Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
3d48ae45 26 * mapping->i_mmap_mutex
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
5a505085 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
ef5d437f 59#include <linux/backing-dev.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
6fa3eb70
S
65#define MUTEX_RETRY_COUNT (65536)
66#define MUTEX_RETRY_RESCHED (1024)
67
68
69
fdd2e5f8 70static struct kmem_cache *anon_vma_cachep;
5beb4930 71static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
72
73static inline struct anon_vma *anon_vma_alloc(void)
74{
01d8b20d
PZ
75 struct anon_vma *anon_vma;
76
77 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 if (anon_vma) {
79 atomic_set(&anon_vma->refcount, 1);
80 /*
81 * Initialise the anon_vma root to point to itself. If called
82 * from fork, the root will be reset to the parents anon_vma.
83 */
84 anon_vma->root = anon_vma;
85 }
86
87 return anon_vma;
fdd2e5f8
AB
88}
89
01d8b20d 90static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 91{
01d8b20d 92 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
93
94 /*
4fc3f1d6 95 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
96 * we can safely hold the lock without the anon_vma getting
97 * freed.
98 *
99 * Relies on the full mb implied by the atomic_dec_and_test() from
100 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 101 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 102 *
4fc3f1d6
IM
103 * page_lock_anon_vma_read() VS put_anon_vma()
104 * down_read_trylock() atomic_dec_and_test()
88c22088 105 * LOCK MB
4fc3f1d6 106 * atomic_read() rwsem_is_locked()
88c22088
PZ
107 *
108 * LOCK should suffice since the actual taking of the lock must
109 * happen _before_ what follows.
110 */
ef151648 111 might_sleep();
6fa3eb70 112 if (anon_vma->root && rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 113 anon_vma_lock_write(anon_vma);
08b52706 114 anon_vma_unlock_write(anon_vma);
88c22088
PZ
115 }
116
fdd2e5f8
AB
117 kmem_cache_free(anon_vma_cachep, anon_vma);
118}
1da177e4 119
dd34739c 120static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 121{
dd34739c 122 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
123}
124
e574b5fd 125static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
126{
127 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
128}
129
6583a843
KC
130static void anon_vma_chain_link(struct vm_area_struct *vma,
131 struct anon_vma_chain *avc,
132 struct anon_vma *anon_vma)
133{
134 avc->vma = vma;
135 avc->anon_vma = anon_vma;
136 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 137 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
138}
139
d9d332e0
LT
140/**
141 * anon_vma_prepare - attach an anon_vma to a memory region
142 * @vma: the memory region in question
143 *
144 * This makes sure the memory mapping described by 'vma' has
145 * an 'anon_vma' attached to it, so that we can associate the
146 * anonymous pages mapped into it with that anon_vma.
147 *
148 * The common case will be that we already have one, but if
23a0790a 149 * not we either need to find an adjacent mapping that we
d9d332e0
LT
150 * can re-use the anon_vma from (very common when the only
151 * reason for splitting a vma has been mprotect()), or we
152 * allocate a new one.
153 *
154 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 155 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
156 * and that may actually touch the spinlock even in the newly
157 * allocated vma (it depends on RCU to make sure that the
158 * anon_vma isn't actually destroyed).
159 *
160 * As a result, we need to do proper anon_vma locking even
161 * for the new allocation. At the same time, we do not want
162 * to do any locking for the common case of already having
163 * an anon_vma.
164 *
165 * This must be called with the mmap_sem held for reading.
166 */
1da177e4
LT
167int anon_vma_prepare(struct vm_area_struct *vma)
168{
169 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 170 struct anon_vma_chain *avc;
1da177e4
LT
171
172 might_sleep();
173 if (unlikely(!anon_vma)) {
174 struct mm_struct *mm = vma->vm_mm;
d9d332e0 175 struct anon_vma *allocated;
1da177e4 176
dd34739c 177 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
178 if (!avc)
179 goto out_enomem;
180
1da177e4 181 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
182 allocated = NULL;
183 if (!anon_vma) {
1da177e4
LT
184 anon_vma = anon_vma_alloc();
185 if (unlikely(!anon_vma))
5beb4930 186 goto out_enomem_free_avc;
1da177e4 187 allocated = anon_vma;
1da177e4
LT
188 }
189
4fc3f1d6 190 anon_vma_lock_write(anon_vma);
1da177e4
LT
191 /* page_table_lock to protect against threads */
192 spin_lock(&mm->page_table_lock);
193 if (likely(!vma->anon_vma)) {
194 vma->anon_vma = anon_vma;
6583a843 195 anon_vma_chain_link(vma, avc, anon_vma);
1da177e4 196 allocated = NULL;
31f2b0eb 197 avc = NULL;
1da177e4
LT
198 }
199 spin_unlock(&mm->page_table_lock);
08b52706 200 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
201
202 if (unlikely(allocated))
01d8b20d 203 put_anon_vma(allocated);
31f2b0eb 204 if (unlikely(avc))
5beb4930 205 anon_vma_chain_free(avc);
1da177e4
LT
206 }
207 return 0;
5beb4930
RR
208
209 out_enomem_free_avc:
210 anon_vma_chain_free(avc);
211 out_enomem:
212 return -ENOMEM;
1da177e4
LT
213}
214
bb4aa396
LT
215/*
216 * This is a useful helper function for locking the anon_vma root as
217 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
218 * have the same vma.
219 *
220 * Such anon_vma's should have the same root, so you'd expect to see
221 * just a single mutex_lock for the whole traversal.
222 */
223static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
224{
225 struct anon_vma *new_root = anon_vma->root;
226 if (new_root != root) {
227 if (WARN_ON_ONCE(root))
5a505085 228 up_write(&root->rwsem);
bb4aa396 229 root = new_root;
5a505085 230 down_write(&root->rwsem);
bb4aa396
LT
231 }
232 return root;
233}
234
235static inline void unlock_anon_vma_root(struct anon_vma *root)
236{
237 if (root)
5a505085 238 up_write(&root->rwsem);
bb4aa396
LT
239}
240
5beb4930
RR
241/*
242 * Attach the anon_vmas from src to dst.
243 * Returns 0 on success, -ENOMEM on failure.
244 */
245int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 246{
5beb4930 247 struct anon_vma_chain *avc, *pavc;
bb4aa396 248 struct anon_vma *root = NULL;
5beb4930 249
646d87b4 250 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
251 struct anon_vma *anon_vma;
252
dd34739c
LT
253 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
254 if (unlikely(!avc)) {
255 unlock_anon_vma_root(root);
256 root = NULL;
257 avc = anon_vma_chain_alloc(GFP_KERNEL);
258 if (!avc)
259 goto enomem_failure;
260 }
bb4aa396
LT
261 anon_vma = pavc->anon_vma;
262 root = lock_anon_vma_root(root, anon_vma);
263 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 264 }
bb4aa396 265 unlock_anon_vma_root(root);
5beb4930 266 return 0;
1da177e4 267
5beb4930
RR
268 enomem_failure:
269 unlink_anon_vmas(dst);
270 return -ENOMEM;
1da177e4
LT
271}
272
5beb4930
RR
273/*
274 * Attach vma to its own anon_vma, as well as to the anon_vmas that
275 * the corresponding VMA in the parent process is attached to.
276 * Returns 0 on success, non-zero on failure.
277 */
278int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 279{
5beb4930
RR
280 struct anon_vma_chain *avc;
281 struct anon_vma *anon_vma;
1da177e4 282
5beb4930
RR
283 /* Don't bother if the parent process has no anon_vma here. */
284 if (!pvma->anon_vma)
285 return 0;
286
287 /*
288 * First, attach the new VMA to the parent VMA's anon_vmas,
289 * so rmap can find non-COWed pages in child processes.
290 */
291 if (anon_vma_clone(vma, pvma))
292 return -ENOMEM;
293
294 /* Then add our own anon_vma. */
295 anon_vma = anon_vma_alloc();
296 if (!anon_vma)
297 goto out_error;
dd34739c 298 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
299 if (!avc)
300 goto out_error_free_anon_vma;
5c341ee1
RR
301
302 /*
303 * The root anon_vma's spinlock is the lock actually used when we
304 * lock any of the anon_vmas in this anon_vma tree.
305 */
306 anon_vma->root = pvma->anon_vma->root;
76545066 307 /*
01d8b20d
PZ
308 * With refcounts, an anon_vma can stay around longer than the
309 * process it belongs to. The root anon_vma needs to be pinned until
310 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
311 */
312 get_anon_vma(anon_vma->root);
5beb4930
RR
313 /* Mark this anon_vma as the one where our new (COWed) pages go. */
314 vma->anon_vma = anon_vma;
4fc3f1d6 315 anon_vma_lock_write(anon_vma);
5c341ee1 316 anon_vma_chain_link(vma, avc, anon_vma);
08b52706 317 anon_vma_unlock_write(anon_vma);
5beb4930
RR
318
319 return 0;
320
321 out_error_free_anon_vma:
01d8b20d 322 put_anon_vma(anon_vma);
5beb4930 323 out_error:
4946d54c 324 unlink_anon_vmas(vma);
5beb4930 325 return -ENOMEM;
1da177e4
LT
326}
327
5beb4930
RR
328void unlink_anon_vmas(struct vm_area_struct *vma)
329{
330 struct anon_vma_chain *avc, *next;
eee2acba 331 struct anon_vma *root = NULL;
5beb4930 332
5c341ee1
RR
333 /*
334 * Unlink each anon_vma chained to the VMA. This list is ordered
335 * from newest to oldest, ensuring the root anon_vma gets freed last.
336 */
5beb4930 337 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
338 struct anon_vma *anon_vma = avc->anon_vma;
339
340 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 341 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
342
343 /*
344 * Leave empty anon_vmas on the list - we'll need
345 * to free them outside the lock.
346 */
bf181b9f 347 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
eee2acba
PZ
348 continue;
349
350 list_del(&avc->same_vma);
351 anon_vma_chain_free(avc);
352 }
353 unlock_anon_vma_root(root);
354
355 /*
356 * Iterate the list once more, it now only contains empty and unlinked
357 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 358 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
359 */
360 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
361 struct anon_vma *anon_vma = avc->anon_vma;
362
363 put_anon_vma(anon_vma);
364
5beb4930
RR
365 list_del(&avc->same_vma);
366 anon_vma_chain_free(avc);
367 }
368}
369
51cc5068 370static void anon_vma_ctor(void *data)
1da177e4 371{
a35afb83 372 struct anon_vma *anon_vma = data;
1da177e4 373
5a505085 374 init_rwsem(&anon_vma->rwsem);
83813267 375 atomic_set(&anon_vma->refcount, 0);
bf181b9f 376 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
377}
378
379void __init anon_vma_init(void)
380{
381 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 382 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 383 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
384}
385
386/*
6111e4ca
PZ
387 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
388 *
389 * Since there is no serialization what so ever against page_remove_rmap()
390 * the best this function can do is return a locked anon_vma that might
391 * have been relevant to this page.
392 *
393 * The page might have been remapped to a different anon_vma or the anon_vma
394 * returned may already be freed (and even reused).
395 *
bc658c96
PZ
396 * In case it was remapped to a different anon_vma, the new anon_vma will be a
397 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
398 * ensure that any anon_vma obtained from the page will still be valid for as
399 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
400 *
6111e4ca
PZ
401 * All users of this function must be very careful when walking the anon_vma
402 * chain and verify that the page in question is indeed mapped in it
403 * [ something equivalent to page_mapped_in_vma() ].
404 *
405 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
406 * that the anon_vma pointer from page->mapping is valid if there is a
407 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 408 */
746b18d4 409struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 410{
746b18d4 411 struct anon_vma *anon_vma = NULL;
1da177e4
LT
412 unsigned long anon_mapping;
413
414 rcu_read_lock();
80e14822 415 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 416 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
417 goto out;
418 if (!page_mapped(page))
419 goto out;
420
421 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
422 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
423 anon_vma = NULL;
424 goto out;
425 }
f1819427
HD
426
427 /*
428 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
429 * freed. But if it has been unmapped, we have no security against the
430 * anon_vma structure being freed and reused (for another anon_vma:
431 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
432 * above cannot corrupt).
f1819427 433 */
746b18d4 434 if (!page_mapped(page)) {
ef151648 435 rcu_read_unlock();
746b18d4 436 put_anon_vma(anon_vma);
ef151648 437 return NULL;
746b18d4 438 }
1da177e4
LT
439out:
440 rcu_read_unlock();
746b18d4
PZ
441
442 return anon_vma;
443}
444
88c22088
PZ
445/*
446 * Similar to page_get_anon_vma() except it locks the anon_vma.
447 *
448 * Its a little more complex as it tries to keep the fast path to a single
449 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
450 * reference like with page_get_anon_vma() and then block on the mutex.
451 */
4fc3f1d6 452struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 453{
88c22088 454 struct anon_vma *anon_vma = NULL;
eee0f252 455 struct anon_vma *root_anon_vma;
88c22088 456 unsigned long anon_mapping;
746b18d4 457
88c22088
PZ
458 rcu_read_lock();
459 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
460 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
461 goto out;
462 if (!page_mapped(page))
463 goto out;
464
465 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252 466 root_anon_vma = ACCESS_ONCE(anon_vma->root);
4fc3f1d6 467 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 468 /*
eee0f252
HD
469 * If the page is still mapped, then this anon_vma is still
470 * its anon_vma, and holding the mutex ensures that it will
bc658c96 471 * not go away, see anon_vma_free().
88c22088 472 */
eee0f252 473 if (!page_mapped(page)) {
4fc3f1d6 474 up_read(&root_anon_vma->rwsem);
88c22088
PZ
475 anon_vma = NULL;
476 }
477 goto out;
478 }
746b18d4 479
88c22088
PZ
480 /* trylock failed, we got to sleep */
481 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
482 anon_vma = NULL;
483 goto out;
484 }
485
486 if (!page_mapped(page)) {
ef151648 487 rcu_read_unlock();
88c22088 488 put_anon_vma(anon_vma);
ef151648 489 return NULL;
88c22088
PZ
490 }
491
492 /* we pinned the anon_vma, its safe to sleep */
493 rcu_read_unlock();
4fc3f1d6 494 anon_vma_lock_read(anon_vma);
88c22088
PZ
495
496 if (atomic_dec_and_test(&anon_vma->refcount)) {
497 /*
498 * Oops, we held the last refcount, release the lock
499 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 500 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 501 */
4fc3f1d6 502 anon_vma_unlock_read(anon_vma);
88c22088
PZ
503 __put_anon_vma(anon_vma);
504 anon_vma = NULL;
505 }
506
507 return anon_vma;
508
509out:
510 rcu_read_unlock();
746b18d4 511 return anon_vma;
34bbd704
ON
512}
513
4fc3f1d6 514void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 515{
4fc3f1d6 516 anon_vma_unlock_read(anon_vma);
1da177e4
LT
517}
518
519/*
3ad33b24 520 * At what user virtual address is page expected in @vma?
1da177e4 521 */
86c2ad19
ML
522static inline unsigned long
523__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4
LT
524{
525 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1da177e4 526
0fe6e20b
NH
527 if (unlikely(is_vm_hugetlb_page(vma)))
528 pgoff = page->index << huge_page_order(page_hstate(page));
86c2ad19
ML
529
530 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
531}
532
533inline unsigned long
534vma_address(struct page *page, struct vm_area_struct *vma)
535{
536 unsigned long address = __vma_address(page, vma);
537
538 /* page should be within @vma mapping range */
539 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
540
1da177e4
LT
541 return address;
542}
543
544/*
bf89c8c8 545 * At what user virtual address is page expected in vma?
ab941e0f 546 * Caller should check the page is actually part of the vma.
1da177e4
LT
547 */
548unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
549{
86c2ad19 550 unsigned long address;
21d0d443 551 if (PageAnon(page)) {
4829b906
HD
552 struct anon_vma *page__anon_vma = page_anon_vma(page);
553 /*
554 * Note: swapoff's unuse_vma() is more efficient with this
555 * check, and needs it to match anon_vma when KSM is active.
556 */
557 if (!vma->anon_vma || !page__anon_vma ||
558 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
559 return -EFAULT;
560 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
561 if (!vma->vm_file ||
562 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
563 return -EFAULT;
564 } else
565 return -EFAULT;
86c2ad19
ML
566 address = __vma_address(page, vma);
567 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
568 return -EFAULT;
569 return address;
1da177e4
LT
570}
571
6219049a
BL
572pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
573{
574 pgd_t *pgd;
575 pud_t *pud;
576 pmd_t *pmd = NULL;
577
578 pgd = pgd_offset(mm, address);
579 if (!pgd_present(*pgd))
580 goto out;
581
582 pud = pud_offset(pgd, address);
583 if (!pud_present(*pud))
584 goto out;
585
586 pmd = pmd_offset(pud, address);
587 if (!pmd_present(*pmd))
588 pmd = NULL;
589out:
590 return pmd;
591}
592
81b4082d
ND
593/*
594 * Check that @page is mapped at @address into @mm.
595 *
479db0bf
NP
596 * If @sync is false, page_check_address may perform a racy check to avoid
597 * the page table lock when the pte is not present (helpful when reclaiming
598 * highly shared pages).
599 *
b8072f09 600 * On success returns with pte mapped and locked.
81b4082d 601 */
e9a81a82 602pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 603 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 604{
81b4082d
ND
605 pmd_t *pmd;
606 pte_t *pte;
c0718806 607 spinlock_t *ptl;
81b4082d 608
0fe6e20b 609 if (unlikely(PageHuge(page))) {
398bbc57 610 /* when pud is not present, pte will be NULL */
0fe6e20b 611 pte = huge_pte_offset(mm, address);
398bbc57
JW
612 if (!pte)
613 return NULL;
614
0fe6e20b
NH
615 ptl = &mm->page_table_lock;
616 goto check;
617 }
618
6219049a
BL
619 pmd = mm_find_pmd(mm, address);
620 if (!pmd)
c0718806
HD
621 return NULL;
622
71e3aac0
AA
623 if (pmd_trans_huge(*pmd))
624 return NULL;
c0718806
HD
625
626 pte = pte_offset_map(pmd, address);
627 /* Make a quick check before getting the lock */
479db0bf 628 if (!sync && !pte_present(*pte)) {
c0718806
HD
629 pte_unmap(pte);
630 return NULL;
631 }
632
4c21e2f2 633 ptl = pte_lockptr(mm, pmd);
0fe6e20b 634check:
c0718806
HD
635 spin_lock(ptl);
636 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
637 *ptlp = ptl;
638 return pte;
81b4082d 639 }
c0718806
HD
640 pte_unmap_unlock(pte, ptl);
641 return NULL;
81b4082d
ND
642}
643
b291f000
NP
644/**
645 * page_mapped_in_vma - check whether a page is really mapped in a VMA
646 * @page: the page to test
647 * @vma: the VMA to test
648 *
649 * Returns 1 if the page is mapped into the page tables of the VMA, 0
650 * if the page is not mapped into the page tables of this VMA. Only
651 * valid for normal file or anonymous VMAs.
652 */
6a46079c 653int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
654{
655 unsigned long address;
656 pte_t *pte;
657 spinlock_t *ptl;
658
86c2ad19
ML
659 address = __vma_address(page, vma);
660 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
661 return 0;
662 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
663 if (!pte) /* the page is not in this mm */
664 return 0;
665 pte_unmap_unlock(pte, ptl);
666
667 return 1;
668}
669
1da177e4
LT
670/*
671 * Subfunctions of page_referenced: page_referenced_one called
672 * repeatedly from either page_referenced_anon or page_referenced_file.
673 */
5ad64688
HD
674int page_referenced_one(struct page *page, struct vm_area_struct *vma,
675 unsigned long address, unsigned int *mapcount,
676 unsigned long *vm_flags)
1da177e4
LT
677{
678 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
679 int referenced = 0;
680
71e3aac0
AA
681 if (unlikely(PageTransHuge(page))) {
682 pmd_t *pmd;
683
684 spin_lock(&mm->page_table_lock);
2da28bfd
AA
685 /*
686 * rmap might return false positives; we must filter
687 * these out using page_check_address_pmd().
688 */
71e3aac0
AA
689 pmd = page_check_address_pmd(page, mm, address,
690 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
691 if (!pmd) {
692 spin_unlock(&mm->page_table_lock);
693 goto out;
694 }
695
696 if (vma->vm_flags & VM_LOCKED) {
697 spin_unlock(&mm->page_table_lock);
698 *mapcount = 0; /* break early from loop */
699 *vm_flags |= VM_LOCKED;
700 goto out;
701 }
702
703 /* go ahead even if the pmd is pmd_trans_splitting() */
704 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
705 referenced++;
706 spin_unlock(&mm->page_table_lock);
707 } else {
708 pte_t *pte;
709 spinlock_t *ptl;
710
2da28bfd
AA
711 /*
712 * rmap might return false positives; we must filter
713 * these out using page_check_address().
714 */
71e3aac0
AA
715 pte = page_check_address(page, mm, address, &ptl, 0);
716 if (!pte)
717 goto out;
718
2da28bfd
AA
719 if (vma->vm_flags & VM_LOCKED) {
720 pte_unmap_unlock(pte, ptl);
721 *mapcount = 0; /* break early from loop */
722 *vm_flags |= VM_LOCKED;
723 goto out;
724 }
725
71e3aac0
AA
726 if (ptep_clear_flush_young_notify(vma, address, pte)) {
727 /*
728 * Don't treat a reference through a sequentially read
729 * mapping as such. If the page has been used in
730 * another mapping, we will catch it; if this other
731 * mapping is already gone, the unmap path will have
732 * set PG_referenced or activated the page.
733 */
734 if (likely(!VM_SequentialReadHint(vma)))
735 referenced++;
736 }
737 pte_unmap_unlock(pte, ptl);
738 }
739
c0718806 740 (*mapcount)--;
273f047e 741
6fe6b7e3
WF
742 if (referenced)
743 *vm_flags |= vma->vm_flags;
273f047e 744out:
1da177e4
LT
745 return referenced;
746}
747
bed7161a 748static int page_referenced_anon(struct page *page,
72835c86 749 struct mem_cgroup *memcg,
6fe6b7e3 750 unsigned long *vm_flags)
1da177e4
LT
751{
752 unsigned int mapcount;
753 struct anon_vma *anon_vma;
bf181b9f 754 pgoff_t pgoff;
5beb4930 755 struct anon_vma_chain *avc;
1da177e4
LT
756 int referenced = 0;
757
4fc3f1d6 758 anon_vma = page_lock_anon_vma_read(page);
1da177e4
LT
759 if (!anon_vma)
760 return referenced;
761
762 mapcount = page_mapcount(page);
bf181b9f
ML
763 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
764 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 765 struct vm_area_struct *vma = avc->vma;
1cb1729b 766 unsigned long address = vma_address(page, vma);
bed7161a
BS
767 /*
768 * If we are reclaiming on behalf of a cgroup, skip
769 * counting on behalf of references from different
770 * cgroups
771 */
72835c86 772 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 773 continue;
1cb1729b 774 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 775 &mapcount, vm_flags);
1da177e4
LT
776 if (!mapcount)
777 break;
778 }
34bbd704 779
4fc3f1d6 780 page_unlock_anon_vma_read(anon_vma);
1da177e4
LT
781 return referenced;
782}
783
784/**
785 * page_referenced_file - referenced check for object-based rmap
786 * @page: the page we're checking references on.
72835c86 787 * @memcg: target memory control group
6fe6b7e3 788 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
789 *
790 * For an object-based mapped page, find all the places it is mapped and
791 * check/clear the referenced flag. This is done by following the page->mapping
792 * pointer, then walking the chain of vmas it holds. It returns the number
793 * of references it found.
794 *
795 * This function is only called from page_referenced for object-based pages.
796 */
bed7161a 797static int page_referenced_file(struct page *page,
72835c86 798 struct mem_cgroup *memcg,
6fe6b7e3 799 unsigned long *vm_flags)
1da177e4
LT
800{
801 unsigned int mapcount;
802 struct address_space *mapping = page->mapping;
803 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
804 struct vm_area_struct *vma;
1da177e4
LT
805 int referenced = 0;
806
807 /*
808 * The caller's checks on page->mapping and !PageAnon have made
809 * sure that this is a file page: the check for page->mapping
810 * excludes the case just before it gets set on an anon page.
811 */
812 BUG_ON(PageAnon(page));
813
814 /*
815 * The page lock not only makes sure that page->mapping cannot
816 * suddenly be NULLified by truncation, it makes sure that the
817 * structure at mapping cannot be freed and reused yet,
3d48ae45 818 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
819 */
820 BUG_ON(!PageLocked(page));
821
6fa3eb70
S
822 //To avoid deadlock
823 if (!mutex_trylock(&mapping->i_mmap_mutex))
824 return 1; //put in active list
1da177e4
LT
825
826 /*
3d48ae45 827 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
828 * is more likely to be accurate if we note it after spinning.
829 */
830 mapcount = page_mapcount(page);
831
6b2dbba8 832 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b 833 unsigned long address = vma_address(page, vma);
bed7161a
BS
834 /*
835 * If we are reclaiming on behalf of a cgroup, skip
836 * counting on behalf of references from different
837 * cgroups
838 */
72835c86 839 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 840 continue;
1cb1729b 841 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 842 &mapcount, vm_flags);
1da177e4
LT
843 if (!mapcount)
844 break;
845 }
846
3d48ae45 847 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
848 return referenced;
849}
850
851/**
852 * page_referenced - test if the page was referenced
853 * @page: the page to test
854 * @is_locked: caller holds lock on the page
72835c86 855 * @memcg: target memory cgroup
6fe6b7e3 856 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
857 *
858 * Quick test_and_clear_referenced for all mappings to a page,
859 * returns the number of ptes which referenced the page.
860 */
6fe6b7e3
WF
861int page_referenced(struct page *page,
862 int is_locked,
72835c86 863 struct mem_cgroup *memcg,
6fe6b7e3 864 unsigned long *vm_flags)
1da177e4
LT
865{
866 int referenced = 0;
5ad64688 867 int we_locked = 0;
1da177e4 868
6fe6b7e3 869 *vm_flags = 0;
3ca7b3c5 870 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
871 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
872 we_locked = trylock_page(page);
873 if (!we_locked) {
874 referenced++;
875 goto out;
876 }
877 }
878 if (unlikely(PageKsm(page)))
72835c86 879 referenced += page_referenced_ksm(page, memcg,
5ad64688
HD
880 vm_flags);
881 else if (PageAnon(page))
72835c86 882 referenced += page_referenced_anon(page, memcg,
6fe6b7e3 883 vm_flags);
5ad64688 884 else if (page->mapping)
72835c86 885 referenced += page_referenced_file(page, memcg,
6fe6b7e3 886 vm_flags);
5ad64688 887 if (we_locked)
1da177e4 888 unlock_page(page);
50a15981
MS
889
890 if (page_test_and_clear_young(page_to_pfn(page)))
891 referenced++;
1da177e4 892 }
5ad64688 893out:
1da177e4
LT
894 return referenced;
895}
896
1cb1729b
HD
897static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
898 unsigned long address)
d08b3851
PZ
899{
900 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 901 pte_t *pte;
d08b3851
PZ
902 spinlock_t *ptl;
903 int ret = 0;
904
479db0bf 905 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
906 if (!pte)
907 goto out;
908
c2fda5fe
PZ
909 if (pte_dirty(*pte) || pte_write(*pte)) {
910 pte_t entry;
d08b3851 911
c2fda5fe 912 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 913 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
914 entry = pte_wrprotect(entry);
915 entry = pte_mkclean(entry);
d6e88e67 916 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
917 ret = 1;
918 }
d08b3851 919
d08b3851 920 pte_unmap_unlock(pte, ptl);
2ec74c3e
SG
921
922 if (ret)
923 mmu_notifier_invalidate_page(mm, address);
d08b3851
PZ
924out:
925 return ret;
926}
927
928static int page_mkclean_file(struct address_space *mapping, struct page *page)
929{
930 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
931 struct vm_area_struct *vma;
d08b3851
PZ
932 int ret = 0;
933
934 BUG_ON(PageAnon(page));
935
3d48ae45 936 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 937 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
938 if (vma->vm_flags & VM_SHARED) {
939 unsigned long address = vma_address(page, vma);
1cb1729b
HD
940 ret += page_mkclean_one(page, vma, address);
941 }
d08b3851 942 }
3d48ae45 943 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
944 return ret;
945}
946
947int page_mkclean(struct page *page)
948{
949 int ret = 0;
950
951 BUG_ON(!PageLocked(page));
952
953 if (page_mapped(page)) {
954 struct address_space *mapping = page_mapping(page);
ef5d437f 955 if (mapping)
d08b3851
PZ
956 ret = page_mkclean_file(mapping, page);
957 }
958
959 return ret;
960}
60b59bea 961EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 962
c44b6743
RR
963/**
964 * page_move_anon_rmap - move a page to our anon_vma
965 * @page: the page to move to our anon_vma
966 * @vma: the vma the page belongs to
967 * @address: the user virtual address mapped
968 *
969 * When a page belongs exclusively to one process after a COW event,
970 * that page can be moved into the anon_vma that belongs to just that
971 * process, so the rmap code will not search the parent or sibling
972 * processes.
973 */
974void page_move_anon_rmap(struct page *page,
975 struct vm_area_struct *vma, unsigned long address)
976{
977 struct anon_vma *anon_vma = vma->anon_vma;
978
979 VM_BUG_ON(!PageLocked(page));
980 VM_BUG_ON(!anon_vma);
981 VM_BUG_ON(page->index != linear_page_index(vma, address));
982
983 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
984 page->mapping = (struct address_space *) anon_vma;
985}
986
9617d95e 987/**
4e1c1975
AK
988 * __page_set_anon_rmap - set up new anonymous rmap
989 * @page: Page to add to rmap
990 * @vma: VM area to add page to.
991 * @address: User virtual address of the mapping
e8a03feb 992 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
993 */
994static void __page_set_anon_rmap(struct page *page,
e8a03feb 995 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 996{
e8a03feb 997 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 998
e8a03feb 999 BUG_ON(!anon_vma);
ea90002b 1000
4e1c1975
AK
1001 if (PageAnon(page))
1002 return;
1003
ea90002b 1004 /*
e8a03feb
RR
1005 * If the page isn't exclusively mapped into this vma,
1006 * we must use the _oldest_ possible anon_vma for the
1007 * page mapping!
ea90002b 1008 */
4e1c1975 1009 if (!exclusive)
288468c3 1010 anon_vma = anon_vma->root;
9617d95e 1011
9617d95e
NP
1012 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1013 page->mapping = (struct address_space *) anon_vma;
9617d95e 1014 page->index = linear_page_index(vma, address);
9617d95e
NP
1015}
1016
c97a9e10 1017/**
43d8eac4 1018 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1019 * @page: the page to add the mapping to
1020 * @vma: the vm area in which the mapping is added
1021 * @address: the user virtual address mapped
1022 */
1023static void __page_check_anon_rmap(struct page *page,
1024 struct vm_area_struct *vma, unsigned long address)
1025{
1026#ifdef CONFIG_DEBUG_VM
1027 /*
1028 * The page's anon-rmap details (mapping and index) are guaranteed to
1029 * be set up correctly at this point.
1030 *
1031 * We have exclusion against page_add_anon_rmap because the caller
1032 * always holds the page locked, except if called from page_dup_rmap,
1033 * in which case the page is already known to be setup.
1034 *
1035 * We have exclusion against page_add_new_anon_rmap because those pages
1036 * are initially only visible via the pagetables, and the pte is locked
1037 * over the call to page_add_new_anon_rmap.
1038 */
44ab57a0 1039 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1040 BUG_ON(page->index != linear_page_index(vma, address));
1041#endif
1042}
1043
1da177e4
LT
1044/**
1045 * page_add_anon_rmap - add pte mapping to an anonymous page
1046 * @page: the page to add the mapping to
1047 * @vma: the vm area in which the mapping is added
1048 * @address: the user virtual address mapped
1049 *
5ad64688 1050 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1051 * the anon_vma case: to serialize mapping,index checking after setting,
1052 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1053 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1054 */
1055void page_add_anon_rmap(struct page *page,
1056 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1057{
1058 do_page_add_anon_rmap(page, vma, address, 0);
1059}
1060
1061/*
1062 * Special version of the above for do_swap_page, which often runs
1063 * into pages that are exclusively owned by the current process.
1064 * Everybody else should continue to use page_add_anon_rmap above.
1065 */
1066void do_page_add_anon_rmap(struct page *page,
1067 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1068{
5ad64688 1069 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
1070 if (first) {
1071 if (!PageTransHuge(page))
1072 __inc_zone_page_state(page, NR_ANON_PAGES);
1073 else
1074 __inc_zone_page_state(page,
1075 NR_ANON_TRANSPARENT_HUGEPAGES);
1076 }
5ad64688
HD
1077 if (unlikely(PageKsm(page)))
1078 return;
1079
c97a9e10 1080 VM_BUG_ON(!PageLocked(page));
5dbe0af4 1081 /* address might be in next vma when migration races vma_adjust */
5ad64688 1082 if (first)
ad8c2ee8 1083 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1084 else
c97a9e10 1085 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1086}
1087
43d8eac4 1088/**
9617d95e
NP
1089 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1090 * @page: the page to add the mapping to
1091 * @vma: the vm area in which the mapping is added
1092 * @address: the user virtual address mapped
1093 *
1094 * Same as page_add_anon_rmap but must only be called on *new* pages.
1095 * This means the inc-and-test can be bypassed.
c97a9e10 1096 * Page does not have to be locked.
9617d95e
NP
1097 */
1098void page_add_new_anon_rmap(struct page *page,
1099 struct vm_area_struct *vma, unsigned long address)
1100{
b5934c53 1101 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1102 SetPageSwapBacked(page);
1103 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
1104 if (!PageTransHuge(page))
1105 __inc_zone_page_state(page, NR_ANON_PAGES);
1106 else
1107 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 1108 __page_set_anon_rmap(page, vma, address, 1);
39b5f29a 1109 if (!mlocked_vma_newpage(vma, page))
cbf84b7a 1110 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
1111 else
1112 add_page_to_unevictable_list(page);
9617d95e
NP
1113}
1114
1da177e4
LT
1115/**
1116 * page_add_file_rmap - add pte mapping to a file page
1117 * @page: the page to add the mapping to
1118 *
b8072f09 1119 * The caller needs to hold the pte lock.
1da177e4
LT
1120 */
1121void page_add_file_rmap(struct page *page)
1122{
89c06bd5
KH
1123 bool locked;
1124 unsigned long flags;
1125
1126 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
d69b042f 1127 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1128 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1129 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 1130 }
89c06bd5 1131 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1132}
1133
1134/**
1135 * page_remove_rmap - take down pte mapping from a page
1136 * @page: page to remove mapping from
1137 *
b8072f09 1138 * The caller needs to hold the pte lock.
1da177e4 1139 */
edc315fd 1140void page_remove_rmap(struct page *page)
1da177e4 1141{
89c06bd5
KH
1142 bool anon = PageAnon(page);
1143 bool locked;
1144 unsigned long flags;
1145
1146 /*
1147 * The anon case has no mem_cgroup page_stat to update; but may
1148 * uncharge_page() below, where the lock ordering can deadlock if
1149 * we hold the lock against page_stat move: so avoid it on anon.
1150 */
1151 if (!anon)
1152 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1153
b904dcfe
KM
1154 /* page still mapped by someone else? */
1155 if (!atomic_add_negative(-1, &page->_mapcount))
89c06bd5 1156 goto out;
b904dcfe 1157
0fe6e20b
NH
1158 /*
1159 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1160 * and not charged by memcg for now.
1161 */
1162 if (unlikely(PageHuge(page)))
89c06bd5
KH
1163 goto out;
1164 if (anon) {
b904dcfe 1165 mem_cgroup_uncharge_page(page);
79134171
AA
1166 if (!PageTransHuge(page))
1167 __dec_zone_page_state(page, NR_ANON_PAGES);
1168 else
1169 __dec_zone_page_state(page,
1170 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
1171 } else {
1172 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1173 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
e6c509f8 1174 mem_cgroup_end_update_page_stat(page, &locked, &flags);
b904dcfe 1175 }
e6c509f8
HD
1176 if (unlikely(PageMlocked(page)))
1177 clear_page_mlock(page);
b904dcfe
KM
1178 /*
1179 * It would be tidy to reset the PageAnon mapping here,
1180 * but that might overwrite a racing page_add_anon_rmap
1181 * which increments mapcount after us but sets mapping
1182 * before us: so leave the reset to free_hot_cold_page,
1183 * and remember that it's only reliable while mapped.
1184 * Leaving it set also helps swapoff to reinstate ptes
1185 * faster for those pages still in swapcache.
1186 */
e6c509f8 1187 return;
89c06bd5
KH
1188out:
1189 if (!anon)
1190 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1191}
1192
1193/*
1194 * Subfunctions of try_to_unmap: try_to_unmap_one called
99ef0315 1195 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1da177e4 1196 */
5ad64688
HD
1197int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1198 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1199{
1200 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1201 pte_t *pte;
1202 pte_t pteval;
c0718806 1203 spinlock_t *ptl;
1da177e4
LT
1204 int ret = SWAP_AGAIN;
1205
479db0bf 1206 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1207 if (!pte)
81b4082d 1208 goto out;
1da177e4
LT
1209
1210 /*
1211 * If the page is mlock()d, we cannot swap it out.
1212 * If it's recently referenced (perhaps page_referenced
1213 * skipped over this mm) then we should reactivate it.
1214 */
14fa31b8 1215 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1216 if (vma->vm_flags & VM_LOCKED)
1217 goto out_mlock;
1218
af8e3354 1219 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1220 goto out_unmap;
14fa31b8
AK
1221 }
1222 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1223 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1224 ret = SWAP_FAIL;
1225 goto out_unmap;
1226 }
1227 }
1da177e4 1228
1da177e4
LT
1229 /* Nuke the page table entry. */
1230 flush_cache_page(vma, address, page_to_pfn(page));
2ec74c3e 1231 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1232
1233 /* Move the dirty bit to the physical page now the pte is gone. */
1234 if (pte_dirty(pteval))
1235 set_page_dirty(page);
1236
365e9c87
HD
1237 /* Update high watermark before we lower rss */
1238 update_hiwater_rss(mm);
1239
888b9f7c 1240 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1241 if (!PageHuge(page)) {
1242 if (PageAnon(page))
1243 dec_mm_counter(mm, MM_ANONPAGES);
1244 else
1245 dec_mm_counter(mm, MM_FILEPAGES);
1246 }
888b9f7c 1247 set_pte_at(mm, address, pte,
5f24ae58 1248 swp_entry_to_pte(make_hwpoison_entry(page)));
888b9f7c 1249 } else if (PageAnon(page)) {
4c21e2f2 1250 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1251
1252 if (PageSwapCache(page)) {
1253 /*
1254 * Store the swap location in the pte.
1255 * See handle_pte_fault() ...
1256 */
570a335b
HD
1257 if (swap_duplicate(entry) < 0) {
1258 set_pte_at(mm, address, pte, pteval);
1259 ret = SWAP_FAIL;
1260 goto out_unmap;
1261 }
0697212a
CL
1262 if (list_empty(&mm->mmlist)) {
1263 spin_lock(&mmlist_lock);
1264 if (list_empty(&mm->mmlist))
1265 list_add(&mm->mmlist, &init_mm.mmlist);
1266 spin_unlock(&mmlist_lock);
1267 }
d559db08 1268 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1269 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1270 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1271 /*
1272 * Store the pfn of the page in a special migration
1273 * pte. do_swap_page() will wait until the migration
1274 * pte is removed and then restart fault handling.
1275 */
14fa31b8 1276 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1277 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1278 }
1279 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1280 BUG_ON(pte_file(*pte));
ce1744f4
KK
1281 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1282 (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1283 /* Establish migration entry for a file page */
1284 swp_entry_t entry;
1285 entry = make_migration_entry(page, pte_write(pteval));
1286 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1287 } else
d559db08 1288 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1289
edc315fd 1290 page_remove_rmap(page);
1da177e4
LT
1291 page_cache_release(page);
1292
1293out_unmap:
c0718806 1294 pte_unmap_unlock(pte, ptl);
2ec74c3e
SG
1295 if (ret != SWAP_FAIL)
1296 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1297out:
1298 return ret;
53f79acb 1299
caed0f48
KM
1300out_mlock:
1301 pte_unmap_unlock(pte, ptl);
1302
1303
1304 /*
1305 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1306 * unstable result and race. Plus, We can't wait here because
5a505085 1307 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
caed0f48
KM
1308 * if trylock failed, the page remain in evictable lru and later
1309 * vmscan could retry to move the page to unevictable lru if the
1310 * page is actually mlocked.
1311 */
1312 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1313 if (vma->vm_flags & VM_LOCKED) {
1314 mlock_vma_page(page);
1315 ret = SWAP_MLOCK;
53f79acb 1316 }
caed0f48 1317 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1318 }
1da177e4
LT
1319 return ret;
1320}
1321
1322/*
1323 * objrmap doesn't work for nonlinear VMAs because the assumption that
1324 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1325 * Consequently, given a particular page and its ->index, we cannot locate the
1326 * ptes which are mapping that page without an exhaustive linear search.
1327 *
1328 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1329 * maps the file to which the target page belongs. The ->vm_private_data field
1330 * holds the current cursor into that scan. Successive searches will circulate
1331 * around the vma's virtual address space.
1332 *
1333 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1334 * more scanning pressure is placed against them as well. Eventually pages
1335 * will become fully unmapped and are eligible for eviction.
1336 *
1337 * For very sparsely populated VMAs this is a little inefficient - chances are
1338 * there there won't be many ptes located within the scan cluster. In this case
1339 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1340 *
1341 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1342 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1343 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1344 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1345 */
1346#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1347#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1348
b291f000
NP
1349static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1350 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1351{
1352 struct mm_struct *mm = vma->vm_mm;
1da177e4 1353 pmd_t *pmd;
c0718806 1354 pte_t *pte;
1da177e4 1355 pte_t pteval;
c0718806 1356 spinlock_t *ptl;
1da177e4
LT
1357 struct page *page;
1358 unsigned long address;
2ec74c3e
SG
1359 unsigned long mmun_start; /* For mmu_notifiers */
1360 unsigned long mmun_end; /* For mmu_notifiers */
1da177e4 1361 unsigned long end;
b291f000
NP
1362 int ret = SWAP_AGAIN;
1363 int locked_vma = 0;
1da177e4 1364
1da177e4
LT
1365 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1366 end = address + CLUSTER_SIZE;
1367 if (address < vma->vm_start)
1368 address = vma->vm_start;
1369 if (end > vma->vm_end)
1370 end = vma->vm_end;
1371
6219049a
BL
1372 pmd = mm_find_pmd(mm, address);
1373 if (!pmd)
b291f000
NP
1374 return ret;
1375
2ec74c3e
SG
1376 mmun_start = address;
1377 mmun_end = end;
1378 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1379
b291f000 1380 /*
af8e3354 1381 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1382 * keep the sem while scanning the cluster for mlocking pages.
1383 */
af8e3354 1384 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1385 locked_vma = (vma->vm_flags & VM_LOCKED);
1386 if (!locked_vma)
1387 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1388 }
c0718806
HD
1389
1390 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1391
365e9c87
HD
1392 /* Update high watermark before we lower rss */
1393 update_hiwater_rss(mm);
1394
c0718806 1395 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1396 if (!pte_present(*pte))
1397 continue;
6aab341e
LT
1398 page = vm_normal_page(vma, address, *pte);
1399 BUG_ON(!page || PageAnon(page));
1da177e4 1400
b291f000 1401 if (locked_vma) {
77552735
VB
1402 if (page == check_page) {
1403 /* we know we have check_page locked */
1404 mlock_vma_page(page);
b291f000 1405 ret = SWAP_MLOCK;
77552735
VB
1406 } else if (trylock_page(page)) {
1407 /*
1408 * If we can lock the page, perform mlock.
1409 * Otherwise leave the page alone, it will be
1410 * eventually encountered again later.
1411 */
1412 mlock_vma_page(page);
1413 unlock_page(page);
1414 }
b291f000
NP
1415 continue; /* don't unmap */
1416 }
1417
cddb8a5c 1418 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1419 continue;
1420
1421 /* Nuke the page table entry. */
eca35133 1422 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 1423 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1424
1425 /* If nonlinear, store the file page offset in the pte. */
1426 if (page->index != linear_page_index(vma, address))
1427 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1428
1429 /* Move the dirty bit to the physical page now the pte is gone. */
1430 if (pte_dirty(pteval))
1431 set_page_dirty(page);
1432
edc315fd 1433 page_remove_rmap(page);
1da177e4 1434 page_cache_release(page);
d559db08 1435 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1436 (*mapcount)--;
1437 }
c0718806 1438 pte_unmap_unlock(pte - 1, ptl);
2ec74c3e 1439 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b291f000
NP
1440 if (locked_vma)
1441 up_read(&vma->vm_mm->mmap_sem);
1442 return ret;
1da177e4
LT
1443}
1444
71e3aac0 1445bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1446{
1447 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1448
1449 if (!maybe_stack)
1450 return false;
1451
1452 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1453 VM_STACK_INCOMPLETE_SETUP)
1454 return true;
1455
1456 return false;
1457}
1458
b291f000
NP
1459/**
1460 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1461 * rmap method
1462 * @page: the page to unmap/unlock
8051be5e 1463 * @flags: action and flags
b291f000
NP
1464 *
1465 * Find all the mappings of a page using the mapping pointer and the vma chains
1466 * contained in the anon_vma struct it points to.
1467 *
1468 * This function is only called from try_to_unmap/try_to_munlock for
1469 * anonymous pages.
1470 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1471 * where the page was found will be held for write. So, we won't recheck
1472 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1473 * 'LOCKED.
1474 */
14fa31b8 1475static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1476{
1477 struct anon_vma *anon_vma;
bf181b9f 1478 pgoff_t pgoff;
5beb4930 1479 struct anon_vma_chain *avc;
1da177e4 1480 int ret = SWAP_AGAIN;
b291f000 1481
4fc3f1d6 1482 anon_vma = page_lock_anon_vma_read(page);
1da177e4
LT
1483 if (!anon_vma)
1484 return ret;
1485
bf181b9f
ML
1486 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1487 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1488 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1489 unsigned long address;
1490
1491 /*
1492 * During exec, a temporary VMA is setup and later moved.
1493 * The VMA is moved under the anon_vma lock but not the
1494 * page tables leading to a race where migration cannot
1495 * find the migration ptes. Rather than increasing the
1496 * locking requirements of exec(), migration skips
1497 * temporary VMAs until after exec() completes.
1498 */
ce1744f4 1499 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
a8bef8ff
MG
1500 is_vma_temporary_stack(vma))
1501 continue;
1502
1503 address = vma_address(page, vma);
1cb1729b 1504 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1505 if (ret != SWAP_AGAIN || !page_mapped(page))
1506 break;
1da177e4 1507 }
34bbd704 1508
4fc3f1d6 1509 page_unlock_anon_vma_read(anon_vma);
1da177e4
LT
1510 return ret;
1511}
1512
1513/**
b291f000
NP
1514 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1515 * @page: the page to unmap/unlock
14fa31b8 1516 * @flags: action and flags
1da177e4
LT
1517 *
1518 * Find all the mappings of a page using the mapping pointer and the vma chains
1519 * contained in the address_space struct it points to.
1520 *
b291f000
NP
1521 * This function is only called from try_to_unmap/try_to_munlock for
1522 * object-based pages.
1523 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1524 * where the page was found will be held for write. So, we won't recheck
1525 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1526 * 'LOCKED.
1da177e4 1527 */
14fa31b8 1528static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1529{
1530 struct address_space *mapping = page->mapping;
1531 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1532 struct vm_area_struct *vma;
1da177e4
LT
1533 int ret = SWAP_AGAIN;
1534 unsigned long cursor;
1535 unsigned long max_nl_cursor = 0;
1536 unsigned long max_nl_size = 0;
1537 unsigned int mapcount;
6fa3eb70
S
1538 int retry = 0;
1539
1da177e4 1540
369a713e
HD
1541 if (PageHuge(page))
1542 pgoff = page->index << compound_order(page);
1543
6fa3eb70
S
1544 while (!mutex_trylock(&mapping->i_mmap_mutex)) {
1545 retry++;
1546 if (!(retry % MUTEX_RETRY_RESCHED))
1547 cond_resched();
1548 if (retry > MUTEX_RETRY_COUNT) {
1549 printk(KERN_ERR ">> failed to lock i_mmap_mutex in try_to_unmap_file <<\n");
1550 return SWAP_FAIL;
1551 }
1552 }
1553
1554
6b2dbba8 1555 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b 1556 unsigned long address = vma_address(page, vma);
1cb1729b 1557 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1558 if (ret != SWAP_AGAIN || !page_mapped(page))
1559 goto out;
1da177e4
LT
1560 }
1561
1562 if (list_empty(&mapping->i_mmap_nonlinear))
1563 goto out;
1564
53f79acb
HD
1565 /*
1566 * We don't bother to try to find the munlocked page in nonlinears.
1567 * It's costly. Instead, later, page reclaim logic may call
1568 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1569 */
1570 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1571 goto out;
1572
1da177e4 1573 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1574 shared.nonlinear) {
1da177e4
LT
1575 cursor = (unsigned long) vma->vm_private_data;
1576 if (cursor > max_nl_cursor)
1577 max_nl_cursor = cursor;
1578 cursor = vma->vm_end - vma->vm_start;
1579 if (cursor > max_nl_size)
1580 max_nl_size = cursor;
1581 }
1582
b291f000 1583 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1584 ret = SWAP_FAIL;
1585 goto out;
1586 }
1587
1588 /*
1589 * We don't try to search for this page in the nonlinear vmas,
1590 * and page_referenced wouldn't have found it anyway. Instead
1591 * just walk the nonlinear vmas trying to age and unmap some.
1592 * The mapcount of the page we came in with is irrelevant,
1593 * but even so use it as a guide to how hard we should try?
1594 */
1595 mapcount = page_mapcount(page);
1596 if (!mapcount)
1597 goto out;
3d48ae45 1598 cond_resched();
1da177e4
LT
1599
1600 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1601 if (max_nl_cursor == 0)
1602 max_nl_cursor = CLUSTER_SIZE;
1603
1604 do {
1605 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1606 shared.nonlinear) {
1da177e4 1607 cursor = (unsigned long) vma->vm_private_data;
839b9685 1608 while ( cursor < max_nl_cursor &&
1da177e4 1609 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1610 if (try_to_unmap_cluster(cursor, &mapcount,
1611 vma, page) == SWAP_MLOCK)
1612 ret = SWAP_MLOCK;
1da177e4
LT
1613 cursor += CLUSTER_SIZE;
1614 vma->vm_private_data = (void *) cursor;
1615 if ((int)mapcount <= 0)
1616 goto out;
1617 }
1618 vma->vm_private_data = (void *) max_nl_cursor;
1619 }
3d48ae45 1620 cond_resched();
1da177e4
LT
1621 max_nl_cursor += CLUSTER_SIZE;
1622 } while (max_nl_cursor <= max_nl_size);
1623
1624 /*
1625 * Don't loop forever (perhaps all the remaining pages are
1626 * in locked vmas). Reset cursor on all unreserved nonlinear
1627 * vmas, now forgetting on which ones it had fallen behind.
1628 */
6b2dbba8 1629 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
101d2be7 1630 vma->vm_private_data = NULL;
1da177e4 1631out:
3d48ae45 1632 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1633 return ret;
1634}
1635
1636/**
1637 * try_to_unmap - try to remove all page table mappings to a page
1638 * @page: the page to get unmapped
14fa31b8 1639 * @flags: action and flags
1da177e4
LT
1640 *
1641 * Tries to remove all the page table entries which are mapping this
1642 * page, used in the pageout path. Caller must hold the page lock.
1643 * Return values are:
1644 *
1645 * SWAP_SUCCESS - we succeeded in removing all mappings
1646 * SWAP_AGAIN - we missed a mapping, try again later
1647 * SWAP_FAIL - the page is unswappable
b291f000 1648 * SWAP_MLOCK - page is mlocked.
1da177e4 1649 */
14fa31b8 1650int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1651{
1652 int ret;
1653
1da177e4 1654 BUG_ON(!PageLocked(page));
91600e9e 1655 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1656
5ad64688
HD
1657 if (unlikely(PageKsm(page)))
1658 ret = try_to_unmap_ksm(page, flags);
1659 else if (PageAnon(page))
14fa31b8 1660 ret = try_to_unmap_anon(page, flags);
1da177e4 1661 else
14fa31b8 1662 ret = try_to_unmap_file(page, flags);
b291f000 1663 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1664 ret = SWAP_SUCCESS;
1665 return ret;
1666}
81b4082d 1667
b291f000
NP
1668/**
1669 * try_to_munlock - try to munlock a page
1670 * @page: the page to be munlocked
1671 *
1672 * Called from munlock code. Checks all of the VMAs mapping the page
1673 * to make sure nobody else has this page mlocked. The page will be
1674 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1675 *
1676 * Return values are:
1677 *
53f79acb 1678 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1679 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1680 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1681 * SWAP_MLOCK - page is now mlocked.
1682 */
1683int try_to_munlock(struct page *page)
1684{
1685 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1686
5ad64688
HD
1687 if (unlikely(PageKsm(page)))
1688 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1689 else if (PageAnon(page))
14fa31b8 1690 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1691 else
14fa31b8 1692 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1693}
e9995ef9 1694
01d8b20d 1695void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1696{
01d8b20d 1697 struct anon_vma *root = anon_vma->root;
76545066 1698
65375ce7 1699 anon_vma_free(anon_vma);
6fa3eb70 1700 if (root && root != anon_vma && atomic_dec_and_test(&root->refcount))
01d8b20d 1701 anon_vma_free(root);
76545066 1702}
76545066 1703
e9995ef9
HD
1704#ifdef CONFIG_MIGRATION
1705/*
1706 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1707 * Called by migrate.c to remove migration ptes, but might be used more later.
1708 */
1709static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1710 struct vm_area_struct *, unsigned long, void *), void *arg)
1711{
1712 struct anon_vma *anon_vma;
bf181b9f 1713 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
5beb4930 1714 struct anon_vma_chain *avc;
e9995ef9
HD
1715 int ret = SWAP_AGAIN;
1716
1717 /*
4fc3f1d6 1718 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
e9995ef9 1719 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1720 * are holding mmap_sem. Users without mmap_sem are required to
1721 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1722 */
1723 anon_vma = page_anon_vma(page);
1724 if (!anon_vma)
1725 return ret;
4fc3f1d6 1726 anon_vma_lock_read(anon_vma);
bf181b9f 1727 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1728 struct vm_area_struct *vma = avc->vma;
e9995ef9 1729 unsigned long address = vma_address(page, vma);
e9995ef9
HD
1730 ret = rmap_one(page, vma, address, arg);
1731 if (ret != SWAP_AGAIN)
1732 break;
1733 }
4fc3f1d6 1734 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1735 return ret;
1736}
1737
1738static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1739 struct vm_area_struct *, unsigned long, void *), void *arg)
1740{
1741 struct address_space *mapping = page->mapping;
1742 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1743 struct vm_area_struct *vma;
e9995ef9
HD
1744 int ret = SWAP_AGAIN;
1745
1746 if (!mapping)
1747 return ret;
3d48ae45 1748 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1749 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1750 unsigned long address = vma_address(page, vma);
e9995ef9
HD
1751 ret = rmap_one(page, vma, address, arg);
1752 if (ret != SWAP_AGAIN)
1753 break;
1754 }
1755 /*
1756 * No nonlinear handling: being always shared, nonlinear vmas
1757 * never contain migration ptes. Decide what to do about this
1758 * limitation to linear when we need rmap_walk() on nonlinear.
1759 */
3d48ae45 1760 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1761 return ret;
1762}
1763
1764int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1765 struct vm_area_struct *, unsigned long, void *), void *arg)
1766{
1767 VM_BUG_ON(!PageLocked(page));
1768
1769 if (unlikely(PageKsm(page)))
1770 return rmap_walk_ksm(page, rmap_one, arg);
1771 else if (PageAnon(page))
1772 return rmap_walk_anon(page, rmap_one, arg);
1773 else
1774 return rmap_walk_file(page, rmap_one, arg);
1775}
1776#endif /* CONFIG_MIGRATION */
0fe6e20b 1777
e3390f67 1778#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1779/*
1780 * The following three functions are for anonymous (private mapped) hugepages.
1781 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1782 * and no lru code, because we handle hugepages differently from common pages.
1783 */
1784static void __hugepage_set_anon_rmap(struct page *page,
1785 struct vm_area_struct *vma, unsigned long address, int exclusive)
1786{
1787 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1788
0fe6e20b 1789 BUG_ON(!anon_vma);
433abed6
NH
1790
1791 if (PageAnon(page))
1792 return;
1793 if (!exclusive)
1794 anon_vma = anon_vma->root;
1795
0fe6e20b
NH
1796 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1797 page->mapping = (struct address_space *) anon_vma;
1798 page->index = linear_page_index(vma, address);
1799}
1800
1801void hugepage_add_anon_rmap(struct page *page,
1802 struct vm_area_struct *vma, unsigned long address)
1803{
1804 struct anon_vma *anon_vma = vma->anon_vma;
1805 int first;
a850ea30
NH
1806
1807 BUG_ON(!PageLocked(page));
0fe6e20b 1808 BUG_ON(!anon_vma);
5dbe0af4 1809 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1810 first = atomic_inc_and_test(&page->_mapcount);
1811 if (first)
1812 __hugepage_set_anon_rmap(page, vma, address, 0);
1813}
1814
1815void hugepage_add_new_anon_rmap(struct page *page,
1816 struct vm_area_struct *vma, unsigned long address)
1817{
1818 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1819 atomic_set(&page->_mapcount, 0);
1820 __hugepage_set_anon_rmap(page, vma, address, 1);
1821}
e3390f67 1822#endif /* CONFIG_HUGETLB_PAGE */