Fix nasty ncpfs symlink handling bug.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
0edd73b3
HD
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/config.h>
27#include <linux/module.h>
28#include <linux/init.h>
29#include <linux/devfs_fs_kernel.h>
30#include <linux/fs.h>
31#include <linux/mm.h>
32#include <linux/mman.h>
33#include <linux/file.h>
34#include <linux/swap.h>
35#include <linux/pagemap.h>
36#include <linux/string.h>
37#include <linux/slab.h>
38#include <linux/backing-dev.h>
39#include <linux/shmem_fs.h>
40#include <linux/mount.h>
41#include <linux/writeback.h>
42#include <linux/vfs.h>
43#include <linux/blkdev.h>
44#include <linux/security.h>
45#include <linux/swapops.h>
46#include <linux/mempolicy.h>
47#include <linux/namei.h>
48#include <linux/xattr.h>
49#include <asm/uaccess.h>
50#include <asm/div64.h>
51#include <asm/pgtable.h>
52
53/* This magic number is used in glibc for posix shared memory */
54#define TMPFS_MAGIC 0x01021994
55
56#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
57#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
58#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
59
60#define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
61#define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
62
63#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
64
65/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
66#define SHMEM_PAGEIN VM_READ
67#define SHMEM_TRUNCATE VM_WRITE
68
69/* Definition to limit shmem_truncate's steps between cond_rescheds */
70#define LATENCY_LIMIT 64
71
72/* Pretend that each entry is of this size in directory's i_size */
73#define BOGO_DIRENT_SIZE 20
74
75/* Keep swapped page count in private field of indirect struct page */
76#define nr_swapped private
77
78/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
79enum sgp_type {
80 SGP_QUICK, /* don't try more than file page cache lookup */
81 SGP_READ, /* don't exceed i_size, don't allocate page */
82 SGP_CACHE, /* don't exceed i_size, may allocate page */
83 SGP_WRITE, /* may exceed i_size, may allocate page */
84};
85
86static int shmem_getpage(struct inode *inode, unsigned long idx,
87 struct page **pagep, enum sgp_type sgp, int *type);
88
89static inline struct page *shmem_dir_alloc(unsigned int gfp_mask)
90{
91 /*
92 * The above definition of ENTRIES_PER_PAGE, and the use of
93 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
94 * might be reconsidered if it ever diverges from PAGE_SIZE.
95 */
96 return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
97}
98
99static inline void shmem_dir_free(struct page *page)
100{
101 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
102}
103
104static struct page **shmem_dir_map(struct page *page)
105{
106 return (struct page **)kmap_atomic(page, KM_USER0);
107}
108
109static inline void shmem_dir_unmap(struct page **dir)
110{
111 kunmap_atomic(dir, KM_USER0);
112}
113
114static swp_entry_t *shmem_swp_map(struct page *page)
115{
116 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
117}
118
119static inline void shmem_swp_balance_unmap(void)
120{
121 /*
122 * When passing a pointer to an i_direct entry, to code which
123 * also handles indirect entries and so will shmem_swp_unmap,
124 * we must arrange for the preempt count to remain in balance.
125 * What kmap_atomic of a lowmem page does depends on config
126 * and architecture, so pretend to kmap_atomic some lowmem page.
127 */
128 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
129}
130
131static inline void shmem_swp_unmap(swp_entry_t *entry)
132{
133 kunmap_atomic(entry, KM_USER1);
134}
135
136static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137{
138 return sb->s_fs_info;
139}
140
141/*
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
146 */
147static inline int shmem_acct_size(unsigned long flags, loff_t size)
148{
149 return (flags & VM_ACCOUNT)?
150 security_vm_enough_memory(VM_ACCT(size)): 0;
151}
152
153static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154{
155 if (flags & VM_ACCOUNT)
156 vm_unacct_memory(VM_ACCT(size));
157}
158
159/*
160 * ... whereas tmpfs objects are accounted incrementally as
161 * pages are allocated, in order to allow huge sparse files.
162 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
163 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
164 */
165static inline int shmem_acct_block(unsigned long flags)
166{
167 return (flags & VM_ACCOUNT)?
168 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
169}
170
171static inline void shmem_unacct_blocks(unsigned long flags, long pages)
172{
173 if (!(flags & VM_ACCOUNT))
174 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
175}
176
177static struct super_operations shmem_ops;
178static struct address_space_operations shmem_aops;
179static struct file_operations shmem_file_operations;
180static struct inode_operations shmem_inode_operations;
181static struct inode_operations shmem_dir_inode_operations;
182static struct inode_operations shmem_special_inode_operations;
183static struct vm_operations_struct shmem_vm_ops;
184
185static struct backing_dev_info shmem_backing_dev_info = {
186 .ra_pages = 0, /* No readahead */
187 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
188 .unplug_io_fn = default_unplug_io_fn,
189};
190
191static LIST_HEAD(shmem_swaplist);
192static DEFINE_SPINLOCK(shmem_swaplist_lock);
193
194static void shmem_free_blocks(struct inode *inode, long pages)
195{
196 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
0edd73b3 197 if (sbinfo->max_blocks) {
1da177e4
LT
198 spin_lock(&sbinfo->stat_lock);
199 sbinfo->free_blocks += pages;
200 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
201 spin_unlock(&sbinfo->stat_lock);
202 }
203}
204
205/*
206 * shmem_recalc_inode - recalculate the size of an inode
207 *
208 * @inode: inode to recalc
209 *
210 * We have to calculate the free blocks since the mm can drop
211 * undirtied hole pages behind our back.
212 *
213 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
214 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
215 *
216 * It has to be called with the spinlock held.
217 */
218static void shmem_recalc_inode(struct inode *inode)
219{
220 struct shmem_inode_info *info = SHMEM_I(inode);
221 long freed;
222
223 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
224 if (freed > 0) {
225 info->alloced -= freed;
226 shmem_unacct_blocks(info->flags, freed);
227 shmem_free_blocks(inode, freed);
228 }
229}
230
231/*
232 * shmem_swp_entry - find the swap vector position in the info structure
233 *
234 * @info: info structure for the inode
235 * @index: index of the page to find
236 * @page: optional page to add to the structure. Has to be preset to
237 * all zeros
238 *
239 * If there is no space allocated yet it will return NULL when
240 * page is NULL, else it will use the page for the needed block,
241 * setting it to NULL on return to indicate that it has been used.
242 *
243 * The swap vector is organized the following way:
244 *
245 * There are SHMEM_NR_DIRECT entries directly stored in the
246 * shmem_inode_info structure. So small files do not need an addional
247 * allocation.
248 *
249 * For pages with index > SHMEM_NR_DIRECT there is the pointer
250 * i_indirect which points to a page which holds in the first half
251 * doubly indirect blocks, in the second half triple indirect blocks:
252 *
253 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
254 * following layout (for SHMEM_NR_DIRECT == 16):
255 *
256 * i_indirect -> dir --> 16-19
257 * | +-> 20-23
258 * |
259 * +-->dir2 --> 24-27
260 * | +-> 28-31
261 * | +-> 32-35
262 * | +-> 36-39
263 * |
264 * +-->dir3 --> 40-43
265 * +-> 44-47
266 * +-> 48-51
267 * +-> 52-55
268 */
269static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
270{
271 unsigned long offset;
272 struct page **dir;
273 struct page *subdir;
274
275 if (index < SHMEM_NR_DIRECT) {
276 shmem_swp_balance_unmap();
277 return info->i_direct+index;
278 }
279 if (!info->i_indirect) {
280 if (page) {
281 info->i_indirect = *page;
282 *page = NULL;
283 }
284 return NULL; /* need another page */
285 }
286
287 index -= SHMEM_NR_DIRECT;
288 offset = index % ENTRIES_PER_PAGE;
289 index /= ENTRIES_PER_PAGE;
290 dir = shmem_dir_map(info->i_indirect);
291
292 if (index >= ENTRIES_PER_PAGE/2) {
293 index -= ENTRIES_PER_PAGE/2;
294 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
295 index %= ENTRIES_PER_PAGE;
296 subdir = *dir;
297 if (!subdir) {
298 if (page) {
299 *dir = *page;
300 *page = NULL;
301 }
302 shmem_dir_unmap(dir);
303 return NULL; /* need another page */
304 }
305 shmem_dir_unmap(dir);
306 dir = shmem_dir_map(subdir);
307 }
308
309 dir += index;
310 subdir = *dir;
311 if (!subdir) {
312 if (!page || !(subdir = *page)) {
313 shmem_dir_unmap(dir);
314 return NULL; /* need a page */
315 }
316 *dir = subdir;
317 *page = NULL;
318 }
319 shmem_dir_unmap(dir);
320 return shmem_swp_map(subdir) + offset;
321}
322
323static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
324{
325 long incdec = value? 1: -1;
326
327 entry->val = value;
328 info->swapped += incdec;
329 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT)
330 kmap_atomic_to_page(entry)->nr_swapped += incdec;
331}
332
333/*
334 * shmem_swp_alloc - get the position of the swap entry for the page.
335 * If it does not exist allocate the entry.
336 *
337 * @info: info structure for the inode
338 * @index: index of the page to find
339 * @sgp: check and recheck i_size? skip allocation?
340 */
341static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
342{
343 struct inode *inode = &info->vfs_inode;
344 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
345 struct page *page = NULL;
346 swp_entry_t *entry;
347
348 if (sgp != SGP_WRITE &&
349 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
350 return ERR_PTR(-EINVAL);
351
352 while (!(entry = shmem_swp_entry(info, index, &page))) {
353 if (sgp == SGP_READ)
354 return shmem_swp_map(ZERO_PAGE(0));
355 /*
356 * Test free_blocks against 1 not 0, since we have 1 data
357 * page (and perhaps indirect index pages) yet to allocate:
358 * a waste to allocate index if we cannot allocate data.
359 */
0edd73b3 360 if (sbinfo->max_blocks) {
1da177e4
LT
361 spin_lock(&sbinfo->stat_lock);
362 if (sbinfo->free_blocks <= 1) {
363 spin_unlock(&sbinfo->stat_lock);
364 return ERR_PTR(-ENOSPC);
365 }
366 sbinfo->free_blocks--;
367 inode->i_blocks += BLOCKS_PER_PAGE;
368 spin_unlock(&sbinfo->stat_lock);
369 }
370
371 spin_unlock(&info->lock);
372 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
373 if (page) {
374 page->nr_swapped = 0;
375 }
376 spin_lock(&info->lock);
377
378 if (!page) {
379 shmem_free_blocks(inode, 1);
380 return ERR_PTR(-ENOMEM);
381 }
382 if (sgp != SGP_WRITE &&
383 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
384 entry = ERR_PTR(-EINVAL);
385 break;
386 }
387 if (info->next_index <= index)
388 info->next_index = index + 1;
389 }
390 if (page) {
391 /* another task gave its page, or truncated the file */
392 shmem_free_blocks(inode, 1);
393 shmem_dir_free(page);
394 }
395 if (info->next_index <= index && !IS_ERR(entry))
396 info->next_index = index + 1;
397 return entry;
398}
399
400/*
401 * shmem_free_swp - free some swap entries in a directory
402 *
403 * @dir: pointer to the directory
404 * @edir: pointer after last entry of the directory
405 */
406static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
407{
408 swp_entry_t *ptr;
409 int freed = 0;
410
411 for (ptr = dir; ptr < edir; ptr++) {
412 if (ptr->val) {
413 free_swap_and_cache(*ptr);
414 *ptr = (swp_entry_t){0};
415 freed++;
416 }
417 }
418 return freed;
419}
420
421static int shmem_map_and_free_swp(struct page *subdir,
422 int offset, int limit, struct page ***dir)
423{
424 swp_entry_t *ptr;
425 int freed = 0;
426
427 ptr = shmem_swp_map(subdir);
428 for (; offset < limit; offset += LATENCY_LIMIT) {
429 int size = limit - offset;
430 if (size > LATENCY_LIMIT)
431 size = LATENCY_LIMIT;
432 freed += shmem_free_swp(ptr+offset, ptr+offset+size);
433 if (need_resched()) {
434 shmem_swp_unmap(ptr);
435 if (*dir) {
436 shmem_dir_unmap(*dir);
437 *dir = NULL;
438 }
439 cond_resched();
440 ptr = shmem_swp_map(subdir);
441 }
442 }
443 shmem_swp_unmap(ptr);
444 return freed;
445}
446
447static void shmem_free_pages(struct list_head *next)
448{
449 struct page *page;
450 int freed = 0;
451
452 do {
453 page = container_of(next, struct page, lru);
454 next = next->next;
455 shmem_dir_free(page);
456 freed++;
457 if (freed >= LATENCY_LIMIT) {
458 cond_resched();
459 freed = 0;
460 }
461 } while (next);
462}
463
464static void shmem_truncate(struct inode *inode)
465{
466 struct shmem_inode_info *info = SHMEM_I(inode);
467 unsigned long idx;
468 unsigned long size;
469 unsigned long limit;
470 unsigned long stage;
471 unsigned long diroff;
472 struct page **dir;
473 struct page *topdir;
474 struct page *middir;
475 struct page *subdir;
476 swp_entry_t *ptr;
477 LIST_HEAD(pages_to_free);
478 long nr_pages_to_free = 0;
479 long nr_swaps_freed = 0;
480 int offset;
481 int freed;
482
483 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
484 idx = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
485 if (idx >= info->next_index)
486 return;
487
488 spin_lock(&info->lock);
489 info->flags |= SHMEM_TRUNCATE;
490 limit = info->next_index;
491 info->next_index = idx;
492 topdir = info->i_indirect;
493 if (topdir && idx <= SHMEM_NR_DIRECT) {
494 info->i_indirect = NULL;
495 nr_pages_to_free++;
496 list_add(&topdir->lru, &pages_to_free);
497 }
498 spin_unlock(&info->lock);
499
500 if (info->swapped && idx < SHMEM_NR_DIRECT) {
501 ptr = info->i_direct;
502 size = limit;
503 if (size > SHMEM_NR_DIRECT)
504 size = SHMEM_NR_DIRECT;
505 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
506 }
507 if (!topdir)
508 goto done2;
509
510 BUG_ON(limit <= SHMEM_NR_DIRECT);
511 limit -= SHMEM_NR_DIRECT;
512 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
513 offset = idx % ENTRIES_PER_PAGE;
514 idx -= offset;
515
516 dir = shmem_dir_map(topdir);
517 stage = ENTRIES_PER_PAGEPAGE/2;
518 if (idx < ENTRIES_PER_PAGEPAGE/2) {
519 middir = topdir;
520 diroff = idx/ENTRIES_PER_PAGE;
521 } else {
522 dir += ENTRIES_PER_PAGE/2;
523 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
524 while (stage <= idx)
525 stage += ENTRIES_PER_PAGEPAGE;
526 middir = *dir;
527 if (*dir) {
528 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
529 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
530 if (!diroff && !offset) {
531 *dir = NULL;
532 nr_pages_to_free++;
533 list_add(&middir->lru, &pages_to_free);
534 }
535 shmem_dir_unmap(dir);
536 dir = shmem_dir_map(middir);
537 } else {
538 diroff = 0;
539 offset = 0;
540 idx = stage;
541 }
542 }
543
544 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
545 if (unlikely(idx == stage)) {
546 shmem_dir_unmap(dir);
547 dir = shmem_dir_map(topdir) +
548 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
549 while (!*dir) {
550 dir++;
551 idx += ENTRIES_PER_PAGEPAGE;
552 if (idx >= limit)
553 goto done1;
554 }
555 stage = idx + ENTRIES_PER_PAGEPAGE;
556 middir = *dir;
557 *dir = NULL;
558 nr_pages_to_free++;
559 list_add(&middir->lru, &pages_to_free);
560 shmem_dir_unmap(dir);
561 cond_resched();
562 dir = shmem_dir_map(middir);
563 diroff = 0;
564 }
565 subdir = dir[diroff];
566 if (subdir && subdir->nr_swapped) {
567 size = limit - idx;
568 if (size > ENTRIES_PER_PAGE)
569 size = ENTRIES_PER_PAGE;
570 freed = shmem_map_and_free_swp(subdir,
571 offset, size, &dir);
572 if (!dir)
573 dir = shmem_dir_map(middir);
574 nr_swaps_freed += freed;
575 if (offset)
576 spin_lock(&info->lock);
577 subdir->nr_swapped -= freed;
578 if (offset)
579 spin_unlock(&info->lock);
580 BUG_ON(subdir->nr_swapped > offset);
581 }
582 if (offset)
583 offset = 0;
584 else if (subdir) {
585 dir[diroff] = NULL;
586 nr_pages_to_free++;
587 list_add(&subdir->lru, &pages_to_free);
588 }
589 }
590done1:
591 shmem_dir_unmap(dir);
592done2:
593 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
594 /*
595 * Call truncate_inode_pages again: racing shmem_unuse_inode
596 * may have swizzled a page in from swap since vmtruncate or
597 * generic_delete_inode did it, before we lowered next_index.
598 * Also, though shmem_getpage checks i_size before adding to
599 * cache, no recheck after: so fix the narrow window there too.
600 */
601 truncate_inode_pages(inode->i_mapping, inode->i_size);
602 }
603
604 spin_lock(&info->lock);
605 info->flags &= ~SHMEM_TRUNCATE;
606 info->swapped -= nr_swaps_freed;
607 if (nr_pages_to_free)
608 shmem_free_blocks(inode, nr_pages_to_free);
609 shmem_recalc_inode(inode);
610 spin_unlock(&info->lock);
611
612 /*
613 * Empty swap vector directory pages to be freed?
614 */
615 if (!list_empty(&pages_to_free)) {
616 pages_to_free.prev->next = NULL;
617 shmem_free_pages(pages_to_free.next);
618 }
619}
620
621static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
622{
623 struct inode *inode = dentry->d_inode;
624 struct page *page = NULL;
625 int error;
626
627 if (attr->ia_valid & ATTR_SIZE) {
628 if (attr->ia_size < inode->i_size) {
629 /*
630 * If truncating down to a partial page, then
631 * if that page is already allocated, hold it
632 * in memory until the truncation is over, so
633 * truncate_partial_page cannnot miss it were
634 * it assigned to swap.
635 */
636 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
637 (void) shmem_getpage(inode,
638 attr->ia_size>>PAGE_CACHE_SHIFT,
639 &page, SGP_READ, NULL);
640 }
641 /*
642 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
643 * detect if any pages might have been added to cache
644 * after truncate_inode_pages. But we needn't bother
645 * if it's being fully truncated to zero-length: the
646 * nrpages check is efficient enough in that case.
647 */
648 if (attr->ia_size) {
649 struct shmem_inode_info *info = SHMEM_I(inode);
650 spin_lock(&info->lock);
651 info->flags &= ~SHMEM_PAGEIN;
652 spin_unlock(&info->lock);
653 }
654 }
655 }
656
657 error = inode_change_ok(inode, attr);
658 if (!error)
659 error = inode_setattr(inode, attr);
660 if (page)
661 page_cache_release(page);
662 return error;
663}
664
665static void shmem_delete_inode(struct inode *inode)
666{
667 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
668 struct shmem_inode_info *info = SHMEM_I(inode);
669
670 if (inode->i_op->truncate == shmem_truncate) {
671 shmem_unacct_size(info->flags, inode->i_size);
672 inode->i_size = 0;
673 shmem_truncate(inode);
674 if (!list_empty(&info->swaplist)) {
675 spin_lock(&shmem_swaplist_lock);
676 list_del_init(&info->swaplist);
677 spin_unlock(&shmem_swaplist_lock);
678 }
679 }
0edd73b3
HD
680 BUG_ON(inode->i_blocks);
681 if (sbinfo->max_inodes) {
1da177e4
LT
682 spin_lock(&sbinfo->stat_lock);
683 sbinfo->free_inodes++;
684 spin_unlock(&sbinfo->stat_lock);
685 }
686 clear_inode(inode);
687}
688
689static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
690{
691 swp_entry_t *ptr;
692
693 for (ptr = dir; ptr < edir; ptr++) {
694 if (ptr->val == entry.val)
695 return ptr - dir;
696 }
697 return -1;
698}
699
700static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
701{
702 struct inode *inode;
703 unsigned long idx;
704 unsigned long size;
705 unsigned long limit;
706 unsigned long stage;
707 struct page **dir;
708 struct page *subdir;
709 swp_entry_t *ptr;
710 int offset;
711
712 idx = 0;
713 ptr = info->i_direct;
714 spin_lock(&info->lock);
715 limit = info->next_index;
716 size = limit;
717 if (size > SHMEM_NR_DIRECT)
718 size = SHMEM_NR_DIRECT;
719 offset = shmem_find_swp(entry, ptr, ptr+size);
720 if (offset >= 0) {
721 shmem_swp_balance_unmap();
722 goto found;
723 }
724 if (!info->i_indirect)
725 goto lost2;
726
727 dir = shmem_dir_map(info->i_indirect);
728 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
729
730 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
731 if (unlikely(idx == stage)) {
732 shmem_dir_unmap(dir-1);
733 dir = shmem_dir_map(info->i_indirect) +
734 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
735 while (!*dir) {
736 dir++;
737 idx += ENTRIES_PER_PAGEPAGE;
738 if (idx >= limit)
739 goto lost1;
740 }
741 stage = idx + ENTRIES_PER_PAGEPAGE;
742 subdir = *dir;
743 shmem_dir_unmap(dir);
744 dir = shmem_dir_map(subdir);
745 }
746 subdir = *dir;
747 if (subdir && subdir->nr_swapped) {
748 ptr = shmem_swp_map(subdir);
749 size = limit - idx;
750 if (size > ENTRIES_PER_PAGE)
751 size = ENTRIES_PER_PAGE;
752 offset = shmem_find_swp(entry, ptr, ptr+size);
753 if (offset >= 0) {
754 shmem_dir_unmap(dir);
755 goto found;
756 }
757 shmem_swp_unmap(ptr);
758 }
759 }
760lost1:
761 shmem_dir_unmap(dir-1);
762lost2:
763 spin_unlock(&info->lock);
764 return 0;
765found:
766 idx += offset;
767 inode = &info->vfs_inode;
768 if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
769 info->flags |= SHMEM_PAGEIN;
770 shmem_swp_set(info, ptr + offset, 0);
771 }
772 shmem_swp_unmap(ptr);
773 spin_unlock(&info->lock);
774 /*
775 * Decrement swap count even when the entry is left behind:
776 * try_to_unuse will skip over mms, then reincrement count.
777 */
778 swap_free(entry);
779 return 1;
780}
781
782/*
783 * shmem_unuse() search for an eventually swapped out shmem page.
784 */
785int shmem_unuse(swp_entry_t entry, struct page *page)
786{
787 struct list_head *p, *next;
788 struct shmem_inode_info *info;
789 int found = 0;
790
791 spin_lock(&shmem_swaplist_lock);
792 list_for_each_safe(p, next, &shmem_swaplist) {
793 info = list_entry(p, struct shmem_inode_info, swaplist);
794 if (!info->swapped)
795 list_del_init(&info->swaplist);
796 else if (shmem_unuse_inode(info, entry, page)) {
797 /* move head to start search for next from here */
798 list_move_tail(&shmem_swaplist, &info->swaplist);
799 found = 1;
800 break;
801 }
802 }
803 spin_unlock(&shmem_swaplist_lock);
804 return found;
805}
806
807/*
808 * Move the page from the page cache to the swap cache.
809 */
810static int shmem_writepage(struct page *page, struct writeback_control *wbc)
811{
812 struct shmem_inode_info *info;
813 swp_entry_t *entry, swap;
814 struct address_space *mapping;
815 unsigned long index;
816 struct inode *inode;
817
818 BUG_ON(!PageLocked(page));
819 BUG_ON(page_mapped(page));
820
821 mapping = page->mapping;
822 index = page->index;
823 inode = mapping->host;
824 info = SHMEM_I(inode);
825 if (info->flags & VM_LOCKED)
826 goto redirty;
827 swap = get_swap_page();
828 if (!swap.val)
829 goto redirty;
830
831 spin_lock(&info->lock);
832 shmem_recalc_inode(inode);
833 if (index >= info->next_index) {
834 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
835 goto unlock;
836 }
837 entry = shmem_swp_entry(info, index, NULL);
838 BUG_ON(!entry);
839 BUG_ON(entry->val);
840
841 if (move_to_swap_cache(page, swap) == 0) {
842 shmem_swp_set(info, entry, swap.val);
843 shmem_swp_unmap(entry);
844 spin_unlock(&info->lock);
845 if (list_empty(&info->swaplist)) {
846 spin_lock(&shmem_swaplist_lock);
847 /* move instead of add in case we're racing */
848 list_move_tail(&info->swaplist, &shmem_swaplist);
849 spin_unlock(&shmem_swaplist_lock);
850 }
851 unlock_page(page);
852 return 0;
853 }
854
855 shmem_swp_unmap(entry);
856unlock:
857 spin_unlock(&info->lock);
858 swap_free(swap);
859redirty:
860 set_page_dirty(page);
861 return WRITEPAGE_ACTIVATE; /* Return with the page locked */
862}
863
864#ifdef CONFIG_NUMA
865static struct page *shmem_swapin_async(struct shared_policy *p,
866 swp_entry_t entry, unsigned long idx)
867{
868 struct page *page;
869 struct vm_area_struct pvma;
870
871 /* Create a pseudo vma that just contains the policy */
872 memset(&pvma, 0, sizeof(struct vm_area_struct));
873 pvma.vm_end = PAGE_SIZE;
874 pvma.vm_pgoff = idx;
875 pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
876 page = read_swap_cache_async(entry, &pvma, 0);
877 mpol_free(pvma.vm_policy);
878 return page;
879}
880
881struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
882 unsigned long idx)
883{
884 struct shared_policy *p = &info->policy;
885 int i, num;
886 struct page *page;
887 unsigned long offset;
888
889 num = valid_swaphandles(entry, &offset);
890 for (i = 0; i < num; offset++, i++) {
891 page = shmem_swapin_async(p,
892 swp_entry(swp_type(entry), offset), idx);
893 if (!page)
894 break;
895 page_cache_release(page);
896 }
897 lru_add_drain(); /* Push any new pages onto the LRU now */
898 return shmem_swapin_async(p, entry, idx);
899}
900
901static struct page *
902shmem_alloc_page(unsigned long gfp, struct shmem_inode_info *info,
903 unsigned long idx)
904{
905 struct vm_area_struct pvma;
906 struct page *page;
907
908 memset(&pvma, 0, sizeof(struct vm_area_struct));
909 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
910 pvma.vm_pgoff = idx;
911 pvma.vm_end = PAGE_SIZE;
912 page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
913 mpol_free(pvma.vm_policy);
914 return page;
915}
916#else
917static inline struct page *
918shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
919{
920 swapin_readahead(entry, 0, NULL);
921 return read_swap_cache_async(entry, NULL, 0);
922}
923
924static inline struct page *
925shmem_alloc_page(unsigned int __nocast gfp,struct shmem_inode_info *info,
926 unsigned long idx)
927{
928 return alloc_page(gfp | __GFP_ZERO);
929}
930#endif
931
932/*
933 * shmem_getpage - either get the page from swap or allocate a new one
934 *
935 * If we allocate a new one we do not mark it dirty. That's up to the
936 * vm. If we swap it in we mark it dirty since we also free the swap
937 * entry since a page cannot live in both the swap and page cache
938 */
939static int shmem_getpage(struct inode *inode, unsigned long idx,
940 struct page **pagep, enum sgp_type sgp, int *type)
941{
942 struct address_space *mapping = inode->i_mapping;
943 struct shmem_inode_info *info = SHMEM_I(inode);
944 struct shmem_sb_info *sbinfo;
945 struct page *filepage = *pagep;
946 struct page *swappage;
947 swp_entry_t *entry;
948 swp_entry_t swap;
949 int error;
950
951 if (idx >= SHMEM_MAX_INDEX)
952 return -EFBIG;
953 /*
954 * Normally, filepage is NULL on entry, and either found
955 * uptodate immediately, or allocated and zeroed, or read
956 * in under swappage, which is then assigned to filepage.
957 * But shmem_prepare_write passes in a locked filepage,
958 * which may be found not uptodate by other callers too,
959 * and may need to be copied from the swappage read in.
960 */
961repeat:
962 if (!filepage)
963 filepage = find_lock_page(mapping, idx);
964 if (filepage && PageUptodate(filepage))
965 goto done;
966 error = 0;
967 if (sgp == SGP_QUICK)
968 goto failed;
969
970 spin_lock(&info->lock);
971 shmem_recalc_inode(inode);
972 entry = shmem_swp_alloc(info, idx, sgp);
973 if (IS_ERR(entry)) {
974 spin_unlock(&info->lock);
975 error = PTR_ERR(entry);
976 goto failed;
977 }
978 swap = *entry;
979
980 if (swap.val) {
981 /* Look it up and read it in.. */
982 swappage = lookup_swap_cache(swap);
983 if (!swappage) {
984 shmem_swp_unmap(entry);
985 spin_unlock(&info->lock);
986 /* here we actually do the io */
987 if (type && *type == VM_FAULT_MINOR) {
988 inc_page_state(pgmajfault);
989 *type = VM_FAULT_MAJOR;
990 }
991 swappage = shmem_swapin(info, swap, idx);
992 if (!swappage) {
993 spin_lock(&info->lock);
994 entry = shmem_swp_alloc(info, idx, sgp);
995 if (IS_ERR(entry))
996 error = PTR_ERR(entry);
997 else {
998 if (entry->val == swap.val)
999 error = -ENOMEM;
1000 shmem_swp_unmap(entry);
1001 }
1002 spin_unlock(&info->lock);
1003 if (error)
1004 goto failed;
1005 goto repeat;
1006 }
1007 wait_on_page_locked(swappage);
1008 page_cache_release(swappage);
1009 goto repeat;
1010 }
1011
1012 /* We have to do this with page locked to prevent races */
1013 if (TestSetPageLocked(swappage)) {
1014 shmem_swp_unmap(entry);
1015 spin_unlock(&info->lock);
1016 wait_on_page_locked(swappage);
1017 page_cache_release(swappage);
1018 goto repeat;
1019 }
1020 if (PageWriteback(swappage)) {
1021 shmem_swp_unmap(entry);
1022 spin_unlock(&info->lock);
1023 wait_on_page_writeback(swappage);
1024 unlock_page(swappage);
1025 page_cache_release(swappage);
1026 goto repeat;
1027 }
1028 if (!PageUptodate(swappage)) {
1029 shmem_swp_unmap(entry);
1030 spin_unlock(&info->lock);
1031 unlock_page(swappage);
1032 page_cache_release(swappage);
1033 error = -EIO;
1034 goto failed;
1035 }
1036
1037 if (filepage) {
1038 shmem_swp_set(info, entry, 0);
1039 shmem_swp_unmap(entry);
1040 delete_from_swap_cache(swappage);
1041 spin_unlock(&info->lock);
1042 copy_highpage(filepage, swappage);
1043 unlock_page(swappage);
1044 page_cache_release(swappage);
1045 flush_dcache_page(filepage);
1046 SetPageUptodate(filepage);
1047 set_page_dirty(filepage);
1048 swap_free(swap);
1049 } else if (!(error = move_from_swap_cache(
1050 swappage, idx, mapping))) {
1051 info->flags |= SHMEM_PAGEIN;
1052 shmem_swp_set(info, entry, 0);
1053 shmem_swp_unmap(entry);
1054 spin_unlock(&info->lock);
1055 filepage = swappage;
1056 swap_free(swap);
1057 } else {
1058 shmem_swp_unmap(entry);
1059 spin_unlock(&info->lock);
1060 unlock_page(swappage);
1061 page_cache_release(swappage);
1062 if (error == -ENOMEM) {
1063 /* let kswapd refresh zone for GFP_ATOMICs */
1064 blk_congestion_wait(WRITE, HZ/50);
1065 }
1066 goto repeat;
1067 }
1068 } else if (sgp == SGP_READ && !filepage) {
1069 shmem_swp_unmap(entry);
1070 filepage = find_get_page(mapping, idx);
1071 if (filepage &&
1072 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1073 spin_unlock(&info->lock);
1074 wait_on_page_locked(filepage);
1075 page_cache_release(filepage);
1076 filepage = NULL;
1077 goto repeat;
1078 }
1079 spin_unlock(&info->lock);
1080 } else {
1081 shmem_swp_unmap(entry);
1082 sbinfo = SHMEM_SB(inode->i_sb);
0edd73b3 1083 if (sbinfo->max_blocks) {
1da177e4
LT
1084 spin_lock(&sbinfo->stat_lock);
1085 if (sbinfo->free_blocks == 0 ||
1086 shmem_acct_block(info->flags)) {
1087 spin_unlock(&sbinfo->stat_lock);
1088 spin_unlock(&info->lock);
1089 error = -ENOSPC;
1090 goto failed;
1091 }
1092 sbinfo->free_blocks--;
1093 inode->i_blocks += BLOCKS_PER_PAGE;
1094 spin_unlock(&sbinfo->stat_lock);
1095 } else if (shmem_acct_block(info->flags)) {
1096 spin_unlock(&info->lock);
1097 error = -ENOSPC;
1098 goto failed;
1099 }
1100
1101 if (!filepage) {
1102 spin_unlock(&info->lock);
1103 filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1104 info,
1105 idx);
1106 if (!filepage) {
1107 shmem_unacct_blocks(info->flags, 1);
1108 shmem_free_blocks(inode, 1);
1109 error = -ENOMEM;
1110 goto failed;
1111 }
1112
1113 spin_lock(&info->lock);
1114 entry = shmem_swp_alloc(info, idx, sgp);
1115 if (IS_ERR(entry))
1116 error = PTR_ERR(entry);
1117 else {
1118 swap = *entry;
1119 shmem_swp_unmap(entry);
1120 }
1121 if (error || swap.val || 0 != add_to_page_cache_lru(
1122 filepage, mapping, idx, GFP_ATOMIC)) {
1123 spin_unlock(&info->lock);
1124 page_cache_release(filepage);
1125 shmem_unacct_blocks(info->flags, 1);
1126 shmem_free_blocks(inode, 1);
1127 filepage = NULL;
1128 if (error)
1129 goto failed;
1130 goto repeat;
1131 }
1132 info->flags |= SHMEM_PAGEIN;
1133 }
1134
1135 info->alloced++;
1136 spin_unlock(&info->lock);
1137 flush_dcache_page(filepage);
1138 SetPageUptodate(filepage);
1139 }
1140done:
1141 if (*pagep != filepage) {
1142 unlock_page(filepage);
1143 *pagep = filepage;
1144 }
1145 return 0;
1146
1147failed:
1148 if (*pagep != filepage) {
1149 unlock_page(filepage);
1150 page_cache_release(filepage);
1151 }
1152 return error;
1153}
1154
1155struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1156{
1157 struct inode *inode = vma->vm_file->f_dentry->d_inode;
1158 struct page *page = NULL;
1159 unsigned long idx;
1160 int error;
1161
1162 idx = (address - vma->vm_start) >> PAGE_SHIFT;
1163 idx += vma->vm_pgoff;
1164 idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1165 if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1166 return NOPAGE_SIGBUS;
1167
1168 error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1169 if (error)
1170 return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1171
1172 mark_page_accessed(page);
1173 return page;
1174}
1175
1176static int shmem_populate(struct vm_area_struct *vma,
1177 unsigned long addr, unsigned long len,
1178 pgprot_t prot, unsigned long pgoff, int nonblock)
1179{
1180 struct inode *inode = vma->vm_file->f_dentry->d_inode;
1181 struct mm_struct *mm = vma->vm_mm;
1182 enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1183 unsigned long size;
1184
1185 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1186 if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1187 return -EINVAL;
1188
1189 while ((long) len > 0) {
1190 struct page *page = NULL;
1191 int err;
1192 /*
1193 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1194 */
1195 err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1196 if (err)
1197 return err;
1198 if (page) {
1199 mark_page_accessed(page);
1200 err = install_page(mm, vma, addr, page, prot);
1201 if (err) {
1202 page_cache_release(page);
1203 return err;
1204 }
1205 } else if (nonblock) {
1206 err = install_file_pte(mm, vma, addr, pgoff, prot);
1207 if (err)
1208 return err;
1209 }
1210
1211 len -= PAGE_SIZE;
1212 addr += PAGE_SIZE;
1213 pgoff++;
1214 }
1215 return 0;
1216}
1217
1218#ifdef CONFIG_NUMA
1219int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1220{
1221 struct inode *i = vma->vm_file->f_dentry->d_inode;
1222 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1223}
1224
1225struct mempolicy *
1226shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1227{
1228 struct inode *i = vma->vm_file->f_dentry->d_inode;
1229 unsigned long idx;
1230
1231 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1232 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1233}
1234#endif
1235
1236int shmem_lock(struct file *file, int lock, struct user_struct *user)
1237{
1238 struct inode *inode = file->f_dentry->d_inode;
1239 struct shmem_inode_info *info = SHMEM_I(inode);
1240 int retval = -ENOMEM;
1241
1242 spin_lock(&info->lock);
1243 if (lock && !(info->flags & VM_LOCKED)) {
1244 if (!user_shm_lock(inode->i_size, user))
1245 goto out_nomem;
1246 info->flags |= VM_LOCKED;
1247 }
1248 if (!lock && (info->flags & VM_LOCKED) && user) {
1249 user_shm_unlock(inode->i_size, user);
1250 info->flags &= ~VM_LOCKED;
1251 }
1252 retval = 0;
1253out_nomem:
1254 spin_unlock(&info->lock);
1255 return retval;
1256}
1257
1258static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1259{
1260 file_accessed(file);
1261 vma->vm_ops = &shmem_vm_ops;
1262 return 0;
1263}
1264
1265static struct inode *
1266shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1267{
1268 struct inode *inode;
1269 struct shmem_inode_info *info;
1270 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1271
0edd73b3 1272 if (sbinfo->max_inodes) {
1da177e4
LT
1273 spin_lock(&sbinfo->stat_lock);
1274 if (!sbinfo->free_inodes) {
1275 spin_unlock(&sbinfo->stat_lock);
1276 return NULL;
1277 }
1278 sbinfo->free_inodes--;
1279 spin_unlock(&sbinfo->stat_lock);
1280 }
1281
1282 inode = new_inode(sb);
1283 if (inode) {
1284 inode->i_mode = mode;
1285 inode->i_uid = current->fsuid;
1286 inode->i_gid = current->fsgid;
1287 inode->i_blksize = PAGE_CACHE_SIZE;
1288 inode->i_blocks = 0;
1289 inode->i_mapping->a_ops = &shmem_aops;
1290 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1291 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1292 info = SHMEM_I(inode);
1293 memset(info, 0, (char *)inode - (char *)info);
1294 spin_lock_init(&info->lock);
1295 INIT_LIST_HEAD(&info->swaplist);
1296
1297 switch (mode & S_IFMT) {
1298 default:
1299 inode->i_op = &shmem_special_inode_operations;
1300 init_special_inode(inode, mode, dev);
1301 break;
1302 case S_IFREG:
1303 inode->i_op = &shmem_inode_operations;
1304 inode->i_fop = &shmem_file_operations;
1305 mpol_shared_policy_init(&info->policy);
1306 break;
1307 case S_IFDIR:
1308 inode->i_nlink++;
1309 /* Some things misbehave if size == 0 on a directory */
1310 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1311 inode->i_op = &shmem_dir_inode_operations;
1312 inode->i_fop = &simple_dir_operations;
1313 break;
1314 case S_IFLNK:
1315 /*
1316 * Must not load anything in the rbtree,
1317 * mpol_free_shared_policy will not be called.
1318 */
1319 mpol_shared_policy_init(&info->policy);
1320 break;
1321 }
0edd73b3 1322 } else if (sbinfo->max_inodes) {
1da177e4
LT
1323 spin_lock(&sbinfo->stat_lock);
1324 sbinfo->free_inodes++;
1325 spin_unlock(&sbinfo->stat_lock);
1326 }
1327 return inode;
1328}
1329
1330#ifdef CONFIG_TMPFS
1da177e4
LT
1331static struct inode_operations shmem_symlink_inode_operations;
1332static struct inode_operations shmem_symlink_inline_operations;
1333
1334/*
1335 * Normally tmpfs makes no use of shmem_prepare_write, but it
1336 * lets a tmpfs file be used read-write below the loop driver.
1337 */
1338static int
1339shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1340{
1341 struct inode *inode = page->mapping->host;
1342 return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1343}
1344
1345static ssize_t
1346shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1347{
1348 struct inode *inode = file->f_dentry->d_inode;
1349 loff_t pos;
1350 unsigned long written;
1351 ssize_t err;
1352
1353 if ((ssize_t) count < 0)
1354 return -EINVAL;
1355
1356 if (!access_ok(VERIFY_READ, buf, count))
1357 return -EFAULT;
1358
1359 down(&inode->i_sem);
1360
1361 pos = *ppos;
1362 written = 0;
1363
1364 err = generic_write_checks(file, &pos, &count, 0);
1365 if (err || !count)
1366 goto out;
1367
1368 err = remove_suid(file->f_dentry);
1369 if (err)
1370 goto out;
1371
1372 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1373
1374 do {
1375 struct page *page = NULL;
1376 unsigned long bytes, index, offset;
1377 char *kaddr;
1378 int left;
1379
1380 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1381 index = pos >> PAGE_CACHE_SHIFT;
1382 bytes = PAGE_CACHE_SIZE - offset;
1383 if (bytes > count)
1384 bytes = count;
1385
1386 /*
1387 * We don't hold page lock across copy from user -
1388 * what would it guard against? - so no deadlock here.
1389 * But it still may be a good idea to prefault below.
1390 */
1391
1392 err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1393 if (err)
1394 break;
1395
1396 left = bytes;
1397 if (PageHighMem(page)) {
1398 volatile unsigned char dummy;
1399 __get_user(dummy, buf);
1400 __get_user(dummy, buf + bytes - 1);
1401
1402 kaddr = kmap_atomic(page, KM_USER0);
1403 left = __copy_from_user_inatomic(kaddr + offset,
1404 buf, bytes);
1405 kunmap_atomic(kaddr, KM_USER0);
1406 }
1407 if (left) {
1408 kaddr = kmap(page);
1409 left = __copy_from_user(kaddr + offset, buf, bytes);
1410 kunmap(page);
1411 }
1412
1413 written += bytes;
1414 count -= bytes;
1415 pos += bytes;
1416 buf += bytes;
1417 if (pos > inode->i_size)
1418 i_size_write(inode, pos);
1419
1420 flush_dcache_page(page);
1421 set_page_dirty(page);
1422 mark_page_accessed(page);
1423 page_cache_release(page);
1424
1425 if (left) {
1426 pos -= left;
1427 written -= left;
1428 err = -EFAULT;
1429 break;
1430 }
1431
1432 /*
1433 * Our dirty pages are not counted in nr_dirty,
1434 * and we do not attempt to balance dirty pages.
1435 */
1436
1437 cond_resched();
1438 } while (count);
1439
1440 *ppos = pos;
1441 if (written)
1442 err = written;
1443out:
1444 up(&inode->i_sem);
1445 return err;
1446}
1447
1448static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1449{
1450 struct inode *inode = filp->f_dentry->d_inode;
1451 struct address_space *mapping = inode->i_mapping;
1452 unsigned long index, offset;
1453
1454 index = *ppos >> PAGE_CACHE_SHIFT;
1455 offset = *ppos & ~PAGE_CACHE_MASK;
1456
1457 for (;;) {
1458 struct page *page = NULL;
1459 unsigned long end_index, nr, ret;
1460 loff_t i_size = i_size_read(inode);
1461
1462 end_index = i_size >> PAGE_CACHE_SHIFT;
1463 if (index > end_index)
1464 break;
1465 if (index == end_index) {
1466 nr = i_size & ~PAGE_CACHE_MASK;
1467 if (nr <= offset)
1468 break;
1469 }
1470
1471 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1472 if (desc->error) {
1473 if (desc->error == -EINVAL)
1474 desc->error = 0;
1475 break;
1476 }
1477
1478 /*
1479 * We must evaluate after, since reads (unlike writes)
1480 * are called without i_sem protection against truncate
1481 */
1482 nr = PAGE_CACHE_SIZE;
1483 i_size = i_size_read(inode);
1484 end_index = i_size >> PAGE_CACHE_SHIFT;
1485 if (index == end_index) {
1486 nr = i_size & ~PAGE_CACHE_MASK;
1487 if (nr <= offset) {
1488 if (page)
1489 page_cache_release(page);
1490 break;
1491 }
1492 }
1493 nr -= offset;
1494
1495 if (page) {
1496 /*
1497 * If users can be writing to this page using arbitrary
1498 * virtual addresses, take care about potential aliasing
1499 * before reading the page on the kernel side.
1500 */
1501 if (mapping_writably_mapped(mapping))
1502 flush_dcache_page(page);
1503 /*
1504 * Mark the page accessed if we read the beginning.
1505 */
1506 if (!offset)
1507 mark_page_accessed(page);
1508 } else
1509 page = ZERO_PAGE(0);
1510
1511 /*
1512 * Ok, we have the page, and it's up-to-date, so
1513 * now we can copy it to user space...
1514 *
1515 * The actor routine returns how many bytes were actually used..
1516 * NOTE! This may not be the same as how much of a user buffer
1517 * we filled up (we may be padding etc), so we can only update
1518 * "pos" here (the actor routine has to update the user buffer
1519 * pointers and the remaining count).
1520 */
1521 ret = actor(desc, page, offset, nr);
1522 offset += ret;
1523 index += offset >> PAGE_CACHE_SHIFT;
1524 offset &= ~PAGE_CACHE_MASK;
1525
1526 page_cache_release(page);
1527 if (ret != nr || !desc->count)
1528 break;
1529
1530 cond_resched();
1531 }
1532
1533 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1534 file_accessed(filp);
1535}
1536
1537static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1538{
1539 read_descriptor_t desc;
1540
1541 if ((ssize_t) count < 0)
1542 return -EINVAL;
1543 if (!access_ok(VERIFY_WRITE, buf, count))
1544 return -EFAULT;
1545 if (!count)
1546 return 0;
1547
1548 desc.written = 0;
1549 desc.count = count;
1550 desc.arg.buf = buf;
1551 desc.error = 0;
1552
1553 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1554 if (desc.written)
1555 return desc.written;
1556 return desc.error;
1557}
1558
1559static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1560 size_t count, read_actor_t actor, void *target)
1561{
1562 read_descriptor_t desc;
1563
1564 if (!count)
1565 return 0;
1566
1567 desc.written = 0;
1568 desc.count = count;
1569 desc.arg.data = target;
1570 desc.error = 0;
1571
1572 do_shmem_file_read(in_file, ppos, &desc, actor);
1573 if (desc.written)
1574 return desc.written;
1575 return desc.error;
1576}
1577
1578static int shmem_statfs(struct super_block *sb, struct kstatfs *buf)
1579{
1580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1581
1582 buf->f_type = TMPFS_MAGIC;
1583 buf->f_bsize = PAGE_CACHE_SIZE;
1584 buf->f_namelen = NAME_MAX;
0edd73b3
HD
1585 spin_lock(&sbinfo->stat_lock);
1586 if (sbinfo->max_blocks) {
1da177e4
LT
1587 buf->f_blocks = sbinfo->max_blocks;
1588 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
0edd73b3
HD
1589 }
1590 if (sbinfo->max_inodes) {
1da177e4
LT
1591 buf->f_files = sbinfo->max_inodes;
1592 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1593 }
1594 /* else leave those fields 0 like simple_statfs */
0edd73b3 1595 spin_unlock(&sbinfo->stat_lock);
1da177e4
LT
1596 return 0;
1597}
1598
1599/*
1600 * File creation. Allocate an inode, and we're done..
1601 */
1602static int
1603shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1604{
1605 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1606 int error = -ENOSPC;
1607
1608 if (inode) {
1609 if (dir->i_mode & S_ISGID) {
1610 inode->i_gid = dir->i_gid;
1611 if (S_ISDIR(mode))
1612 inode->i_mode |= S_ISGID;
1613 }
1614 dir->i_size += BOGO_DIRENT_SIZE;
1615 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1616 d_instantiate(dentry, inode);
1617 dget(dentry); /* Extra count - pin the dentry in core */
1618 error = 0;
1619 }
1620 return error;
1621}
1622
1623static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1624{
1625 int error;
1626
1627 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1628 return error;
1629 dir->i_nlink++;
1630 return 0;
1631}
1632
1633static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1634 struct nameidata *nd)
1635{
1636 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1637}
1638
1639/*
1640 * Link a file..
1641 */
1642static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1643{
1644 struct inode *inode = old_dentry->d_inode;
1645 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1646
1647 /*
1648 * No ordinary (disk based) filesystem counts links as inodes;
1649 * but each new link needs a new dentry, pinning lowmem, and
1650 * tmpfs dentries cannot be pruned until they are unlinked.
1651 */
0edd73b3 1652 if (sbinfo->max_inodes) {
1da177e4
LT
1653 spin_lock(&sbinfo->stat_lock);
1654 if (!sbinfo->free_inodes) {
1655 spin_unlock(&sbinfo->stat_lock);
1656 return -ENOSPC;
1657 }
1658 sbinfo->free_inodes--;
1659 spin_unlock(&sbinfo->stat_lock);
1660 }
1661
1662 dir->i_size += BOGO_DIRENT_SIZE;
1663 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1664 inode->i_nlink++;
1665 atomic_inc(&inode->i_count); /* New dentry reference */
1666 dget(dentry); /* Extra pinning count for the created dentry */
1667 d_instantiate(dentry, inode);
1668 return 0;
1669}
1670
1671static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1672{
1673 struct inode *inode = dentry->d_inode;
1674
1675 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1676 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
0edd73b3 1677 if (sbinfo->max_inodes) {
1da177e4
LT
1678 spin_lock(&sbinfo->stat_lock);
1679 sbinfo->free_inodes++;
1680 spin_unlock(&sbinfo->stat_lock);
1681 }
1682 }
1683
1684 dir->i_size -= BOGO_DIRENT_SIZE;
1685 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1686 inode->i_nlink--;
1687 dput(dentry); /* Undo the count from "create" - this does all the work */
1688 return 0;
1689}
1690
1691static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1692{
1693 if (!simple_empty(dentry))
1694 return -ENOTEMPTY;
1695
1696 dir->i_nlink--;
1697 return shmem_unlink(dir, dentry);
1698}
1699
1700/*
1701 * The VFS layer already does all the dentry stuff for rename,
1702 * we just have to decrement the usage count for the target if
1703 * it exists so that the VFS layer correctly free's it when it
1704 * gets overwritten.
1705 */
1706static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1707{
1708 struct inode *inode = old_dentry->d_inode;
1709 int they_are_dirs = S_ISDIR(inode->i_mode);
1710
1711 if (!simple_empty(new_dentry))
1712 return -ENOTEMPTY;
1713
1714 if (new_dentry->d_inode) {
1715 (void) shmem_unlink(new_dir, new_dentry);
1716 if (they_are_dirs)
1717 old_dir->i_nlink--;
1718 } else if (they_are_dirs) {
1719 old_dir->i_nlink--;
1720 new_dir->i_nlink++;
1721 }
1722
1723 old_dir->i_size -= BOGO_DIRENT_SIZE;
1724 new_dir->i_size += BOGO_DIRENT_SIZE;
1725 old_dir->i_ctime = old_dir->i_mtime =
1726 new_dir->i_ctime = new_dir->i_mtime =
1727 inode->i_ctime = CURRENT_TIME;
1728 return 0;
1729}
1730
1731static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1732{
1733 int error;
1734 int len;
1735 struct inode *inode;
1736 struct page *page = NULL;
1737 char *kaddr;
1738 struct shmem_inode_info *info;
1739
1740 len = strlen(symname) + 1;
1741 if (len > PAGE_CACHE_SIZE)
1742 return -ENAMETOOLONG;
1743
1744 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1745 if (!inode)
1746 return -ENOSPC;
1747
1748 info = SHMEM_I(inode);
1749 inode->i_size = len-1;
1750 if (len <= (char *)inode - (char *)info) {
1751 /* do it inline */
1752 memcpy(info, symname, len);
1753 inode->i_op = &shmem_symlink_inline_operations;
1754 } else {
1755 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1756 if (error) {
1757 iput(inode);
1758 return error;
1759 }
1760 inode->i_op = &shmem_symlink_inode_operations;
1761 kaddr = kmap_atomic(page, KM_USER0);
1762 memcpy(kaddr, symname, len);
1763 kunmap_atomic(kaddr, KM_USER0);
1764 set_page_dirty(page);
1765 page_cache_release(page);
1766 }
1767 if (dir->i_mode & S_ISGID)
1768 inode->i_gid = dir->i_gid;
1769 dir->i_size += BOGO_DIRENT_SIZE;
1770 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1771 d_instantiate(dentry, inode);
1772 dget(dentry);
1773 return 0;
1774}
1775
cc314eef 1776static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
1777{
1778 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
cc314eef 1779 return NULL;
1da177e4
LT
1780}
1781
cc314eef 1782static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
1783{
1784 struct page *page = NULL;
1785 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1786 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
cc314eef 1787 return page;
1da177e4
LT
1788}
1789
cc314eef 1790static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
1791{
1792 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 1793 struct page *page = cookie;
1da177e4
LT
1794 kunmap(page);
1795 mark_page_accessed(page);
1796 page_cache_release(page);
1da177e4
LT
1797 }
1798}
1799
1800static struct inode_operations shmem_symlink_inline_operations = {
1801 .readlink = generic_readlink,
1802 .follow_link = shmem_follow_link_inline,
1803#ifdef CONFIG_TMPFS_XATTR
1804 .setxattr = generic_setxattr,
1805 .getxattr = generic_getxattr,
1806 .listxattr = generic_listxattr,
1807 .removexattr = generic_removexattr,
1808#endif
1809};
1810
1811static struct inode_operations shmem_symlink_inode_operations = {
1812 .truncate = shmem_truncate,
1813 .readlink = generic_readlink,
1814 .follow_link = shmem_follow_link,
1815 .put_link = shmem_put_link,
1816#ifdef CONFIG_TMPFS_XATTR
1817 .setxattr = generic_setxattr,
1818 .getxattr = generic_getxattr,
1819 .listxattr = generic_listxattr,
1820 .removexattr = generic_removexattr,
1821#endif
1822};
1823
1824static int shmem_parse_options(char *options, int *mode, uid_t *uid, gid_t *gid, unsigned long *blocks, unsigned long *inodes)
1825{
1826 char *this_char, *value, *rest;
1827
1828 while ((this_char = strsep(&options, ",")) != NULL) {
1829 if (!*this_char)
1830 continue;
1831 if ((value = strchr(this_char,'=')) != NULL) {
1832 *value++ = 0;
1833 } else {
1834 printk(KERN_ERR
1835 "tmpfs: No value for mount option '%s'\n",
1836 this_char);
1837 return 1;
1838 }
1839
1840 if (!strcmp(this_char,"size")) {
1841 unsigned long long size;
1842 size = memparse(value,&rest);
1843 if (*rest == '%') {
1844 size <<= PAGE_SHIFT;
1845 size *= totalram_pages;
1846 do_div(size, 100);
1847 rest++;
1848 }
1849 if (*rest)
1850 goto bad_val;
1851 *blocks = size >> PAGE_CACHE_SHIFT;
1852 } else if (!strcmp(this_char,"nr_blocks")) {
1853 *blocks = memparse(value,&rest);
1854 if (*rest)
1855 goto bad_val;
1856 } else if (!strcmp(this_char,"nr_inodes")) {
1857 *inodes = memparse(value,&rest);
1858 if (*rest)
1859 goto bad_val;
1860 } else if (!strcmp(this_char,"mode")) {
1861 if (!mode)
1862 continue;
1863 *mode = simple_strtoul(value,&rest,8);
1864 if (*rest)
1865 goto bad_val;
1866 } else if (!strcmp(this_char,"uid")) {
1867 if (!uid)
1868 continue;
1869 *uid = simple_strtoul(value,&rest,0);
1870 if (*rest)
1871 goto bad_val;
1872 } else if (!strcmp(this_char,"gid")) {
1873 if (!gid)
1874 continue;
1875 *gid = simple_strtoul(value,&rest,0);
1876 if (*rest)
1877 goto bad_val;
1878 } else {
1879 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1880 this_char);
1881 return 1;
1882 }
1883 }
1884 return 0;
1885
1886bad_val:
1887 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1888 value, this_char);
1889 return 1;
1890
1891}
1892
1893static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1894{
1895 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
0edd73b3
HD
1896 unsigned long max_blocks = sbinfo->max_blocks;
1897 unsigned long max_inodes = sbinfo->max_inodes;
1898 unsigned long blocks;
1899 unsigned long inodes;
1900 int error = -EINVAL;
1901
1902 if (shmem_parse_options(data, NULL, NULL, NULL,
1903 &max_blocks, &max_inodes))
1904 return error;
1da177e4 1905
0edd73b3
HD
1906 spin_lock(&sbinfo->stat_lock);
1907 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
1908 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
1909 if (max_blocks < blocks)
1910 goto out;
1911 if (max_inodes < inodes)
1912 goto out;
1913 /*
1914 * Those tests also disallow limited->unlimited while any are in
1915 * use, so i_blocks will always be zero when max_blocks is zero;
1916 * but we must separately disallow unlimited->limited, because
1917 * in that case we have no record of how much is already in use.
1918 */
1919 if (max_blocks && !sbinfo->max_blocks)
1920 goto out;
1921 if (max_inodes && !sbinfo->max_inodes)
1922 goto out;
1923
1924 error = 0;
1925 sbinfo->max_blocks = max_blocks;
1926 sbinfo->free_blocks = max_blocks - blocks;
1927 sbinfo->max_inodes = max_inodes;
1928 sbinfo->free_inodes = max_inodes - inodes;
1929out:
1930 spin_unlock(&sbinfo->stat_lock);
1931 return error;
1da177e4
LT
1932}
1933#endif
1934
1935static void shmem_put_super(struct super_block *sb)
1936{
1937 kfree(sb->s_fs_info);
1938 sb->s_fs_info = NULL;
1939}
1940
1941#ifdef CONFIG_TMPFS_XATTR
1942static struct xattr_handler *shmem_xattr_handlers[];
1943#else
1944#define shmem_xattr_handlers NULL
1945#endif
1946
1947static int shmem_fill_super(struct super_block *sb,
1948 void *data, int silent)
1949{
1950 struct inode *inode;
1951 struct dentry *root;
1952 int mode = S_IRWXUGO | S_ISVTX;
1953 uid_t uid = current->fsuid;
1954 gid_t gid = current->fsgid;
1955 int err = -ENOMEM;
0edd73b3 1956 struct shmem_sb_info *sbinfo;
1da177e4
LT
1957 unsigned long blocks = 0;
1958 unsigned long inodes = 0;
1959
0edd73b3 1960#ifdef CONFIG_TMPFS
1da177e4
LT
1961 /*
1962 * Per default we only allow half of the physical ram per
1963 * tmpfs instance, limiting inodes to one per page of lowmem;
1964 * but the internal instance is left unlimited.
1965 */
1966 if (!(sb->s_flags & MS_NOUSER)) {
1967 blocks = totalram_pages / 2;
1968 inodes = totalram_pages - totalhigh_pages;
1969 if (inodes > blocks)
1970 inodes = blocks;
0edd73b3
HD
1971 if (shmem_parse_options(data, &mode, &uid, &gid,
1972 &blocks, &inodes))
1da177e4
LT
1973 return -EINVAL;
1974 }
1da177e4
LT
1975#else
1976 sb->s_flags |= MS_NOUSER;
1977#endif
1978
0edd73b3
HD
1979 /* Round up to L1_CACHE_BYTES to resist false sharing */
1980 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
1981 L1_CACHE_BYTES), GFP_KERNEL);
1982 if (!sbinfo)
1983 return -ENOMEM;
1984
1985 spin_lock_init(&sbinfo->stat_lock);
1986 sbinfo->max_blocks = blocks;
1987 sbinfo->free_blocks = blocks;
1988 sbinfo->max_inodes = inodes;
1989 sbinfo->free_inodes = inodes;
1990
1991 sb->s_fs_info = sbinfo;
1da177e4
LT
1992 sb->s_maxbytes = SHMEM_MAX_BYTES;
1993 sb->s_blocksize = PAGE_CACHE_SIZE;
1994 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1995 sb->s_magic = TMPFS_MAGIC;
1996 sb->s_op = &shmem_ops;
0edd73b3
HD
1997 sb->s_xattr = shmem_xattr_handlers;
1998
1da177e4
LT
1999 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2000 if (!inode)
2001 goto failed;
2002 inode->i_uid = uid;
2003 inode->i_gid = gid;
2004 root = d_alloc_root(inode);
2005 if (!root)
2006 goto failed_iput;
2007 sb->s_root = root;
2008 return 0;
2009
2010failed_iput:
2011 iput(inode);
2012failed:
2013 shmem_put_super(sb);
2014 return err;
2015}
2016
2017static kmem_cache_t *shmem_inode_cachep;
2018
2019static struct inode *shmem_alloc_inode(struct super_block *sb)
2020{
2021 struct shmem_inode_info *p;
2022 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2023 if (!p)
2024 return NULL;
2025 return &p->vfs_inode;
2026}
2027
2028static void shmem_destroy_inode(struct inode *inode)
2029{
2030 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2031 /* only struct inode is valid if it's an inline symlink */
2032 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2033 }
2034 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2035}
2036
2037static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags)
2038{
2039 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2040
2041 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2042 SLAB_CTOR_CONSTRUCTOR) {
2043 inode_init_once(&p->vfs_inode);
2044 }
2045}
2046
2047static int init_inodecache(void)
2048{
2049 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2050 sizeof(struct shmem_inode_info),
2051 0, 0, init_once, NULL);
2052 if (shmem_inode_cachep == NULL)
2053 return -ENOMEM;
2054 return 0;
2055}
2056
2057static void destroy_inodecache(void)
2058{
2059 if (kmem_cache_destroy(shmem_inode_cachep))
2060 printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2061}
2062
2063static struct address_space_operations shmem_aops = {
2064 .writepage = shmem_writepage,
2065 .set_page_dirty = __set_page_dirty_nobuffers,
2066#ifdef CONFIG_TMPFS
2067 .prepare_write = shmem_prepare_write,
2068 .commit_write = simple_commit_write,
2069#endif
2070};
2071
2072static struct file_operations shmem_file_operations = {
2073 .mmap = shmem_mmap,
2074#ifdef CONFIG_TMPFS
2075 .llseek = generic_file_llseek,
2076 .read = shmem_file_read,
2077 .write = shmem_file_write,
2078 .fsync = simple_sync_file,
2079 .sendfile = shmem_file_sendfile,
2080#endif
2081};
2082
2083static struct inode_operations shmem_inode_operations = {
2084 .truncate = shmem_truncate,
2085 .setattr = shmem_notify_change,
2086#ifdef CONFIG_TMPFS_XATTR
2087 .setxattr = generic_setxattr,
2088 .getxattr = generic_getxattr,
2089 .listxattr = generic_listxattr,
2090 .removexattr = generic_removexattr,
2091#endif
2092};
2093
2094static struct inode_operations shmem_dir_inode_operations = {
2095#ifdef CONFIG_TMPFS
2096 .create = shmem_create,
2097 .lookup = simple_lookup,
2098 .link = shmem_link,
2099 .unlink = shmem_unlink,
2100 .symlink = shmem_symlink,
2101 .mkdir = shmem_mkdir,
2102 .rmdir = shmem_rmdir,
2103 .mknod = shmem_mknod,
2104 .rename = shmem_rename,
2105#ifdef CONFIG_TMPFS_XATTR
2106 .setxattr = generic_setxattr,
2107 .getxattr = generic_getxattr,
2108 .listxattr = generic_listxattr,
2109 .removexattr = generic_removexattr,
2110#endif
2111#endif
2112};
2113
2114static struct inode_operations shmem_special_inode_operations = {
2115#ifdef CONFIG_TMPFS_XATTR
2116 .setxattr = generic_setxattr,
2117 .getxattr = generic_getxattr,
2118 .listxattr = generic_listxattr,
2119 .removexattr = generic_removexattr,
2120#endif
2121};
2122
2123static struct super_operations shmem_ops = {
2124 .alloc_inode = shmem_alloc_inode,
2125 .destroy_inode = shmem_destroy_inode,
2126#ifdef CONFIG_TMPFS
2127 .statfs = shmem_statfs,
2128 .remount_fs = shmem_remount_fs,
2129#endif
2130 .delete_inode = shmem_delete_inode,
2131 .drop_inode = generic_delete_inode,
2132 .put_super = shmem_put_super,
2133};
2134
2135static struct vm_operations_struct shmem_vm_ops = {
2136 .nopage = shmem_nopage,
2137 .populate = shmem_populate,
2138#ifdef CONFIG_NUMA
2139 .set_policy = shmem_set_policy,
2140 .get_policy = shmem_get_policy,
2141#endif
2142};
2143
2144
2145#ifdef CONFIG_TMPFS_SECURITY
2146
2147static size_t shmem_xattr_security_list(struct inode *inode, char *list, size_t list_len,
2148 const char *name, size_t name_len)
2149{
2150 return security_inode_listsecurity(inode, list, list_len);
2151}
2152
2153static int shmem_xattr_security_get(struct inode *inode, const char *name, void *buffer, size_t size)
2154{
2155 if (strcmp(name, "") == 0)
2156 return -EINVAL;
2157 return security_inode_getsecurity(inode, name, buffer, size);
2158}
2159
2160static int shmem_xattr_security_set(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2161{
2162 if (strcmp(name, "") == 0)
2163 return -EINVAL;
2164 return security_inode_setsecurity(inode, name, value, size, flags);
2165}
2166
2167static struct xattr_handler shmem_xattr_security_handler = {
2168 .prefix = XATTR_SECURITY_PREFIX,
2169 .list = shmem_xattr_security_list,
2170 .get = shmem_xattr_security_get,
2171 .set = shmem_xattr_security_set,
2172};
2173
2174#endif /* CONFIG_TMPFS_SECURITY */
2175
2176#ifdef CONFIG_TMPFS_XATTR
2177
2178static struct xattr_handler *shmem_xattr_handlers[] = {
2179#ifdef CONFIG_TMPFS_SECURITY
2180 &shmem_xattr_security_handler,
2181#endif
2182 NULL
2183};
2184
2185#endif /* CONFIG_TMPFS_XATTR */
2186
2187static struct super_block *shmem_get_sb(struct file_system_type *fs_type,
2188 int flags, const char *dev_name, void *data)
2189{
2190 return get_sb_nodev(fs_type, flags, data, shmem_fill_super);
2191}
2192
2193static struct file_system_type tmpfs_fs_type = {
2194 .owner = THIS_MODULE,
2195 .name = "tmpfs",
2196 .get_sb = shmem_get_sb,
2197 .kill_sb = kill_litter_super,
2198};
2199static struct vfsmount *shm_mnt;
2200
2201static int __init init_tmpfs(void)
2202{
2203 int error;
2204
2205 error = init_inodecache();
2206 if (error)
2207 goto out3;
2208
2209 error = register_filesystem(&tmpfs_fs_type);
2210 if (error) {
2211 printk(KERN_ERR "Could not register tmpfs\n");
2212 goto out2;
2213 }
2214#ifdef CONFIG_TMPFS
2215 devfs_mk_dir("shm");
2216#endif
2217 shm_mnt = do_kern_mount(tmpfs_fs_type.name, MS_NOUSER,
2218 tmpfs_fs_type.name, NULL);
2219 if (IS_ERR(shm_mnt)) {
2220 error = PTR_ERR(shm_mnt);
2221 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2222 goto out1;
2223 }
2224 return 0;
2225
2226out1:
2227 unregister_filesystem(&tmpfs_fs_type);
2228out2:
2229 destroy_inodecache();
2230out3:
2231 shm_mnt = ERR_PTR(error);
2232 return error;
2233}
2234module_init(init_tmpfs)
2235
2236/*
2237 * shmem_file_setup - get an unlinked file living in tmpfs
2238 *
2239 * @name: name for dentry (to be seen in /proc/<pid>/maps
2240 * @size: size to be set for the file
2241 *
2242 */
2243struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2244{
2245 int error;
2246 struct file *file;
2247 struct inode *inode;
2248 struct dentry *dentry, *root;
2249 struct qstr this;
2250
2251 if (IS_ERR(shm_mnt))
2252 return (void *)shm_mnt;
2253
2254 if (size < 0 || size > SHMEM_MAX_BYTES)
2255 return ERR_PTR(-EINVAL);
2256
2257 if (shmem_acct_size(flags, size))
2258 return ERR_PTR(-ENOMEM);
2259
2260 error = -ENOMEM;
2261 this.name = name;
2262 this.len = strlen(name);
2263 this.hash = 0; /* will go */
2264 root = shm_mnt->mnt_root;
2265 dentry = d_alloc(root, &this);
2266 if (!dentry)
2267 goto put_memory;
2268
2269 error = -ENFILE;
2270 file = get_empty_filp();
2271 if (!file)
2272 goto put_dentry;
2273
2274 error = -ENOSPC;
2275 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2276 if (!inode)
2277 goto close_file;
2278
2279 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2280 d_instantiate(dentry, inode);
2281 inode->i_size = size;
2282 inode->i_nlink = 0; /* It is unlinked */
2283 file->f_vfsmnt = mntget(shm_mnt);
2284 file->f_dentry = dentry;
2285 file->f_mapping = inode->i_mapping;
2286 file->f_op = &shmem_file_operations;
2287 file->f_mode = FMODE_WRITE | FMODE_READ;
2288 return file;
2289
2290close_file:
2291 put_filp(file);
2292put_dentry:
2293 dput(dentry);
2294put_memory:
2295 shmem_unacct_size(flags, size);
2296 return ERR_PTR(error);
2297}
2298
2299/*
2300 * shmem_zero_setup - setup a shared anonymous mapping
2301 *
2302 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2303 */
2304int shmem_zero_setup(struct vm_area_struct *vma)
2305{
2306 struct file *file;
2307 loff_t size = vma->vm_end - vma->vm_start;
2308
2309 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2310 if (IS_ERR(file))
2311 return PTR_ERR(file);
2312
2313 if (vma->vm_file)
2314 fput(vma->vm_file);
2315 vma->vm_file = file;
2316 vma->vm_ops = &shmem_vm_ops;
2317 return 0;
2318}