mm: numa: Rate limit setting of pte_numa if node is saturated
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
8e6ac7fa 36#include <linux/hugetlb_cgroup.h>
5a0e3ad6 37#include <linux/gfp.h>
b20a3503 38
0d1836c3
MN
39#include <asm/tlbflush.h>
40
7b2a2d4a
MG
41#define CREATE_TRACE_POINTS
42#include <trace/events/migrate.h>
43
b20a3503
CL
44#include "internal.h"
45
b20a3503 46/*
742755a1 47 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
48 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
49 * undesirable, use migrate_prep_local()
b20a3503
CL
50 */
51int migrate_prep(void)
52{
b20a3503
CL
53 /*
54 * Clear the LRU lists so pages can be isolated.
55 * Note that pages may be moved off the LRU after we have
56 * drained them. Those pages will fail to migrate like other
57 * pages that may be busy.
58 */
59 lru_add_drain_all();
60
61 return 0;
62}
63
748446bb
MG
64/* Do the necessary work of migrate_prep but not if it involves other CPUs */
65int migrate_prep_local(void)
66{
67 lru_add_drain();
68
69 return 0;
70}
71
b20a3503 72/*
894bc310
LS
73 * Add isolated pages on the list back to the LRU under page lock
74 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 75 */
e13861d8 76void putback_lru_pages(struct list_head *l)
b20a3503
CL
77{
78 struct page *page;
79 struct page *page2;
b20a3503
CL
80
81 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 82 list_del(&page->lru);
a731286d 83 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 84 page_is_file_cache(page));
894bc310 85 putback_lru_page(page);
b20a3503 86 }
b20a3503
CL
87}
88
0697212a
CL
89/*
90 * Restore a potential migration pte to a working pte entry
91 */
e9995ef9
HD
92static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
93 unsigned long addr, void *old)
0697212a
CL
94{
95 struct mm_struct *mm = vma->vm_mm;
96 swp_entry_t entry;
97 pgd_t *pgd;
98 pud_t *pud;
99 pmd_t *pmd;
100 pte_t *ptep, pte;
101 spinlock_t *ptl;
102
290408d4
NH
103 if (unlikely(PageHuge(new))) {
104 ptep = huge_pte_offset(mm, addr);
105 if (!ptep)
106 goto out;
107 ptl = &mm->page_table_lock;
108 } else {
109 pgd = pgd_offset(mm, addr);
110 if (!pgd_present(*pgd))
111 goto out;
0697212a 112
290408d4
NH
113 pud = pud_offset(pgd, addr);
114 if (!pud_present(*pud))
115 goto out;
0697212a 116
290408d4 117 pmd = pmd_offset(pud, addr);
500d65d4
AA
118 if (pmd_trans_huge(*pmd))
119 goto out;
290408d4
NH
120 if (!pmd_present(*pmd))
121 goto out;
0697212a 122
290408d4 123 ptep = pte_offset_map(pmd, addr);
0697212a 124
486cf46f
HD
125 /*
126 * Peek to check is_swap_pte() before taking ptlock? No, we
127 * can race mremap's move_ptes(), which skips anon_vma lock.
128 */
290408d4
NH
129
130 ptl = pte_lockptr(mm, pmd);
131 }
0697212a 132
0697212a
CL
133 spin_lock(ptl);
134 pte = *ptep;
135 if (!is_swap_pte(pte))
e9995ef9 136 goto unlock;
0697212a
CL
137
138 entry = pte_to_swp_entry(pte);
139
e9995ef9
HD
140 if (!is_migration_entry(entry) ||
141 migration_entry_to_page(entry) != old)
142 goto unlock;
0697212a 143
0697212a
CL
144 get_page(new);
145 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
146 if (is_write_migration_entry(entry))
147 pte = pte_mkwrite(pte);
3ef8fd7f 148#ifdef CONFIG_HUGETLB_PAGE
290408d4
NH
149 if (PageHuge(new))
150 pte = pte_mkhuge(pte);
3ef8fd7f 151#endif
97ee0524 152 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 153 set_pte_at(mm, addr, ptep, pte);
04e62a29 154
290408d4
NH
155 if (PageHuge(new)) {
156 if (PageAnon(new))
157 hugepage_add_anon_rmap(new, vma, addr);
158 else
159 page_dup_rmap(new);
160 } else if (PageAnon(new))
04e62a29
CL
161 page_add_anon_rmap(new, vma, addr);
162 else
163 page_add_file_rmap(new);
164
165 /* No need to invalidate - it was non-present before */
4b3073e1 166 update_mmu_cache(vma, addr, ptep);
e9995ef9 167unlock:
0697212a 168 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
169out:
170 return SWAP_AGAIN;
0697212a
CL
171}
172
04e62a29
CL
173/*
174 * Get rid of all migration entries and replace them by
175 * references to the indicated page.
176 */
177static void remove_migration_ptes(struct page *old, struct page *new)
178{
e9995ef9 179 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
180}
181
0697212a
CL
182/*
183 * Something used the pte of a page under migration. We need to
184 * get to the page and wait until migration is finished.
185 * When we return from this function the fault will be retried.
0697212a
CL
186 */
187void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
188 unsigned long address)
189{
190 pte_t *ptep, pte;
191 spinlock_t *ptl;
192 swp_entry_t entry;
193 struct page *page;
194
195 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
196 pte = *ptep;
197 if (!is_swap_pte(pte))
198 goto out;
199
200 entry = pte_to_swp_entry(pte);
201 if (!is_migration_entry(entry))
202 goto out;
203
204 page = migration_entry_to_page(entry);
205
e286781d
NP
206 /*
207 * Once radix-tree replacement of page migration started, page_count
208 * *must* be zero. And, we don't want to call wait_on_page_locked()
209 * against a page without get_page().
210 * So, we use get_page_unless_zero(), here. Even failed, page fault
211 * will occur again.
212 */
213 if (!get_page_unless_zero(page))
214 goto out;
0697212a
CL
215 pte_unmap_unlock(ptep, ptl);
216 wait_on_page_locked(page);
217 put_page(page);
218 return;
219out:
220 pte_unmap_unlock(ptep, ptl);
221}
222
b969c4ab
MG
223#ifdef CONFIG_BLOCK
224/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
225static bool buffer_migrate_lock_buffers(struct buffer_head *head,
226 enum migrate_mode mode)
b969c4ab
MG
227{
228 struct buffer_head *bh = head;
229
230 /* Simple case, sync compaction */
a6bc32b8 231 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
232 do {
233 get_bh(bh);
234 lock_buffer(bh);
235 bh = bh->b_this_page;
236
237 } while (bh != head);
238
239 return true;
240 }
241
242 /* async case, we cannot block on lock_buffer so use trylock_buffer */
243 do {
244 get_bh(bh);
245 if (!trylock_buffer(bh)) {
246 /*
247 * We failed to lock the buffer and cannot stall in
248 * async migration. Release the taken locks
249 */
250 struct buffer_head *failed_bh = bh;
251 put_bh(failed_bh);
252 bh = head;
253 while (bh != failed_bh) {
254 unlock_buffer(bh);
255 put_bh(bh);
256 bh = bh->b_this_page;
257 }
258 return false;
259 }
260
261 bh = bh->b_this_page;
262 } while (bh != head);
263 return true;
264}
265#else
266static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 267 enum migrate_mode mode)
b969c4ab
MG
268{
269 return true;
270}
271#endif /* CONFIG_BLOCK */
272
b20a3503 273/*
c3fcf8a5 274 * Replace the page in the mapping.
5b5c7120
CL
275 *
276 * The number of remaining references must be:
277 * 1 for anonymous pages without a mapping
278 * 2 for pages with a mapping
266cf658 279 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 280 */
2d1db3b1 281static int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 282 struct page *newpage, struct page *page,
a6bc32b8 283 struct buffer_head *head, enum migrate_mode mode)
b20a3503 284{
7039e1db 285 int expected_count = 0;
7cf9c2c7 286 void **pslot;
b20a3503 287
6c5240ae 288 if (!mapping) {
0e8c7d0f 289 /* Anonymous page without mapping */
6c5240ae
CL
290 if (page_count(page) != 1)
291 return -EAGAIN;
292 return 0;
293 }
294
19fd6231 295 spin_lock_irq(&mapping->tree_lock);
b20a3503 296
7cf9c2c7
NP
297 pslot = radix_tree_lookup_slot(&mapping->page_tree,
298 page_index(page));
b20a3503 299
edcf4748 300 expected_count = 2 + page_has_private(page);
e286781d 301 if (page_count(page) != expected_count ||
29c1f677 302 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 303 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 304 return -EAGAIN;
b20a3503
CL
305 }
306
e286781d 307 if (!page_freeze_refs(page, expected_count)) {
19fd6231 308 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
309 return -EAGAIN;
310 }
311
b969c4ab
MG
312 /*
313 * In the async migration case of moving a page with buffers, lock the
314 * buffers using trylock before the mapping is moved. If the mapping
315 * was moved, we later failed to lock the buffers and could not move
316 * the mapping back due to an elevated page count, we would have to
317 * block waiting on other references to be dropped.
318 */
a6bc32b8
MG
319 if (mode == MIGRATE_ASYNC && head &&
320 !buffer_migrate_lock_buffers(head, mode)) {
b969c4ab
MG
321 page_unfreeze_refs(page, expected_count);
322 spin_unlock_irq(&mapping->tree_lock);
323 return -EAGAIN;
324 }
325
b20a3503
CL
326 /*
327 * Now we know that no one else is looking at the page.
b20a3503 328 */
7cf9c2c7 329 get_page(newpage); /* add cache reference */
b20a3503
CL
330 if (PageSwapCache(page)) {
331 SetPageSwapCache(newpage);
332 set_page_private(newpage, page_private(page));
333 }
334
7cf9c2c7
NP
335 radix_tree_replace_slot(pslot, newpage);
336
337 /*
937a94c9
JG
338 * Drop cache reference from old page by unfreezing
339 * to one less reference.
7cf9c2c7
NP
340 * We know this isn't the last reference.
341 */
937a94c9 342 page_unfreeze_refs(page, expected_count - 1);
7cf9c2c7 343
0e8c7d0f
CL
344 /*
345 * If moved to a different zone then also account
346 * the page for that zone. Other VM counters will be
347 * taken care of when we establish references to the
348 * new page and drop references to the old page.
349 *
350 * Note that anonymous pages are accounted for
351 * via NR_FILE_PAGES and NR_ANON_PAGES if they
352 * are mapped to swap space.
353 */
354 __dec_zone_page_state(page, NR_FILE_PAGES);
355 __inc_zone_page_state(newpage, NR_FILE_PAGES);
99a15e21 356 if (!PageSwapCache(page) && PageSwapBacked(page)) {
4b02108a
KM
357 __dec_zone_page_state(page, NR_SHMEM);
358 __inc_zone_page_state(newpage, NR_SHMEM);
359 }
19fd6231 360 spin_unlock_irq(&mapping->tree_lock);
b20a3503
CL
361
362 return 0;
363}
b20a3503 364
290408d4
NH
365/*
366 * The expected number of remaining references is the same as that
367 * of migrate_page_move_mapping().
368 */
369int migrate_huge_page_move_mapping(struct address_space *mapping,
370 struct page *newpage, struct page *page)
371{
372 int expected_count;
373 void **pslot;
374
375 if (!mapping) {
376 if (page_count(page) != 1)
377 return -EAGAIN;
378 return 0;
379 }
380
381 spin_lock_irq(&mapping->tree_lock);
382
383 pslot = radix_tree_lookup_slot(&mapping->page_tree,
384 page_index(page));
385
386 expected_count = 2 + page_has_private(page);
387 if (page_count(page) != expected_count ||
29c1f677 388 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
389 spin_unlock_irq(&mapping->tree_lock);
390 return -EAGAIN;
391 }
392
393 if (!page_freeze_refs(page, expected_count)) {
394 spin_unlock_irq(&mapping->tree_lock);
395 return -EAGAIN;
396 }
397
398 get_page(newpage);
399
400 radix_tree_replace_slot(pslot, newpage);
401
937a94c9 402 page_unfreeze_refs(page, expected_count - 1);
290408d4
NH
403
404 spin_unlock_irq(&mapping->tree_lock);
405 return 0;
406}
407
b20a3503
CL
408/*
409 * Copy the page to its new location
410 */
290408d4 411void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 412{
290408d4
NH
413 if (PageHuge(page))
414 copy_huge_page(newpage, page);
415 else
416 copy_highpage(newpage, page);
b20a3503
CL
417
418 if (PageError(page))
419 SetPageError(newpage);
420 if (PageReferenced(page))
421 SetPageReferenced(newpage);
422 if (PageUptodate(page))
423 SetPageUptodate(newpage);
894bc310
LS
424 if (TestClearPageActive(page)) {
425 VM_BUG_ON(PageUnevictable(page));
b20a3503 426 SetPageActive(newpage);
418b27ef
LS
427 } else if (TestClearPageUnevictable(page))
428 SetPageUnevictable(newpage);
b20a3503
CL
429 if (PageChecked(page))
430 SetPageChecked(newpage);
431 if (PageMappedToDisk(page))
432 SetPageMappedToDisk(newpage);
433
434 if (PageDirty(page)) {
435 clear_page_dirty_for_io(page);
3a902c5f
NP
436 /*
437 * Want to mark the page and the radix tree as dirty, and
438 * redo the accounting that clear_page_dirty_for_io undid,
439 * but we can't use set_page_dirty because that function
440 * is actually a signal that all of the page has become dirty.
25985edc 441 * Whereas only part of our page may be dirty.
3a902c5f 442 */
752dc185
HD
443 if (PageSwapBacked(page))
444 SetPageDirty(newpage);
445 else
446 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
447 }
448
b291f000 449 mlock_migrate_page(newpage, page);
e9995ef9 450 ksm_migrate_page(newpage, page);
b291f000 451
b20a3503 452 ClearPageSwapCache(page);
b20a3503
CL
453 ClearPagePrivate(page);
454 set_page_private(page, 0);
b20a3503
CL
455
456 /*
457 * If any waiters have accumulated on the new page then
458 * wake them up.
459 */
460 if (PageWriteback(newpage))
461 end_page_writeback(newpage);
462}
b20a3503 463
1d8b85cc
CL
464/************************************************************
465 * Migration functions
466 ***********************************************************/
467
468/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
469int fail_migrate_page(struct address_space *mapping,
470 struct page *newpage, struct page *page)
1d8b85cc
CL
471{
472 return -EIO;
473}
474EXPORT_SYMBOL(fail_migrate_page);
475
b20a3503
CL
476/*
477 * Common logic to directly migrate a single page suitable for
266cf658 478 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
479 *
480 * Pages are locked upon entry and exit.
481 */
2d1db3b1 482int migrate_page(struct address_space *mapping,
a6bc32b8
MG
483 struct page *newpage, struct page *page,
484 enum migrate_mode mode)
b20a3503
CL
485{
486 int rc;
487
488 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
489
a6bc32b8 490 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
b20a3503
CL
491
492 if (rc)
493 return rc;
494
495 migrate_page_copy(newpage, page);
b20a3503
CL
496 return 0;
497}
498EXPORT_SYMBOL(migrate_page);
499
9361401e 500#ifdef CONFIG_BLOCK
1d8b85cc
CL
501/*
502 * Migration function for pages with buffers. This function can only be used
503 * if the underlying filesystem guarantees that no other references to "page"
504 * exist.
505 */
2d1db3b1 506int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 507 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 508{
1d8b85cc
CL
509 struct buffer_head *bh, *head;
510 int rc;
511
1d8b85cc 512 if (!page_has_buffers(page))
a6bc32b8 513 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
514
515 head = page_buffers(page);
516
a6bc32b8 517 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
1d8b85cc
CL
518
519 if (rc)
520 return rc;
521
b969c4ab
MG
522 /*
523 * In the async case, migrate_page_move_mapping locked the buffers
524 * with an IRQ-safe spinlock held. In the sync case, the buffers
525 * need to be locked now
526 */
a6bc32b8
MG
527 if (mode != MIGRATE_ASYNC)
528 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
529
530 ClearPagePrivate(page);
531 set_page_private(newpage, page_private(page));
532 set_page_private(page, 0);
533 put_page(page);
534 get_page(newpage);
535
536 bh = head;
537 do {
538 set_bh_page(bh, newpage, bh_offset(bh));
539 bh = bh->b_this_page;
540
541 } while (bh != head);
542
543 SetPagePrivate(newpage);
544
545 migrate_page_copy(newpage, page);
546
547 bh = head;
548 do {
549 unlock_buffer(bh);
550 put_bh(bh);
551 bh = bh->b_this_page;
552
553 } while (bh != head);
554
555 return 0;
556}
557EXPORT_SYMBOL(buffer_migrate_page);
9361401e 558#endif
1d8b85cc 559
04e62a29
CL
560/*
561 * Writeback a page to clean the dirty state
562 */
563static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 564{
04e62a29
CL
565 struct writeback_control wbc = {
566 .sync_mode = WB_SYNC_NONE,
567 .nr_to_write = 1,
568 .range_start = 0,
569 .range_end = LLONG_MAX,
04e62a29
CL
570 .for_reclaim = 1
571 };
572 int rc;
573
574 if (!mapping->a_ops->writepage)
575 /* No write method for the address space */
576 return -EINVAL;
577
578 if (!clear_page_dirty_for_io(page))
579 /* Someone else already triggered a write */
580 return -EAGAIN;
581
8351a6e4 582 /*
04e62a29
CL
583 * A dirty page may imply that the underlying filesystem has
584 * the page on some queue. So the page must be clean for
585 * migration. Writeout may mean we loose the lock and the
586 * page state is no longer what we checked for earlier.
587 * At this point we know that the migration attempt cannot
588 * be successful.
8351a6e4 589 */
04e62a29 590 remove_migration_ptes(page, page);
8351a6e4 591
04e62a29 592 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 593
04e62a29
CL
594 if (rc != AOP_WRITEPAGE_ACTIVATE)
595 /* unlocked. Relock */
596 lock_page(page);
597
bda8550d 598 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
599}
600
601/*
602 * Default handling if a filesystem does not provide a migration function.
603 */
604static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 605 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 606{
b969c4ab 607 if (PageDirty(page)) {
a6bc32b8
MG
608 /* Only writeback pages in full synchronous migration */
609 if (mode != MIGRATE_SYNC)
b969c4ab 610 return -EBUSY;
04e62a29 611 return writeout(mapping, page);
b969c4ab 612 }
8351a6e4
CL
613
614 /*
615 * Buffers may be managed in a filesystem specific way.
616 * We must have no buffers or drop them.
617 */
266cf658 618 if (page_has_private(page) &&
8351a6e4
CL
619 !try_to_release_page(page, GFP_KERNEL))
620 return -EAGAIN;
621
a6bc32b8 622 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
623}
624
e24f0b8f
CL
625/*
626 * Move a page to a newly allocated page
627 * The page is locked and all ptes have been successfully removed.
628 *
629 * The new page will have replaced the old page if this function
630 * is successful.
894bc310
LS
631 *
632 * Return value:
633 * < 0 - error code
634 * == 0 - success
e24f0b8f 635 */
3fe2011f 636static int move_to_new_page(struct page *newpage, struct page *page,
a6bc32b8 637 int remap_swapcache, enum migrate_mode mode)
e24f0b8f
CL
638{
639 struct address_space *mapping;
640 int rc;
641
642 /*
643 * Block others from accessing the page when we get around to
644 * establishing additional references. We are the only one
645 * holding a reference to the new page at this point.
646 */
529ae9aa 647 if (!trylock_page(newpage))
e24f0b8f
CL
648 BUG();
649
650 /* Prepare mapping for the new page.*/
651 newpage->index = page->index;
652 newpage->mapping = page->mapping;
b2e18538
RR
653 if (PageSwapBacked(page))
654 SetPageSwapBacked(newpage);
e24f0b8f
CL
655
656 mapping = page_mapping(page);
657 if (!mapping)
a6bc32b8 658 rc = migrate_page(mapping, newpage, page, mode);
b969c4ab 659 else if (mapping->a_ops->migratepage)
e24f0b8f 660 /*
b969c4ab
MG
661 * Most pages have a mapping and most filesystems provide a
662 * migratepage callback. Anonymous pages are part of swap
663 * space which also has its own migratepage callback. This
664 * is the most common path for page migration.
e24f0b8f 665 */
b969c4ab 666 rc = mapping->a_ops->migratepage(mapping,
a6bc32b8 667 newpage, page, mode);
b969c4ab 668 else
a6bc32b8 669 rc = fallback_migrate_page(mapping, newpage, page, mode);
e24f0b8f 670
3fe2011f 671 if (rc) {
e24f0b8f 672 newpage->mapping = NULL;
3fe2011f
MG
673 } else {
674 if (remap_swapcache)
675 remove_migration_ptes(page, newpage);
35512eca 676 page->mapping = NULL;
3fe2011f 677 }
e24f0b8f
CL
678
679 unlock_page(newpage);
680
681 return rc;
682}
683
0dabec93 684static int __unmap_and_move(struct page *page, struct page *newpage,
a6bc32b8 685 int force, bool offlining, enum migrate_mode mode)
e24f0b8f 686{
0dabec93 687 int rc = -EAGAIN;
3fe2011f 688 int remap_swapcache = 1;
56039efa 689 struct mem_cgroup *mem;
3f6c8272 690 struct anon_vma *anon_vma = NULL;
95a402c3 691
529ae9aa 692 if (!trylock_page(page)) {
a6bc32b8 693 if (!force || mode == MIGRATE_ASYNC)
0dabec93 694 goto out;
3e7d3449
MG
695
696 /*
697 * It's not safe for direct compaction to call lock_page.
698 * For example, during page readahead pages are added locked
699 * to the LRU. Later, when the IO completes the pages are
700 * marked uptodate and unlocked. However, the queueing
701 * could be merging multiple pages for one bio (e.g.
702 * mpage_readpages). If an allocation happens for the
703 * second or third page, the process can end up locking
704 * the same page twice and deadlocking. Rather than
705 * trying to be clever about what pages can be locked,
706 * avoid the use of lock_page for direct compaction
707 * altogether.
708 */
709 if (current->flags & PF_MEMALLOC)
0dabec93 710 goto out;
3e7d3449 711
e24f0b8f
CL
712 lock_page(page);
713 }
714
62b61f61
HD
715 /*
716 * Only memory hotplug's offline_pages() caller has locked out KSM,
717 * and can safely migrate a KSM page. The other cases have skipped
718 * PageKsm along with PageReserved - but it is only now when we have
719 * the page lock that we can be certain it will not go KSM beneath us
720 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
721 * its pagecount raised, but only here do we take the page lock which
722 * serializes that).
723 */
724 if (PageKsm(page) && !offlining) {
725 rc = -EBUSY;
726 goto unlock;
727 }
728
01b1ae63 729 /* charge against new page */
0030f535 730 mem_cgroup_prepare_migration(page, newpage, &mem);
01b1ae63 731
e24f0b8f 732 if (PageWriteback(page)) {
11bc82d6 733 /*
a6bc32b8
MG
734 * Only in the case of a full syncronous migration is it
735 * necessary to wait for PageWriteback. In the async case,
736 * the retry loop is too short and in the sync-light case,
737 * the overhead of stalling is too much
11bc82d6 738 */
a6bc32b8 739 if (mode != MIGRATE_SYNC) {
11bc82d6
AA
740 rc = -EBUSY;
741 goto uncharge;
742 }
743 if (!force)
01b1ae63 744 goto uncharge;
e24f0b8f
CL
745 wait_on_page_writeback(page);
746 }
e24f0b8f 747 /*
dc386d4d
KH
748 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
749 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 750 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 751 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
752 * File Caches may use write_page() or lock_page() in migration, then,
753 * just care Anon page here.
dc386d4d 754 */
989f89c5 755 if (PageAnon(page)) {
1ce82b69
HD
756 /*
757 * Only page_lock_anon_vma() understands the subtleties of
758 * getting a hold on an anon_vma from outside one of its mms.
759 */
746b18d4 760 anon_vma = page_get_anon_vma(page);
1ce82b69
HD
761 if (anon_vma) {
762 /*
746b18d4 763 * Anon page
1ce82b69 764 */
1ce82b69 765 } else if (PageSwapCache(page)) {
3fe2011f
MG
766 /*
767 * We cannot be sure that the anon_vma of an unmapped
768 * swapcache page is safe to use because we don't
769 * know in advance if the VMA that this page belonged
770 * to still exists. If the VMA and others sharing the
771 * data have been freed, then the anon_vma could
772 * already be invalid.
773 *
774 * To avoid this possibility, swapcache pages get
775 * migrated but are not remapped when migration
776 * completes
777 */
778 remap_swapcache = 0;
779 } else {
1ce82b69 780 goto uncharge;
3fe2011f 781 }
989f89c5 782 }
62e1c553 783
dc386d4d 784 /*
62e1c553
SL
785 * Corner case handling:
786 * 1. When a new swap-cache page is read into, it is added to the LRU
787 * and treated as swapcache but it has no rmap yet.
788 * Calling try_to_unmap() against a page->mapping==NULL page will
789 * trigger a BUG. So handle it here.
790 * 2. An orphaned page (see truncate_complete_page) might have
791 * fs-private metadata. The page can be picked up due to memory
792 * offlining. Everywhere else except page reclaim, the page is
793 * invisible to the vm, so the page can not be migrated. So try to
794 * free the metadata, so the page can be freed.
e24f0b8f 795 */
62e1c553 796 if (!page->mapping) {
1ce82b69
HD
797 VM_BUG_ON(PageAnon(page));
798 if (page_has_private(page)) {
62e1c553 799 try_to_free_buffers(page);
1ce82b69 800 goto uncharge;
62e1c553 801 }
abfc3488 802 goto skip_unmap;
62e1c553
SL
803 }
804
dc386d4d 805 /* Establish migration ptes or remove ptes */
14fa31b8 806 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 807
abfc3488 808skip_unmap:
e6a1530d 809 if (!page_mapped(page))
a6bc32b8 810 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
e24f0b8f 811
3fe2011f 812 if (rc && remap_swapcache)
e24f0b8f 813 remove_migration_ptes(page, page);
3f6c8272
MG
814
815 /* Drop an anon_vma reference if we took one */
76545066 816 if (anon_vma)
9e60109f 817 put_anon_vma(anon_vma);
3f6c8272 818
01b1ae63 819uncharge:
0030f535 820 mem_cgroup_end_migration(mem, page, newpage, rc == 0);
e24f0b8f
CL
821unlock:
822 unlock_page(page);
0dabec93
MK
823out:
824 return rc;
825}
95a402c3 826
0dabec93
MK
827/*
828 * Obtain the lock on page, remove all ptes and migrate the page
829 * to the newly allocated page in newpage.
830 */
831static int unmap_and_move(new_page_t get_new_page, unsigned long private,
a6bc32b8
MG
832 struct page *page, int force, bool offlining,
833 enum migrate_mode mode)
0dabec93
MK
834{
835 int rc = 0;
836 int *result = NULL;
837 struct page *newpage = get_new_page(page, private, &result);
838
839 if (!newpage)
840 return -ENOMEM;
841
842 if (page_count(page) == 1) {
843 /* page was freed from under us. So we are done. */
844 goto out;
845 }
846
847 if (unlikely(PageTransHuge(page)))
848 if (unlikely(split_huge_page(page)))
849 goto out;
850
a6bc32b8 851 rc = __unmap_and_move(page, newpage, force, offlining, mode);
0dabec93 852out:
e24f0b8f 853 if (rc != -EAGAIN) {
0dabec93
MK
854 /*
855 * A page that has been migrated has all references
856 * removed and will be freed. A page that has not been
857 * migrated will have kepts its references and be
858 * restored.
859 */
860 list_del(&page->lru);
a731286d 861 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 862 page_is_file_cache(page));
894bc310 863 putback_lru_page(page);
e24f0b8f 864 }
95a402c3
CL
865 /*
866 * Move the new page to the LRU. If migration was not successful
867 * then this will free the page.
868 */
894bc310 869 putback_lru_page(newpage);
742755a1
CL
870 if (result) {
871 if (rc)
872 *result = rc;
873 else
874 *result = page_to_nid(newpage);
875 }
e24f0b8f
CL
876 return rc;
877}
878
290408d4
NH
879/*
880 * Counterpart of unmap_and_move_page() for hugepage migration.
881 *
882 * This function doesn't wait the completion of hugepage I/O
883 * because there is no race between I/O and migration for hugepage.
884 * Note that currently hugepage I/O occurs only in direct I/O
885 * where no lock is held and PG_writeback is irrelevant,
886 * and writeback status of all subpages are counted in the reference
887 * count of the head page (i.e. if all subpages of a 2MB hugepage are
888 * under direct I/O, the reference of the head page is 512 and a bit more.)
889 * This means that when we try to migrate hugepage whose subpages are
890 * doing direct I/O, some references remain after try_to_unmap() and
891 * hugepage migration fails without data corruption.
892 *
893 * There is also no race when direct I/O is issued on the page under migration,
894 * because then pte is replaced with migration swap entry and direct I/O code
895 * will wait in the page fault for migration to complete.
896 */
897static int unmap_and_move_huge_page(new_page_t get_new_page,
898 unsigned long private, struct page *hpage,
a6bc32b8
MG
899 int force, bool offlining,
900 enum migrate_mode mode)
290408d4
NH
901{
902 int rc = 0;
903 int *result = NULL;
904 struct page *new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
905 struct anon_vma *anon_vma = NULL;
906
907 if (!new_hpage)
908 return -ENOMEM;
909
910 rc = -EAGAIN;
911
912 if (!trylock_page(hpage)) {
a6bc32b8 913 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
914 goto out;
915 lock_page(hpage);
916 }
917
746b18d4
PZ
918 if (PageAnon(hpage))
919 anon_vma = page_get_anon_vma(hpage);
290408d4
NH
920
921 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
922
923 if (!page_mapped(hpage))
a6bc32b8 924 rc = move_to_new_page(new_hpage, hpage, 1, mode);
290408d4
NH
925
926 if (rc)
927 remove_migration_ptes(hpage, hpage);
928
fd4a4663 929 if (anon_vma)
9e60109f 930 put_anon_vma(anon_vma);
8e6ac7fa
AK
931
932 if (!rc)
933 hugetlb_cgroup_migrate(hpage, new_hpage);
934
290408d4 935 unlock_page(hpage);
09761333 936out:
290408d4 937 put_page(new_hpage);
290408d4
NH
938 if (result) {
939 if (rc)
940 *result = rc;
941 else
942 *result = page_to_nid(new_hpage);
943 }
944 return rc;
945}
946
b20a3503
CL
947/*
948 * migrate_pages
949 *
95a402c3
CL
950 * The function takes one list of pages to migrate and a function
951 * that determines from the page to be migrated and the private data
952 * the target of the move and allocates the page.
b20a3503
CL
953 *
954 * The function returns after 10 attempts or if no pages
955 * are movable anymore because to has become empty
cf608ac1
MK
956 * or no retryable pages exist anymore.
957 * Caller should call putback_lru_pages to return pages to the LRU
28bd6578 958 * or free list only if ret != 0.
b20a3503 959 *
95a402c3 960 * Return: Number of pages not migrated or error code.
b20a3503 961 */
95a402c3 962int migrate_pages(struct list_head *from,
7f0f2496 963 new_page_t get_new_page, unsigned long private, bool offlining,
7b2a2d4a 964 enum migrate_mode mode, int reason)
b20a3503 965{
e24f0b8f 966 int retry = 1;
b20a3503 967 int nr_failed = 0;
5647bc29 968 int nr_succeeded = 0;
b20a3503
CL
969 int pass = 0;
970 struct page *page;
971 struct page *page2;
972 int swapwrite = current->flags & PF_SWAPWRITE;
973 int rc;
974
975 if (!swapwrite)
976 current->flags |= PF_SWAPWRITE;
977
e24f0b8f
CL
978 for(pass = 0; pass < 10 && retry; pass++) {
979 retry = 0;
b20a3503 980
e24f0b8f 981 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 982 cond_resched();
2d1db3b1 983
95a402c3 984 rc = unmap_and_move(get_new_page, private,
77f1fe6b 985 page, pass > 2, offlining,
a6bc32b8 986 mode);
2d1db3b1 987
e24f0b8f 988 switch(rc) {
95a402c3
CL
989 case -ENOMEM:
990 goto out;
e24f0b8f 991 case -EAGAIN:
2d1db3b1 992 retry++;
e24f0b8f
CL
993 break;
994 case 0:
5647bc29 995 nr_succeeded++;
e24f0b8f
CL
996 break;
997 default:
2d1db3b1 998 /* Permanent failure */
2d1db3b1 999 nr_failed++;
e24f0b8f 1000 break;
2d1db3b1 1001 }
b20a3503
CL
1002 }
1003 }
95a402c3
CL
1004 rc = 0;
1005out:
5647bc29
MG
1006 if (nr_succeeded)
1007 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1008 if (nr_failed)
1009 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1010 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1011
b20a3503
CL
1012 if (!swapwrite)
1013 current->flags &= ~PF_SWAPWRITE;
1014
95a402c3
CL
1015 if (rc)
1016 return rc;
b20a3503 1017
95a402c3 1018 return nr_failed + retry;
b20a3503 1019}
95a402c3 1020
189ebff2
AK
1021int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1022 unsigned long private, bool offlining,
1023 enum migrate_mode mode)
290408d4 1024{
189ebff2
AK
1025 int pass, rc;
1026
1027 for (pass = 0; pass < 10; pass++) {
1028 rc = unmap_and_move_huge_page(get_new_page,
1029 private, hpage, pass > 2, offlining,
1030 mode);
1031 switch (rc) {
1032 case -ENOMEM:
1033 goto out;
1034 case -EAGAIN:
1035 /* try again */
290408d4 1036 cond_resched();
189ebff2
AK
1037 break;
1038 case 0:
1039 goto out;
1040 default:
1041 rc = -EIO;
1042 goto out;
290408d4
NH
1043 }
1044 }
290408d4 1045out:
189ebff2 1046 return rc;
290408d4
NH
1047}
1048
742755a1
CL
1049#ifdef CONFIG_NUMA
1050/*
1051 * Move a list of individual pages
1052 */
1053struct page_to_node {
1054 unsigned long addr;
1055 struct page *page;
1056 int node;
1057 int status;
1058};
1059
1060static struct page *new_page_node(struct page *p, unsigned long private,
1061 int **result)
1062{
1063 struct page_to_node *pm = (struct page_to_node *)private;
1064
1065 while (pm->node != MAX_NUMNODES && pm->page != p)
1066 pm++;
1067
1068 if (pm->node == MAX_NUMNODES)
1069 return NULL;
1070
1071 *result = &pm->status;
1072
6484eb3e 1073 return alloc_pages_exact_node(pm->node,
769848c0 1074 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1075}
1076
1077/*
1078 * Move a set of pages as indicated in the pm array. The addr
1079 * field must be set to the virtual address of the page to be moved
1080 * and the node number must contain a valid target node.
5e9a0f02 1081 * The pm array ends with node = MAX_NUMNODES.
742755a1 1082 */
5e9a0f02
BG
1083static int do_move_page_to_node_array(struct mm_struct *mm,
1084 struct page_to_node *pm,
1085 int migrate_all)
742755a1
CL
1086{
1087 int err;
1088 struct page_to_node *pp;
1089 LIST_HEAD(pagelist);
1090
1091 down_read(&mm->mmap_sem);
1092
1093 /*
1094 * Build a list of pages to migrate
1095 */
742755a1
CL
1096 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1097 struct vm_area_struct *vma;
1098 struct page *page;
1099
742755a1
CL
1100 err = -EFAULT;
1101 vma = find_vma(mm, pp->addr);
70384dc6 1102 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1103 goto set_status;
1104
500d65d4 1105 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1106
1107 err = PTR_ERR(page);
1108 if (IS_ERR(page))
1109 goto set_status;
1110
742755a1
CL
1111 err = -ENOENT;
1112 if (!page)
1113 goto set_status;
1114
62b61f61
HD
1115 /* Use PageReserved to check for zero page */
1116 if (PageReserved(page) || PageKsm(page))
742755a1
CL
1117 goto put_and_set;
1118
1119 pp->page = page;
1120 err = page_to_nid(page);
1121
1122 if (err == pp->node)
1123 /*
1124 * Node already in the right place
1125 */
1126 goto put_and_set;
1127
1128 err = -EACCES;
1129 if (page_mapcount(page) > 1 &&
1130 !migrate_all)
1131 goto put_and_set;
1132
62695a84 1133 err = isolate_lru_page(page);
6d9c285a 1134 if (!err) {
62695a84 1135 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1136 inc_zone_page_state(page, NR_ISOLATED_ANON +
1137 page_is_file_cache(page));
1138 }
742755a1
CL
1139put_and_set:
1140 /*
1141 * Either remove the duplicate refcount from
1142 * isolate_lru_page() or drop the page ref if it was
1143 * not isolated.
1144 */
1145 put_page(page);
1146set_status:
1147 pp->status = err;
1148 }
1149
e78bbfa8 1150 err = 0;
cf608ac1 1151 if (!list_empty(&pagelist)) {
742755a1 1152 err = migrate_pages(&pagelist, new_page_node,
7b2a2d4a
MG
1153 (unsigned long)pm, 0, MIGRATE_SYNC,
1154 MR_SYSCALL);
cf608ac1
MK
1155 if (err)
1156 putback_lru_pages(&pagelist);
1157 }
742755a1
CL
1158
1159 up_read(&mm->mmap_sem);
1160 return err;
1161}
1162
5e9a0f02
BG
1163/*
1164 * Migrate an array of page address onto an array of nodes and fill
1165 * the corresponding array of status.
1166 */
3268c63e 1167static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1168 unsigned long nr_pages,
1169 const void __user * __user *pages,
1170 const int __user *nodes,
1171 int __user *status, int flags)
1172{
3140a227 1173 struct page_to_node *pm;
3140a227
BG
1174 unsigned long chunk_nr_pages;
1175 unsigned long chunk_start;
1176 int err;
5e9a0f02 1177
3140a227
BG
1178 err = -ENOMEM;
1179 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1180 if (!pm)
5e9a0f02 1181 goto out;
35282a2d
BG
1182
1183 migrate_prep();
1184
5e9a0f02 1185 /*
3140a227
BG
1186 * Store a chunk of page_to_node array in a page,
1187 * but keep the last one as a marker
5e9a0f02 1188 */
3140a227 1189 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1190
3140a227
BG
1191 for (chunk_start = 0;
1192 chunk_start < nr_pages;
1193 chunk_start += chunk_nr_pages) {
1194 int j;
5e9a0f02 1195
3140a227
BG
1196 if (chunk_start + chunk_nr_pages > nr_pages)
1197 chunk_nr_pages = nr_pages - chunk_start;
1198
1199 /* fill the chunk pm with addrs and nodes from user-space */
1200 for (j = 0; j < chunk_nr_pages; j++) {
1201 const void __user *p;
5e9a0f02
BG
1202 int node;
1203
3140a227
BG
1204 err = -EFAULT;
1205 if (get_user(p, pages + j + chunk_start))
1206 goto out_pm;
1207 pm[j].addr = (unsigned long) p;
1208
1209 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1210 goto out_pm;
1211
1212 err = -ENODEV;
6f5a55f1
LT
1213 if (node < 0 || node >= MAX_NUMNODES)
1214 goto out_pm;
1215
5e9a0f02
BG
1216 if (!node_state(node, N_HIGH_MEMORY))
1217 goto out_pm;
1218
1219 err = -EACCES;
1220 if (!node_isset(node, task_nodes))
1221 goto out_pm;
1222
3140a227
BG
1223 pm[j].node = node;
1224 }
1225
1226 /* End marker for this chunk */
1227 pm[chunk_nr_pages].node = MAX_NUMNODES;
1228
1229 /* Migrate this chunk */
1230 err = do_move_page_to_node_array(mm, pm,
1231 flags & MPOL_MF_MOVE_ALL);
1232 if (err < 0)
1233 goto out_pm;
5e9a0f02 1234
5e9a0f02 1235 /* Return status information */
3140a227
BG
1236 for (j = 0; j < chunk_nr_pages; j++)
1237 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1238 err = -EFAULT;
3140a227
BG
1239 goto out_pm;
1240 }
1241 }
1242 err = 0;
5e9a0f02
BG
1243
1244out_pm:
3140a227 1245 free_page((unsigned long)pm);
5e9a0f02
BG
1246out:
1247 return err;
1248}
1249
742755a1 1250/*
2f007e74 1251 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1252 */
80bba129
BG
1253static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1254 const void __user **pages, int *status)
742755a1 1255{
2f007e74 1256 unsigned long i;
2f007e74 1257
742755a1
CL
1258 down_read(&mm->mmap_sem);
1259
2f007e74 1260 for (i = 0; i < nr_pages; i++) {
80bba129 1261 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1262 struct vm_area_struct *vma;
1263 struct page *page;
c095adbc 1264 int err = -EFAULT;
2f007e74
BG
1265
1266 vma = find_vma(mm, addr);
70384dc6 1267 if (!vma || addr < vma->vm_start)
742755a1
CL
1268 goto set_status;
1269
2f007e74 1270 page = follow_page(vma, addr, 0);
89f5b7da
LT
1271
1272 err = PTR_ERR(page);
1273 if (IS_ERR(page))
1274 goto set_status;
1275
742755a1
CL
1276 err = -ENOENT;
1277 /* Use PageReserved to check for zero page */
62b61f61 1278 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
1279 goto set_status;
1280
1281 err = page_to_nid(page);
1282set_status:
80bba129
BG
1283 *status = err;
1284
1285 pages++;
1286 status++;
1287 }
1288
1289 up_read(&mm->mmap_sem);
1290}
1291
1292/*
1293 * Determine the nodes of a user array of pages and store it in
1294 * a user array of status.
1295 */
1296static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1297 const void __user * __user *pages,
1298 int __user *status)
1299{
1300#define DO_PAGES_STAT_CHUNK_NR 16
1301 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1302 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1303
87b8d1ad
PA
1304 while (nr_pages) {
1305 unsigned long chunk_nr;
80bba129 1306
87b8d1ad
PA
1307 chunk_nr = nr_pages;
1308 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1309 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1310
1311 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1312 break;
80bba129
BG
1313
1314 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1315
87b8d1ad
PA
1316 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1317 break;
742755a1 1318
87b8d1ad
PA
1319 pages += chunk_nr;
1320 status += chunk_nr;
1321 nr_pages -= chunk_nr;
1322 }
1323 return nr_pages ? -EFAULT : 0;
742755a1
CL
1324}
1325
1326/*
1327 * Move a list of pages in the address space of the currently executing
1328 * process.
1329 */
938bb9f5
HC
1330SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1331 const void __user * __user *, pages,
1332 const int __user *, nodes,
1333 int __user *, status, int, flags)
742755a1 1334{
c69e8d9c 1335 const struct cred *cred = current_cred(), *tcred;
742755a1 1336 struct task_struct *task;
742755a1 1337 struct mm_struct *mm;
5e9a0f02 1338 int err;
3268c63e 1339 nodemask_t task_nodes;
742755a1
CL
1340
1341 /* Check flags */
1342 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1343 return -EINVAL;
1344
1345 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1346 return -EPERM;
1347
1348 /* Find the mm_struct */
a879bf58 1349 rcu_read_lock();
228ebcbe 1350 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1351 if (!task) {
a879bf58 1352 rcu_read_unlock();
742755a1
CL
1353 return -ESRCH;
1354 }
3268c63e 1355 get_task_struct(task);
742755a1
CL
1356
1357 /*
1358 * Check if this process has the right to modify the specified
1359 * process. The right exists if the process has administrative
1360 * capabilities, superuser privileges or the same
1361 * userid as the target process.
1362 */
c69e8d9c 1363 tcred = __task_cred(task);
b38a86eb
EB
1364 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1365 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
742755a1 1366 !capable(CAP_SYS_NICE)) {
c69e8d9c 1367 rcu_read_unlock();
742755a1 1368 err = -EPERM;
5e9a0f02 1369 goto out;
742755a1 1370 }
c69e8d9c 1371 rcu_read_unlock();
742755a1 1372
86c3a764
DQ
1373 err = security_task_movememory(task);
1374 if (err)
5e9a0f02 1375 goto out;
86c3a764 1376
3268c63e
CL
1377 task_nodes = cpuset_mems_allowed(task);
1378 mm = get_task_mm(task);
1379 put_task_struct(task);
1380
6e8b09ea
SL
1381 if (!mm)
1382 return -EINVAL;
1383
1384 if (nodes)
1385 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1386 nodes, status, flags);
1387 else
1388 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1389
742755a1
CL
1390 mmput(mm);
1391 return err;
3268c63e
CL
1392
1393out:
1394 put_task_struct(task);
1395 return err;
742755a1 1396}
742755a1 1397
7b2259b3
CL
1398/*
1399 * Call migration functions in the vma_ops that may prepare
1400 * memory in a vm for migration. migration functions may perform
1401 * the migration for vmas that do not have an underlying page struct.
1402 */
1403int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1404 const nodemask_t *from, unsigned long flags)
1405{
1406 struct vm_area_struct *vma;
1407 int err = 0;
1408
1001c9fb 1409 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1410 if (vma->vm_ops && vma->vm_ops->migrate) {
1411 err = vma->vm_ops->migrate(vma, to, from, flags);
1412 if (err)
1413 break;
1414 }
1415 }
1416 return err;
1417}
7039e1db
PZ
1418
1419#ifdef CONFIG_NUMA_BALANCING
1420/*
1421 * Returns true if this is a safe migration target node for misplaced NUMA
1422 * pages. Currently it only checks the watermarks which crude
1423 */
1424static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1425 int nr_migrate_pages)
1426{
1427 int z;
1428 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1429 struct zone *zone = pgdat->node_zones + z;
1430
1431 if (!populated_zone(zone))
1432 continue;
1433
1434 if (zone->all_unreclaimable)
1435 continue;
1436
1437 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1438 if (!zone_watermark_ok(zone, 0,
1439 high_wmark_pages(zone) +
1440 nr_migrate_pages,
1441 0, 0))
1442 continue;
1443 return true;
1444 }
1445 return false;
1446}
1447
1448static struct page *alloc_misplaced_dst_page(struct page *page,
1449 unsigned long data,
1450 int **result)
1451{
1452 int nid = (int) data;
1453 struct page *newpage;
1454
1455 newpage = alloc_pages_exact_node(nid,
1456 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1457 __GFP_NOMEMALLOC | __GFP_NORETRY |
1458 __GFP_NOWARN) &
1459 ~GFP_IOFS, 0);
1460 return newpage;
1461}
1462
a8f60772
MG
1463/*
1464 * page migration rate limiting control.
1465 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1466 * window of time. Default here says do not migrate more than 1280M per second.
e14808b4
MG
1467 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1468 * as it is faults that reset the window, pte updates will happen unconditionally
1469 * if there has not been a fault since @pteupdate_interval_millisecs after the
1470 * throttle window closed.
a8f60772
MG
1471 */
1472static unsigned int migrate_interval_millisecs __read_mostly = 100;
e14808b4 1473static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
a8f60772
MG
1474static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1475
e14808b4
MG
1476/* Returns true if NUMA migration is currently rate limited */
1477bool migrate_ratelimited(int node)
1478{
1479 pg_data_t *pgdat = NODE_DATA(node);
1480
1481 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1482 msecs_to_jiffies(pteupdate_interval_millisecs)))
1483 return false;
1484
1485 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1486 return false;
1487
1488 return true;
1489}
1490
7039e1db
PZ
1491/*
1492 * Attempt to migrate a misplaced page to the specified destination
1493 * node. Caller is expected to have an elevated reference count on
1494 * the page that will be dropped by this function before returning.
1495 */
1496int migrate_misplaced_page(struct page *page, int node)
1497{
a8f60772 1498 pg_data_t *pgdat = NODE_DATA(node);
7039e1db
PZ
1499 int isolated = 0;
1500 LIST_HEAD(migratepages);
1501
1502 /*
1503 * Don't migrate pages that are mapped in multiple processes.
1504 * TODO: Handle false sharing detection instead of this hammer
1505 */
1506 if (page_mapcount(page) != 1) {
1507 put_page(page);
1508 goto out;
1509 }
1510
a8f60772
MG
1511 /*
1512 * Rate-limit the amount of data that is being migrated to a node.
1513 * Optimal placement is no good if the memory bus is saturated and
1514 * all the time is being spent migrating!
1515 */
1516 spin_lock(&pgdat->numabalancing_migrate_lock);
1517 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1518 pgdat->numabalancing_migrate_nr_pages = 0;
1519 pgdat->numabalancing_migrate_next_window = jiffies +
1520 msecs_to_jiffies(migrate_interval_millisecs);
1521 }
1522 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1523 spin_unlock(&pgdat->numabalancing_migrate_lock);
1524 put_page(page);
1525 goto out;
1526 }
1527 pgdat->numabalancing_migrate_nr_pages++;
1528 spin_unlock(&pgdat->numabalancing_migrate_lock);
1529
7039e1db 1530 /* Avoid migrating to a node that is nearly full */
a8f60772 1531 if (migrate_balanced_pgdat(pgdat, 1)) {
7039e1db
PZ
1532 int page_lru;
1533
1534 if (isolate_lru_page(page)) {
1535 put_page(page);
1536 goto out;
1537 }
1538 isolated = 1;
1539
7039e1db
PZ
1540 page_lru = page_is_file_cache(page);
1541 inc_zone_page_state(page, NR_ISOLATED_ANON + page_lru);
1542 list_add(&page->lru, &migratepages);
1543 }
1544
149c33e1
MG
1545 /*
1546 * Page is either isolated or there is not enough space on the target
1547 * node. If isolated, then it has taken a reference count and the
1548 * callers reference can be safely dropped without the page
1549 * disappearing underneath us during migration. Otherwise the page is
1550 * not to be migrated but the callers reference should still be
1551 * dropped so it does not leak.
1552 */
1553 put_page(page);
1554
7039e1db
PZ
1555 if (isolated) {
1556 int nr_remaining;
1557
1558 nr_remaining = migrate_pages(&migratepages,
1559 alloc_misplaced_dst_page,
1560 node, false, MIGRATE_ASYNC,
1561 MR_NUMA_MISPLACED);
1562 if (nr_remaining) {
1563 putback_lru_pages(&migratepages);
1564 isolated = 0;
03c5a6e1
MG
1565 } else
1566 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db
PZ
1567 }
1568 BUG_ON(!list_empty(&migratepages));
1569out:
1570 return isolated;
1571}
1572#endif /* CONFIG_NUMA_BALANCING */
1573
1574#endif /* CONFIG_NUMA */