mm: larger stack guard gap, between vmas
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
a27bb332 34#include <linux/aio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
39f0247d 48#include <linux/generic_acl.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
304dbdb7 69
1da177e4 70#include <asm/uaccess.h>
1da177e4
LT
71#include <asm/pgtable.h>
72
caefba17 73#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
74#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
1da177e4
LT
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
69f07ec9
HD
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
1aac1400 82/*
1ccc3ffa
HD
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
86 */
87struct shmem_falloc {
887675c9 88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93};
94
285b2c4f 95/* Flag allocation requirements to shmem_getpage */
1da177e4 96enum sgp_type {
1da177e4
LT
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
102};
103
b76db735 104#ifdef CONFIG_TMPFS
680d794b 105static unsigned long shmem_default_max_blocks(void)
106{
107 return totalram_pages / 2;
108}
109
110static unsigned long shmem_default_max_inodes(void)
111{
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113}
b76db735 114#endif
680d794b 115
bde05d1c
HD
116static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
119static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124{
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127}
1da177e4 128
1da177e4
LT
129static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130{
131 return sb->s_fs_info;
132}
133
134/*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140static inline int shmem_acct_size(unsigned long flags, loff_t size)
141{
0b0a0806 142 return (flags & VM_NORESERVE) ?
191c5424 143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
144}
145
146static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 if (!(flags & VM_NORESERVE))
1da177e4
LT
149 vm_unacct_memory(VM_ACCT(size));
150}
151
152/*
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 */
158static inline int shmem_acct_block(unsigned long flags)
159{
0b0a0806 160 return (flags & VM_NORESERVE) ?
191c5424 161 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
162}
163
164static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165{
0b0a0806 166 if (flags & VM_NORESERVE)
1da177e4
LT
167 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168}
169
759b9775 170static const struct super_operations shmem_ops;
f5e54d6e 171static const struct address_space_operations shmem_aops;
15ad7cdc 172static const struct file_operations shmem_file_operations;
92e1d5be
AV
173static const struct inode_operations shmem_inode_operations;
174static const struct inode_operations shmem_dir_inode_operations;
175static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 176static const struct vm_operations_struct shmem_vm_ops;
1da177e4 177
6c231b7b 178static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 179 .ra_pages = 0, /* No readahead */
4f98a2fe 180 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
181};
182
183static LIST_HEAD(shmem_swaplist);
cb5f7b9a 184static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 185
5b04c689
PE
186static int shmem_reserve_inode(struct super_block *sb)
187{
188 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 if (sbinfo->max_inodes) {
190 spin_lock(&sbinfo->stat_lock);
191 if (!sbinfo->free_inodes) {
192 spin_unlock(&sbinfo->stat_lock);
193 return -ENOSPC;
194 }
195 sbinfo->free_inodes--;
196 spin_unlock(&sbinfo->stat_lock);
197 }
198 return 0;
199}
200
201static void shmem_free_inode(struct super_block *sb)
202{
203 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 if (sbinfo->max_inodes) {
205 spin_lock(&sbinfo->stat_lock);
206 sbinfo->free_inodes++;
207 spin_unlock(&sbinfo->stat_lock);
208 }
209}
210
46711810 211/**
41ffe5d5 212 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223static void shmem_recalc_inode(struct inode *inode)
224{
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 long freed;
227
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 if (freed > 0) {
54af6042
HD
230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 if (sbinfo->max_blocks)
232 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 233 info->alloced -= freed;
54af6042 234 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 235 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
236 }
237}
238
7a5d0fbb
HD
239/*
240 * Replace item expected in radix tree by a new item, while holding tree lock.
241 */
242static int shmem_radix_tree_replace(struct address_space *mapping,
243 pgoff_t index, void *expected, void *replacement)
244{
245 void **pslot;
246 void *item = NULL;
247
248 VM_BUG_ON(!expected);
249 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250 if (pslot)
251 item = radix_tree_deref_slot_protected(pslot,
252 &mapping->tree_lock);
253 if (item != expected)
254 return -ENOENT;
255 if (replacement)
256 radix_tree_replace_slot(pslot, replacement);
257 else
258 radix_tree_delete(&mapping->page_tree, index);
259 return 0;
260}
261
d1899228
HD
262/*
263 * Sometimes, before we decide whether to proceed or to fail, we must check
264 * that an entry was not already brought back from swap by a racing thread.
265 *
266 * Checking page is not enough: by the time a SwapCache page is locked, it
267 * might be reused, and again be SwapCache, using the same swap as before.
268 */
269static bool shmem_confirm_swap(struct address_space *mapping,
270 pgoff_t index, swp_entry_t swap)
271{
272 void *item;
273
274 rcu_read_lock();
275 item = radix_tree_lookup(&mapping->page_tree, index);
276 rcu_read_unlock();
277 return item == swp_to_radix_entry(swap);
278}
279
46f65ec1
HD
280/*
281 * Like add_to_page_cache_locked, but error if expected item has gone.
282 */
283static int shmem_add_to_page_cache(struct page *page,
284 struct address_space *mapping,
285 pgoff_t index, gfp_t gfp, void *expected)
286{
b065b432 287 int error;
46f65ec1
HD
288
289 VM_BUG_ON(!PageLocked(page));
290 VM_BUG_ON(!PageSwapBacked(page));
291
b065b432
HD
292 page_cache_get(page);
293 page->mapping = mapping;
294 page->index = index;
295
296 spin_lock_irq(&mapping->tree_lock);
46f65ec1 297 if (!expected)
b065b432
HD
298 error = radix_tree_insert(&mapping->page_tree, index, page);
299 else
300 error = shmem_radix_tree_replace(mapping, index, expected,
301 page);
46f65ec1 302 if (!error) {
b065b432
HD
303 mapping->nrpages++;
304 __inc_zone_page_state(page, NR_FILE_PAGES);
305 __inc_zone_page_state(page, NR_SHMEM);
306 spin_unlock_irq(&mapping->tree_lock);
307 } else {
308 page->mapping = NULL;
309 spin_unlock_irq(&mapping->tree_lock);
310 page_cache_release(page);
46f65ec1 311 }
46f65ec1
HD
312 return error;
313}
314
6922c0c7
HD
315/*
316 * Like delete_from_page_cache, but substitutes swap for page.
317 */
318static void shmem_delete_from_page_cache(struct page *page, void *radswap)
319{
320 struct address_space *mapping = page->mapping;
321 int error;
322
323 spin_lock_irq(&mapping->tree_lock);
324 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
325 page->mapping = NULL;
326 mapping->nrpages--;
327 __dec_zone_page_state(page, NR_FILE_PAGES);
328 __dec_zone_page_state(page, NR_SHMEM);
329 spin_unlock_irq(&mapping->tree_lock);
330 page_cache_release(page);
331 BUG_ON(error);
332}
333
7a5d0fbb
HD
334/*
335 * Like find_get_pages, but collecting swap entries as well as pages.
336 */
337static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
338 pgoff_t start, unsigned int nr_pages,
339 struct page **pages, pgoff_t *indices)
340{
860f2759
JW
341 void **slot;
342 unsigned int ret = 0;
343 struct radix_tree_iter iter;
344
345 if (!nr_pages)
346 return 0;
7a5d0fbb
HD
347
348 rcu_read_lock();
349restart:
860f2759 350 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
7a5d0fbb
HD
351 struct page *page;
352repeat:
860f2759 353 page = radix_tree_deref_slot(slot);
7a5d0fbb
HD
354 if (unlikely(!page))
355 continue;
356 if (radix_tree_exception(page)) {
8079b1c8
HD
357 if (radix_tree_deref_retry(page))
358 goto restart;
359 /*
360 * Otherwise, we must be storing a swap entry
361 * here as an exceptional entry: so return it
362 * without attempting to raise page count.
363 */
364 goto export;
7a5d0fbb
HD
365 }
366 if (!page_cache_get_speculative(page))
367 goto repeat;
368
369 /* Has the page moved? */
860f2759 370 if (unlikely(page != *slot)) {
7a5d0fbb
HD
371 page_cache_release(page);
372 goto repeat;
373 }
374export:
860f2759 375 indices[ret] = iter.index;
7a5d0fbb 376 pages[ret] = page;
860f2759
JW
377 if (++ret == nr_pages)
378 break;
7a5d0fbb 379 }
7a5d0fbb
HD
380 rcu_read_unlock();
381 return ret;
382}
383
384/*
385 * Remove swap entry from radix tree, free the swap and its page cache.
386 */
387static int shmem_free_swap(struct address_space *mapping,
388 pgoff_t index, void *radswap)
389{
390 int error;
391
392 spin_lock_irq(&mapping->tree_lock);
393 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
394 spin_unlock_irq(&mapping->tree_lock);
395 if (!error)
396 free_swap_and_cache(radix_to_swp_entry(radswap));
397 return error;
398}
399
400/*
401 * Pagevec may contain swap entries, so shuffle up pages before releasing.
402 */
24513264 403static void shmem_deswap_pagevec(struct pagevec *pvec)
7a5d0fbb
HD
404{
405 int i, j;
406
407 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
408 struct page *page = pvec->pages[i];
409 if (!radix_tree_exceptional_entry(page))
410 pvec->pages[j++] = page;
411 }
412 pvec->nr = j;
24513264
HD
413}
414
415/*
416 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
417 */
418void shmem_unlock_mapping(struct address_space *mapping)
419{
420 struct pagevec pvec;
421 pgoff_t indices[PAGEVEC_SIZE];
422 pgoff_t index = 0;
423
424 pagevec_init(&pvec, 0);
425 /*
426 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
427 */
428 while (!mapping_unevictable(mapping)) {
429 /*
430 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
431 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
432 */
433 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
434 PAGEVEC_SIZE, pvec.pages, indices);
435 if (!pvec.nr)
436 break;
437 index = indices[pvec.nr - 1] + 1;
438 shmem_deswap_pagevec(&pvec);
439 check_move_unevictable_pages(pvec.pages, pvec.nr);
440 pagevec_release(&pvec);
441 cond_resched();
442 }
7a5d0fbb
HD
443}
444
445/*
446 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 447 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 448 */
1635f6a7
HD
449static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
450 bool unfalloc)
1da177e4 451{
285b2c4f 452 struct address_space *mapping = inode->i_mapping;
1da177e4 453 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 454 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
455 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
456 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
457 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 458 struct pagevec pvec;
7a5d0fbb
HD
459 pgoff_t indices[PAGEVEC_SIZE];
460 long nr_swaps_freed = 0;
285b2c4f 461 pgoff_t index;
bda97eab
HD
462 int i;
463
83e4fa9c
HD
464 if (lend == -1)
465 end = -1; /* unsigned, so actually very big */
bda97eab
HD
466
467 pagevec_init(&pvec, 0);
468 index = start;
83e4fa9c 469 while (index < end) {
7a5d0fbb 470 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 471 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
472 pvec.pages, indices);
473 if (!pvec.nr)
474 break;
bda97eab
HD
475 mem_cgroup_uncharge_start();
476 for (i = 0; i < pagevec_count(&pvec); i++) {
477 struct page *page = pvec.pages[i];
478
7a5d0fbb 479 index = indices[i];
83e4fa9c 480 if (index >= end)
bda97eab
HD
481 break;
482
7a5d0fbb 483 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
484 if (unfalloc)
485 continue;
7a5d0fbb
HD
486 nr_swaps_freed += !shmem_free_swap(mapping,
487 index, page);
bda97eab 488 continue;
7a5d0fbb
HD
489 }
490
491 if (!trylock_page(page))
bda97eab 492 continue;
1635f6a7
HD
493 if (!unfalloc || !PageUptodate(page)) {
494 if (page->mapping == mapping) {
495 VM_BUG_ON(PageWriteback(page));
496 truncate_inode_page(mapping, page);
497 }
bda97eab 498 }
bda97eab
HD
499 unlock_page(page);
500 }
24513264
HD
501 shmem_deswap_pagevec(&pvec);
502 pagevec_release(&pvec);
bda97eab
HD
503 mem_cgroup_uncharge_end();
504 cond_resched();
505 index++;
506 }
1da177e4 507
83e4fa9c 508 if (partial_start) {
bda97eab
HD
509 struct page *page = NULL;
510 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
511 if (page) {
83e4fa9c
HD
512 unsigned int top = PAGE_CACHE_SIZE;
513 if (start > end) {
514 top = partial_end;
515 partial_end = 0;
516 }
517 zero_user_segment(page, partial_start, top);
518 set_page_dirty(page);
519 unlock_page(page);
520 page_cache_release(page);
521 }
522 }
523 if (partial_end) {
524 struct page *page = NULL;
525 shmem_getpage(inode, end, &page, SGP_READ, NULL);
526 if (page) {
527 zero_user_segment(page, 0, partial_end);
bda97eab
HD
528 set_page_dirty(page);
529 unlock_page(page);
530 page_cache_release(page);
531 }
532 }
83e4fa9c
HD
533 if (start >= end)
534 return;
bda97eab
HD
535
536 index = start;
7dc7fb43 537 while (index < end) {
bda97eab 538 cond_resched();
7a5d0fbb 539 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 540 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
541 pvec.pages, indices);
542 if (!pvec.nr) {
7dc7fb43
HD
543 /* If all gone or hole-punch or unfalloc, we're done */
544 if (index == start || end != -1)
bda97eab 545 break;
7dc7fb43 546 /* But if truncating, restart to make sure all gone */
bda97eab
HD
547 index = start;
548 continue;
549 }
bda97eab
HD
550 mem_cgroup_uncharge_start();
551 for (i = 0; i < pagevec_count(&pvec); i++) {
552 struct page *page = pvec.pages[i];
553
7a5d0fbb 554 index = indices[i];
83e4fa9c 555 if (index >= end)
bda97eab
HD
556 break;
557
7a5d0fbb 558 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
559 if (unfalloc)
560 continue;
7dc7fb43
HD
561 if (shmem_free_swap(mapping, index, page)) {
562 /* Swap was replaced by page: retry */
563 index--;
564 break;
565 }
566 nr_swaps_freed++;
7a5d0fbb
HD
567 continue;
568 }
569
bda97eab 570 lock_page(page);
1635f6a7
HD
571 if (!unfalloc || !PageUptodate(page)) {
572 if (page->mapping == mapping) {
573 VM_BUG_ON(PageWriteback(page));
574 truncate_inode_page(mapping, page);
7dc7fb43
HD
575 } else {
576 /* Page was replaced by swap: retry */
577 unlock_page(page);
578 index--;
579 break;
1635f6a7 580 }
7a5d0fbb 581 }
bda97eab
HD
582 unlock_page(page);
583 }
24513264
HD
584 shmem_deswap_pagevec(&pvec);
585 pagevec_release(&pvec);
bda97eab
HD
586 mem_cgroup_uncharge_end();
587 index++;
588 }
94c1e62d 589
1da177e4 590 spin_lock(&info->lock);
7a5d0fbb 591 info->swapped -= nr_swaps_freed;
1da177e4
LT
592 shmem_recalc_inode(inode);
593 spin_unlock(&info->lock);
1635f6a7 594}
1da177e4 595
1635f6a7
HD
596void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
597{
598 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 599 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 600}
94c1e62d 601EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 602
94c1e62d 603static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
604{
605 struct inode *inode = dentry->d_inode;
1da177e4
LT
606 int error;
607
db78b877
CH
608 error = inode_change_ok(inode, attr);
609 if (error)
610 return error;
611
94c1e62d
HD
612 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
613 loff_t oldsize = inode->i_size;
614 loff_t newsize = attr->ia_size;
3889e6e7 615
94c1e62d
HD
616 if (newsize != oldsize) {
617 i_size_write(inode, newsize);
618 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
619 }
620 if (newsize < oldsize) {
621 loff_t holebegin = round_up(newsize, PAGE_SIZE);
622 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
623 shmem_truncate_range(inode, newsize, (loff_t)-1);
624 /* unmap again to remove racily COWed private pages */
625 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
626 }
1da177e4
LT
627 }
628
db78b877 629 setattr_copy(inode, attr);
39f0247d 630#ifdef CONFIG_TMPFS_POSIX_ACL
db78b877 631 if (attr->ia_valid & ATTR_MODE)
1c7c474c 632 error = generic_acl_chmod(inode);
39f0247d 633#endif
1da177e4
LT
634 return error;
635}
636
1f895f75 637static void shmem_evict_inode(struct inode *inode)
1da177e4 638{
1da177e4
LT
639 struct shmem_inode_info *info = SHMEM_I(inode);
640
3889e6e7 641 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
642 shmem_unacct_size(info->flags, inode->i_size);
643 inode->i_size = 0;
3889e6e7 644 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 645 if (!list_empty(&info->swaplist)) {
cb5f7b9a 646 mutex_lock(&shmem_swaplist_mutex);
1da177e4 647 list_del_init(&info->swaplist);
cb5f7b9a 648 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 649 }
69f07ec9
HD
650 } else
651 kfree(info->symlink);
b09e0fa4 652
38f38657 653 simple_xattrs_free(&info->xattrs);
0f3c42f5 654 WARN_ON(inode->i_blocks);
5b04c689 655 shmem_free_inode(inode->i_sb);
dbd5768f 656 clear_inode(inode);
1da177e4
LT
657}
658
46f65ec1
HD
659/*
660 * If swap found in inode, free it and move page from swapcache to filecache.
661 */
41ffe5d5 662static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 663 swp_entry_t swap, struct page **pagep)
1da177e4 664{
285b2c4f 665 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 666 void *radswap;
41ffe5d5 667 pgoff_t index;
bde05d1c
HD
668 gfp_t gfp;
669 int error = 0;
1da177e4 670
46f65ec1 671 radswap = swp_to_radix_entry(swap);
e504f3fd 672 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 673 if (index == -1)
285b2c4f 674 return 0;
2e0e26c7 675
1b1b32f2
HD
676 /*
677 * Move _head_ to start search for next from here.
1f895f75 678 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 679 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 680 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
681 */
682 if (shmem_swaplist.next != &info->swaplist)
683 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 684
bde05d1c
HD
685 gfp = mapping_gfp_mask(mapping);
686 if (shmem_should_replace_page(*pagep, gfp)) {
687 mutex_unlock(&shmem_swaplist_mutex);
688 error = shmem_replace_page(pagep, gfp, info, index);
689 mutex_lock(&shmem_swaplist_mutex);
690 /*
691 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
692 * allocation, but the inode might have been freed while we
693 * dropped it: although a racing shmem_evict_inode() cannot
694 * complete without emptying the radix_tree, our page lock
695 * on this swapcache page is not enough to prevent that -
696 * free_swap_and_cache() of our swap entry will only
697 * trylock_page(), removing swap from radix_tree whatever.
698 *
699 * We must not proceed to shmem_add_to_page_cache() if the
700 * inode has been freed, but of course we cannot rely on
701 * inode or mapping or info to check that. However, we can
702 * safely check if our swap entry is still in use (and here
703 * it can't have got reused for another page): if it's still
704 * in use, then the inode cannot have been freed yet, and we
705 * can safely proceed (if it's no longer in use, that tells
706 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
707 */
708 if (!page_swapcount(*pagep))
709 error = -ENOENT;
710 }
711
d13d1443 712 /*
778dd893
HD
713 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
714 * but also to hold up shmem_evict_inode(): so inode cannot be freed
715 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 716 */
bde05d1c
HD
717 if (!error)
718 error = shmem_add_to_page_cache(*pagep, mapping, index,
46f65ec1 719 GFP_NOWAIT, radswap);
48f170fb 720 if (error != -ENOMEM) {
46f65ec1
HD
721 /*
722 * Truncation and eviction use free_swap_and_cache(), which
723 * only does trylock page: if we raced, best clean up here.
724 */
bde05d1c
HD
725 delete_from_swap_cache(*pagep);
726 set_page_dirty(*pagep);
46f65ec1
HD
727 if (!error) {
728 spin_lock(&info->lock);
729 info->swapped--;
730 spin_unlock(&info->lock);
731 swap_free(swap);
732 }
2e0e26c7 733 error = 1; /* not an error, but entry was found */
1da177e4 734 }
2e0e26c7 735 return error;
1da177e4
LT
736}
737
738/*
46f65ec1 739 * Search through swapped inodes to find and replace swap by page.
1da177e4 740 */
41ffe5d5 741int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 742{
41ffe5d5 743 struct list_head *this, *next;
1da177e4
LT
744 struct shmem_inode_info *info;
745 int found = 0;
bde05d1c
HD
746 int error = 0;
747
748 /*
749 * There's a faint possibility that swap page was replaced before
0142ef6c 750 * caller locked it: caller will come back later with the right page.
bde05d1c 751 */
0142ef6c 752 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 753 goto out;
778dd893
HD
754
755 /*
756 * Charge page using GFP_KERNEL while we can wait, before taking
757 * the shmem_swaplist_mutex which might hold up shmem_writepage().
758 * Charged back to the user (not to caller) when swap account is used.
778dd893
HD
759 */
760 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
761 if (error)
762 goto out;
46f65ec1 763 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1da177e4 764
cb5f7b9a 765 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
766 list_for_each_safe(this, next, &shmem_swaplist) {
767 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 768 if (info->swapped)
bde05d1c 769 found = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
770 else
771 list_del_init(&info->swaplist);
cb5f7b9a 772 cond_resched();
2e0e26c7 773 if (found)
778dd893 774 break;
1da177e4 775 }
cb5f7b9a 776 mutex_unlock(&shmem_swaplist_mutex);
778dd893 777
778dd893
HD
778 if (found < 0)
779 error = found;
780out:
aaa46865
HD
781 unlock_page(page);
782 page_cache_release(page);
778dd893 783 return error;
1da177e4
LT
784}
785
786/*
787 * Move the page from the page cache to the swap cache.
788 */
789static int shmem_writepage(struct page *page, struct writeback_control *wbc)
790{
791 struct shmem_inode_info *info;
1da177e4 792 struct address_space *mapping;
1da177e4 793 struct inode *inode;
6922c0c7
HD
794 swp_entry_t swap;
795 pgoff_t index;
1da177e4
LT
796
797 BUG_ON(!PageLocked(page));
1da177e4
LT
798 mapping = page->mapping;
799 index = page->index;
800 inode = mapping->host;
801 info = SHMEM_I(inode);
802 if (info->flags & VM_LOCKED)
803 goto redirty;
d9fe526a 804 if (!total_swap_pages)
1da177e4
LT
805 goto redirty;
806
d9fe526a
HD
807 /*
808 * shmem_backing_dev_info's capabilities prevent regular writeback or
809 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 810 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 811 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 812 * and not for the writeback threads or sync.
d9fe526a 813 */
48f170fb
HD
814 if (!wbc->for_reclaim) {
815 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
816 goto redirty;
817 }
1635f6a7
HD
818
819 /*
820 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
821 * value into swapfile.c, the only way we can correctly account for a
822 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
823 *
824 * That's okay for a page already fallocated earlier, but if we have
825 * not yet completed the fallocation, then (a) we want to keep track
826 * of this page in case we have to undo it, and (b) it may not be a
827 * good idea to continue anyway, once we're pushing into swap. So
828 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
829 */
830 if (!PageUptodate(page)) {
1aac1400
HD
831 if (inode->i_private) {
832 struct shmem_falloc *shmem_falloc;
833 spin_lock(&inode->i_lock);
834 shmem_falloc = inode->i_private;
835 if (shmem_falloc &&
887675c9 836 !shmem_falloc->waitq &&
1aac1400
HD
837 index >= shmem_falloc->start &&
838 index < shmem_falloc->next)
839 shmem_falloc->nr_unswapped++;
840 else
841 shmem_falloc = NULL;
842 spin_unlock(&inode->i_lock);
843 if (shmem_falloc)
844 goto redirty;
845 }
1635f6a7
HD
846 clear_highpage(page);
847 flush_dcache_page(page);
848 SetPageUptodate(page);
849 }
850
48f170fb
HD
851 swap = get_swap_page();
852 if (!swap.val)
853 goto redirty;
d9fe526a 854
b1dea800
HD
855 /*
856 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
857 * if it's not already there. Do it now before the page is
858 * moved to swap cache, when its pagelock no longer protects
b1dea800 859 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
860 * we've incremented swapped, because shmem_unuse_inode() will
861 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 862 */
48f170fb
HD
863 mutex_lock(&shmem_swaplist_mutex);
864 if (list_empty(&info->swaplist))
865 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 866
48f170fb 867 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 868 swap_shmem_alloc(swap);
6922c0c7
HD
869 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
870
871 spin_lock(&info->lock);
872 info->swapped++;
873 shmem_recalc_inode(inode);
826267cf 874 spin_unlock(&info->lock);
6922c0c7
HD
875
876 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 877 BUG_ON(page_mapped(page));
9fab5619 878 swap_writepage(page, wbc);
1da177e4
LT
879 return 0;
880 }
881
6922c0c7 882 mutex_unlock(&shmem_swaplist_mutex);
cb4b86ba 883 swapcache_free(swap, NULL);
1da177e4
LT
884redirty:
885 set_page_dirty(page);
d9fe526a
HD
886 if (wbc->for_reclaim)
887 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
888 unlock_page(page);
889 return 0;
1da177e4
LT
890}
891
892#ifdef CONFIG_NUMA
680d794b 893#ifdef CONFIG_TMPFS
71fe804b 894static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 895{
095f1fc4 896 char buffer[64];
680d794b 897
71fe804b 898 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 899 return; /* show nothing */
680d794b 900
a7a88b23 901 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
902
903 seq_printf(seq, ",mpol=%s", buffer);
680d794b 904}
71fe804b
LS
905
906static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907{
908 struct mempolicy *mpol = NULL;
909 if (sbinfo->mpol) {
910 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
911 mpol = sbinfo->mpol;
912 mpol_get(mpol);
913 spin_unlock(&sbinfo->stat_lock);
914 }
915 return mpol;
916}
680d794b 917#endif /* CONFIG_TMPFS */
918
41ffe5d5
HD
919static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
920 struct shmem_inode_info *info, pgoff_t index)
1da177e4 921{
1da177e4 922 struct vm_area_struct pvma;
18a2f371 923 struct page *page;
52cd3b07 924
1da177e4 925 /* Create a pseudo vma that just contains the policy */
c4cc6d07 926 pvma.vm_start = 0;
09c231cb
NZ
927 /* Bias interleave by inode number to distribute better across nodes */
928 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 929 pvma.vm_ops = NULL;
18a2f371
MG
930 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
931
932 page = swapin_readahead(swap, gfp, &pvma, 0);
933
934 /* Drop reference taken by mpol_shared_policy_lookup() */
935 mpol_cond_put(pvma.vm_policy);
936
937 return page;
1da177e4
LT
938}
939
02098fea 940static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 941 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
942{
943 struct vm_area_struct pvma;
18a2f371 944 struct page *page;
1da177e4 945
c4cc6d07
HD
946 /* Create a pseudo vma that just contains the policy */
947 pvma.vm_start = 0;
09c231cb
NZ
948 /* Bias interleave by inode number to distribute better across nodes */
949 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 950 pvma.vm_ops = NULL;
41ffe5d5 951 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 952
18a2f371
MG
953 page = alloc_page_vma(gfp, &pvma, 0);
954
955 /* Drop reference taken by mpol_shared_policy_lookup() */
956 mpol_cond_put(pvma.vm_policy);
957
958 return page;
1da177e4 959}
680d794b 960#else /* !CONFIG_NUMA */
961#ifdef CONFIG_TMPFS
41ffe5d5 962static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 963{
964}
965#endif /* CONFIG_TMPFS */
966
41ffe5d5
HD
967static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
968 struct shmem_inode_info *info, pgoff_t index)
1da177e4 969{
41ffe5d5 970 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
971}
972
02098fea 973static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 974 struct shmem_inode_info *info, pgoff_t index)
1da177e4 975{
e84e2e13 976 return alloc_page(gfp);
1da177e4 977}
680d794b 978#endif /* CONFIG_NUMA */
1da177e4 979
71fe804b
LS
980#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
981static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
982{
983 return NULL;
984}
985#endif
986
bde05d1c
HD
987/*
988 * When a page is moved from swapcache to shmem filecache (either by the
989 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
990 * shmem_unuse_inode()), it may have been read in earlier from swap, in
991 * ignorance of the mapping it belongs to. If that mapping has special
992 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
993 * we may need to copy to a suitable page before moving to filecache.
994 *
995 * In a future release, this may well be extended to respect cpuset and
996 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
997 * but for now it is a simple matter of zone.
998 */
999static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1000{
1001 return page_zonenum(page) > gfp_zone(gfp);
1002}
1003
1004static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1005 struct shmem_inode_info *info, pgoff_t index)
1006{
1007 struct page *oldpage, *newpage;
1008 struct address_space *swap_mapping;
1009 pgoff_t swap_index;
1010 int error;
1011
1012 oldpage = *pagep;
1013 swap_index = page_private(oldpage);
1014 swap_mapping = page_mapping(oldpage);
1015
1016 /*
1017 * We have arrived here because our zones are constrained, so don't
1018 * limit chance of success by further cpuset and node constraints.
1019 */
1020 gfp &= ~GFP_CONSTRAINT_MASK;
1021 newpage = shmem_alloc_page(gfp, info, index);
1022 if (!newpage)
1023 return -ENOMEM;
bde05d1c 1024
bde05d1c
HD
1025 page_cache_get(newpage);
1026 copy_highpage(newpage, oldpage);
0142ef6c 1027 flush_dcache_page(newpage);
bde05d1c 1028
bde05d1c 1029 __set_page_locked(newpage);
bde05d1c 1030 SetPageUptodate(newpage);
bde05d1c 1031 SetPageSwapBacked(newpage);
bde05d1c 1032 set_page_private(newpage, swap_index);
bde05d1c
HD
1033 SetPageSwapCache(newpage);
1034
1035 /*
1036 * Our caller will very soon move newpage out of swapcache, but it's
1037 * a nice clean interface for us to replace oldpage by newpage there.
1038 */
1039 spin_lock_irq(&swap_mapping->tree_lock);
1040 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1041 newpage);
0142ef6c
HD
1042 if (!error) {
1043 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1044 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1045 }
bde05d1c 1046 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1047
0142ef6c
HD
1048 if (unlikely(error)) {
1049 /*
1050 * Is this possible? I think not, now that our callers check
1051 * both PageSwapCache and page_private after getting page lock;
1052 * but be defensive. Reverse old to newpage for clear and free.
1053 */
1054 oldpage = newpage;
1055 } else {
1056 mem_cgroup_replace_page_cache(oldpage, newpage);
1057 lru_cache_add_anon(newpage);
1058 *pagep = newpage;
1059 }
bde05d1c
HD
1060
1061 ClearPageSwapCache(oldpage);
1062 set_page_private(oldpage, 0);
1063
1064 unlock_page(oldpage);
1065 page_cache_release(oldpage);
1066 page_cache_release(oldpage);
0142ef6c 1067 return error;
bde05d1c
HD
1068}
1069
1da177e4 1070/*
68da9f05 1071 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1072 *
1073 * If we allocate a new one we do not mark it dirty. That's up to the
1074 * vm. If we swap it in we mark it dirty since we also free the swap
1075 * entry since a page cannot live in both the swap and page cache
1076 */
41ffe5d5 1077static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1078 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1079{
1080 struct address_space *mapping = inode->i_mapping;
54af6042 1081 struct shmem_inode_info *info;
1da177e4 1082 struct shmem_sb_info *sbinfo;
27ab7006 1083 struct page *page;
1da177e4
LT
1084 swp_entry_t swap;
1085 int error;
54af6042 1086 int once = 0;
1635f6a7 1087 int alloced = 0;
1da177e4 1088
41ffe5d5 1089 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1090 return -EFBIG;
1da177e4 1091repeat:
54af6042 1092 swap.val = 0;
41ffe5d5 1093 page = find_lock_page(mapping, index);
54af6042
HD
1094 if (radix_tree_exceptional_entry(page)) {
1095 swap = radix_to_swp_entry(page);
1096 page = NULL;
1097 }
1098
1635f6a7 1099 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1100 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1101 error = -EINVAL;
1102 goto failed;
1103 }
1104
1635f6a7
HD
1105 /* fallocated page? */
1106 if (page && !PageUptodate(page)) {
1107 if (sgp != SGP_READ)
1108 goto clear;
1109 unlock_page(page);
1110 page_cache_release(page);
1111 page = NULL;
1112 }
54af6042 1113 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1114 *pagep = page;
1115 return 0;
27ab7006
HD
1116 }
1117
1118 /*
54af6042
HD
1119 * Fast cache lookup did not find it:
1120 * bring it back from swap or allocate.
27ab7006 1121 */
54af6042
HD
1122 info = SHMEM_I(inode);
1123 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1124
1da177e4
LT
1125 if (swap.val) {
1126 /* Look it up and read it in.. */
27ab7006
HD
1127 page = lookup_swap_cache(swap);
1128 if (!page) {
1da177e4 1129 /* here we actually do the io */
68da9f05
HD
1130 if (fault_type)
1131 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1132 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1133 if (!page) {
54af6042
HD
1134 error = -ENOMEM;
1135 goto failed;
1da177e4 1136 }
1da177e4
LT
1137 }
1138
1139 /* We have to do this with page locked to prevent races */
54af6042 1140 lock_page(page);
0142ef6c 1141 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1142 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1143 error = -EEXIST; /* try again */
d1899228 1144 goto unlock;
bde05d1c 1145 }
27ab7006 1146 if (!PageUptodate(page)) {
1da177e4 1147 error = -EIO;
54af6042 1148 goto failed;
1da177e4 1149 }
54af6042
HD
1150 wait_on_page_writeback(page);
1151
bde05d1c
HD
1152 if (shmem_should_replace_page(page, gfp)) {
1153 error = shmem_replace_page(&page, gfp, info, index);
1154 if (error)
1155 goto failed;
1da177e4 1156 }
27ab7006 1157
aa3b1895
HD
1158 error = mem_cgroup_cache_charge(page, current->mm,
1159 gfp & GFP_RECLAIM_MASK);
d1899228 1160 if (!error) {
aa3b1895
HD
1161 error = shmem_add_to_page_cache(page, mapping, index,
1162 gfp, swp_to_radix_entry(swap));
215c02bc
HD
1163 /*
1164 * We already confirmed swap under page lock, and make
1165 * no memory allocation here, so usually no possibility
1166 * of error; but free_swap_and_cache() only trylocks a
1167 * page, so it is just possible that the entry has been
1168 * truncated or holepunched since swap was confirmed.
1169 * shmem_undo_range() will have done some of the
1170 * unaccounting, now delete_from_swap_cache() will do
1171 * the rest (including mem_cgroup_uncharge_swapcache).
1172 * Reset swap.val? No, leave it so "failed" goes back to
1173 * "repeat": reading a hole and writing should succeed.
1174 */
1175 if (error)
1176 delete_from_swap_cache(page);
d1899228 1177 }
54af6042
HD
1178 if (error)
1179 goto failed;
1180
1181 spin_lock(&info->lock);
285b2c4f 1182 info->swapped--;
54af6042 1183 shmem_recalc_inode(inode);
27ab7006 1184 spin_unlock(&info->lock);
54af6042
HD
1185
1186 delete_from_swap_cache(page);
27ab7006
HD
1187 set_page_dirty(page);
1188 swap_free(swap);
1189
54af6042
HD
1190 } else {
1191 if (shmem_acct_block(info->flags)) {
1192 error = -ENOSPC;
1193 goto failed;
1da177e4 1194 }
0edd73b3 1195 if (sbinfo->max_blocks) {
fc5da22a 1196 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1197 sbinfo->max_blocks) >= 0) {
1198 error = -ENOSPC;
1199 goto unacct;
1200 }
7e496299 1201 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1202 }
1da177e4 1203
54af6042
HD
1204 page = shmem_alloc_page(gfp, info, index);
1205 if (!page) {
1206 error = -ENOMEM;
1207 goto decused;
1da177e4
LT
1208 }
1209
54af6042
HD
1210 SetPageSwapBacked(page);
1211 __set_page_locked(page);
aa3b1895
HD
1212 error = mem_cgroup_cache_charge(page, current->mm,
1213 gfp & GFP_RECLAIM_MASK);
54af6042
HD
1214 if (error)
1215 goto decused;
b065b432
HD
1216 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1217 if (!error) {
1218 error = shmem_add_to_page_cache(page, mapping, index,
1219 gfp, NULL);
1220 radix_tree_preload_end();
1221 }
1222 if (error) {
1223 mem_cgroup_uncharge_cache_page(page);
1224 goto decused;
1225 }
54af6042
HD
1226 lru_cache_add_anon(page);
1227
1228 spin_lock(&info->lock);
1da177e4 1229 info->alloced++;
54af6042
HD
1230 inode->i_blocks += BLOCKS_PER_PAGE;
1231 shmem_recalc_inode(inode);
1da177e4 1232 spin_unlock(&info->lock);
1635f6a7 1233 alloced = true;
54af6042 1234
ec9516fb 1235 /*
1635f6a7
HD
1236 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1237 */
1238 if (sgp == SGP_FALLOC)
1239 sgp = SGP_WRITE;
1240clear:
1241 /*
1242 * Let SGP_WRITE caller clear ends if write does not fill page;
1243 * but SGP_FALLOC on a page fallocated earlier must initialize
1244 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1245 */
1246 if (sgp != SGP_WRITE) {
1247 clear_highpage(page);
1248 flush_dcache_page(page);
1249 SetPageUptodate(page);
1250 }
a0ee5ec5 1251 if (sgp == SGP_DIRTY)
27ab7006 1252 set_page_dirty(page);
1da177e4 1253 }
bde05d1c 1254
54af6042 1255 /* Perhaps the file has been truncated since we checked */
1635f6a7 1256 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1257 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1258 error = -EINVAL;
1635f6a7
HD
1259 if (alloced)
1260 goto trunc;
1261 else
1262 goto failed;
e83c32e8 1263 }
54af6042
HD
1264 *pagep = page;
1265 return 0;
1da177e4 1266
59a16ead 1267 /*
54af6042 1268 * Error recovery.
59a16ead 1269 */
54af6042 1270trunc:
1635f6a7 1271 info = SHMEM_I(inode);
54af6042
HD
1272 ClearPageDirty(page);
1273 delete_from_page_cache(page);
1274 spin_lock(&info->lock);
1275 info->alloced--;
1276 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1277 spin_unlock(&info->lock);
54af6042 1278decused:
1635f6a7 1279 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1280 if (sbinfo->max_blocks)
1281 percpu_counter_add(&sbinfo->used_blocks, -1);
1282unacct:
1283 shmem_unacct_blocks(info->flags, 1);
1284failed:
d1899228
HD
1285 if (swap.val && error != -EINVAL &&
1286 !shmem_confirm_swap(mapping, index, swap))
1287 error = -EEXIST;
1288unlock:
27ab7006 1289 if (page) {
54af6042 1290 unlock_page(page);
27ab7006 1291 page_cache_release(page);
54af6042
HD
1292 }
1293 if (error == -ENOSPC && !once++) {
1294 info = SHMEM_I(inode);
1295 spin_lock(&info->lock);
1296 shmem_recalc_inode(inode);
1297 spin_unlock(&info->lock);
27ab7006 1298 goto repeat;
ff36b801 1299 }
d1899228 1300 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1301 goto repeat;
1302 return error;
1da177e4
LT
1303}
1304
d0217ac0 1305static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1306{
496ad9aa 1307 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1308 int error;
68da9f05 1309 int ret = VM_FAULT_LOCKED;
1da177e4 1310
1ccc3ffa
HD
1311 /*
1312 * Trinity finds that probing a hole which tmpfs is punching can
1313 * prevent the hole-punch from ever completing: which in turn
1314 * locks writers out with its hold on i_mutex. So refrain from
887675c9
HD
1315 * faulting pages into the hole while it's being punched. Although
1316 * shmem_undo_range() does remove the additions, it may be unable to
1317 * keep up, as each new page needs its own unmap_mapping_range() call,
1318 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1319 *
1320 * It does not matter if we sometimes reach this check just before the
1321 * hole-punch begins, so that one fault then races with the punch:
1322 * we just need to make racing faults a rare case.
1323 *
1324 * The implementation below would be much simpler if we just used a
1325 * standard mutex or completion: but we cannot take i_mutex in fault,
1326 * and bloating every shmem inode for this unlikely case would be sad.
1ccc3ffa
HD
1327 */
1328 if (unlikely(inode->i_private)) {
1329 struct shmem_falloc *shmem_falloc;
1330
1331 spin_lock(&inode->i_lock);
1332 shmem_falloc = inode->i_private;
887675c9
HD
1333 if (shmem_falloc &&
1334 shmem_falloc->waitq &&
1335 vmf->pgoff >= shmem_falloc->start &&
1336 vmf->pgoff < shmem_falloc->next) {
1337 wait_queue_head_t *shmem_falloc_waitq;
1338 DEFINE_WAIT(shmem_fault_wait);
1339
1340 ret = VM_FAULT_NOPAGE;
1ccc3ffa
HD
1341 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1342 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
887675c9 1343 /* It's polite to up mmap_sem if we can */
1ccc3ffa 1344 up_read(&vma->vm_mm->mmap_sem);
887675c9 1345 ret = VM_FAULT_RETRY;
1ccc3ffa 1346 }
887675c9
HD
1347
1348 shmem_falloc_waitq = shmem_falloc->waitq;
1349 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1350 TASK_UNINTERRUPTIBLE);
1351 spin_unlock(&inode->i_lock);
1352 schedule();
1353
1354 /*
1355 * shmem_falloc_waitq points into the shmem_fallocate()
1356 * stack of the hole-punching task: shmem_falloc_waitq
1357 * is usually invalid by the time we reach here, but
1358 * finish_wait() does not dereference it in that case;
1359 * though i_lock needed lest racing with wake_up_all().
1360 */
1361 spin_lock(&inode->i_lock);
1362 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1363 spin_unlock(&inode->i_lock);
1364 return ret;
1ccc3ffa 1365 }
887675c9 1366 spin_unlock(&inode->i_lock);
1ccc3ffa
HD
1367 }
1368
27d54b39 1369 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1370 if (error)
1371 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1372
456f998e
YH
1373 if (ret & VM_FAULT_MAJOR) {
1374 count_vm_event(PGMAJFAULT);
1375 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1376 }
68da9f05 1377 return ret;
1da177e4
LT
1378}
1379
1da177e4 1380#ifdef CONFIG_NUMA
41ffe5d5 1381static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1382{
496ad9aa 1383 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1384 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1385}
1386
d8dc74f2
AB
1387static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1388 unsigned long addr)
1da177e4 1389{
496ad9aa 1390 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1391 pgoff_t index;
1da177e4 1392
41ffe5d5
HD
1393 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1394 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1395}
1396#endif
1397
1398int shmem_lock(struct file *file, int lock, struct user_struct *user)
1399{
496ad9aa 1400 struct inode *inode = file_inode(file);
1da177e4
LT
1401 struct shmem_inode_info *info = SHMEM_I(inode);
1402 int retval = -ENOMEM;
1403
1404 spin_lock(&info->lock);
1405 if (lock && !(info->flags & VM_LOCKED)) {
1406 if (!user_shm_lock(inode->i_size, user))
1407 goto out_nomem;
1408 info->flags |= VM_LOCKED;
89e004ea 1409 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1410 }
1411 if (!lock && (info->flags & VM_LOCKED) && user) {
1412 user_shm_unlock(inode->i_size, user);
1413 info->flags &= ~VM_LOCKED;
89e004ea 1414 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1415 }
1416 retval = 0;
89e004ea 1417
1da177e4
LT
1418out_nomem:
1419 spin_unlock(&info->lock);
1420 return retval;
1421}
1422
9b83a6a8 1423static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1424{
1425 file_accessed(file);
1426 vma->vm_ops = &shmem_vm_ops;
1427 return 0;
1428}
1429
454abafe 1430static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1431 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1432{
1433 struct inode *inode;
1434 struct shmem_inode_info *info;
1435 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1436
5b04c689
PE
1437 if (shmem_reserve_inode(sb))
1438 return NULL;
1da177e4
LT
1439
1440 inode = new_inode(sb);
1441 if (inode) {
85fe4025 1442 inode->i_ino = get_next_ino();
454abafe 1443 inode_init_owner(inode, dir, mode);
1da177e4 1444 inode->i_blocks = 0;
1da177e4
LT
1445 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1446 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1447 inode->i_generation = get_seconds();
1da177e4
LT
1448 info = SHMEM_I(inode);
1449 memset(info, 0, (char *)inode - (char *)info);
1450 spin_lock_init(&info->lock);
0b0a0806 1451 info->flags = flags & VM_NORESERVE;
1da177e4 1452 INIT_LIST_HEAD(&info->swaplist);
38f38657 1453 simple_xattrs_init(&info->xattrs);
72c04902 1454 cache_no_acl(inode);
1da177e4
LT
1455
1456 switch (mode & S_IFMT) {
1457 default:
39f0247d 1458 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1459 init_special_inode(inode, mode, dev);
1460 break;
1461 case S_IFREG:
14fcc23f 1462 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1463 inode->i_op = &shmem_inode_operations;
1464 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1465 mpol_shared_policy_init(&info->policy,
1466 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1467 break;
1468 case S_IFDIR:
d8c76e6f 1469 inc_nlink(inode);
1da177e4
LT
1470 /* Some things misbehave if size == 0 on a directory */
1471 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1472 inode->i_op = &shmem_dir_inode_operations;
1473 inode->i_fop = &simple_dir_operations;
1474 break;
1475 case S_IFLNK:
1476 /*
1477 * Must not load anything in the rbtree,
1478 * mpol_free_shared_policy will not be called.
1479 */
71fe804b 1480 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1481 break;
1482 }
5b04c689
PE
1483 } else
1484 shmem_free_inode(sb);
1da177e4
LT
1485 return inode;
1486}
1487
1488#ifdef CONFIG_TMPFS
92e1d5be 1489static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1490static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1491
6d9d88d0
JS
1492#ifdef CONFIG_TMPFS_XATTR
1493static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1494#else
1495#define shmem_initxattrs NULL
1496#endif
1497
1da177e4 1498static int
800d15a5
NP
1499shmem_write_begin(struct file *file, struct address_space *mapping,
1500 loff_t pos, unsigned len, unsigned flags,
1501 struct page **pagep, void **fsdata)
1da177e4 1502{
800d15a5
NP
1503 struct inode *inode = mapping->host;
1504 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
800d15a5
NP
1505 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1506}
1507
1508static int
1509shmem_write_end(struct file *file, struct address_space *mapping,
1510 loff_t pos, unsigned len, unsigned copied,
1511 struct page *page, void *fsdata)
1512{
1513 struct inode *inode = mapping->host;
1514
d3602444
HD
1515 if (pos + copied > inode->i_size)
1516 i_size_write(inode, pos + copied);
1517
ec9516fb
HD
1518 if (!PageUptodate(page)) {
1519 if (copied < PAGE_CACHE_SIZE) {
1520 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1521 zero_user_segments(page, 0, from,
1522 from + copied, PAGE_CACHE_SIZE);
1523 }
1524 SetPageUptodate(page);
1525 }
800d15a5 1526 set_page_dirty(page);
6746aff7 1527 unlock_page(page);
800d15a5
NP
1528 page_cache_release(page);
1529
800d15a5 1530 return copied;
1da177e4
LT
1531}
1532
1da177e4
LT
1533static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1534{
496ad9aa 1535 struct inode *inode = file_inode(filp);
1da177e4 1536 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1537 pgoff_t index;
1538 unsigned long offset;
a0ee5ec5
HD
1539 enum sgp_type sgp = SGP_READ;
1540
1541 /*
1542 * Might this read be for a stacking filesystem? Then when reading
1543 * holes of a sparse file, we actually need to allocate those pages,
1544 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1545 */
1546 if (segment_eq(get_fs(), KERNEL_DS))
1547 sgp = SGP_DIRTY;
1da177e4
LT
1548
1549 index = *ppos >> PAGE_CACHE_SHIFT;
1550 offset = *ppos & ~PAGE_CACHE_MASK;
1551
1552 for (;;) {
1553 struct page *page = NULL;
41ffe5d5
HD
1554 pgoff_t end_index;
1555 unsigned long nr, ret;
1da177e4
LT
1556 loff_t i_size = i_size_read(inode);
1557
1558 end_index = i_size >> PAGE_CACHE_SHIFT;
1559 if (index > end_index)
1560 break;
1561 if (index == end_index) {
1562 nr = i_size & ~PAGE_CACHE_MASK;
1563 if (nr <= offset)
1564 break;
1565 }
1566
a0ee5ec5 1567 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1da177e4
LT
1568 if (desc->error) {
1569 if (desc->error == -EINVAL)
1570 desc->error = 0;
1571 break;
1572 }
d3602444
HD
1573 if (page)
1574 unlock_page(page);
1da177e4
LT
1575
1576 /*
1577 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1578 * are called without i_mutex protection against truncate
1da177e4
LT
1579 */
1580 nr = PAGE_CACHE_SIZE;
1581 i_size = i_size_read(inode);
1582 end_index = i_size >> PAGE_CACHE_SHIFT;
1583 if (index == end_index) {
1584 nr = i_size & ~PAGE_CACHE_MASK;
1585 if (nr <= offset) {
1586 if (page)
1587 page_cache_release(page);
1588 break;
1589 }
1590 }
1591 nr -= offset;
1592
1593 if (page) {
1594 /*
1595 * If users can be writing to this page using arbitrary
1596 * virtual addresses, take care about potential aliasing
1597 * before reading the page on the kernel side.
1598 */
1599 if (mapping_writably_mapped(mapping))
1600 flush_dcache_page(page);
1601 /*
1602 * Mark the page accessed if we read the beginning.
1603 */
1604 if (!offset)
1605 mark_page_accessed(page);
b5810039 1606 } else {
1da177e4 1607 page = ZERO_PAGE(0);
b5810039
NP
1608 page_cache_get(page);
1609 }
1da177e4
LT
1610
1611 /*
1612 * Ok, we have the page, and it's up-to-date, so
1613 * now we can copy it to user space...
1614 *
1615 * The actor routine returns how many bytes were actually used..
1616 * NOTE! This may not be the same as how much of a user buffer
1617 * we filled up (we may be padding etc), so we can only update
1618 * "pos" here (the actor routine has to update the user buffer
1619 * pointers and the remaining count).
1620 */
1621 ret = actor(desc, page, offset, nr);
1622 offset += ret;
1623 index += offset >> PAGE_CACHE_SHIFT;
1624 offset &= ~PAGE_CACHE_MASK;
1625
1626 page_cache_release(page);
1627 if (ret != nr || !desc->count)
1628 break;
1629
1630 cond_resched();
1631 }
1632
1633 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1634 file_accessed(filp);
1635}
1636
bcd78e49
HD
1637static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1638 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1639{
1640 struct file *filp = iocb->ki_filp;
1641 ssize_t retval;
1642 unsigned long seg;
1643 size_t count;
1644 loff_t *ppos = &iocb->ki_pos;
1645
1646 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1647 if (retval)
1648 return retval;
1649
1650 for (seg = 0; seg < nr_segs; seg++) {
1651 read_descriptor_t desc;
1652
1653 desc.written = 0;
1654 desc.arg.buf = iov[seg].iov_base;
1655 desc.count = iov[seg].iov_len;
1656 if (desc.count == 0)
1657 continue;
1658 desc.error = 0;
1659 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1660 retval += desc.written;
1661 if (desc.error) {
1662 retval = retval ?: desc.error;
1663 break;
1664 }
1665 if (desc.count > 0)
1666 break;
1667 }
1668 return retval;
1da177e4
LT
1669}
1670
708e3508
HD
1671static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1672 struct pipe_inode_info *pipe, size_t len,
1673 unsigned int flags)
1674{
1675 struct address_space *mapping = in->f_mapping;
71f0e07a 1676 struct inode *inode = mapping->host;
708e3508
HD
1677 unsigned int loff, nr_pages, req_pages;
1678 struct page *pages[PIPE_DEF_BUFFERS];
1679 struct partial_page partial[PIPE_DEF_BUFFERS];
1680 struct page *page;
1681 pgoff_t index, end_index;
1682 loff_t isize, left;
1683 int error, page_nr;
1684 struct splice_pipe_desc spd = {
1685 .pages = pages,
1686 .partial = partial,
047fe360 1687 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1688 .flags = flags,
1689 .ops = &page_cache_pipe_buf_ops,
1690 .spd_release = spd_release_page,
1691 };
1692
71f0e07a 1693 isize = i_size_read(inode);
708e3508
HD
1694 if (unlikely(*ppos >= isize))
1695 return 0;
1696
1697 left = isize - *ppos;
1698 if (unlikely(left < len))
1699 len = left;
1700
1701 if (splice_grow_spd(pipe, &spd))
1702 return -ENOMEM;
1703
1704 index = *ppos >> PAGE_CACHE_SHIFT;
1705 loff = *ppos & ~PAGE_CACHE_MASK;
1706 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1707 nr_pages = min(req_pages, pipe->buffers);
1708
708e3508
HD
1709 spd.nr_pages = find_get_pages_contig(mapping, index,
1710 nr_pages, spd.pages);
1711 index += spd.nr_pages;
708e3508 1712 error = 0;
708e3508 1713
71f0e07a 1714 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1715 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1716 if (error)
1717 break;
1718 unlock_page(page);
708e3508
HD
1719 spd.pages[spd.nr_pages++] = page;
1720 index++;
1721 }
1722
708e3508
HD
1723 index = *ppos >> PAGE_CACHE_SHIFT;
1724 nr_pages = spd.nr_pages;
1725 spd.nr_pages = 0;
71f0e07a 1726
708e3508
HD
1727 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1728 unsigned int this_len;
1729
1730 if (!len)
1731 break;
1732
708e3508
HD
1733 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1734 page = spd.pages[page_nr];
1735
71f0e07a 1736 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1737 error = shmem_getpage(inode, index, &page,
1738 SGP_CACHE, NULL);
1739 if (error)
708e3508 1740 break;
71f0e07a
HD
1741 unlock_page(page);
1742 page_cache_release(spd.pages[page_nr]);
1743 spd.pages[page_nr] = page;
708e3508 1744 }
71f0e07a
HD
1745
1746 isize = i_size_read(inode);
708e3508
HD
1747 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1748 if (unlikely(!isize || index > end_index))
1749 break;
1750
708e3508
HD
1751 if (end_index == index) {
1752 unsigned int plen;
1753
708e3508
HD
1754 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1755 if (plen <= loff)
1756 break;
1757
708e3508
HD
1758 this_len = min(this_len, plen - loff);
1759 len = this_len;
1760 }
1761
1762 spd.partial[page_nr].offset = loff;
1763 spd.partial[page_nr].len = this_len;
1764 len -= this_len;
1765 loff = 0;
1766 spd.nr_pages++;
1767 index++;
1768 }
1769
708e3508
HD
1770 while (page_nr < nr_pages)
1771 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1772
1773 if (spd.nr_pages)
1774 error = splice_to_pipe(pipe, &spd);
1775
047fe360 1776 splice_shrink_spd(&spd);
708e3508
HD
1777
1778 if (error > 0) {
1779 *ppos += error;
1780 file_accessed(in);
1781 }
1782 return error;
1783}
1784
220f2ac9
HD
1785/*
1786 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1787 */
1788static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1789 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1790{
1791 struct page *page;
1792 struct pagevec pvec;
1793 pgoff_t indices[PAGEVEC_SIZE];
1794 bool done = false;
1795 int i;
1796
1797 pagevec_init(&pvec, 0);
1798 pvec.nr = 1; /* start small: we may be there already */
1799 while (!done) {
1800 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1801 pvec.nr, pvec.pages, indices);
1802 if (!pvec.nr) {
965c8e59 1803 if (whence == SEEK_DATA)
220f2ac9
HD
1804 index = end;
1805 break;
1806 }
1807 for (i = 0; i < pvec.nr; i++, index++) {
1808 if (index < indices[i]) {
965c8e59 1809 if (whence == SEEK_HOLE) {
220f2ac9
HD
1810 done = true;
1811 break;
1812 }
1813 index = indices[i];
1814 }
1815 page = pvec.pages[i];
1816 if (page && !radix_tree_exceptional_entry(page)) {
1817 if (!PageUptodate(page))
1818 page = NULL;
1819 }
1820 if (index >= end ||
965c8e59
AM
1821 (page && whence == SEEK_DATA) ||
1822 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1823 done = true;
1824 break;
1825 }
1826 }
1827 shmem_deswap_pagevec(&pvec);
1828 pagevec_release(&pvec);
1829 pvec.nr = PAGEVEC_SIZE;
1830 cond_resched();
1831 }
1832 return index;
1833}
1834
965c8e59 1835static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1836{
1837 struct address_space *mapping = file->f_mapping;
1838 struct inode *inode = mapping->host;
1839 pgoff_t start, end;
1840 loff_t new_offset;
1841
965c8e59
AM
1842 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1843 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1844 MAX_LFS_FILESIZE, i_size_read(inode));
1845 mutex_lock(&inode->i_mutex);
1846 /* We're holding i_mutex so we can access i_size directly */
1847
1848 if (offset < 0)
1849 offset = -EINVAL;
1850 else if (offset >= inode->i_size)
1851 offset = -ENXIO;
1852 else {
1853 start = offset >> PAGE_CACHE_SHIFT;
1854 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1855 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1856 new_offset <<= PAGE_CACHE_SHIFT;
1857 if (new_offset > offset) {
1858 if (new_offset < inode->i_size)
1859 offset = new_offset;
965c8e59 1860 else if (whence == SEEK_DATA)
220f2ac9
HD
1861 offset = -ENXIO;
1862 else
1863 offset = inode->i_size;
1864 }
1865 }
1866
1867 if (offset >= 0 && offset != file->f_pos) {
1868 file->f_pos = offset;
1869 file->f_version = 0;
1870 }
1871 mutex_unlock(&inode->i_mutex);
1872 return offset;
1873}
1874
83e4fa9c
HD
1875static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1876 loff_t len)
1877{
496ad9aa 1878 struct inode *inode = file_inode(file);
e2d12e22 1879 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1aac1400 1880 struct shmem_falloc shmem_falloc;
e2d12e22
HD
1881 pgoff_t start, index, end;
1882 int error;
83e4fa9c
HD
1883
1884 mutex_lock(&inode->i_mutex);
1885
1886 if (mode & FALLOC_FL_PUNCH_HOLE) {
1887 struct address_space *mapping = file->f_mapping;
1888 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1889 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
887675c9 1890 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 1891
887675c9 1892 shmem_falloc.waitq = &shmem_falloc_waitq;
1ccc3ffa
HD
1893 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1894 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1895 spin_lock(&inode->i_lock);
1896 inode->i_private = &shmem_falloc;
1897 spin_unlock(&inode->i_lock);
1898
83e4fa9c
HD
1899 if ((u64)unmap_end > (u64)unmap_start)
1900 unmap_mapping_range(mapping, unmap_start,
1901 1 + unmap_end - unmap_start, 0);
1902 shmem_truncate_range(inode, offset, offset + len - 1);
1903 /* No need to unmap again: hole-punching leaves COWed pages */
887675c9
HD
1904
1905 spin_lock(&inode->i_lock);
1906 inode->i_private = NULL;
1907 wake_up_all(&shmem_falloc_waitq);
1908 spin_unlock(&inode->i_lock);
83e4fa9c 1909 error = 0;
887675c9 1910 goto out;
e2d12e22
HD
1911 }
1912
1913 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1914 error = inode_newsize_ok(inode, offset + len);
1915 if (error)
1916 goto out;
1917
1918 start = offset >> PAGE_CACHE_SHIFT;
1919 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1920 /* Try to avoid a swapstorm if len is impossible to satisfy */
1921 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1922 error = -ENOSPC;
1923 goto out;
83e4fa9c
HD
1924 }
1925
887675c9 1926 shmem_falloc.waitq = NULL;
1aac1400
HD
1927 shmem_falloc.start = start;
1928 shmem_falloc.next = start;
1929 shmem_falloc.nr_falloced = 0;
1930 shmem_falloc.nr_unswapped = 0;
1931 spin_lock(&inode->i_lock);
1932 inode->i_private = &shmem_falloc;
1933 spin_unlock(&inode->i_lock);
1934
e2d12e22
HD
1935 for (index = start; index < end; index++) {
1936 struct page *page;
1937
1938 /*
1939 * Good, the fallocate(2) manpage permits EINTR: we may have
1940 * been interrupted because we are using up too much memory.
1941 */
1942 if (signal_pending(current))
1943 error = -EINTR;
1aac1400
HD
1944 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1945 error = -ENOMEM;
e2d12e22 1946 else
1635f6a7 1947 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
1948 NULL);
1949 if (error) {
1635f6a7 1950 /* Remove the !PageUptodate pages we added */
24fc11a9
HD
1951 if (index > start) {
1952 shmem_undo_range(inode,
1953 (loff_t)start << PAGE_CACHE_SHIFT,
1954 ((loff_t)index << PAGE_CACHE_SHIFT) - 1, true);
1955 }
1aac1400 1956 goto undone;
e2d12e22
HD
1957 }
1958
1aac1400
HD
1959 /*
1960 * Inform shmem_writepage() how far we have reached.
1961 * No need for lock or barrier: we have the page lock.
1962 */
1963 shmem_falloc.next++;
1964 if (!PageUptodate(page))
1965 shmem_falloc.nr_falloced++;
1966
e2d12e22 1967 /*
1635f6a7
HD
1968 * If !PageUptodate, leave it that way so that freeable pages
1969 * can be recognized if we need to rollback on error later.
1970 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
1971 * than free the pages we are allocating (and SGP_CACHE pages
1972 * might still be clean: we now need to mark those dirty too).
1973 */
1974 set_page_dirty(page);
1975 unlock_page(page);
1976 page_cache_release(page);
1977 cond_resched();
1978 }
1979
1980 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1981 i_size_write(inode, offset + len);
e2d12e22 1982 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
1983undone:
1984 spin_lock(&inode->i_lock);
1985 inode->i_private = NULL;
1986 spin_unlock(&inode->i_lock);
e2d12e22 1987out:
83e4fa9c
HD
1988 mutex_unlock(&inode->i_mutex);
1989 return error;
1990}
1991
726c3342 1992static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1993{
726c3342 1994 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1995
1996 buf->f_type = TMPFS_MAGIC;
1997 buf->f_bsize = PAGE_CACHE_SIZE;
1998 buf->f_namelen = NAME_MAX;
0edd73b3 1999 if (sbinfo->max_blocks) {
1da177e4 2000 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2001 buf->f_bavail =
2002 buf->f_bfree = sbinfo->max_blocks -
2003 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2004 }
2005 if (sbinfo->max_inodes) {
1da177e4
LT
2006 buf->f_files = sbinfo->max_inodes;
2007 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2008 }
2009 /* else leave those fields 0 like simple_statfs */
2010 return 0;
2011}
2012
2013/*
2014 * File creation. Allocate an inode, and we're done..
2015 */
2016static int
1a67aafb 2017shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2018{
0b0a0806 2019 struct inode *inode;
1da177e4
LT
2020 int error = -ENOSPC;
2021
454abafe 2022 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2023 if (inode) {
2a7dba39 2024 error = security_inode_init_security(inode, dir,
9d8f13ba 2025 &dentry->d_name,
6d9d88d0 2026 shmem_initxattrs, NULL);
570bc1c2
SS
2027 if (error) {
2028 if (error != -EOPNOTSUPP) {
2029 iput(inode);
2030 return error;
2031 }
39f0247d 2032 }
1c7c474c
CH
2033#ifdef CONFIG_TMPFS_POSIX_ACL
2034 error = generic_acl_init(inode, dir);
39f0247d
AG
2035 if (error) {
2036 iput(inode);
2037 return error;
570bc1c2 2038 }
718deb6b
AV
2039#else
2040 error = 0;
1c7c474c 2041#endif
1da177e4
LT
2042 dir->i_size += BOGO_DIRENT_SIZE;
2043 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2044 d_instantiate(dentry, inode);
2045 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2046 }
2047 return error;
2048}
2049
18bb1db3 2050static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2051{
2052 int error;
2053
2054 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2055 return error;
d8c76e6f 2056 inc_nlink(dir);
1da177e4
LT
2057 return 0;
2058}
2059
4acdaf27 2060static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2061 bool excl)
1da177e4
LT
2062{
2063 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2064}
2065
2066/*
2067 * Link a file..
2068 */
2069static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2070{
2071 struct inode *inode = old_dentry->d_inode;
5b04c689 2072 int ret;
1da177e4
LT
2073
2074 /*
2075 * No ordinary (disk based) filesystem counts links as inodes;
2076 * but each new link needs a new dentry, pinning lowmem, and
2077 * tmpfs dentries cannot be pruned until they are unlinked.
2078 */
5b04c689
PE
2079 ret = shmem_reserve_inode(inode->i_sb);
2080 if (ret)
2081 goto out;
1da177e4
LT
2082
2083 dir->i_size += BOGO_DIRENT_SIZE;
2084 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2085 inc_nlink(inode);
7de9c6ee 2086 ihold(inode); /* New dentry reference */
1da177e4
LT
2087 dget(dentry); /* Extra pinning count for the created dentry */
2088 d_instantiate(dentry, inode);
5b04c689
PE
2089out:
2090 return ret;
1da177e4
LT
2091}
2092
2093static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2094{
2095 struct inode *inode = dentry->d_inode;
2096
5b04c689
PE
2097 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2098 shmem_free_inode(inode->i_sb);
1da177e4
LT
2099
2100 dir->i_size -= BOGO_DIRENT_SIZE;
2101 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2102 drop_nlink(inode);
1da177e4
LT
2103 dput(dentry); /* Undo the count from "create" - this does all the work */
2104 return 0;
2105}
2106
2107static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2108{
2109 if (!simple_empty(dentry))
2110 return -ENOTEMPTY;
2111
9a53c3a7
DH
2112 drop_nlink(dentry->d_inode);
2113 drop_nlink(dir);
1da177e4
LT
2114 return shmem_unlink(dir, dentry);
2115}
2116
2117/*
2118 * The VFS layer already does all the dentry stuff for rename,
2119 * we just have to decrement the usage count for the target if
2120 * it exists so that the VFS layer correctly free's it when it
2121 * gets overwritten.
2122 */
2123static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2124{
2125 struct inode *inode = old_dentry->d_inode;
2126 int they_are_dirs = S_ISDIR(inode->i_mode);
2127
2128 if (!simple_empty(new_dentry))
2129 return -ENOTEMPTY;
2130
2131 if (new_dentry->d_inode) {
2132 (void) shmem_unlink(new_dir, new_dentry);
474740b9
MS
2133 if (they_are_dirs) {
2134 drop_nlink(new_dentry->d_inode);
9a53c3a7 2135 drop_nlink(old_dir);
474740b9 2136 }
1da177e4 2137 } else if (they_are_dirs) {
9a53c3a7 2138 drop_nlink(old_dir);
d8c76e6f 2139 inc_nlink(new_dir);
1da177e4
LT
2140 }
2141
2142 old_dir->i_size -= BOGO_DIRENT_SIZE;
2143 new_dir->i_size += BOGO_DIRENT_SIZE;
2144 old_dir->i_ctime = old_dir->i_mtime =
2145 new_dir->i_ctime = new_dir->i_mtime =
2146 inode->i_ctime = CURRENT_TIME;
2147 return 0;
2148}
2149
2150static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2151{
2152 int error;
2153 int len;
2154 struct inode *inode;
9276aad6 2155 struct page *page;
1da177e4
LT
2156 char *kaddr;
2157 struct shmem_inode_info *info;
2158
2159 len = strlen(symname) + 1;
2160 if (len > PAGE_CACHE_SIZE)
2161 return -ENAMETOOLONG;
2162
454abafe 2163 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2164 if (!inode)
2165 return -ENOSPC;
2166
9d8f13ba 2167 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2168 shmem_initxattrs, NULL);
570bc1c2
SS
2169 if (error) {
2170 if (error != -EOPNOTSUPP) {
2171 iput(inode);
2172 return error;
2173 }
2174 error = 0;
2175 }
2176
1da177e4
LT
2177 info = SHMEM_I(inode);
2178 inode->i_size = len-1;
69f07ec9
HD
2179 if (len <= SHORT_SYMLINK_LEN) {
2180 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2181 if (!info->symlink) {
2182 iput(inode);
2183 return -ENOMEM;
2184 }
2185 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
2186 } else {
2187 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2188 if (error) {
2189 iput(inode);
2190 return error;
2191 }
14fcc23f 2192 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2193 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2194 kaddr = kmap_atomic(page);
1da177e4 2195 memcpy(kaddr, symname, len);
9b04c5fe 2196 kunmap_atomic(kaddr);
ec9516fb 2197 SetPageUptodate(page);
1da177e4 2198 set_page_dirty(page);
6746aff7 2199 unlock_page(page);
1da177e4
LT
2200 page_cache_release(page);
2201 }
1da177e4
LT
2202 dir->i_size += BOGO_DIRENT_SIZE;
2203 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2204 d_instantiate(dentry, inode);
2205 dget(dentry);
2206 return 0;
2207}
2208
69f07ec9 2209static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2210{
69f07ec9 2211 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2212 return NULL;
1da177e4
LT
2213}
2214
cc314eef 2215static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2216{
2217 struct page *page = NULL;
41ffe5d5
HD
2218 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2219 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2220 if (page)
2221 unlock_page(page);
cc314eef 2222 return page;
1da177e4
LT
2223}
2224
cc314eef 2225static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2226{
2227 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2228 struct page *page = cookie;
1da177e4
LT
2229 kunmap(page);
2230 mark_page_accessed(page);
2231 page_cache_release(page);
1da177e4
LT
2232 }
2233}
2234
b09e0fa4 2235#ifdef CONFIG_TMPFS_XATTR
46711810 2236/*
b09e0fa4
EP
2237 * Superblocks without xattr inode operations may get some security.* xattr
2238 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2239 * like ACLs, we also need to implement the security.* handlers at
2240 * filesystem level, though.
2241 */
2242
6d9d88d0
JS
2243/*
2244 * Callback for security_inode_init_security() for acquiring xattrs.
2245 */
2246static int shmem_initxattrs(struct inode *inode,
2247 const struct xattr *xattr_array,
2248 void *fs_info)
2249{
2250 struct shmem_inode_info *info = SHMEM_I(inode);
2251 const struct xattr *xattr;
38f38657 2252 struct simple_xattr *new_xattr;
6d9d88d0
JS
2253 size_t len;
2254
2255 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2256 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2257 if (!new_xattr)
2258 return -ENOMEM;
2259
2260 len = strlen(xattr->name) + 1;
2261 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2262 GFP_KERNEL);
2263 if (!new_xattr->name) {
2264 kfree(new_xattr);
2265 return -ENOMEM;
2266 }
2267
2268 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2269 XATTR_SECURITY_PREFIX_LEN);
2270 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2271 xattr->name, len);
2272
38f38657 2273 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2274 }
2275
2276 return 0;
2277}
2278
bb435453 2279static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2280#ifdef CONFIG_TMPFS_POSIX_ACL
1c7c474c
CH
2281 &generic_acl_access_handler,
2282 &generic_acl_default_handler,
b09e0fa4 2283#endif
39f0247d
AG
2284 NULL
2285};
b09e0fa4
EP
2286
2287static int shmem_xattr_validate(const char *name)
2288{
2289 struct { const char *prefix; size_t len; } arr[] = {
2290 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2291 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2292 };
2293 int i;
2294
2295 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2296 size_t preflen = arr[i].len;
2297 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2298 if (!name[preflen])
2299 return -EINVAL;
2300 return 0;
2301 }
2302 }
2303 return -EOPNOTSUPP;
2304}
2305
2306static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2307 void *buffer, size_t size)
2308{
38f38657 2309 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2310 int err;
2311
2312 /*
2313 * If this is a request for a synthetic attribute in the system.*
2314 * namespace use the generic infrastructure to resolve a handler
2315 * for it via sb->s_xattr.
2316 */
2317 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2318 return generic_getxattr(dentry, name, buffer, size);
2319
2320 err = shmem_xattr_validate(name);
2321 if (err)
2322 return err;
2323
38f38657 2324 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2325}
2326
2327static int shmem_setxattr(struct dentry *dentry, const char *name,
2328 const void *value, size_t size, int flags)
2329{
38f38657 2330 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2331 int err;
2332
2333 /*
2334 * If this is a request for a synthetic attribute in the system.*
2335 * namespace use the generic infrastructure to resolve a handler
2336 * for it via sb->s_xattr.
2337 */
2338 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2339 return generic_setxattr(dentry, name, value, size, flags);
2340
2341 err = shmem_xattr_validate(name);
2342 if (err)
2343 return err;
2344
38f38657 2345 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2346}
2347
2348static int shmem_removexattr(struct dentry *dentry, const char *name)
2349{
38f38657 2350 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2351 int err;
2352
2353 /*
2354 * If this is a request for a synthetic attribute in the system.*
2355 * namespace use the generic infrastructure to resolve a handler
2356 * for it via sb->s_xattr.
2357 */
2358 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2359 return generic_removexattr(dentry, name);
2360
2361 err = shmem_xattr_validate(name);
2362 if (err)
2363 return err;
2364
38f38657 2365 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2366}
2367
2368static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2369{
38f38657
AR
2370 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2371 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2372}
2373#endif /* CONFIG_TMPFS_XATTR */
2374
69f07ec9 2375static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2376 .readlink = generic_readlink,
69f07ec9 2377 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2378#ifdef CONFIG_TMPFS_XATTR
2379 .setxattr = shmem_setxattr,
2380 .getxattr = shmem_getxattr,
2381 .listxattr = shmem_listxattr,
2382 .removexattr = shmem_removexattr,
2383#endif
2384};
2385
2386static const struct inode_operations shmem_symlink_inode_operations = {
2387 .readlink = generic_readlink,
2388 .follow_link = shmem_follow_link,
2389 .put_link = shmem_put_link,
2390#ifdef CONFIG_TMPFS_XATTR
2391 .setxattr = shmem_setxattr,
2392 .getxattr = shmem_getxattr,
2393 .listxattr = shmem_listxattr,
2394 .removexattr = shmem_removexattr,
39f0247d 2395#endif
b09e0fa4 2396};
39f0247d 2397
91828a40
DG
2398static struct dentry *shmem_get_parent(struct dentry *child)
2399{
2400 return ERR_PTR(-ESTALE);
2401}
2402
2403static int shmem_match(struct inode *ino, void *vfh)
2404{
2405 __u32 *fh = vfh;
2406 __u64 inum = fh[2];
2407 inum = (inum << 32) | fh[1];
2408 return ino->i_ino == inum && fh[0] == ino->i_generation;
2409}
2410
480b116c
CH
2411static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2412 struct fid *fid, int fh_len, int fh_type)
91828a40 2413{
91828a40 2414 struct inode *inode;
480b116c 2415 struct dentry *dentry = NULL;
35c2a7f4 2416 u64 inum;
480b116c
CH
2417
2418 if (fh_len < 3)
2419 return NULL;
91828a40 2420
35c2a7f4
HD
2421 inum = fid->raw[2];
2422 inum = (inum << 32) | fid->raw[1];
2423
480b116c
CH
2424 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2425 shmem_match, fid->raw);
91828a40 2426 if (inode) {
480b116c 2427 dentry = d_find_alias(inode);
91828a40
DG
2428 iput(inode);
2429 }
2430
480b116c 2431 return dentry;
91828a40
DG
2432}
2433
b0b0382b
AV
2434static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2435 struct inode *parent)
91828a40 2436{
5fe0c237
AK
2437 if (*len < 3) {
2438 *len = 3;
94e07a75 2439 return FILEID_INVALID;
5fe0c237 2440 }
91828a40 2441
1d3382cb 2442 if (inode_unhashed(inode)) {
91828a40
DG
2443 /* Unfortunately insert_inode_hash is not idempotent,
2444 * so as we hash inodes here rather than at creation
2445 * time, we need a lock to ensure we only try
2446 * to do it once
2447 */
2448 static DEFINE_SPINLOCK(lock);
2449 spin_lock(&lock);
1d3382cb 2450 if (inode_unhashed(inode))
91828a40
DG
2451 __insert_inode_hash(inode,
2452 inode->i_ino + inode->i_generation);
2453 spin_unlock(&lock);
2454 }
2455
2456 fh[0] = inode->i_generation;
2457 fh[1] = inode->i_ino;
2458 fh[2] = ((__u64)inode->i_ino) >> 32;
2459
2460 *len = 3;
2461 return 1;
2462}
2463
39655164 2464static const struct export_operations shmem_export_ops = {
91828a40 2465 .get_parent = shmem_get_parent,
91828a40 2466 .encode_fh = shmem_encode_fh,
480b116c 2467 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2468};
2469
680d794b 2470static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2471 bool remount)
1da177e4
LT
2472{
2473 char *this_char, *value, *rest;
49cd0a5c 2474 struct mempolicy *mpol = NULL;
8751e039
EB
2475 uid_t uid;
2476 gid_t gid;
1da177e4 2477
b00dc3ad
HD
2478 while (options != NULL) {
2479 this_char = options;
2480 for (;;) {
2481 /*
2482 * NUL-terminate this option: unfortunately,
2483 * mount options form a comma-separated list,
2484 * but mpol's nodelist may also contain commas.
2485 */
2486 options = strchr(options, ',');
2487 if (options == NULL)
2488 break;
2489 options++;
2490 if (!isdigit(*options)) {
2491 options[-1] = '\0';
2492 break;
2493 }
2494 }
1da177e4
LT
2495 if (!*this_char)
2496 continue;
2497 if ((value = strchr(this_char,'=')) != NULL) {
2498 *value++ = 0;
2499 } else {
2500 printk(KERN_ERR
2501 "tmpfs: No value for mount option '%s'\n",
2502 this_char);
49cd0a5c 2503 goto error;
1da177e4
LT
2504 }
2505
2506 if (!strcmp(this_char,"size")) {
2507 unsigned long long size;
2508 size = memparse(value,&rest);
2509 if (*rest == '%') {
2510 size <<= PAGE_SHIFT;
2511 size *= totalram_pages;
2512 do_div(size, 100);
2513 rest++;
2514 }
2515 if (*rest)
2516 goto bad_val;
680d794b 2517 sbinfo->max_blocks =
2518 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2519 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2520 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2521 if (*rest)
2522 goto bad_val;
2523 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2524 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2525 if (*rest)
2526 goto bad_val;
2527 } else if (!strcmp(this_char,"mode")) {
680d794b 2528 if (remount)
1da177e4 2529 continue;
680d794b 2530 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2531 if (*rest)
2532 goto bad_val;
2533 } else if (!strcmp(this_char,"uid")) {
680d794b 2534 if (remount)
1da177e4 2535 continue;
8751e039 2536 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2537 if (*rest)
2538 goto bad_val;
8751e039
EB
2539 sbinfo->uid = make_kuid(current_user_ns(), uid);
2540 if (!uid_valid(sbinfo->uid))
2541 goto bad_val;
1da177e4 2542 } else if (!strcmp(this_char,"gid")) {
680d794b 2543 if (remount)
1da177e4 2544 continue;
8751e039 2545 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2546 if (*rest)
2547 goto bad_val;
8751e039
EB
2548 sbinfo->gid = make_kgid(current_user_ns(), gid);
2549 if (!gid_valid(sbinfo->gid))
2550 goto bad_val;
7339ff83 2551 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2552 mpol_put(mpol);
2553 mpol = NULL;
2554 if (mpol_parse_str(value, &mpol))
7339ff83 2555 goto bad_val;
1da177e4
LT
2556 } else {
2557 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2558 this_char);
49cd0a5c 2559 goto error;
1da177e4
LT
2560 }
2561 }
49cd0a5c 2562 sbinfo->mpol = mpol;
1da177e4
LT
2563 return 0;
2564
2565bad_val:
2566 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2567 value, this_char);
49cd0a5c
GT
2568error:
2569 mpol_put(mpol);
1da177e4
LT
2570 return 1;
2571
2572}
2573
2574static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2575{
2576 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2577 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2578 unsigned long inodes;
2579 int error = -EINVAL;
2580
5f00110f 2581 config.mpol = NULL;
680d794b 2582 if (shmem_parse_options(data, &config, true))
0edd73b3 2583 return error;
1da177e4 2584
0edd73b3 2585 spin_lock(&sbinfo->stat_lock);
0edd73b3 2586 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2587 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2588 goto out;
680d794b 2589 if (config.max_inodes < inodes)
0edd73b3
HD
2590 goto out;
2591 /*
54af6042 2592 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2593 * but we must separately disallow unlimited->limited, because
2594 * in that case we have no record of how much is already in use.
2595 */
680d794b 2596 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2597 goto out;
680d794b 2598 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2599 goto out;
2600
2601 error = 0;
680d794b 2602 sbinfo->max_blocks = config.max_blocks;
680d794b 2603 sbinfo->max_inodes = config.max_inodes;
2604 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2605
5f00110f
GT
2606 /*
2607 * Preserve previous mempolicy unless mpol remount option was specified.
2608 */
2609 if (config.mpol) {
2610 mpol_put(sbinfo->mpol);
2611 sbinfo->mpol = config.mpol; /* transfers initial ref */
2612 }
0edd73b3
HD
2613out:
2614 spin_unlock(&sbinfo->stat_lock);
2615 return error;
1da177e4 2616}
680d794b 2617
34c80b1d 2618static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2619{
34c80b1d 2620 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 2621
2622 if (sbinfo->max_blocks != shmem_default_max_blocks())
2623 seq_printf(seq, ",size=%luk",
2624 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2625 if (sbinfo->max_inodes != shmem_default_max_inodes())
2626 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2627 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2628 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2629 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2630 seq_printf(seq, ",uid=%u",
2631 from_kuid_munged(&init_user_ns, sbinfo->uid));
2632 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2633 seq_printf(seq, ",gid=%u",
2634 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2635 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 2636 return 0;
2637}
2638#endif /* CONFIG_TMPFS */
1da177e4
LT
2639
2640static void shmem_put_super(struct super_block *sb)
2641{
602586a8
HD
2642 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2643
2644 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 2645 mpol_put(sbinfo->mpol);
602586a8 2646 kfree(sbinfo);
1da177e4
LT
2647 sb->s_fs_info = NULL;
2648}
2649
2b2af54a 2650int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2651{
2652 struct inode *inode;
0edd73b3 2653 struct shmem_sb_info *sbinfo;
680d794b 2654 int err = -ENOMEM;
2655
2656 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2657 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 2658 L1_CACHE_BYTES), GFP_KERNEL);
2659 if (!sbinfo)
2660 return -ENOMEM;
2661
680d794b 2662 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2663 sbinfo->uid = current_fsuid();
2664 sbinfo->gid = current_fsgid();
680d794b 2665 sb->s_fs_info = sbinfo;
1da177e4 2666
0edd73b3 2667#ifdef CONFIG_TMPFS
1da177e4
LT
2668 /*
2669 * Per default we only allow half of the physical ram per
2670 * tmpfs instance, limiting inodes to one per page of lowmem;
2671 * but the internal instance is left unlimited.
2672 */
2673 if (!(sb->s_flags & MS_NOUSER)) {
680d794b 2674 sbinfo->max_blocks = shmem_default_max_blocks();
2675 sbinfo->max_inodes = shmem_default_max_inodes();
2676 if (shmem_parse_options(data, sbinfo, false)) {
2677 err = -EINVAL;
2678 goto failed;
2679 }
1da177e4 2680 }
91828a40 2681 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2682 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2683#else
2684 sb->s_flags |= MS_NOUSER;
2685#endif
2686
0edd73b3 2687 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2688 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2689 goto failed;
680d794b 2690 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2691
285b2c4f 2692 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
2693 sb->s_blocksize = PAGE_CACHE_SIZE;
2694 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2695 sb->s_magic = TMPFS_MAGIC;
2696 sb->s_op = &shmem_ops;
cfd95a9c 2697 sb->s_time_gran = 1;
b09e0fa4 2698#ifdef CONFIG_TMPFS_XATTR
39f0247d 2699 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2700#endif
2701#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2702 sb->s_flags |= MS_POSIXACL;
2703#endif
0edd73b3 2704
454abafe 2705 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2706 if (!inode)
2707 goto failed;
680d794b 2708 inode->i_uid = sbinfo->uid;
2709 inode->i_gid = sbinfo->gid;
318ceed0
AV
2710 sb->s_root = d_make_root(inode);
2711 if (!sb->s_root)
48fde701 2712 goto failed;
1da177e4
LT
2713 return 0;
2714
1da177e4
LT
2715failed:
2716 shmem_put_super(sb);
2717 return err;
2718}
2719
fcc234f8 2720static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2721
2722static struct inode *shmem_alloc_inode(struct super_block *sb)
2723{
41ffe5d5
HD
2724 struct shmem_inode_info *info;
2725 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2726 if (!info)
1da177e4 2727 return NULL;
41ffe5d5 2728 return &info->vfs_inode;
1da177e4
LT
2729}
2730
41ffe5d5 2731static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
2732{
2733 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
2734 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2735}
2736
1da177e4
LT
2737static void shmem_destroy_inode(struct inode *inode)
2738{
09208d15 2739 if (S_ISREG(inode->i_mode))
1da177e4 2740 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 2741 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
2742}
2743
41ffe5d5 2744static void shmem_init_inode(void *foo)
1da177e4 2745{
41ffe5d5
HD
2746 struct shmem_inode_info *info = foo;
2747 inode_init_once(&info->vfs_inode);
1da177e4
LT
2748}
2749
41ffe5d5 2750static int shmem_init_inodecache(void)
1da177e4
LT
2751{
2752 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2753 sizeof(struct shmem_inode_info),
41ffe5d5 2754 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
2755 return 0;
2756}
2757
41ffe5d5 2758static void shmem_destroy_inodecache(void)
1da177e4 2759{
1a1d92c1 2760 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2761}
2762
f5e54d6e 2763static const struct address_space_operations shmem_aops = {
1da177e4 2764 .writepage = shmem_writepage,
76719325 2765 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2766#ifdef CONFIG_TMPFS
800d15a5
NP
2767 .write_begin = shmem_write_begin,
2768 .write_end = shmem_write_end,
1da177e4 2769#endif
304dbdb7 2770 .migratepage = migrate_page,
aa261f54 2771 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2772};
2773
15ad7cdc 2774static const struct file_operations shmem_file_operations = {
1da177e4
LT
2775 .mmap = shmem_mmap,
2776#ifdef CONFIG_TMPFS
220f2ac9 2777 .llseek = shmem_file_llseek,
bcd78e49 2778 .read = do_sync_read,
5402b976 2779 .write = do_sync_write,
bcd78e49 2780 .aio_read = shmem_file_aio_read,
5402b976 2781 .aio_write = generic_file_aio_write,
1b061d92 2782 .fsync = noop_fsync,
708e3508 2783 .splice_read = shmem_file_splice_read,
ae976416 2784 .splice_write = generic_file_splice_write,
83e4fa9c 2785 .fallocate = shmem_fallocate,
1da177e4
LT
2786#endif
2787};
2788
92e1d5be 2789static const struct inode_operations shmem_inode_operations = {
94c1e62d 2790 .setattr = shmem_setattr,
b09e0fa4
EP
2791#ifdef CONFIG_TMPFS_XATTR
2792 .setxattr = shmem_setxattr,
2793 .getxattr = shmem_getxattr,
2794 .listxattr = shmem_listxattr,
2795 .removexattr = shmem_removexattr,
2796#endif
1da177e4
LT
2797};
2798
92e1d5be 2799static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2800#ifdef CONFIG_TMPFS
2801 .create = shmem_create,
2802 .lookup = simple_lookup,
2803 .link = shmem_link,
2804 .unlink = shmem_unlink,
2805 .symlink = shmem_symlink,
2806 .mkdir = shmem_mkdir,
2807 .rmdir = shmem_rmdir,
2808 .mknod = shmem_mknod,
2809 .rename = shmem_rename,
1da177e4 2810#endif
b09e0fa4
EP
2811#ifdef CONFIG_TMPFS_XATTR
2812 .setxattr = shmem_setxattr,
2813 .getxattr = shmem_getxattr,
2814 .listxattr = shmem_listxattr,
2815 .removexattr = shmem_removexattr,
2816#endif
39f0247d 2817#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2818 .setattr = shmem_setattr,
39f0247d
AG
2819#endif
2820};
2821
92e1d5be 2822static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2823#ifdef CONFIG_TMPFS_XATTR
2824 .setxattr = shmem_setxattr,
2825 .getxattr = shmem_getxattr,
2826 .listxattr = shmem_listxattr,
2827 .removexattr = shmem_removexattr,
2828#endif
39f0247d 2829#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2830 .setattr = shmem_setattr,
39f0247d 2831#endif
1da177e4
LT
2832};
2833
759b9775 2834static const struct super_operations shmem_ops = {
1da177e4
LT
2835 .alloc_inode = shmem_alloc_inode,
2836 .destroy_inode = shmem_destroy_inode,
2837#ifdef CONFIG_TMPFS
2838 .statfs = shmem_statfs,
2839 .remount_fs = shmem_remount_fs,
680d794b 2840 .show_options = shmem_show_options,
1da177e4 2841#endif
1f895f75 2842 .evict_inode = shmem_evict_inode,
1da177e4
LT
2843 .drop_inode = generic_delete_inode,
2844 .put_super = shmem_put_super,
2845};
2846
f0f37e2f 2847static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2848 .fault = shmem_fault,
1da177e4
LT
2849#ifdef CONFIG_NUMA
2850 .set_policy = shmem_set_policy,
2851 .get_policy = shmem_get_policy,
2852#endif
0b173bc4 2853 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2854};
2855
3c26ff6e
AV
2856static struct dentry *shmem_mount(struct file_system_type *fs_type,
2857 int flags, const char *dev_name, void *data)
1da177e4 2858{
3c26ff6e 2859 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2860}
2861
41ffe5d5 2862static struct file_system_type shmem_fs_type = {
1da177e4
LT
2863 .owner = THIS_MODULE,
2864 .name = "tmpfs",
3c26ff6e 2865 .mount = shmem_mount,
1da177e4 2866 .kill_sb = kill_litter_super,
2b8576cb 2867 .fs_flags = FS_USERNS_MOUNT,
1da177e4 2868};
1da177e4 2869
41ffe5d5 2870int __init shmem_init(void)
1da177e4
LT
2871{
2872 int error;
2873
e0bf68dd
PZ
2874 error = bdi_init(&shmem_backing_dev_info);
2875 if (error)
2876 goto out4;
2877
41ffe5d5 2878 error = shmem_init_inodecache();
1da177e4
LT
2879 if (error)
2880 goto out3;
2881
41ffe5d5 2882 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
2883 if (error) {
2884 printk(KERN_ERR "Could not register tmpfs\n");
2885 goto out2;
2886 }
95dc112a 2887
41ffe5d5
HD
2888 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2889 shmem_fs_type.name, NULL);
1da177e4
LT
2890 if (IS_ERR(shm_mnt)) {
2891 error = PTR_ERR(shm_mnt);
2892 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2893 goto out1;
2894 }
2895 return 0;
2896
2897out1:
41ffe5d5 2898 unregister_filesystem(&shmem_fs_type);
1da177e4 2899out2:
41ffe5d5 2900 shmem_destroy_inodecache();
1da177e4 2901out3:
e0bf68dd
PZ
2902 bdi_destroy(&shmem_backing_dev_info);
2903out4:
1da177e4
LT
2904 shm_mnt = ERR_PTR(error);
2905 return error;
2906}
853ac43a
MM
2907
2908#else /* !CONFIG_SHMEM */
2909
2910/*
2911 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2912 *
2913 * This is intended for small system where the benefits of the full
2914 * shmem code (swap-backed and resource-limited) are outweighed by
2915 * their complexity. On systems without swap this code should be
2916 * effectively equivalent, but much lighter weight.
2917 */
2918
41ffe5d5 2919static struct file_system_type shmem_fs_type = {
853ac43a 2920 .name = "tmpfs",
3c26ff6e 2921 .mount = ramfs_mount,
853ac43a 2922 .kill_sb = kill_litter_super,
2b8576cb 2923 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
2924};
2925
41ffe5d5 2926int __init shmem_init(void)
853ac43a 2927{
41ffe5d5 2928 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 2929
41ffe5d5 2930 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
2931 BUG_ON(IS_ERR(shm_mnt));
2932
2933 return 0;
2934}
2935
41ffe5d5 2936int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
2937{
2938 return 0;
2939}
2940
3f96b79a
HD
2941int shmem_lock(struct file *file, int lock, struct user_struct *user)
2942{
2943 return 0;
2944}
2945
24513264
HD
2946void shmem_unlock_mapping(struct address_space *mapping)
2947{
2948}
2949
41ffe5d5 2950void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 2951{
41ffe5d5 2952 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
2953}
2954EXPORT_SYMBOL_GPL(shmem_truncate_range);
2955
0b0a0806
HD
2956#define shmem_vm_ops generic_file_vm_ops
2957#define shmem_file_operations ramfs_file_operations
454abafe 2958#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2959#define shmem_acct_size(flags, size) 0
2960#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
2961
2962#endif /* CONFIG_SHMEM */
2963
2964/* common code */
1da177e4 2965
3451538a 2966static struct dentry_operations anon_ops = {
ad4c3cc4 2967 .d_dname = simple_dname
3451538a
AV
2968};
2969
46711810 2970/**
1da177e4 2971 * shmem_file_setup - get an unlinked file living in tmpfs
1da177e4
LT
2972 * @name: name for dentry (to be seen in /proc/<pid>/maps
2973 * @size: size to be set for the file
0b0a0806 2974 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
1da177e4 2975 */
168f5ac6 2976struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
1da177e4 2977{
6b4d0b27 2978 struct file *res;
1da177e4 2979 struct inode *inode;
2c48b9c4 2980 struct path path;
3451538a 2981 struct super_block *sb;
1da177e4
LT
2982 struct qstr this;
2983
2984 if (IS_ERR(shm_mnt))
6b4d0b27 2985 return ERR_CAST(shm_mnt);
1da177e4 2986
285b2c4f 2987 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
2988 return ERR_PTR(-EINVAL);
2989
2990 if (shmem_acct_size(flags, size))
2991 return ERR_PTR(-ENOMEM);
2992
6b4d0b27 2993 res = ERR_PTR(-ENOMEM);
1da177e4
LT
2994 this.name = name;
2995 this.len = strlen(name);
2996 this.hash = 0; /* will go */
3451538a
AV
2997 sb = shm_mnt->mnt_sb;
2998 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 2999 if (!path.dentry)
1da177e4 3000 goto put_memory;
3451538a 3001 d_set_d_op(path.dentry, &anon_ops);
2c48b9c4 3002 path.mnt = mntget(shm_mnt);
1da177e4 3003
6b4d0b27 3004 res = ERR_PTR(-ENOSPC);
3451538a 3005 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3006 if (!inode)
4b42af81 3007 goto put_dentry;
1da177e4 3008
2c48b9c4 3009 d_instantiate(path.dentry, inode);
1da177e4 3010 inode->i_size = size;
6d6b77f1 3011 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3012 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3013 if (IS_ERR(res))
4b42af81 3014 goto put_dentry;
4b42af81 3015
6b4d0b27 3016 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 3017 &shmem_file_operations);
6b4d0b27 3018 if (IS_ERR(res))
4b42af81
AV
3019 goto put_dentry;
3020
6b4d0b27 3021 return res;
1da177e4 3022
1da177e4 3023put_dentry:
2c48b9c4 3024 path_put(&path);
1da177e4
LT
3025put_memory:
3026 shmem_unacct_size(flags, size);
6b4d0b27 3027 return res;
1da177e4 3028}
395e0ddc 3029EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3030
46711810 3031/**
1da177e4 3032 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3033 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3034 */
3035int shmem_zero_setup(struct vm_area_struct *vma)
3036{
3037 struct file *file;
3038 loff_t size = vma->vm_end - vma->vm_start;
3039
3040 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3041 if (IS_ERR(file))
3042 return PTR_ERR(file);
3043
3044 if (vma->vm_file)
3045 fput(vma->vm_file);
3046 vma->vm_file = file;
3047 vma->vm_ops = &shmem_vm_ops;
3048 return 0;
3049}
d9d90e5e
HD
3050
3051/**
3052 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3053 * @mapping: the page's address_space
3054 * @index: the page index
3055 * @gfp: the page allocator flags to use if allocating
3056 *
3057 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3058 * with any new page allocations done using the specified allocation flags.
3059 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3060 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3061 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3062 *
68da9f05
HD
3063 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3064 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3065 */
3066struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3067 pgoff_t index, gfp_t gfp)
3068{
68da9f05
HD
3069#ifdef CONFIG_SHMEM
3070 struct inode *inode = mapping->host;
9276aad6 3071 struct page *page;
68da9f05
HD
3072 int error;
3073
3074 BUG_ON(mapping->a_ops != &shmem_aops);
3075 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3076 if (error)
3077 page = ERR_PTR(error);
3078 else
3079 unlock_page(page);
3080 return page;
3081#else
3082 /*
3083 * The tiny !SHMEM case uses ramfs without swap
3084 */
d9d90e5e 3085 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3086#endif
d9d90e5e
HD
3087}
3088EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);