tmpfs: don't undo fallocate past its last page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
3d48ae45 26 * mapping->i_mmap_mutex
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
5a505085 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
ef5d437f 59#include <linux/backing-dev.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
01d8b20d
PZ
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
fdd2e5f8
AB
83}
84
01d8b20d 85static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 86{
01d8b20d 87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
88
89 /*
4fc3f1d6 90 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 97 *
4fc3f1d6
IM
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
88c22088 100 * LOCK MB
4fc3f1d6 101 * atomic_read() rwsem_is_locked()
88c22088
PZ
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
ef151648 106 might_sleep();
5a505085 107 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 108 anon_vma_lock_write(anon_vma);
08b52706 109 anon_vma_unlock_write(anon_vma);
88c22088
PZ
110 }
111
fdd2e5f8
AB
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113}
1da177e4 114
dd34739c 115static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 116{
dd34739c 117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
118}
119
e574b5fd 120static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
121{
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123}
124
6583a843
KC
125static void anon_vma_chain_link(struct vm_area_struct *vma,
126 struct anon_vma_chain *avc,
127 struct anon_vma *anon_vma)
128{
129 avc->vma = vma;
130 avc->anon_vma = anon_vma;
131 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
133}
134
d9d332e0
LT
135/**
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
138 *
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
142 *
143 * The common case will be that we already have one, but if
23a0790a 144 * not we either need to find an adjacent mapping that we
d9d332e0
LT
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
148 *
149 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
154 *
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
159 *
160 * This must be called with the mmap_sem held for reading.
161 */
1da177e4
LT
162int anon_vma_prepare(struct vm_area_struct *vma)
163{
164 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 165 struct anon_vma_chain *avc;
1da177e4
LT
166
167 might_sleep();
168 if (unlikely(!anon_vma)) {
169 struct mm_struct *mm = vma->vm_mm;
d9d332e0 170 struct anon_vma *allocated;
1da177e4 171
dd34739c 172 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
173 if (!avc)
174 goto out_enomem;
175
1da177e4 176 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
177 allocated = NULL;
178 if (!anon_vma) {
1da177e4
LT
179 anon_vma = anon_vma_alloc();
180 if (unlikely(!anon_vma))
5beb4930 181 goto out_enomem_free_avc;
1da177e4 182 allocated = anon_vma;
1da177e4
LT
183 }
184
4fc3f1d6 185 anon_vma_lock_write(anon_vma);
1da177e4
LT
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm->page_table_lock);
188 if (likely(!vma->anon_vma)) {
189 vma->anon_vma = anon_vma;
6583a843 190 anon_vma_chain_link(vma, avc, anon_vma);
1da177e4 191 allocated = NULL;
31f2b0eb 192 avc = NULL;
1da177e4
LT
193 }
194 spin_unlock(&mm->page_table_lock);
08b52706 195 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
196
197 if (unlikely(allocated))
01d8b20d 198 put_anon_vma(allocated);
31f2b0eb 199 if (unlikely(avc))
5beb4930 200 anon_vma_chain_free(avc);
1da177e4
LT
201 }
202 return 0;
5beb4930
RR
203
204 out_enomem_free_avc:
205 anon_vma_chain_free(avc);
206 out_enomem:
207 return -ENOMEM;
1da177e4
LT
208}
209
bb4aa396
LT
210/*
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
214 *
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
217 */
218static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219{
220 struct anon_vma *new_root = anon_vma->root;
221 if (new_root != root) {
222 if (WARN_ON_ONCE(root))
5a505085 223 up_write(&root->rwsem);
bb4aa396 224 root = new_root;
5a505085 225 down_write(&root->rwsem);
bb4aa396
LT
226 }
227 return root;
228}
229
230static inline void unlock_anon_vma_root(struct anon_vma *root)
231{
232 if (root)
5a505085 233 up_write(&root->rwsem);
bb4aa396
LT
234}
235
5beb4930
RR
236/*
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
239 */
240int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 241{
5beb4930 242 struct anon_vma_chain *avc, *pavc;
bb4aa396 243 struct anon_vma *root = NULL;
5beb4930 244
646d87b4 245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
246 struct anon_vma *anon_vma;
247
dd34739c
LT
248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 if (unlikely(!avc)) {
250 unlock_anon_vma_root(root);
251 root = NULL;
252 avc = anon_vma_chain_alloc(GFP_KERNEL);
253 if (!avc)
254 goto enomem_failure;
255 }
bb4aa396
LT
256 anon_vma = pavc->anon_vma;
257 root = lock_anon_vma_root(root, anon_vma);
258 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 259 }
bb4aa396 260 unlock_anon_vma_root(root);
5beb4930 261 return 0;
1da177e4 262
5beb4930
RR
263 enomem_failure:
264 unlink_anon_vmas(dst);
265 return -ENOMEM;
1da177e4
LT
266}
267
5beb4930
RR
268/*
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
272 */
273int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 274{
5beb4930
RR
275 struct anon_vma_chain *avc;
276 struct anon_vma *anon_vma;
1da177e4 277
5beb4930
RR
278 /* Don't bother if the parent process has no anon_vma here. */
279 if (!pvma->anon_vma)
280 return 0;
281
282 /*
283 * First, attach the new VMA to the parent VMA's anon_vmas,
284 * so rmap can find non-COWed pages in child processes.
285 */
286 if (anon_vma_clone(vma, pvma))
287 return -ENOMEM;
288
289 /* Then add our own anon_vma. */
290 anon_vma = anon_vma_alloc();
291 if (!anon_vma)
292 goto out_error;
dd34739c 293 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
294 if (!avc)
295 goto out_error_free_anon_vma;
5c341ee1
RR
296
297 /*
298 * The root anon_vma's spinlock is the lock actually used when we
299 * lock any of the anon_vmas in this anon_vma tree.
300 */
301 anon_vma->root = pvma->anon_vma->root;
76545066 302 /*
01d8b20d
PZ
303 * With refcounts, an anon_vma can stay around longer than the
304 * process it belongs to. The root anon_vma needs to be pinned until
305 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
306 */
307 get_anon_vma(anon_vma->root);
5beb4930
RR
308 /* Mark this anon_vma as the one where our new (COWed) pages go. */
309 vma->anon_vma = anon_vma;
4fc3f1d6 310 anon_vma_lock_write(anon_vma);
5c341ee1 311 anon_vma_chain_link(vma, avc, anon_vma);
08b52706 312 anon_vma_unlock_write(anon_vma);
5beb4930
RR
313
314 return 0;
315
316 out_error_free_anon_vma:
01d8b20d 317 put_anon_vma(anon_vma);
5beb4930 318 out_error:
4946d54c 319 unlink_anon_vmas(vma);
5beb4930 320 return -ENOMEM;
1da177e4
LT
321}
322
5beb4930
RR
323void unlink_anon_vmas(struct vm_area_struct *vma)
324{
325 struct anon_vma_chain *avc, *next;
eee2acba 326 struct anon_vma *root = NULL;
5beb4930 327
5c341ee1
RR
328 /*
329 * Unlink each anon_vma chained to the VMA. This list is ordered
330 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 */
5beb4930 332 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
333 struct anon_vma *anon_vma = avc->anon_vma;
334
335 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 336 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
337
338 /*
339 * Leave empty anon_vmas on the list - we'll need
340 * to free them outside the lock.
341 */
bf181b9f 342 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
eee2acba
PZ
343 continue;
344
345 list_del(&avc->same_vma);
346 anon_vma_chain_free(avc);
347 }
348 unlock_anon_vma_root(root);
349
350 /*
351 * Iterate the list once more, it now only contains empty and unlinked
352 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 353 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
354 */
355 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
356 struct anon_vma *anon_vma = avc->anon_vma;
357
358 put_anon_vma(anon_vma);
359
5beb4930
RR
360 list_del(&avc->same_vma);
361 anon_vma_chain_free(avc);
362 }
363}
364
51cc5068 365static void anon_vma_ctor(void *data)
1da177e4 366{
a35afb83 367 struct anon_vma *anon_vma = data;
1da177e4 368
5a505085 369 init_rwsem(&anon_vma->rwsem);
83813267 370 atomic_set(&anon_vma->refcount, 0);
bf181b9f 371 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
372}
373
374void __init anon_vma_init(void)
375{
376 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 377 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 378 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
379}
380
381/*
6111e4ca
PZ
382 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 *
384 * Since there is no serialization what so ever against page_remove_rmap()
385 * the best this function can do is return a locked anon_vma that might
386 * have been relevant to this page.
387 *
388 * The page might have been remapped to a different anon_vma or the anon_vma
389 * returned may already be freed (and even reused).
390 *
bc658c96
PZ
391 * In case it was remapped to a different anon_vma, the new anon_vma will be a
392 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
393 * ensure that any anon_vma obtained from the page will still be valid for as
394 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 *
6111e4ca
PZ
396 * All users of this function must be very careful when walking the anon_vma
397 * chain and verify that the page in question is indeed mapped in it
398 * [ something equivalent to page_mapped_in_vma() ].
399 *
400 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
401 * that the anon_vma pointer from page->mapping is valid if there is a
402 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 403 */
746b18d4 404struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 405{
746b18d4 406 struct anon_vma *anon_vma = NULL;
1da177e4
LT
407 unsigned long anon_mapping;
408
409 rcu_read_lock();
80e14822 410 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 411 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
412 goto out;
413 if (!page_mapped(page))
414 goto out;
415
416 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
417 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
418 anon_vma = NULL;
419 goto out;
420 }
f1819427
HD
421
422 /*
423 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
424 * freed. But if it has been unmapped, we have no security against the
425 * anon_vma structure being freed and reused (for another anon_vma:
426 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
427 * above cannot corrupt).
f1819427 428 */
746b18d4 429 if (!page_mapped(page)) {
ef151648 430 rcu_read_unlock();
746b18d4 431 put_anon_vma(anon_vma);
ef151648 432 return NULL;
746b18d4 433 }
1da177e4
LT
434out:
435 rcu_read_unlock();
746b18d4
PZ
436
437 return anon_vma;
438}
439
88c22088
PZ
440/*
441 * Similar to page_get_anon_vma() except it locks the anon_vma.
442 *
443 * Its a little more complex as it tries to keep the fast path to a single
444 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
445 * reference like with page_get_anon_vma() and then block on the mutex.
446 */
4fc3f1d6 447struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 448{
88c22088 449 struct anon_vma *anon_vma = NULL;
eee0f252 450 struct anon_vma *root_anon_vma;
88c22088 451 unsigned long anon_mapping;
746b18d4 452
88c22088
PZ
453 rcu_read_lock();
454 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
455 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
456 goto out;
457 if (!page_mapped(page))
458 goto out;
459
460 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252 461 root_anon_vma = ACCESS_ONCE(anon_vma->root);
4fc3f1d6 462 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 463 /*
eee0f252
HD
464 * If the page is still mapped, then this anon_vma is still
465 * its anon_vma, and holding the mutex ensures that it will
bc658c96 466 * not go away, see anon_vma_free().
88c22088 467 */
eee0f252 468 if (!page_mapped(page)) {
4fc3f1d6 469 up_read(&root_anon_vma->rwsem);
88c22088
PZ
470 anon_vma = NULL;
471 }
472 goto out;
473 }
746b18d4 474
88c22088
PZ
475 /* trylock failed, we got to sleep */
476 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
477 anon_vma = NULL;
478 goto out;
479 }
480
481 if (!page_mapped(page)) {
ef151648 482 rcu_read_unlock();
88c22088 483 put_anon_vma(anon_vma);
ef151648 484 return NULL;
88c22088
PZ
485 }
486
487 /* we pinned the anon_vma, its safe to sleep */
488 rcu_read_unlock();
4fc3f1d6 489 anon_vma_lock_read(anon_vma);
88c22088
PZ
490
491 if (atomic_dec_and_test(&anon_vma->refcount)) {
492 /*
493 * Oops, we held the last refcount, release the lock
494 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 495 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 496 */
4fc3f1d6 497 anon_vma_unlock_read(anon_vma);
88c22088
PZ
498 __put_anon_vma(anon_vma);
499 anon_vma = NULL;
500 }
501
502 return anon_vma;
503
504out:
505 rcu_read_unlock();
746b18d4 506 return anon_vma;
34bbd704
ON
507}
508
4fc3f1d6 509void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 510{
4fc3f1d6 511 anon_vma_unlock_read(anon_vma);
1da177e4
LT
512}
513
514/*
3ad33b24 515 * At what user virtual address is page expected in @vma?
1da177e4 516 */
86c2ad19
ML
517static inline unsigned long
518__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4
LT
519{
520 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1da177e4 521
0fe6e20b
NH
522 if (unlikely(is_vm_hugetlb_page(vma)))
523 pgoff = page->index << huge_page_order(page_hstate(page));
86c2ad19
ML
524
525 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
526}
527
528inline unsigned long
529vma_address(struct page *page, struct vm_area_struct *vma)
530{
531 unsigned long address = __vma_address(page, vma);
532
533 /* page should be within @vma mapping range */
534 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
535
1da177e4
LT
536 return address;
537}
538
539/*
bf89c8c8 540 * At what user virtual address is page expected in vma?
ab941e0f 541 * Caller should check the page is actually part of the vma.
1da177e4
LT
542 */
543unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
544{
86c2ad19 545 unsigned long address;
21d0d443 546 if (PageAnon(page)) {
4829b906
HD
547 struct anon_vma *page__anon_vma = page_anon_vma(page);
548 /*
549 * Note: swapoff's unuse_vma() is more efficient with this
550 * check, and needs it to match anon_vma when KSM is active.
551 */
552 if (!vma->anon_vma || !page__anon_vma ||
553 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
554 return -EFAULT;
555 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
556 if (!vma->vm_file ||
557 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
558 return -EFAULT;
559 } else
560 return -EFAULT;
86c2ad19
ML
561 address = __vma_address(page, vma);
562 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
563 return -EFAULT;
564 return address;
1da177e4
LT
565}
566
6219049a
BL
567pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
568{
569 pgd_t *pgd;
570 pud_t *pud;
571 pmd_t *pmd = NULL;
572
573 pgd = pgd_offset(mm, address);
574 if (!pgd_present(*pgd))
575 goto out;
576
577 pud = pud_offset(pgd, address);
578 if (!pud_present(*pud))
579 goto out;
580
581 pmd = pmd_offset(pud, address);
582 if (!pmd_present(*pmd))
583 pmd = NULL;
584out:
585 return pmd;
586}
587
81b4082d
ND
588/*
589 * Check that @page is mapped at @address into @mm.
590 *
479db0bf
NP
591 * If @sync is false, page_check_address may perform a racy check to avoid
592 * the page table lock when the pte is not present (helpful when reclaiming
593 * highly shared pages).
594 *
b8072f09 595 * On success returns with pte mapped and locked.
81b4082d 596 */
e9a81a82 597pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 598 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 599{
81b4082d
ND
600 pmd_t *pmd;
601 pte_t *pte;
c0718806 602 spinlock_t *ptl;
81b4082d 603
0fe6e20b 604 if (unlikely(PageHuge(page))) {
398bbc57 605 /* when pud is not present, pte will be NULL */
0fe6e20b 606 pte = huge_pte_offset(mm, address);
398bbc57
JW
607 if (!pte)
608 return NULL;
609
0fe6e20b
NH
610 ptl = &mm->page_table_lock;
611 goto check;
612 }
613
6219049a
BL
614 pmd = mm_find_pmd(mm, address);
615 if (!pmd)
c0718806
HD
616 return NULL;
617
71e3aac0
AA
618 if (pmd_trans_huge(*pmd))
619 return NULL;
c0718806
HD
620
621 pte = pte_offset_map(pmd, address);
622 /* Make a quick check before getting the lock */
479db0bf 623 if (!sync && !pte_present(*pte)) {
c0718806
HD
624 pte_unmap(pte);
625 return NULL;
626 }
627
4c21e2f2 628 ptl = pte_lockptr(mm, pmd);
0fe6e20b 629check:
c0718806
HD
630 spin_lock(ptl);
631 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
632 *ptlp = ptl;
633 return pte;
81b4082d 634 }
c0718806
HD
635 pte_unmap_unlock(pte, ptl);
636 return NULL;
81b4082d
ND
637}
638
b291f000
NP
639/**
640 * page_mapped_in_vma - check whether a page is really mapped in a VMA
641 * @page: the page to test
642 * @vma: the VMA to test
643 *
644 * Returns 1 if the page is mapped into the page tables of the VMA, 0
645 * if the page is not mapped into the page tables of this VMA. Only
646 * valid for normal file or anonymous VMAs.
647 */
6a46079c 648int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
649{
650 unsigned long address;
651 pte_t *pte;
652 spinlock_t *ptl;
653
86c2ad19
ML
654 address = __vma_address(page, vma);
655 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
656 return 0;
657 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
658 if (!pte) /* the page is not in this mm */
659 return 0;
660 pte_unmap_unlock(pte, ptl);
661
662 return 1;
663}
664
1da177e4
LT
665/*
666 * Subfunctions of page_referenced: page_referenced_one called
667 * repeatedly from either page_referenced_anon or page_referenced_file.
668 */
5ad64688
HD
669int page_referenced_one(struct page *page, struct vm_area_struct *vma,
670 unsigned long address, unsigned int *mapcount,
671 unsigned long *vm_flags)
1da177e4
LT
672{
673 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
674 int referenced = 0;
675
71e3aac0
AA
676 if (unlikely(PageTransHuge(page))) {
677 pmd_t *pmd;
678
679 spin_lock(&mm->page_table_lock);
2da28bfd
AA
680 /*
681 * rmap might return false positives; we must filter
682 * these out using page_check_address_pmd().
683 */
71e3aac0
AA
684 pmd = page_check_address_pmd(page, mm, address,
685 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
686 if (!pmd) {
687 spin_unlock(&mm->page_table_lock);
688 goto out;
689 }
690
691 if (vma->vm_flags & VM_LOCKED) {
692 spin_unlock(&mm->page_table_lock);
693 *mapcount = 0; /* break early from loop */
694 *vm_flags |= VM_LOCKED;
695 goto out;
696 }
697
698 /* go ahead even if the pmd is pmd_trans_splitting() */
699 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
700 referenced++;
701 spin_unlock(&mm->page_table_lock);
702 } else {
703 pte_t *pte;
704 spinlock_t *ptl;
705
2da28bfd
AA
706 /*
707 * rmap might return false positives; we must filter
708 * these out using page_check_address().
709 */
71e3aac0
AA
710 pte = page_check_address(page, mm, address, &ptl, 0);
711 if (!pte)
712 goto out;
713
2da28bfd
AA
714 if (vma->vm_flags & VM_LOCKED) {
715 pte_unmap_unlock(pte, ptl);
716 *mapcount = 0; /* break early from loop */
717 *vm_flags |= VM_LOCKED;
718 goto out;
719 }
720
71e3aac0
AA
721 if (ptep_clear_flush_young_notify(vma, address, pte)) {
722 /*
723 * Don't treat a reference through a sequentially read
724 * mapping as such. If the page has been used in
725 * another mapping, we will catch it; if this other
726 * mapping is already gone, the unmap path will have
727 * set PG_referenced or activated the page.
728 */
729 if (likely(!VM_SequentialReadHint(vma)))
730 referenced++;
731 }
732 pte_unmap_unlock(pte, ptl);
733 }
734
c0718806 735 (*mapcount)--;
273f047e 736
6fe6b7e3
WF
737 if (referenced)
738 *vm_flags |= vma->vm_flags;
273f047e 739out:
1da177e4
LT
740 return referenced;
741}
742
bed7161a 743static int page_referenced_anon(struct page *page,
72835c86 744 struct mem_cgroup *memcg,
6fe6b7e3 745 unsigned long *vm_flags)
1da177e4
LT
746{
747 unsigned int mapcount;
748 struct anon_vma *anon_vma;
bf181b9f 749 pgoff_t pgoff;
5beb4930 750 struct anon_vma_chain *avc;
1da177e4
LT
751 int referenced = 0;
752
4fc3f1d6 753 anon_vma = page_lock_anon_vma_read(page);
1da177e4
LT
754 if (!anon_vma)
755 return referenced;
756
757 mapcount = page_mapcount(page);
bf181b9f
ML
758 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
759 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 760 struct vm_area_struct *vma = avc->vma;
1cb1729b 761 unsigned long address = vma_address(page, vma);
bed7161a
BS
762 /*
763 * If we are reclaiming on behalf of a cgroup, skip
764 * counting on behalf of references from different
765 * cgroups
766 */
72835c86 767 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 768 continue;
1cb1729b 769 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 770 &mapcount, vm_flags);
1da177e4
LT
771 if (!mapcount)
772 break;
773 }
34bbd704 774
4fc3f1d6 775 page_unlock_anon_vma_read(anon_vma);
1da177e4
LT
776 return referenced;
777}
778
779/**
780 * page_referenced_file - referenced check for object-based rmap
781 * @page: the page we're checking references on.
72835c86 782 * @memcg: target memory control group
6fe6b7e3 783 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
784 *
785 * For an object-based mapped page, find all the places it is mapped and
786 * check/clear the referenced flag. This is done by following the page->mapping
787 * pointer, then walking the chain of vmas it holds. It returns the number
788 * of references it found.
789 *
790 * This function is only called from page_referenced for object-based pages.
791 */
bed7161a 792static int page_referenced_file(struct page *page,
72835c86 793 struct mem_cgroup *memcg,
6fe6b7e3 794 unsigned long *vm_flags)
1da177e4
LT
795{
796 unsigned int mapcount;
797 struct address_space *mapping = page->mapping;
798 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
799 struct vm_area_struct *vma;
1da177e4
LT
800 int referenced = 0;
801
802 /*
803 * The caller's checks on page->mapping and !PageAnon have made
804 * sure that this is a file page: the check for page->mapping
805 * excludes the case just before it gets set on an anon page.
806 */
807 BUG_ON(PageAnon(page));
808
809 /*
810 * The page lock not only makes sure that page->mapping cannot
811 * suddenly be NULLified by truncation, it makes sure that the
812 * structure at mapping cannot be freed and reused yet,
3d48ae45 813 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
814 */
815 BUG_ON(!PageLocked(page));
816
3d48ae45 817 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
818
819 /*
3d48ae45 820 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
821 * is more likely to be accurate if we note it after spinning.
822 */
823 mapcount = page_mapcount(page);
824
6b2dbba8 825 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b 826 unsigned long address = vma_address(page, vma);
bed7161a
BS
827 /*
828 * If we are reclaiming on behalf of a cgroup, skip
829 * counting on behalf of references from different
830 * cgroups
831 */
72835c86 832 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 833 continue;
1cb1729b 834 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 835 &mapcount, vm_flags);
1da177e4
LT
836 if (!mapcount)
837 break;
838 }
839
3d48ae45 840 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
841 return referenced;
842}
843
844/**
845 * page_referenced - test if the page was referenced
846 * @page: the page to test
847 * @is_locked: caller holds lock on the page
72835c86 848 * @memcg: target memory cgroup
6fe6b7e3 849 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
850 *
851 * Quick test_and_clear_referenced for all mappings to a page,
852 * returns the number of ptes which referenced the page.
853 */
6fe6b7e3
WF
854int page_referenced(struct page *page,
855 int is_locked,
72835c86 856 struct mem_cgroup *memcg,
6fe6b7e3 857 unsigned long *vm_flags)
1da177e4
LT
858{
859 int referenced = 0;
5ad64688 860 int we_locked = 0;
1da177e4 861
6fe6b7e3 862 *vm_flags = 0;
3ca7b3c5 863 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
864 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
865 we_locked = trylock_page(page);
866 if (!we_locked) {
867 referenced++;
868 goto out;
869 }
870 }
871 if (unlikely(PageKsm(page)))
72835c86 872 referenced += page_referenced_ksm(page, memcg,
5ad64688
HD
873 vm_flags);
874 else if (PageAnon(page))
72835c86 875 referenced += page_referenced_anon(page, memcg,
6fe6b7e3 876 vm_flags);
5ad64688 877 else if (page->mapping)
72835c86 878 referenced += page_referenced_file(page, memcg,
6fe6b7e3 879 vm_flags);
5ad64688 880 if (we_locked)
1da177e4 881 unlock_page(page);
50a15981
MS
882
883 if (page_test_and_clear_young(page_to_pfn(page)))
884 referenced++;
1da177e4 885 }
5ad64688 886out:
1da177e4
LT
887 return referenced;
888}
889
1cb1729b
HD
890static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
891 unsigned long address)
d08b3851
PZ
892{
893 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 894 pte_t *pte;
d08b3851
PZ
895 spinlock_t *ptl;
896 int ret = 0;
897
479db0bf 898 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
899 if (!pte)
900 goto out;
901
c2fda5fe
PZ
902 if (pte_dirty(*pte) || pte_write(*pte)) {
903 pte_t entry;
d08b3851 904
c2fda5fe 905 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 906 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
907 entry = pte_wrprotect(entry);
908 entry = pte_mkclean(entry);
d6e88e67 909 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
910 ret = 1;
911 }
d08b3851 912
d08b3851 913 pte_unmap_unlock(pte, ptl);
2ec74c3e
SG
914
915 if (ret)
916 mmu_notifier_invalidate_page(mm, address);
d08b3851
PZ
917out:
918 return ret;
919}
920
921static int page_mkclean_file(struct address_space *mapping, struct page *page)
922{
923 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
924 struct vm_area_struct *vma;
d08b3851
PZ
925 int ret = 0;
926
927 BUG_ON(PageAnon(page));
928
3d48ae45 929 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 930 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
931 if (vma->vm_flags & VM_SHARED) {
932 unsigned long address = vma_address(page, vma);
1cb1729b
HD
933 ret += page_mkclean_one(page, vma, address);
934 }
d08b3851 935 }
3d48ae45 936 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
937 return ret;
938}
939
940int page_mkclean(struct page *page)
941{
942 int ret = 0;
943
944 BUG_ON(!PageLocked(page));
945
946 if (page_mapped(page)) {
947 struct address_space *mapping = page_mapping(page);
ef5d437f 948 if (mapping)
d08b3851
PZ
949 ret = page_mkclean_file(mapping, page);
950 }
951
952 return ret;
953}
60b59bea 954EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 955
c44b6743
RR
956/**
957 * page_move_anon_rmap - move a page to our anon_vma
958 * @page: the page to move to our anon_vma
959 * @vma: the vma the page belongs to
960 * @address: the user virtual address mapped
961 *
962 * When a page belongs exclusively to one process after a COW event,
963 * that page can be moved into the anon_vma that belongs to just that
964 * process, so the rmap code will not search the parent or sibling
965 * processes.
966 */
967void page_move_anon_rmap(struct page *page,
968 struct vm_area_struct *vma, unsigned long address)
969{
970 struct anon_vma *anon_vma = vma->anon_vma;
971
972 VM_BUG_ON(!PageLocked(page));
973 VM_BUG_ON(!anon_vma);
974 VM_BUG_ON(page->index != linear_page_index(vma, address));
975
976 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
977 page->mapping = (struct address_space *) anon_vma;
978}
979
9617d95e 980/**
4e1c1975
AK
981 * __page_set_anon_rmap - set up new anonymous rmap
982 * @page: Page to add to rmap
983 * @vma: VM area to add page to.
984 * @address: User virtual address of the mapping
e8a03feb 985 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
986 */
987static void __page_set_anon_rmap(struct page *page,
e8a03feb 988 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 989{
e8a03feb 990 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 991
e8a03feb 992 BUG_ON(!anon_vma);
ea90002b 993
4e1c1975
AK
994 if (PageAnon(page))
995 return;
996
ea90002b 997 /*
e8a03feb
RR
998 * If the page isn't exclusively mapped into this vma,
999 * we must use the _oldest_ possible anon_vma for the
1000 * page mapping!
ea90002b 1001 */
4e1c1975 1002 if (!exclusive)
288468c3 1003 anon_vma = anon_vma->root;
9617d95e 1004
9617d95e
NP
1005 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1006 page->mapping = (struct address_space *) anon_vma;
9617d95e 1007 page->index = linear_page_index(vma, address);
9617d95e
NP
1008}
1009
c97a9e10 1010/**
43d8eac4 1011 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1012 * @page: the page to add the mapping to
1013 * @vma: the vm area in which the mapping is added
1014 * @address: the user virtual address mapped
1015 */
1016static void __page_check_anon_rmap(struct page *page,
1017 struct vm_area_struct *vma, unsigned long address)
1018{
1019#ifdef CONFIG_DEBUG_VM
1020 /*
1021 * The page's anon-rmap details (mapping and index) are guaranteed to
1022 * be set up correctly at this point.
1023 *
1024 * We have exclusion against page_add_anon_rmap because the caller
1025 * always holds the page locked, except if called from page_dup_rmap,
1026 * in which case the page is already known to be setup.
1027 *
1028 * We have exclusion against page_add_new_anon_rmap because those pages
1029 * are initially only visible via the pagetables, and the pte is locked
1030 * over the call to page_add_new_anon_rmap.
1031 */
44ab57a0 1032 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1033 BUG_ON(page->index != linear_page_index(vma, address));
1034#endif
1035}
1036
1da177e4
LT
1037/**
1038 * page_add_anon_rmap - add pte mapping to an anonymous page
1039 * @page: the page to add the mapping to
1040 * @vma: the vm area in which the mapping is added
1041 * @address: the user virtual address mapped
1042 *
5ad64688 1043 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1044 * the anon_vma case: to serialize mapping,index checking after setting,
1045 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1046 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1047 */
1048void page_add_anon_rmap(struct page *page,
1049 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1050{
1051 do_page_add_anon_rmap(page, vma, address, 0);
1052}
1053
1054/*
1055 * Special version of the above for do_swap_page, which often runs
1056 * into pages that are exclusively owned by the current process.
1057 * Everybody else should continue to use page_add_anon_rmap above.
1058 */
1059void do_page_add_anon_rmap(struct page *page,
1060 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1061{
5ad64688 1062 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
1063 if (first) {
1064 if (!PageTransHuge(page))
1065 __inc_zone_page_state(page, NR_ANON_PAGES);
1066 else
1067 __inc_zone_page_state(page,
1068 NR_ANON_TRANSPARENT_HUGEPAGES);
1069 }
5ad64688
HD
1070 if (unlikely(PageKsm(page)))
1071 return;
1072
c97a9e10 1073 VM_BUG_ON(!PageLocked(page));
5dbe0af4 1074 /* address might be in next vma when migration races vma_adjust */
5ad64688 1075 if (first)
ad8c2ee8 1076 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1077 else
c97a9e10 1078 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1079}
1080
43d8eac4 1081/**
9617d95e
NP
1082 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1083 * @page: the page to add the mapping to
1084 * @vma: the vm area in which the mapping is added
1085 * @address: the user virtual address mapped
1086 *
1087 * Same as page_add_anon_rmap but must only be called on *new* pages.
1088 * This means the inc-and-test can be bypassed.
c97a9e10 1089 * Page does not have to be locked.
9617d95e
NP
1090 */
1091void page_add_new_anon_rmap(struct page *page,
1092 struct vm_area_struct *vma, unsigned long address)
1093{
b5934c53 1094 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1095 SetPageSwapBacked(page);
1096 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
1097 if (!PageTransHuge(page))
1098 __inc_zone_page_state(page, NR_ANON_PAGES);
1099 else
1100 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 1101 __page_set_anon_rmap(page, vma, address, 1);
39b5f29a 1102 if (!mlocked_vma_newpage(vma, page))
cbf84b7a 1103 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
1104 else
1105 add_page_to_unevictable_list(page);
9617d95e
NP
1106}
1107
1da177e4
LT
1108/**
1109 * page_add_file_rmap - add pte mapping to a file page
1110 * @page: the page to add the mapping to
1111 *
b8072f09 1112 * The caller needs to hold the pte lock.
1da177e4
LT
1113 */
1114void page_add_file_rmap(struct page *page)
1115{
89c06bd5
KH
1116 bool locked;
1117 unsigned long flags;
1118
1119 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
d69b042f 1120 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1121 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1122 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 1123 }
89c06bd5 1124 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1125}
1126
1127/**
1128 * page_remove_rmap - take down pte mapping from a page
1129 * @page: page to remove mapping from
1130 *
b8072f09 1131 * The caller needs to hold the pte lock.
1da177e4 1132 */
edc315fd 1133void page_remove_rmap(struct page *page)
1da177e4 1134{
89c06bd5
KH
1135 bool anon = PageAnon(page);
1136 bool locked;
1137 unsigned long flags;
1138
1139 /*
1140 * The anon case has no mem_cgroup page_stat to update; but may
1141 * uncharge_page() below, where the lock ordering can deadlock if
1142 * we hold the lock against page_stat move: so avoid it on anon.
1143 */
1144 if (!anon)
1145 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1146
b904dcfe
KM
1147 /* page still mapped by someone else? */
1148 if (!atomic_add_negative(-1, &page->_mapcount))
89c06bd5 1149 goto out;
b904dcfe 1150
0fe6e20b
NH
1151 /*
1152 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1153 * and not charged by memcg for now.
1154 */
1155 if (unlikely(PageHuge(page)))
89c06bd5
KH
1156 goto out;
1157 if (anon) {
b904dcfe 1158 mem_cgroup_uncharge_page(page);
79134171
AA
1159 if (!PageTransHuge(page))
1160 __dec_zone_page_state(page, NR_ANON_PAGES);
1161 else
1162 __dec_zone_page_state(page,
1163 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
1164 } else {
1165 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1166 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
e6c509f8 1167 mem_cgroup_end_update_page_stat(page, &locked, &flags);
b904dcfe 1168 }
e6c509f8
HD
1169 if (unlikely(PageMlocked(page)))
1170 clear_page_mlock(page);
b904dcfe
KM
1171 /*
1172 * It would be tidy to reset the PageAnon mapping here,
1173 * but that might overwrite a racing page_add_anon_rmap
1174 * which increments mapcount after us but sets mapping
1175 * before us: so leave the reset to free_hot_cold_page,
1176 * and remember that it's only reliable while mapped.
1177 * Leaving it set also helps swapoff to reinstate ptes
1178 * faster for those pages still in swapcache.
1179 */
e6c509f8 1180 return;
89c06bd5
KH
1181out:
1182 if (!anon)
1183 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1184}
1185
1186/*
1187 * Subfunctions of try_to_unmap: try_to_unmap_one called
99ef0315 1188 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1da177e4 1189 */
5ad64688
HD
1190int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1191 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1192{
1193 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1194 pte_t *pte;
1195 pte_t pteval;
c0718806 1196 spinlock_t *ptl;
1da177e4
LT
1197 int ret = SWAP_AGAIN;
1198
479db0bf 1199 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1200 if (!pte)
81b4082d 1201 goto out;
1da177e4
LT
1202
1203 /*
1204 * If the page is mlock()d, we cannot swap it out.
1205 * If it's recently referenced (perhaps page_referenced
1206 * skipped over this mm) then we should reactivate it.
1207 */
14fa31b8 1208 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1209 if (vma->vm_flags & VM_LOCKED)
1210 goto out_mlock;
1211
af8e3354 1212 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1213 goto out_unmap;
14fa31b8
AK
1214 }
1215 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1216 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1217 ret = SWAP_FAIL;
1218 goto out_unmap;
1219 }
1220 }
1da177e4 1221
1da177e4
LT
1222 /* Nuke the page table entry. */
1223 flush_cache_page(vma, address, page_to_pfn(page));
2ec74c3e 1224 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1225
1226 /* Move the dirty bit to the physical page now the pte is gone. */
1227 if (pte_dirty(pteval))
1228 set_page_dirty(page);
1229
365e9c87
HD
1230 /* Update high watermark before we lower rss */
1231 update_hiwater_rss(mm);
1232
888b9f7c 1233 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1234 if (!PageHuge(page)) {
1235 if (PageAnon(page))
1236 dec_mm_counter(mm, MM_ANONPAGES);
1237 else
1238 dec_mm_counter(mm, MM_FILEPAGES);
1239 }
888b9f7c 1240 set_pte_at(mm, address, pte,
5f24ae58 1241 swp_entry_to_pte(make_hwpoison_entry(page)));
888b9f7c 1242 } else if (PageAnon(page)) {
4c21e2f2 1243 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1244
1245 if (PageSwapCache(page)) {
1246 /*
1247 * Store the swap location in the pte.
1248 * See handle_pte_fault() ...
1249 */
570a335b
HD
1250 if (swap_duplicate(entry) < 0) {
1251 set_pte_at(mm, address, pte, pteval);
1252 ret = SWAP_FAIL;
1253 goto out_unmap;
1254 }
0697212a
CL
1255 if (list_empty(&mm->mmlist)) {
1256 spin_lock(&mmlist_lock);
1257 if (list_empty(&mm->mmlist))
1258 list_add(&mm->mmlist, &init_mm.mmlist);
1259 spin_unlock(&mmlist_lock);
1260 }
d559db08 1261 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1262 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1263 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1264 /*
1265 * Store the pfn of the page in a special migration
1266 * pte. do_swap_page() will wait until the migration
1267 * pte is removed and then restart fault handling.
1268 */
14fa31b8 1269 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1270 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1271 }
1272 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1273 BUG_ON(pte_file(*pte));
ce1744f4
KK
1274 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1275 (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1276 /* Establish migration entry for a file page */
1277 swp_entry_t entry;
1278 entry = make_migration_entry(page, pte_write(pteval));
1279 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1280 } else
d559db08 1281 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1282
edc315fd 1283 page_remove_rmap(page);
1da177e4
LT
1284 page_cache_release(page);
1285
1286out_unmap:
c0718806 1287 pte_unmap_unlock(pte, ptl);
2ec74c3e
SG
1288 if (ret != SWAP_FAIL)
1289 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1290out:
1291 return ret;
53f79acb 1292
caed0f48
KM
1293out_mlock:
1294 pte_unmap_unlock(pte, ptl);
1295
1296
1297 /*
1298 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1299 * unstable result and race. Plus, We can't wait here because
5a505085 1300 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
caed0f48
KM
1301 * if trylock failed, the page remain in evictable lru and later
1302 * vmscan could retry to move the page to unevictable lru if the
1303 * page is actually mlocked.
1304 */
1305 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1306 if (vma->vm_flags & VM_LOCKED) {
1307 mlock_vma_page(page);
1308 ret = SWAP_MLOCK;
53f79acb 1309 }
caed0f48 1310 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1311 }
1da177e4
LT
1312 return ret;
1313}
1314
1315/*
1316 * objrmap doesn't work for nonlinear VMAs because the assumption that
1317 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1318 * Consequently, given a particular page and its ->index, we cannot locate the
1319 * ptes which are mapping that page without an exhaustive linear search.
1320 *
1321 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1322 * maps the file to which the target page belongs. The ->vm_private_data field
1323 * holds the current cursor into that scan. Successive searches will circulate
1324 * around the vma's virtual address space.
1325 *
1326 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1327 * more scanning pressure is placed against them as well. Eventually pages
1328 * will become fully unmapped and are eligible for eviction.
1329 *
1330 * For very sparsely populated VMAs this is a little inefficient - chances are
1331 * there there won't be many ptes located within the scan cluster. In this case
1332 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1333 *
1334 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1335 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1336 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1337 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1338 */
1339#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1340#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1341
b291f000
NP
1342static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1343 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1344{
1345 struct mm_struct *mm = vma->vm_mm;
1da177e4 1346 pmd_t *pmd;
c0718806 1347 pte_t *pte;
1da177e4 1348 pte_t pteval;
c0718806 1349 spinlock_t *ptl;
1da177e4
LT
1350 struct page *page;
1351 unsigned long address;
2ec74c3e
SG
1352 unsigned long mmun_start; /* For mmu_notifiers */
1353 unsigned long mmun_end; /* For mmu_notifiers */
1da177e4 1354 unsigned long end;
b291f000
NP
1355 int ret = SWAP_AGAIN;
1356 int locked_vma = 0;
1da177e4 1357
1da177e4
LT
1358 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1359 end = address + CLUSTER_SIZE;
1360 if (address < vma->vm_start)
1361 address = vma->vm_start;
1362 if (end > vma->vm_end)
1363 end = vma->vm_end;
1364
6219049a
BL
1365 pmd = mm_find_pmd(mm, address);
1366 if (!pmd)
b291f000
NP
1367 return ret;
1368
2ec74c3e
SG
1369 mmun_start = address;
1370 mmun_end = end;
1371 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1372
b291f000 1373 /*
af8e3354 1374 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1375 * keep the sem while scanning the cluster for mlocking pages.
1376 */
af8e3354 1377 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1378 locked_vma = (vma->vm_flags & VM_LOCKED);
1379 if (!locked_vma)
1380 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1381 }
c0718806
HD
1382
1383 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1384
365e9c87
HD
1385 /* Update high watermark before we lower rss */
1386 update_hiwater_rss(mm);
1387
c0718806 1388 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1389 if (!pte_present(*pte))
1390 continue;
6aab341e
LT
1391 page = vm_normal_page(vma, address, *pte);
1392 BUG_ON(!page || PageAnon(page));
1da177e4 1393
b291f000 1394 if (locked_vma) {
77552735
VB
1395 if (page == check_page) {
1396 /* we know we have check_page locked */
1397 mlock_vma_page(page);
b291f000 1398 ret = SWAP_MLOCK;
77552735
VB
1399 } else if (trylock_page(page)) {
1400 /*
1401 * If we can lock the page, perform mlock.
1402 * Otherwise leave the page alone, it will be
1403 * eventually encountered again later.
1404 */
1405 mlock_vma_page(page);
1406 unlock_page(page);
1407 }
b291f000
NP
1408 continue; /* don't unmap */
1409 }
1410
cddb8a5c 1411 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1412 continue;
1413
1414 /* Nuke the page table entry. */
eca35133 1415 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 1416 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1417
1418 /* If nonlinear, store the file page offset in the pte. */
1419 if (page->index != linear_page_index(vma, address))
1420 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1421
1422 /* Move the dirty bit to the physical page now the pte is gone. */
1423 if (pte_dirty(pteval))
1424 set_page_dirty(page);
1425
edc315fd 1426 page_remove_rmap(page);
1da177e4 1427 page_cache_release(page);
d559db08 1428 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1429 (*mapcount)--;
1430 }
c0718806 1431 pte_unmap_unlock(pte - 1, ptl);
2ec74c3e 1432 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b291f000
NP
1433 if (locked_vma)
1434 up_read(&vma->vm_mm->mmap_sem);
1435 return ret;
1da177e4
LT
1436}
1437
71e3aac0 1438bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1439{
1440 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1441
1442 if (!maybe_stack)
1443 return false;
1444
1445 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1446 VM_STACK_INCOMPLETE_SETUP)
1447 return true;
1448
1449 return false;
1450}
1451
b291f000
NP
1452/**
1453 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1454 * rmap method
1455 * @page: the page to unmap/unlock
8051be5e 1456 * @flags: action and flags
b291f000
NP
1457 *
1458 * Find all the mappings of a page using the mapping pointer and the vma chains
1459 * contained in the anon_vma struct it points to.
1460 *
1461 * This function is only called from try_to_unmap/try_to_munlock for
1462 * anonymous pages.
1463 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1464 * where the page was found will be held for write. So, we won't recheck
1465 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1466 * 'LOCKED.
1467 */
14fa31b8 1468static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1469{
1470 struct anon_vma *anon_vma;
bf181b9f 1471 pgoff_t pgoff;
5beb4930 1472 struct anon_vma_chain *avc;
1da177e4 1473 int ret = SWAP_AGAIN;
b291f000 1474
4fc3f1d6 1475 anon_vma = page_lock_anon_vma_read(page);
1da177e4
LT
1476 if (!anon_vma)
1477 return ret;
1478
bf181b9f
ML
1479 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1480 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1481 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1482 unsigned long address;
1483
1484 /*
1485 * During exec, a temporary VMA is setup and later moved.
1486 * The VMA is moved under the anon_vma lock but not the
1487 * page tables leading to a race where migration cannot
1488 * find the migration ptes. Rather than increasing the
1489 * locking requirements of exec(), migration skips
1490 * temporary VMAs until after exec() completes.
1491 */
ce1744f4 1492 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
a8bef8ff
MG
1493 is_vma_temporary_stack(vma))
1494 continue;
1495
1496 address = vma_address(page, vma);
1cb1729b 1497 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1498 if (ret != SWAP_AGAIN || !page_mapped(page))
1499 break;
1da177e4 1500 }
34bbd704 1501
4fc3f1d6 1502 page_unlock_anon_vma_read(anon_vma);
1da177e4
LT
1503 return ret;
1504}
1505
1506/**
b291f000
NP
1507 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1508 * @page: the page to unmap/unlock
14fa31b8 1509 * @flags: action and flags
1da177e4
LT
1510 *
1511 * Find all the mappings of a page using the mapping pointer and the vma chains
1512 * contained in the address_space struct it points to.
1513 *
b291f000
NP
1514 * This function is only called from try_to_unmap/try_to_munlock for
1515 * object-based pages.
1516 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1517 * where the page was found will be held for write. So, we won't recheck
1518 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1519 * 'LOCKED.
1da177e4 1520 */
14fa31b8 1521static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1522{
1523 struct address_space *mapping = page->mapping;
1524 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1525 struct vm_area_struct *vma;
1da177e4
LT
1526 int ret = SWAP_AGAIN;
1527 unsigned long cursor;
1528 unsigned long max_nl_cursor = 0;
1529 unsigned long max_nl_size = 0;
1530 unsigned int mapcount;
1531
369a713e
HD
1532 if (PageHuge(page))
1533 pgoff = page->index << compound_order(page);
1534
3d48ae45 1535 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1536 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b 1537 unsigned long address = vma_address(page, vma);
1cb1729b 1538 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1539 if (ret != SWAP_AGAIN || !page_mapped(page))
1540 goto out;
1da177e4
LT
1541 }
1542
1543 if (list_empty(&mapping->i_mmap_nonlinear))
1544 goto out;
1545
53f79acb
HD
1546 /*
1547 * We don't bother to try to find the munlocked page in nonlinears.
1548 * It's costly. Instead, later, page reclaim logic may call
1549 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1550 */
1551 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1552 goto out;
1553
1da177e4 1554 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1555 shared.nonlinear) {
1da177e4
LT
1556 cursor = (unsigned long) vma->vm_private_data;
1557 if (cursor > max_nl_cursor)
1558 max_nl_cursor = cursor;
1559 cursor = vma->vm_end - vma->vm_start;
1560 if (cursor > max_nl_size)
1561 max_nl_size = cursor;
1562 }
1563
b291f000 1564 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1565 ret = SWAP_FAIL;
1566 goto out;
1567 }
1568
1569 /*
1570 * We don't try to search for this page in the nonlinear vmas,
1571 * and page_referenced wouldn't have found it anyway. Instead
1572 * just walk the nonlinear vmas trying to age and unmap some.
1573 * The mapcount of the page we came in with is irrelevant,
1574 * but even so use it as a guide to how hard we should try?
1575 */
1576 mapcount = page_mapcount(page);
1577 if (!mapcount)
1578 goto out;
3d48ae45 1579 cond_resched();
1da177e4
LT
1580
1581 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1582 if (max_nl_cursor == 0)
1583 max_nl_cursor = CLUSTER_SIZE;
1584
1585 do {
1586 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1587 shared.nonlinear) {
1da177e4 1588 cursor = (unsigned long) vma->vm_private_data;
839b9685 1589 while ( cursor < max_nl_cursor &&
1da177e4 1590 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1591 if (try_to_unmap_cluster(cursor, &mapcount,
1592 vma, page) == SWAP_MLOCK)
1593 ret = SWAP_MLOCK;
1da177e4
LT
1594 cursor += CLUSTER_SIZE;
1595 vma->vm_private_data = (void *) cursor;
1596 if ((int)mapcount <= 0)
1597 goto out;
1598 }
1599 vma->vm_private_data = (void *) max_nl_cursor;
1600 }
3d48ae45 1601 cond_resched();
1da177e4
LT
1602 max_nl_cursor += CLUSTER_SIZE;
1603 } while (max_nl_cursor <= max_nl_size);
1604
1605 /*
1606 * Don't loop forever (perhaps all the remaining pages are
1607 * in locked vmas). Reset cursor on all unreserved nonlinear
1608 * vmas, now forgetting on which ones it had fallen behind.
1609 */
6b2dbba8 1610 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
101d2be7 1611 vma->vm_private_data = NULL;
1da177e4 1612out:
3d48ae45 1613 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1614 return ret;
1615}
1616
1617/**
1618 * try_to_unmap - try to remove all page table mappings to a page
1619 * @page: the page to get unmapped
14fa31b8 1620 * @flags: action and flags
1da177e4
LT
1621 *
1622 * Tries to remove all the page table entries which are mapping this
1623 * page, used in the pageout path. Caller must hold the page lock.
1624 * Return values are:
1625 *
1626 * SWAP_SUCCESS - we succeeded in removing all mappings
1627 * SWAP_AGAIN - we missed a mapping, try again later
1628 * SWAP_FAIL - the page is unswappable
b291f000 1629 * SWAP_MLOCK - page is mlocked.
1da177e4 1630 */
14fa31b8 1631int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1632{
1633 int ret;
1634
1da177e4 1635 BUG_ON(!PageLocked(page));
91600e9e 1636 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1637
5ad64688
HD
1638 if (unlikely(PageKsm(page)))
1639 ret = try_to_unmap_ksm(page, flags);
1640 else if (PageAnon(page))
14fa31b8 1641 ret = try_to_unmap_anon(page, flags);
1da177e4 1642 else
14fa31b8 1643 ret = try_to_unmap_file(page, flags);
b291f000 1644 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1645 ret = SWAP_SUCCESS;
1646 return ret;
1647}
81b4082d 1648
b291f000
NP
1649/**
1650 * try_to_munlock - try to munlock a page
1651 * @page: the page to be munlocked
1652 *
1653 * Called from munlock code. Checks all of the VMAs mapping the page
1654 * to make sure nobody else has this page mlocked. The page will be
1655 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1656 *
1657 * Return values are:
1658 *
53f79acb 1659 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1660 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1661 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1662 * SWAP_MLOCK - page is now mlocked.
1663 */
1664int try_to_munlock(struct page *page)
1665{
1666 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1667
5ad64688
HD
1668 if (unlikely(PageKsm(page)))
1669 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1670 else if (PageAnon(page))
14fa31b8 1671 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1672 else
14fa31b8 1673 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1674}
e9995ef9 1675
01d8b20d 1676void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1677{
01d8b20d 1678 struct anon_vma *root = anon_vma->root;
76545066 1679
65375ce7 1680 anon_vma_free(anon_vma);
01d8b20d
PZ
1681 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1682 anon_vma_free(root);
76545066 1683}
76545066 1684
e9995ef9
HD
1685#ifdef CONFIG_MIGRATION
1686/*
1687 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1688 * Called by migrate.c to remove migration ptes, but might be used more later.
1689 */
1690static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1691 struct vm_area_struct *, unsigned long, void *), void *arg)
1692{
1693 struct anon_vma *anon_vma;
bf181b9f 1694 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
5beb4930 1695 struct anon_vma_chain *avc;
e9995ef9
HD
1696 int ret = SWAP_AGAIN;
1697
1698 /*
4fc3f1d6 1699 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
e9995ef9 1700 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1701 * are holding mmap_sem. Users without mmap_sem are required to
1702 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1703 */
1704 anon_vma = page_anon_vma(page);
1705 if (!anon_vma)
1706 return ret;
4fc3f1d6 1707 anon_vma_lock_read(anon_vma);
bf181b9f 1708 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1709 struct vm_area_struct *vma = avc->vma;
e9995ef9 1710 unsigned long address = vma_address(page, vma);
e9995ef9
HD
1711 ret = rmap_one(page, vma, address, arg);
1712 if (ret != SWAP_AGAIN)
1713 break;
1714 }
4fc3f1d6 1715 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1716 return ret;
1717}
1718
1719static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1720 struct vm_area_struct *, unsigned long, void *), void *arg)
1721{
1722 struct address_space *mapping = page->mapping;
1723 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1724 struct vm_area_struct *vma;
e9995ef9
HD
1725 int ret = SWAP_AGAIN;
1726
1727 if (!mapping)
1728 return ret;
3d48ae45 1729 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1730 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1731 unsigned long address = vma_address(page, vma);
e9995ef9
HD
1732 ret = rmap_one(page, vma, address, arg);
1733 if (ret != SWAP_AGAIN)
1734 break;
1735 }
1736 /*
1737 * No nonlinear handling: being always shared, nonlinear vmas
1738 * never contain migration ptes. Decide what to do about this
1739 * limitation to linear when we need rmap_walk() on nonlinear.
1740 */
3d48ae45 1741 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1742 return ret;
1743}
1744
1745int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1746 struct vm_area_struct *, unsigned long, void *), void *arg)
1747{
1748 VM_BUG_ON(!PageLocked(page));
1749
1750 if (unlikely(PageKsm(page)))
1751 return rmap_walk_ksm(page, rmap_one, arg);
1752 else if (PageAnon(page))
1753 return rmap_walk_anon(page, rmap_one, arg);
1754 else
1755 return rmap_walk_file(page, rmap_one, arg);
1756}
1757#endif /* CONFIG_MIGRATION */
0fe6e20b 1758
e3390f67 1759#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1760/*
1761 * The following three functions are for anonymous (private mapped) hugepages.
1762 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1763 * and no lru code, because we handle hugepages differently from common pages.
1764 */
1765static void __hugepage_set_anon_rmap(struct page *page,
1766 struct vm_area_struct *vma, unsigned long address, int exclusive)
1767{
1768 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1769
0fe6e20b 1770 BUG_ON(!anon_vma);
433abed6
NH
1771
1772 if (PageAnon(page))
1773 return;
1774 if (!exclusive)
1775 anon_vma = anon_vma->root;
1776
0fe6e20b
NH
1777 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1778 page->mapping = (struct address_space *) anon_vma;
1779 page->index = linear_page_index(vma, address);
1780}
1781
1782void hugepage_add_anon_rmap(struct page *page,
1783 struct vm_area_struct *vma, unsigned long address)
1784{
1785 struct anon_vma *anon_vma = vma->anon_vma;
1786 int first;
a850ea30
NH
1787
1788 BUG_ON(!PageLocked(page));
0fe6e20b 1789 BUG_ON(!anon_vma);
5dbe0af4 1790 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1791 first = atomic_inc_and_test(&page->_mapcount);
1792 if (first)
1793 __hugepage_set_anon_rmap(page, vma, address, 0);
1794}
1795
1796void hugepage_add_new_anon_rmap(struct page *page,
1797 struct vm_area_struct *vma, unsigned long address)
1798{
1799 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1800 atomic_set(&page->_mapcount, 0);
1801 __hugepage_set_anon_rmap(page, vma, address, 1);
1802}
e3390f67 1803#endif /* CONFIG_HUGETLB_PAGE */