mm: slab: Verify the nodeid passed to ____cache_alloc_node
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
039363f3 22
97d06609
CL
23#include "slab.h"
24
25enum slab_state slab_state;
18004c5d
CL
26LIST_HEAD(slab_caches);
27DEFINE_MUTEX(slab_mutex);
9b030cb8 28struct kmem_cache *kmem_cache;
97d06609 29
77be4b13 30#ifdef CONFIG_DEBUG_VM
2633d7a0
GC
31static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
32 size_t size)
039363f3
CL
33{
34 struct kmem_cache *s = NULL;
35
039363f3
CL
36 if (!name || in_interrupt() || size < sizeof(void *) ||
37 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
38 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
39 return -EINVAL;
039363f3 40 }
b920536a 41
20cea968
CL
42 list_for_each_entry(s, &slab_caches, list) {
43 char tmp;
44 int res;
45
46 /*
47 * This happens when the module gets unloaded and doesn't
48 * destroy its slab cache and no-one else reuses the vmalloc
49 * area of the module. Print a warning.
50 */
51 res = probe_kernel_address(s->name, tmp);
52 if (res) {
77be4b13 53 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
54 s->object_size);
55 continue;
56 }
57
2633d7a0
GC
58 /*
59 * For simplicity, we won't check this in the list of memcg
60 * caches. We have control over memcg naming, and if there
61 * aren't duplicates in the global list, there won't be any
62 * duplicates in the memcg lists as well.
63 */
64 if (!memcg && !strcmp(s->name, name)) {
77be4b13
SK
65 pr_err("%s (%s): Cache name already exists.\n",
66 __func__, name);
20cea968
CL
67 dump_stack();
68 s = NULL;
77be4b13 69 return -EINVAL;
20cea968
CL
70 }
71 }
72
73 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
74 return 0;
75}
76#else
2633d7a0
GC
77static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
78 const char *name, size_t size)
77be4b13
SK
79{
80 return 0;
81}
20cea968
CL
82#endif
83
55007d84
GC
84#ifdef CONFIG_MEMCG_KMEM
85int memcg_update_all_caches(int num_memcgs)
86{
87 struct kmem_cache *s;
88 int ret = 0;
89 mutex_lock(&slab_mutex);
90
91 list_for_each_entry(s, &slab_caches, list) {
92 if (!is_root_cache(s))
93 continue;
94
95 ret = memcg_update_cache_size(s, num_memcgs);
96 /*
97 * See comment in memcontrol.c, memcg_update_cache_size:
98 * Instead of freeing the memory, we'll just leave the caches
99 * up to this point in an updated state.
100 */
101 if (ret)
102 goto out;
103 }
104
105 memcg_update_array_size(num_memcgs);
106out:
107 mutex_unlock(&slab_mutex);
108 return ret;
109}
110#endif
111
45906855
CL
112/*
113 * Figure out what the alignment of the objects will be given a set of
114 * flags, a user specified alignment and the size of the objects.
115 */
116unsigned long calculate_alignment(unsigned long flags,
117 unsigned long align, unsigned long size)
118{
119 /*
120 * If the user wants hardware cache aligned objects then follow that
121 * suggestion if the object is sufficiently large.
122 *
123 * The hardware cache alignment cannot override the specified
124 * alignment though. If that is greater then use it.
125 */
126 if (flags & SLAB_HWCACHE_ALIGN) {
127 unsigned long ralign = cache_line_size();
128 while (size <= ralign / 2)
129 ralign /= 2;
130 align = max(align, ralign);
131 }
132
133 if (align < ARCH_SLAB_MINALIGN)
134 align = ARCH_SLAB_MINALIGN;
135
136 return ALIGN(align, sizeof(void *));
137}
138
139
77be4b13
SK
140/*
141 * kmem_cache_create - Create a cache.
142 * @name: A string which is used in /proc/slabinfo to identify this cache.
143 * @size: The size of objects to be created in this cache.
144 * @align: The required alignment for the objects.
145 * @flags: SLAB flags
146 * @ctor: A constructor for the objects.
147 *
148 * Returns a ptr to the cache on success, NULL on failure.
149 * Cannot be called within a interrupt, but can be interrupted.
150 * The @ctor is run when new pages are allocated by the cache.
151 *
152 * The flags are
153 *
154 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
155 * to catch references to uninitialised memory.
156 *
157 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
158 * for buffer overruns.
159 *
160 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
161 * cacheline. This can be beneficial if you're counting cycles as closely
162 * as davem.
163 */
164
2633d7a0
GC
165struct kmem_cache *
166kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
943a451a
GC
167 size_t align, unsigned long flags, void (*ctor)(void *),
168 struct kmem_cache *parent_cache)
77be4b13
SK
169{
170 struct kmem_cache *s = NULL;
686d550d 171 int err = 0;
039363f3 172
77be4b13
SK
173 get_online_cpus();
174 mutex_lock(&slab_mutex);
686d550d 175
2633d7a0 176 if (!kmem_cache_sanity_check(memcg, name, size) == 0)
686d550d
CL
177 goto out_locked;
178
d8843922
GC
179 /*
180 * Some allocators will constraint the set of valid flags to a subset
181 * of all flags. We expect them to define CACHE_CREATE_MASK in this
182 * case, and we'll just provide them with a sanitized version of the
183 * passed flags.
184 */
185 flags &= CACHE_CREATE_MASK;
686d550d 186
2633d7a0 187 s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
cbb79694
CL
188 if (s)
189 goto out_locked;
190
278b1bb1 191 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
db265eca 192 if (s) {
8a13a4cc 193 s->object_size = s->size = size;
45906855 194 s->align = calculate_alignment(flags, align, size);
8a13a4cc 195 s->ctor = ctor;
2633d7a0 196
943a451a 197 if (memcg_register_cache(memcg, s, parent_cache)) {
2633d7a0
GC
198 kmem_cache_free(kmem_cache, s);
199 err = -ENOMEM;
200 goto out_locked;
201 }
202
8a13a4cc
CL
203 s->name = kstrdup(name, GFP_KERNEL);
204 if (!s->name) {
205 kmem_cache_free(kmem_cache, s);
206 err = -ENOMEM;
207 goto out_locked;
208 }
209
210 err = __kmem_cache_create(s, flags);
cce89f4f 211 if (!err) {
cce89f4f 212 s->refcount = 1;
db265eca 213 list_add(&s->list, &slab_caches);
2633d7a0 214 memcg_cache_list_add(memcg, s);
cce89f4f 215 } else {
8a13a4cc 216 kfree(s->name);
278b1bb1
CL
217 kmem_cache_free(kmem_cache, s);
218 }
8a13a4cc 219 } else
278b1bb1 220 err = -ENOMEM;
7c9adf5a 221
686d550d 222out_locked:
20cea968
CL
223 mutex_unlock(&slab_mutex);
224 put_online_cpus();
225
686d550d
CL
226 if (err) {
227
228 if (flags & SLAB_PANIC)
229 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
230 name, err);
231 else {
232 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
233 name, err);
234 dump_stack();
235 }
236
237 return NULL;
238 }
039363f3
CL
239
240 return s;
241}
2633d7a0
GC
242
243struct kmem_cache *
244kmem_cache_create(const char *name, size_t size, size_t align,
245 unsigned long flags, void (*ctor)(void *))
246{
943a451a 247 return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
2633d7a0 248}
039363f3 249EXPORT_SYMBOL(kmem_cache_create);
97d06609 250
945cf2b6
CL
251void kmem_cache_destroy(struct kmem_cache *s)
252{
7cf27982
GC
253 /* Destroy all the children caches if we aren't a memcg cache */
254 kmem_cache_destroy_memcg_children(s);
255
945cf2b6
CL
256 get_online_cpus();
257 mutex_lock(&slab_mutex);
258 s->refcount--;
259 if (!s->refcount) {
260 list_del(&s->list);
261
262 if (!__kmem_cache_shutdown(s)) {
210ed9de 263 mutex_unlock(&slab_mutex);
945cf2b6
CL
264 if (s->flags & SLAB_DESTROY_BY_RCU)
265 rcu_barrier();
266
2633d7a0 267 memcg_release_cache(s);
db265eca 268 kfree(s->name);
8f4c765c 269 kmem_cache_free(kmem_cache, s);
945cf2b6
CL
270 } else {
271 list_add(&s->list, &slab_caches);
210ed9de 272 mutex_unlock(&slab_mutex);
945cf2b6
CL
273 printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
274 s->name);
275 dump_stack();
276 }
210ed9de
JK
277 } else {
278 mutex_unlock(&slab_mutex);
945cf2b6 279 }
945cf2b6
CL
280 put_online_cpus();
281}
282EXPORT_SYMBOL(kmem_cache_destroy);
283
97d06609
CL
284int slab_is_available(void)
285{
286 return slab_state >= UP;
287}
b7454ad3 288
45530c44
CL
289#ifndef CONFIG_SLOB
290/* Create a cache during boot when no slab services are available yet */
291void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
292 unsigned long flags)
293{
294 int err;
295
296 s->name = name;
297 s->size = s->object_size = size;
45906855 298 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
45530c44
CL
299 err = __kmem_cache_create(s, flags);
300
301 if (err)
31ba7346 302 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
303 name, size, err);
304
305 s->refcount = -1; /* Exempt from merging for now */
306}
307
308struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
309 unsigned long flags)
310{
311 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
312
313 if (!s)
314 panic("Out of memory when creating slab %s\n", name);
315
316 create_boot_cache(s, name, size, flags);
317 list_add(&s->list, &slab_caches);
318 s->refcount = 1;
319 return s;
320}
321
9425c58e
CL
322struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
323EXPORT_SYMBOL(kmalloc_caches);
324
325#ifdef CONFIG_ZONE_DMA
326struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
327EXPORT_SYMBOL(kmalloc_dma_caches);
328#endif
329
2c59dd65
CL
330/*
331 * Conversion table for small slabs sizes / 8 to the index in the
332 * kmalloc array. This is necessary for slabs < 192 since we have non power
333 * of two cache sizes there. The size of larger slabs can be determined using
334 * fls.
335 */
336static s8 size_index[24] = {
337 3, /* 8 */
338 4, /* 16 */
339 5, /* 24 */
340 5, /* 32 */
341 6, /* 40 */
342 6, /* 48 */
343 6, /* 56 */
344 6, /* 64 */
345 1, /* 72 */
346 1, /* 80 */
347 1, /* 88 */
348 1, /* 96 */
349 7, /* 104 */
350 7, /* 112 */
351 7, /* 120 */
352 7, /* 128 */
353 2, /* 136 */
354 2, /* 144 */
355 2, /* 152 */
356 2, /* 160 */
357 2, /* 168 */
358 2, /* 176 */
359 2, /* 184 */
360 2 /* 192 */
361};
362
363static inline int size_index_elem(size_t bytes)
364{
365 return (bytes - 1) / 8;
366}
367
368/*
369 * Find the kmem_cache structure that serves a given size of
370 * allocation
371 */
372struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
373{
374 int index;
375
376 if (size <= 192) {
377 if (!size)
378 return ZERO_SIZE_PTR;
379
380 index = size_index[size_index_elem(size)];
381 } else
382 index = fls(size - 1);
383
384#ifdef CONFIG_ZONE_DMA
b1e05416 385 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
386 return kmalloc_dma_caches[index];
387
388#endif
389 return kmalloc_caches[index];
390}
391
f97d5f63
CL
392/*
393 * Create the kmalloc array. Some of the regular kmalloc arrays
394 * may already have been created because they were needed to
395 * enable allocations for slab creation.
396 */
397void __init create_kmalloc_caches(unsigned long flags)
398{
399 int i;
400
2c59dd65
CL
401 /*
402 * Patch up the size_index table if we have strange large alignment
403 * requirements for the kmalloc array. This is only the case for
404 * MIPS it seems. The standard arches will not generate any code here.
405 *
406 * Largest permitted alignment is 256 bytes due to the way we
407 * handle the index determination for the smaller caches.
408 *
409 * Make sure that nothing crazy happens if someone starts tinkering
410 * around with ARCH_KMALLOC_MINALIGN
411 */
412 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
413 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
414
415 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
416 int elem = size_index_elem(i);
417
418 if (elem >= ARRAY_SIZE(size_index))
419 break;
420 size_index[elem] = KMALLOC_SHIFT_LOW;
421 }
422
423 if (KMALLOC_MIN_SIZE >= 64) {
424 /*
425 * The 96 byte size cache is not used if the alignment
426 * is 64 byte.
427 */
428 for (i = 64 + 8; i <= 96; i += 8)
429 size_index[size_index_elem(i)] = 7;
430
431 }
432
433 if (KMALLOC_MIN_SIZE >= 128) {
434 /*
435 * The 192 byte sized cache is not used if the alignment
436 * is 128 byte. Redirect kmalloc to use the 256 byte cache
437 * instead.
438 */
439 for (i = 128 + 8; i <= 192; i += 8)
440 size_index[size_index_elem(i)] = 8;
441 }
f97d5f63
CL
442 /* Caches that are not of the two-to-the-power-of size */
443 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1])
444 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
445
446 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2])
447 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
448
449 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
450 if (!kmalloc_caches[i])
451 kmalloc_caches[i] = create_kmalloc_cache(NULL,
452 1 << i, flags);
453
454 /* Kmalloc array is now usable */
455 slab_state = UP;
456
457 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
458 struct kmem_cache *s = kmalloc_caches[i];
459 char *n;
460
461 if (s) {
462 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
463
464 BUG_ON(!n);
465 s->name = n;
466 }
467 }
468
469#ifdef CONFIG_ZONE_DMA
470 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
471 struct kmem_cache *s = kmalloc_caches[i];
472
473 if (s) {
474 int size = kmalloc_size(i);
475 char *n = kasprintf(GFP_NOWAIT,
476 "dma-kmalloc-%d", size);
477
478 BUG_ON(!n);
479 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
480 size, SLAB_CACHE_DMA | flags);
481 }
482 }
483#endif
484}
45530c44
CL
485#endif /* !CONFIG_SLOB */
486
487
b7454ad3 488#ifdef CONFIG_SLABINFO
749c5415 489void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
490{
491 /*
492 * Output format version, so at least we can change it
493 * without _too_ many complaints.
494 */
495#ifdef CONFIG_DEBUG_SLAB
496 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
497#else
498 seq_puts(m, "slabinfo - version: 2.1\n");
499#endif
500 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
501 "<objperslab> <pagesperslab>");
502 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
503 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
504#ifdef CONFIG_DEBUG_SLAB
505 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
506 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
507 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
508#endif
509 seq_putc(m, '\n');
510}
511
b7454ad3
GC
512static void *s_start(struct seq_file *m, loff_t *pos)
513{
514 loff_t n = *pos;
515
516 mutex_lock(&slab_mutex);
517 if (!n)
518 print_slabinfo_header(m);
519
520 return seq_list_start(&slab_caches, *pos);
521}
522
523static void *s_next(struct seq_file *m, void *p, loff_t *pos)
524{
525 return seq_list_next(p, &slab_caches, pos);
526}
527
528static void s_stop(struct seq_file *m, void *p)
529{
530 mutex_unlock(&slab_mutex);
531}
532
749c5415
GC
533static void
534memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
535{
536 struct kmem_cache *c;
537 struct slabinfo sinfo;
538 int i;
539
540 if (!is_root_cache(s))
541 return;
542
543 for_each_memcg_cache_index(i) {
544 c = cache_from_memcg(s, i);
545 if (!c)
546 continue;
547
548 memset(&sinfo, 0, sizeof(sinfo));
549 get_slabinfo(c, &sinfo);
550
551 info->active_slabs += sinfo.active_slabs;
552 info->num_slabs += sinfo.num_slabs;
553 info->shared_avail += sinfo.shared_avail;
554 info->active_objs += sinfo.active_objs;
555 info->num_objs += sinfo.num_objs;
556 }
557}
558
559int cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 560{
0d7561c6
GC
561 struct slabinfo sinfo;
562
563 memset(&sinfo, 0, sizeof(sinfo));
564 get_slabinfo(s, &sinfo);
565
749c5415
GC
566 memcg_accumulate_slabinfo(s, &sinfo);
567
0d7561c6 568 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 569 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
570 sinfo.objects_per_slab, (1 << sinfo.cache_order));
571
572 seq_printf(m, " : tunables %4u %4u %4u",
573 sinfo.limit, sinfo.batchcount, sinfo.shared);
574 seq_printf(m, " : slabdata %6lu %6lu %6lu",
575 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
576 slabinfo_show_stats(m, s);
577 seq_putc(m, '\n');
578 return 0;
b7454ad3
GC
579}
580
749c5415
GC
581static int s_show(struct seq_file *m, void *p)
582{
583 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
584
585 if (!is_root_cache(s))
586 return 0;
587 return cache_show(s, m);
588}
589
b7454ad3
GC
590/*
591 * slabinfo_op - iterator that generates /proc/slabinfo
592 *
593 * Output layout:
594 * cache-name
595 * num-active-objs
596 * total-objs
597 * object size
598 * num-active-slabs
599 * total-slabs
600 * num-pages-per-slab
601 * + further values on SMP and with statistics enabled
602 */
603static const struct seq_operations slabinfo_op = {
604 .start = s_start,
605 .next = s_next,
606 .stop = s_stop,
607 .show = s_show,
608};
609
610static int slabinfo_open(struct inode *inode, struct file *file)
611{
612 return seq_open(file, &slabinfo_op);
613}
614
615static const struct file_operations proc_slabinfo_operations = {
616 .open = slabinfo_open,
617 .read = seq_read,
618 .write = slabinfo_write,
619 .llseek = seq_lseek,
620 .release = seq_release,
621};
622
623static int __init slab_proc_init(void)
624{
625 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
626 return 0;
627}
628module_init(slab_proc_init);
629#endif /* CONFIG_SLABINFO */