfree(name);
5177 }
5178 return 0;
5179}
5180
5181static void sysfs_slab_remove(struct kmem_cache *s)
5182{
97d06609 5183 if (slab_state < FULL)
2bce6485
CL
5184 /*
5185 * Sysfs has not been setup yet so no need to remove the
5186 * cache from sysfs.
5187 */
5188 return;
5189
81819f0f
CL
5190 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5191 kobject_del(&s->kobj);
151c602f 5192 kobject_put(&s->kobj);
81819f0f
CL
5193}
5194
5195/*
5196 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5197 * available lest we lose that information.
81819f0f
CL
5198 */
5199struct saved_alias {
5200 struct kmem_cache *s;
5201 const char *name;
5202 struct saved_alias *next;
5203};
5204
5af328a5 5205static struct saved_alias *alias_list;
81819f0f
CL
5206
5207static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5208{
5209 struct saved_alias *al;
5210
97d06609 5211 if (slab_state == FULL) {
81819f0f
CL
5212 /*
5213 * If we have a leftover link then remove it.
5214 */
27c3a314
GKH
5215 sysfs_remove_link(&slab_kset->kobj, name);
5216 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5217 }
5218
5219 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5220 if (!al)
5221 return -ENOMEM;
5222
5223 al->s = s;
5224 al->name = name;
5225 al->next = alias_list;
5226 alias_list = al;
5227 return 0;
5228}
5229
5230static int __init slab_sysfs_init(void)
5231{
5b95a4ac 5232 struct kmem_cache *s;
81819f0f
CL
5233 int err;
5234
18004c5d 5235 mutex_lock(&slab_mutex);
2bce6485 5236
0ff21e46 5237 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5238 if (!slab_kset) {
18004c5d 5239 mutex_unlock(&slab_mutex);
81819f0f
CL
5240 printk(KERN_ERR "Cannot register slab subsystem.\n");
5241 return -ENOSYS;
5242 }
5243
97d06609 5244 slab_state = FULL;
26a7bd03 5245
5b95a4ac 5246 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5247 err = sysfs_slab_add(s);
5d540fb7
CL
5248 if (err)
5249 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5250 " to sysfs\n", s->name);
26a7bd03 5251 }
81819f0f
CL
5252
5253 while (alias_list) {
5254 struct saved_alias *al = alias_list;
5255
5256 alias_list = alias_list->next;
5257 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5258 if (err)
5259 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5260 " %s to sysfs\n", al->name);
81819f0f
CL
5261 kfree(al);
5262 }
5263
18004c5d 5264 mutex_unlock(&slab_mutex);
81819f0f
CL
5265 resiliency_test();
5266 return 0;
5267}
5268
5269__initcall(slab_sysfs_init);
ab4d5ed5 5270#endif /* CONFIG_SYSFS */
57ed3eda
PE
5271
5272/*
5273 * The /proc/slabinfo ABI
5274 */
158a9624 5275#ifdef CONFIG_SLABINFO
0d7561c6 5276void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda
PE
5277{
5278 unsigned long nr_partials = 0;
5279 unsigned long nr_slabs = 0;
205ab99d
CL
5280 unsigned long nr_objs = 0;
5281 unsigned long nr_free = 0;
57ed3eda
PE
5282 int node;
5283
57ed3eda
PE
5284 for_each_online_node(node) {
5285 struct kmem_cache_node *n = get_node(s, node);
5286
5287 if (!n)
5288 continue;
5289
5290 nr_partials += n->nr_partial;
5291 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5292 nr_objs += atomic_long_read(&n->total_objects);
5293 nr_free += count_partial(n, count_free);
57ed3eda
PE
5294 }
5295
0d7561c6
GC
5296 sinfo->active_objs = nr_objs - nr_free;
5297 sinfo->num_objs = nr_objs;
5298 sinfo->active_slabs = nr_slabs;
5299 sinfo->num_slabs = nr_slabs;
5300 sinfo->objects_per_slab = oo_objects(s->oo);
5301 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5302}
5303
0d7561c6 5304void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5305{
7b3c3a50
AD
5306}
5307
b7454ad3
GC
5308ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5309 size_t count, loff_t *ppos)
7b3c3a50 5310{
b7454ad3 5311 return -EIO;
7b3c3a50 5312}
158a9624 5313#endif /* CONFIG_SLABINFO */