Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
8e6ac7fa 36#include <linux/hugetlb_cgroup.h>
5a0e3ad6 37#include <linux/gfp.h>
bf6bddf1 38#include <linux/balloon_compaction.h>
b20a3503 39
0d1836c3
MN
40#include <asm/tlbflush.h>
41
7b2a2d4a
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/migrate.h>
44
b20a3503
CL
45#include "internal.h"
46
b20a3503 47/*
742755a1 48 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
b20a3503
CL
51 */
52int migrate_prep(void)
53{
b20a3503
CL
54 /*
55 * Clear the LRU lists so pages can be isolated.
56 * Note that pages may be moved off the LRU after we have
57 * drained them. Those pages will fail to migrate like other
58 * pages that may be busy.
59 */
60 lru_add_drain_all();
61
62 return 0;
63}
64
748446bb
MG
65/* Do the necessary work of migrate_prep but not if it involves other CPUs */
66int migrate_prep_local(void)
67{
68 lru_add_drain();
69
70 return 0;
71}
72
b20a3503 73/*
894bc310
LS
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 76 */
e13861d8 77void putback_lru_pages(struct list_head *l)
b20a3503
CL
78{
79 struct page *page;
80 struct page *page2;
b20a3503 81
5733c7d1
RA
82 list_for_each_entry_safe(page, page2, l, lru) {
83 list_del(&page->lru);
84 dec_zone_page_state(page, NR_ISOLATED_ANON +
85 page_is_file_cache(page));
86 putback_lru_page(page);
87 }
88}
89
90/*
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
93 *
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
96 */
97void putback_movable_pages(struct list_head *l)
98{
99 struct page *page;
100 struct page *page2;
101
b20a3503 102 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 103 list_del(&page->lru);
a731286d 104 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 105 page_is_file_cache(page));
009dfd44 106 if (unlikely(isolated_balloon_page(page)))
bf6bddf1
RA
107 balloon_page_putback(page);
108 else
109 putback_lru_page(page);
b20a3503 110 }
b20a3503
CL
111}
112
0697212a
CL
113/*
114 * Restore a potential migration pte to a working pte entry
115 */
e9995ef9
HD
116static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
117 unsigned long addr, void *old)
0697212a
CL
118{
119 struct mm_struct *mm = vma->vm_mm;
120 swp_entry_t entry;
0697212a
CL
121 pmd_t *pmd;
122 pte_t *ptep, pte;
123 spinlock_t *ptl;
124
290408d4
NH
125 if (unlikely(PageHuge(new))) {
126 ptep = huge_pte_offset(mm, addr);
127 if (!ptep)
128 goto out;
129 ptl = &mm->page_table_lock;
130 } else {
6219049a
BL
131 pmd = mm_find_pmd(mm, addr);
132 if (!pmd)
290408d4 133 goto out;
500d65d4
AA
134 if (pmd_trans_huge(*pmd))
135 goto out;
0697212a 136
290408d4 137 ptep = pte_offset_map(pmd, addr);
0697212a 138
486cf46f
HD
139 /*
140 * Peek to check is_swap_pte() before taking ptlock? No, we
141 * can race mremap's move_ptes(), which skips anon_vma lock.
142 */
290408d4
NH
143
144 ptl = pte_lockptr(mm, pmd);
145 }
0697212a 146
0697212a
CL
147 spin_lock(ptl);
148 pte = *ptep;
149 if (!is_swap_pte(pte))
e9995ef9 150 goto unlock;
0697212a
CL
151
152 entry = pte_to_swp_entry(pte);
153
e9995ef9
HD
154 if (!is_migration_entry(entry) ||
155 migration_entry_to_page(entry) != old)
156 goto unlock;
0697212a 157
0697212a
CL
158 get_page(new);
159 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
160 if (is_write_migration_entry(entry))
161 pte = pte_mkwrite(pte);
3ef8fd7f 162#ifdef CONFIG_HUGETLB_PAGE
be7517d6 163 if (PageHuge(new)) {
290408d4 164 pte = pte_mkhuge(pte);
be7517d6
TL
165 pte = arch_make_huge_pte(pte, vma, new, 0);
166 }
3ef8fd7f 167#endif
c2cc499c 168 flush_dcache_page(new);
0697212a 169 set_pte_at(mm, addr, ptep, pte);
04e62a29 170
290408d4
NH
171 if (PageHuge(new)) {
172 if (PageAnon(new))
173 hugepage_add_anon_rmap(new, vma, addr);
174 else
175 page_dup_rmap(new);
176 } else if (PageAnon(new))
04e62a29
CL
177 page_add_anon_rmap(new, vma, addr);
178 else
179 page_add_file_rmap(new);
180
181 /* No need to invalidate - it was non-present before */
4b3073e1 182 update_mmu_cache(vma, addr, ptep);
e9995ef9 183unlock:
0697212a 184 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
185out:
186 return SWAP_AGAIN;
0697212a
CL
187}
188
04e62a29
CL
189/*
190 * Get rid of all migration entries and replace them by
191 * references to the indicated page.
192 */
193static void remove_migration_ptes(struct page *old, struct page *new)
194{
e9995ef9 195 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
196}
197
0697212a
CL
198/*
199 * Something used the pte of a page under migration. We need to
200 * get to the page and wait until migration is finished.
201 * When we return from this function the fault will be retried.
0697212a 202 */
30dad309
NH
203static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
204 spinlock_t *ptl)
0697212a 205{
30dad309 206 pte_t pte;
0697212a
CL
207 swp_entry_t entry;
208 struct page *page;
209
30dad309 210 spin_lock(ptl);
0697212a
CL
211 pte = *ptep;
212 if (!is_swap_pte(pte))
213 goto out;
214
215 entry = pte_to_swp_entry(pte);
216 if (!is_migration_entry(entry))
217 goto out;
218
219 page = migration_entry_to_page(entry);
220
e286781d
NP
221 /*
222 * Once radix-tree replacement of page migration started, page_count
223 * *must* be zero. And, we don't want to call wait_on_page_locked()
224 * against a page without get_page().
225 * So, we use get_page_unless_zero(), here. Even failed, page fault
226 * will occur again.
227 */
228 if (!get_page_unless_zero(page))
229 goto out;
0697212a
CL
230 pte_unmap_unlock(ptep, ptl);
231 wait_on_page_locked(page);
232 put_page(page);
233 return;
234out:
235 pte_unmap_unlock(ptep, ptl);
236}
237
30dad309
NH
238void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
239 unsigned long address)
240{
241 spinlock_t *ptl = pte_lockptr(mm, pmd);
242 pte_t *ptep = pte_offset_map(pmd, address);
243 __migration_entry_wait(mm, ptep, ptl);
244}
245
246void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
247{
248 spinlock_t *ptl = &(mm)->page_table_lock;
249 __migration_entry_wait(mm, pte, ptl);
250}
251
b969c4ab
MG
252#ifdef CONFIG_BLOCK
253/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
254static bool buffer_migrate_lock_buffers(struct buffer_head *head,
255 enum migrate_mode mode)
b969c4ab
MG
256{
257 struct buffer_head *bh = head;
258
259 /* Simple case, sync compaction */
a6bc32b8 260 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
261 do {
262 get_bh(bh);
263 lock_buffer(bh);
264 bh = bh->b_this_page;
265
266 } while (bh != head);
267
268 return true;
269 }
270
271 /* async case, we cannot block on lock_buffer so use trylock_buffer */
272 do {
273 get_bh(bh);
274 if (!trylock_buffer(bh)) {
275 /*
276 * We failed to lock the buffer and cannot stall in
277 * async migration. Release the taken locks
278 */
279 struct buffer_head *failed_bh = bh;
280 put_bh(failed_bh);
281 bh = head;
282 while (bh != failed_bh) {
283 unlock_buffer(bh);
284 put_bh(bh);
285 bh = bh->b_this_page;
286 }
287 return false;
288 }
289
290 bh = bh->b_this_page;
291 } while (bh != head);
292 return true;
293}
294#else
295static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 296 enum migrate_mode mode)
b969c4ab
MG
297{
298 return true;
299}
300#endif /* CONFIG_BLOCK */
301
b20a3503 302/*
c3fcf8a5 303 * Replace the page in the mapping.
5b5c7120
CL
304 *
305 * The number of remaining references must be:
306 * 1 for anonymous pages without a mapping
307 * 2 for pages with a mapping
266cf658 308 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 309 */
2d1db3b1 310static int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 311 struct page *newpage, struct page *page,
a6bc32b8 312 struct buffer_head *head, enum migrate_mode mode)
b20a3503 313{
7039e1db 314 int expected_count = 0;
7cf9c2c7 315 void **pslot;
b20a3503 316
6c5240ae 317 if (!mapping) {
0e8c7d0f 318 /* Anonymous page without mapping */
6c5240ae
CL
319 if (page_count(page) != 1)
320 return -EAGAIN;
78bd5209 321 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
322 }
323
19fd6231 324 spin_lock_irq(&mapping->tree_lock);
b20a3503 325
7cf9c2c7
NP
326 pslot = radix_tree_lookup_slot(&mapping->page_tree,
327 page_index(page));
b20a3503 328
edcf4748 329 expected_count = 2 + page_has_private(page);
e286781d 330 if (page_count(page) != expected_count ||
29c1f677 331 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 332 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 333 return -EAGAIN;
b20a3503
CL
334 }
335
e286781d 336 if (!page_freeze_refs(page, expected_count)) {
19fd6231 337 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
338 return -EAGAIN;
339 }
340
b969c4ab
MG
341 /*
342 * In the async migration case of moving a page with buffers, lock the
343 * buffers using trylock before the mapping is moved. If the mapping
344 * was moved, we later failed to lock the buffers and could not move
345 * the mapping back due to an elevated page count, we would have to
346 * block waiting on other references to be dropped.
347 */
a6bc32b8
MG
348 if (mode == MIGRATE_ASYNC && head &&
349 !buffer_migrate_lock_buffers(head, mode)) {
b969c4ab
MG
350 page_unfreeze_refs(page, expected_count);
351 spin_unlock_irq(&mapping->tree_lock);
352 return -EAGAIN;
353 }
354
b20a3503
CL
355 /*
356 * Now we know that no one else is looking at the page.
b20a3503 357 */
7cf9c2c7 358 get_page(newpage); /* add cache reference */
b20a3503
CL
359 if (PageSwapCache(page)) {
360 SetPageSwapCache(newpage);
361 set_page_private(newpage, page_private(page));
362 }
363
7cf9c2c7
NP
364 radix_tree_replace_slot(pslot, newpage);
365
366 /*
937a94c9
JG
367 * Drop cache reference from old page by unfreezing
368 * to one less reference.
7cf9c2c7
NP
369 * We know this isn't the last reference.
370 */
937a94c9 371 page_unfreeze_refs(page, expected_count - 1);
7cf9c2c7 372
0e8c7d0f
CL
373 /*
374 * If moved to a different zone then also account
375 * the page for that zone. Other VM counters will be
376 * taken care of when we establish references to the
377 * new page and drop references to the old page.
378 *
379 * Note that anonymous pages are accounted for
380 * via NR_FILE_PAGES and NR_ANON_PAGES if they
381 * are mapped to swap space.
382 */
383 __dec_zone_page_state(page, NR_FILE_PAGES);
384 __inc_zone_page_state(newpage, NR_FILE_PAGES);
99a15e21 385 if (!PageSwapCache(page) && PageSwapBacked(page)) {
4b02108a
KM
386 __dec_zone_page_state(page, NR_SHMEM);
387 __inc_zone_page_state(newpage, NR_SHMEM);
388 }
19fd6231 389 spin_unlock_irq(&mapping->tree_lock);
b20a3503 390
78bd5209 391 return MIGRATEPAGE_SUCCESS;
b20a3503 392}
b20a3503 393
290408d4
NH
394/*
395 * The expected number of remaining references is the same as that
396 * of migrate_page_move_mapping().
397 */
398int migrate_huge_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page)
400{
401 int expected_count;
402 void **pslot;
403
404 if (!mapping) {
405 if (page_count(page) != 1)
406 return -EAGAIN;
78bd5209 407 return MIGRATEPAGE_SUCCESS;
290408d4
NH
408 }
409
410 spin_lock_irq(&mapping->tree_lock);
411
412 pslot = radix_tree_lookup_slot(&mapping->page_tree,
413 page_index(page));
414
415 expected_count = 2 + page_has_private(page);
416 if (page_count(page) != expected_count ||
29c1f677 417 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
418 spin_unlock_irq(&mapping->tree_lock);
419 return -EAGAIN;
420 }
421
422 if (!page_freeze_refs(page, expected_count)) {
423 spin_unlock_irq(&mapping->tree_lock);
424 return -EAGAIN;
425 }
426
427 get_page(newpage);
428
429 radix_tree_replace_slot(pslot, newpage);
430
937a94c9 431 page_unfreeze_refs(page, expected_count - 1);
290408d4
NH
432
433 spin_unlock_irq(&mapping->tree_lock);
78bd5209 434 return MIGRATEPAGE_SUCCESS;
290408d4
NH
435}
436
b20a3503
CL
437/*
438 * Copy the page to its new location
439 */
290408d4 440void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 441{
b32967ff 442 if (PageHuge(page) || PageTransHuge(page))
290408d4
NH
443 copy_huge_page(newpage, page);
444 else
445 copy_highpage(newpage, page);
b20a3503
CL
446
447 if (PageError(page))
448 SetPageError(newpage);
449 if (PageReferenced(page))
450 SetPageReferenced(newpage);
451 if (PageUptodate(page))
452 SetPageUptodate(newpage);
894bc310
LS
453 if (TestClearPageActive(page)) {
454 VM_BUG_ON(PageUnevictable(page));
b20a3503 455 SetPageActive(newpage);
418b27ef
LS
456 } else if (TestClearPageUnevictable(page))
457 SetPageUnevictable(newpage);
b20a3503
CL
458 if (PageChecked(page))
459 SetPageChecked(newpage);
460 if (PageMappedToDisk(page))
461 SetPageMappedToDisk(newpage);
462
463 if (PageDirty(page)) {
464 clear_page_dirty_for_io(page);
3a902c5f
NP
465 /*
466 * Want to mark the page and the radix tree as dirty, and
467 * redo the accounting that clear_page_dirty_for_io undid,
468 * but we can't use set_page_dirty because that function
469 * is actually a signal that all of the page has become dirty.
25985edc 470 * Whereas only part of our page may be dirty.
3a902c5f 471 */
752dc185
HD
472 if (PageSwapBacked(page))
473 SetPageDirty(newpage);
474 else
475 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
476 }
477
b291f000 478 mlock_migrate_page(newpage, page);
e9995ef9 479 ksm_migrate_page(newpage, page);
c8d6553b
HD
480 /*
481 * Please do not reorder this without considering how mm/ksm.c's
482 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
483 */
b20a3503 484 ClearPageSwapCache(page);
b20a3503
CL
485 ClearPagePrivate(page);
486 set_page_private(page, 0);
b20a3503
CL
487
488 /*
489 * If any waiters have accumulated on the new page then
490 * wake them up.
491 */
492 if (PageWriteback(newpage))
493 end_page_writeback(newpage);
494}
b20a3503 495
1d8b85cc
CL
496/************************************************************
497 * Migration functions
498 ***********************************************************/
499
500/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
501int fail_migrate_page(struct address_space *mapping,
502 struct page *newpage, struct page *page)
1d8b85cc
CL
503{
504 return -EIO;
505}
506EXPORT_SYMBOL(fail_migrate_page);
507
b20a3503
CL
508/*
509 * Common logic to directly migrate a single page suitable for
266cf658 510 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
511 *
512 * Pages are locked upon entry and exit.
513 */
2d1db3b1 514int migrate_page(struct address_space *mapping,
a6bc32b8
MG
515 struct page *newpage, struct page *page,
516 enum migrate_mode mode)
b20a3503
CL
517{
518 int rc;
519
520 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
521
a6bc32b8 522 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
b20a3503 523
78bd5209 524 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
525 return rc;
526
527 migrate_page_copy(newpage, page);
78bd5209 528 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
529}
530EXPORT_SYMBOL(migrate_page);
531
9361401e 532#ifdef CONFIG_BLOCK
1d8b85cc
CL
533/*
534 * Migration function for pages with buffers. This function can only be used
535 * if the underlying filesystem guarantees that no other references to "page"
536 * exist.
537 */
2d1db3b1 538int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 539 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 540{
1d8b85cc
CL
541 struct buffer_head *bh, *head;
542 int rc;
543
1d8b85cc 544 if (!page_has_buffers(page))
a6bc32b8 545 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
546
547 head = page_buffers(page);
548
a6bc32b8 549 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
1d8b85cc 550
78bd5209 551 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
552 return rc;
553
b969c4ab
MG
554 /*
555 * In the async case, migrate_page_move_mapping locked the buffers
556 * with an IRQ-safe spinlock held. In the sync case, the buffers
557 * need to be locked now
558 */
a6bc32b8
MG
559 if (mode != MIGRATE_ASYNC)
560 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
561
562 ClearPagePrivate(page);
563 set_page_private(newpage, page_private(page));
564 set_page_private(page, 0);
565 put_page(page);
566 get_page(newpage);
567
568 bh = head;
569 do {
570 set_bh_page(bh, newpage, bh_offset(bh));
571 bh = bh->b_this_page;
572
573 } while (bh != head);
574
575 SetPagePrivate(newpage);
576
577 migrate_page_copy(newpage, page);
578
579 bh = head;
580 do {
581 unlock_buffer(bh);
582 put_bh(bh);
583 bh = bh->b_this_page;
584
585 } while (bh != head);
586
78bd5209 587 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
588}
589EXPORT_SYMBOL(buffer_migrate_page);
9361401e 590#endif
1d8b85cc 591
04e62a29
CL
592/*
593 * Writeback a page to clean the dirty state
594 */
595static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 596{
04e62a29
CL
597 struct writeback_control wbc = {
598 .sync_mode = WB_SYNC_NONE,
599 .nr_to_write = 1,
600 .range_start = 0,
601 .range_end = LLONG_MAX,
04e62a29
CL
602 .for_reclaim = 1
603 };
604 int rc;
605
606 if (!mapping->a_ops->writepage)
607 /* No write method for the address space */
608 return -EINVAL;
609
610 if (!clear_page_dirty_for_io(page))
611 /* Someone else already triggered a write */
612 return -EAGAIN;
613
8351a6e4 614 /*
04e62a29
CL
615 * A dirty page may imply that the underlying filesystem has
616 * the page on some queue. So the page must be clean for
617 * migration. Writeout may mean we loose the lock and the
618 * page state is no longer what we checked for earlier.
619 * At this point we know that the migration attempt cannot
620 * be successful.
8351a6e4 621 */
04e62a29 622 remove_migration_ptes(page, page);
8351a6e4 623
04e62a29 624 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 625
04e62a29
CL
626 if (rc != AOP_WRITEPAGE_ACTIVATE)
627 /* unlocked. Relock */
628 lock_page(page);
629
bda8550d 630 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
631}
632
633/*
634 * Default handling if a filesystem does not provide a migration function.
635 */
636static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 637 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 638{
b969c4ab 639 if (PageDirty(page)) {
a6bc32b8
MG
640 /* Only writeback pages in full synchronous migration */
641 if (mode != MIGRATE_SYNC)
b969c4ab 642 return -EBUSY;
04e62a29 643 return writeout(mapping, page);
b969c4ab 644 }
8351a6e4
CL
645
646 /*
647 * Buffers may be managed in a filesystem specific way.
648 * We must have no buffers or drop them.
649 */
266cf658 650 if (page_has_private(page) &&
8351a6e4
CL
651 !try_to_release_page(page, GFP_KERNEL))
652 return -EAGAIN;
653
a6bc32b8 654 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
655}
656
e24f0b8f
CL
657/*
658 * Move a page to a newly allocated page
659 * The page is locked and all ptes have been successfully removed.
660 *
661 * The new page will have replaced the old page if this function
662 * is successful.
894bc310
LS
663 *
664 * Return value:
665 * < 0 - error code
78bd5209 666 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 667 */
3fe2011f 668static int move_to_new_page(struct page *newpage, struct page *page,
a6bc32b8 669 int remap_swapcache, enum migrate_mode mode)
e24f0b8f
CL
670{
671 struct address_space *mapping;
672 int rc;
673
674 /*
675 * Block others from accessing the page when we get around to
676 * establishing additional references. We are the only one
677 * holding a reference to the new page at this point.
678 */
529ae9aa 679 if (!trylock_page(newpage))
e24f0b8f
CL
680 BUG();
681
682 /* Prepare mapping for the new page.*/
683 newpage->index = page->index;
684 newpage->mapping = page->mapping;
b2e18538
RR
685 if (PageSwapBacked(page))
686 SetPageSwapBacked(newpage);
e24f0b8f
CL
687
688 mapping = page_mapping(page);
689 if (!mapping)
a6bc32b8 690 rc = migrate_page(mapping, newpage, page, mode);
b969c4ab 691 else if (mapping->a_ops->migratepage)
e24f0b8f 692 /*
b969c4ab
MG
693 * Most pages have a mapping and most filesystems provide a
694 * migratepage callback. Anonymous pages are part of swap
695 * space which also has its own migratepage callback. This
696 * is the most common path for page migration.
e24f0b8f 697 */
b969c4ab 698 rc = mapping->a_ops->migratepage(mapping,
a6bc32b8 699 newpage, page, mode);
b969c4ab 700 else
a6bc32b8 701 rc = fallback_migrate_page(mapping, newpage, page, mode);
e24f0b8f 702
78bd5209 703 if (rc != MIGRATEPAGE_SUCCESS) {
e24f0b8f 704 newpage->mapping = NULL;
3fe2011f
MG
705 } else {
706 if (remap_swapcache)
707 remove_migration_ptes(page, newpage);
35512eca 708 page->mapping = NULL;
3fe2011f 709 }
e24f0b8f
CL
710
711 unlock_page(newpage);
712
713 return rc;
714}
715
0dabec93 716static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 717 int force, enum migrate_mode mode)
e24f0b8f 718{
0dabec93 719 int rc = -EAGAIN;
3fe2011f 720 int remap_swapcache = 1;
56039efa 721 struct mem_cgroup *mem;
3f6c8272 722 struct anon_vma *anon_vma = NULL;
95a402c3 723
529ae9aa 724 if (!trylock_page(page)) {
a6bc32b8 725 if (!force || mode == MIGRATE_ASYNC)
0dabec93 726 goto out;
3e7d3449
MG
727
728 /*
729 * It's not safe for direct compaction to call lock_page.
730 * For example, during page readahead pages are added locked
731 * to the LRU. Later, when the IO completes the pages are
732 * marked uptodate and unlocked. However, the queueing
733 * could be merging multiple pages for one bio (e.g.
734 * mpage_readpages). If an allocation happens for the
735 * second or third page, the process can end up locking
736 * the same page twice and deadlocking. Rather than
737 * trying to be clever about what pages can be locked,
738 * avoid the use of lock_page for direct compaction
739 * altogether.
740 */
741 if (current->flags & PF_MEMALLOC)
0dabec93 742 goto out;
3e7d3449 743
e24f0b8f
CL
744 lock_page(page);
745 }
746
01b1ae63 747 /* charge against new page */
0030f535 748 mem_cgroup_prepare_migration(page, newpage, &mem);
01b1ae63 749
e24f0b8f 750 if (PageWriteback(page)) {
11bc82d6 751 /*
fed5b64a 752 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
753 * necessary to wait for PageWriteback. In the async case,
754 * the retry loop is too short and in the sync-light case,
755 * the overhead of stalling is too much
11bc82d6 756 */
a6bc32b8 757 if (mode != MIGRATE_SYNC) {
11bc82d6
AA
758 rc = -EBUSY;
759 goto uncharge;
760 }
761 if (!force)
01b1ae63 762 goto uncharge;
e24f0b8f
CL
763 wait_on_page_writeback(page);
764 }
e24f0b8f 765 /*
dc386d4d
KH
766 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
767 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 768 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 769 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
770 * File Caches may use write_page() or lock_page() in migration, then,
771 * just care Anon page here.
dc386d4d 772 */
b79bc0a0 773 if (PageAnon(page) && !PageKsm(page)) {
1ce82b69 774 /*
4fc3f1d6 775 * Only page_lock_anon_vma_read() understands the subtleties of
1ce82b69
HD
776 * getting a hold on an anon_vma from outside one of its mms.
777 */
746b18d4 778 anon_vma = page_get_anon_vma(page);
1ce82b69
HD
779 if (anon_vma) {
780 /*
746b18d4 781 * Anon page
1ce82b69 782 */
1ce82b69 783 } else if (PageSwapCache(page)) {
3fe2011f
MG
784 /*
785 * We cannot be sure that the anon_vma of an unmapped
786 * swapcache page is safe to use because we don't
787 * know in advance if the VMA that this page belonged
788 * to still exists. If the VMA and others sharing the
789 * data have been freed, then the anon_vma could
790 * already be invalid.
791 *
792 * To avoid this possibility, swapcache pages get
793 * migrated but are not remapped when migration
794 * completes
795 */
796 remap_swapcache = 0;
797 } else {
1ce82b69 798 goto uncharge;
3fe2011f 799 }
989f89c5 800 }
62e1c553 801
bf6bddf1
RA
802 if (unlikely(balloon_page_movable(page))) {
803 /*
804 * A ballooned page does not need any special attention from
805 * physical to virtual reverse mapping procedures.
806 * Skip any attempt to unmap PTEs or to remap swap cache,
807 * in order to avoid burning cycles at rmap level, and perform
808 * the page migration right away (proteced by page lock).
809 */
810 rc = balloon_page_migrate(newpage, page, mode);
811 goto uncharge;
812 }
813
dc386d4d 814 /*
62e1c553
SL
815 * Corner case handling:
816 * 1. When a new swap-cache page is read into, it is added to the LRU
817 * and treated as swapcache but it has no rmap yet.
818 * Calling try_to_unmap() against a page->mapping==NULL page will
819 * trigger a BUG. So handle it here.
820 * 2. An orphaned page (see truncate_complete_page) might have
821 * fs-private metadata. The page can be picked up due to memory
822 * offlining. Everywhere else except page reclaim, the page is
823 * invisible to the vm, so the page can not be migrated. So try to
824 * free the metadata, so the page can be freed.
e24f0b8f 825 */
62e1c553 826 if (!page->mapping) {
1ce82b69
HD
827 VM_BUG_ON(PageAnon(page));
828 if (page_has_private(page)) {
62e1c553 829 try_to_free_buffers(page);
1ce82b69 830 goto uncharge;
62e1c553 831 }
abfc3488 832 goto skip_unmap;
62e1c553
SL
833 }
834
dc386d4d 835 /* Establish migration ptes or remove ptes */
14fa31b8 836 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 837
abfc3488 838skip_unmap:
e6a1530d 839 if (!page_mapped(page))
a6bc32b8 840 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
e24f0b8f 841
3fe2011f 842 if (rc && remap_swapcache)
e24f0b8f 843 remove_migration_ptes(page, page);
3f6c8272
MG
844
845 /* Drop an anon_vma reference if we took one */
76545066 846 if (anon_vma)
9e60109f 847 put_anon_vma(anon_vma);
3f6c8272 848
01b1ae63 849uncharge:
bf6bddf1
RA
850 mem_cgroup_end_migration(mem, page, newpage,
851 (rc == MIGRATEPAGE_SUCCESS ||
852 rc == MIGRATEPAGE_BALLOON_SUCCESS));
e24f0b8f 853 unlock_page(page);
0dabec93
MK
854out:
855 return rc;
856}
95a402c3 857
0dabec93
MK
858/*
859 * Obtain the lock on page, remove all ptes and migrate the page
860 * to the newly allocated page in newpage.
861 */
862static int unmap_and_move(new_page_t get_new_page, unsigned long private,
9c620e2b 863 struct page *page, int force, enum migrate_mode mode)
0dabec93
MK
864{
865 int rc = 0;
866 int *result = NULL;
867 struct page *newpage = get_new_page(page, private, &result);
868
869 if (!newpage)
870 return -ENOMEM;
871
872 if (page_count(page) == 1) {
873 /* page was freed from under us. So we are done. */
874 goto out;
875 }
876
877 if (unlikely(PageTransHuge(page)))
878 if (unlikely(split_huge_page(page)))
879 goto out;
880
9c620e2b 881 rc = __unmap_and_move(page, newpage, force, mode);
bf6bddf1
RA
882
883 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
884 /*
885 * A ballooned page has been migrated already.
886 * Now, it's the time to wrap-up counters,
887 * handle the page back to Buddy and return.
888 */
889 dec_zone_page_state(page, NR_ISOLATED_ANON +
890 page_is_file_cache(page));
891 balloon_page_free(page);
892 return MIGRATEPAGE_SUCCESS;
893 }
0dabec93 894out:
e24f0b8f 895 if (rc != -EAGAIN) {
0dabec93
MK
896 /*
897 * A page that has been migrated has all references
898 * removed and will be freed. A page that has not been
899 * migrated will have kepts its references and be
900 * restored.
901 */
902 list_del(&page->lru);
a731286d 903 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 904 page_is_file_cache(page));
894bc310 905 putback_lru_page(page);
e24f0b8f 906 }
95a402c3
CL
907 /*
908 * Move the new page to the LRU. If migration was not successful
909 * then this will free the page.
910 */
894bc310 911 putback_lru_page(newpage);
742755a1
CL
912 if (result) {
913 if (rc)
914 *result = rc;
915 else
916 *result = page_to_nid(newpage);
917 }
e24f0b8f
CL
918 return rc;
919}
920
290408d4
NH
921/*
922 * Counterpart of unmap_and_move_page() for hugepage migration.
923 *
924 * This function doesn't wait the completion of hugepage I/O
925 * because there is no race between I/O and migration for hugepage.
926 * Note that currently hugepage I/O occurs only in direct I/O
927 * where no lock is held and PG_writeback is irrelevant,
928 * and writeback status of all subpages are counted in the reference
929 * count of the head page (i.e. if all subpages of a 2MB hugepage are
930 * under direct I/O, the reference of the head page is 512 and a bit more.)
931 * This means that when we try to migrate hugepage whose subpages are
932 * doing direct I/O, some references remain after try_to_unmap() and
933 * hugepage migration fails without data corruption.
934 *
935 * There is also no race when direct I/O is issued on the page under migration,
936 * because then pte is replaced with migration swap entry and direct I/O code
937 * will wait in the page fault for migration to complete.
938 */
939static int unmap_and_move_huge_page(new_page_t get_new_page,
940 unsigned long private, struct page *hpage,
9c620e2b 941 int force, enum migrate_mode mode)
290408d4
NH
942{
943 int rc = 0;
944 int *result = NULL;
945 struct page *new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
946 struct anon_vma *anon_vma = NULL;
947
948 if (!new_hpage)
949 return -ENOMEM;
950
951 rc = -EAGAIN;
952
953 if (!trylock_page(hpage)) {
a6bc32b8 954 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
955 goto out;
956 lock_page(hpage);
957 }
958
746b18d4
PZ
959 if (PageAnon(hpage))
960 anon_vma = page_get_anon_vma(hpage);
290408d4
NH
961
962 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
963
964 if (!page_mapped(hpage))
a6bc32b8 965 rc = move_to_new_page(new_hpage, hpage, 1, mode);
290408d4
NH
966
967 if (rc)
968 remove_migration_ptes(hpage, hpage);
969
fd4a4663 970 if (anon_vma)
9e60109f 971 put_anon_vma(anon_vma);
8e6ac7fa
AK
972
973 if (!rc)
974 hugetlb_cgroup_migrate(hpage, new_hpage);
975
290408d4 976 unlock_page(hpage);
09761333 977out:
290408d4 978 put_page(new_hpage);
290408d4
NH
979 if (result) {
980 if (rc)
981 *result = rc;
982 else
983 *result = page_to_nid(new_hpage);
984 }
985 return rc;
986}
987
b20a3503 988/*
c73e5c9c
SB
989 * migrate_pages - migrate the pages specified in a list, to the free pages
990 * supplied as the target for the page migration
b20a3503 991 *
c73e5c9c
SB
992 * @from: The list of pages to be migrated.
993 * @get_new_page: The function used to allocate free pages to be used
994 * as the target of the page migration.
995 * @private: Private data to be passed on to get_new_page()
996 * @mode: The migration mode that specifies the constraints for
997 * page migration, if any.
998 * @reason: The reason for page migration.
b20a3503 999 *
c73e5c9c
SB
1000 * The function returns after 10 attempts or if no pages are movable any more
1001 * because the list has become empty or no retryable pages exist any more.
1002 * The caller should call putback_lru_pages() to return pages to the LRU
28bd6578 1003 * or free list only if ret != 0.
b20a3503 1004 *
c73e5c9c 1005 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1006 */
9c620e2b
HD
1007int migrate_pages(struct list_head *from, new_page_t get_new_page,
1008 unsigned long private, enum migrate_mode mode, int reason)
b20a3503 1009{
e24f0b8f 1010 int retry = 1;
b20a3503 1011 int nr_failed = 0;
5647bc29 1012 int nr_succeeded = 0;
b20a3503
CL
1013 int pass = 0;
1014 struct page *page;
1015 struct page *page2;
1016 int swapwrite = current->flags & PF_SWAPWRITE;
1017 int rc;
1018
1019 if (!swapwrite)
1020 current->flags |= PF_SWAPWRITE;
1021
e24f0b8f
CL
1022 for(pass = 0; pass < 10 && retry; pass++) {
1023 retry = 0;
b20a3503 1024
e24f0b8f 1025 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1026 cond_resched();
2d1db3b1 1027
95a402c3 1028 rc = unmap_and_move(get_new_page, private,
9c620e2b 1029 page, pass > 2, mode);
2d1db3b1 1030
e24f0b8f 1031 switch(rc) {
95a402c3
CL
1032 case -ENOMEM:
1033 goto out;
e24f0b8f 1034 case -EAGAIN:
2d1db3b1 1035 retry++;
e24f0b8f 1036 break;
78bd5209 1037 case MIGRATEPAGE_SUCCESS:
5647bc29 1038 nr_succeeded++;
e24f0b8f
CL
1039 break;
1040 default:
2d1db3b1 1041 /* Permanent failure */
2d1db3b1 1042 nr_failed++;
e24f0b8f 1043 break;
2d1db3b1 1044 }
b20a3503
CL
1045 }
1046 }
78bd5209 1047 rc = nr_failed + retry;
95a402c3 1048out:
5647bc29
MG
1049 if (nr_succeeded)
1050 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1051 if (nr_failed)
1052 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1053 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1054
b20a3503
CL
1055 if (!swapwrite)
1056 current->flags &= ~PF_SWAPWRITE;
1057
78bd5209 1058 return rc;
b20a3503 1059}
95a402c3 1060
189ebff2 1061int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
9c620e2b 1062 unsigned long private, enum migrate_mode mode)
290408d4 1063{
189ebff2
AK
1064 int pass, rc;
1065
1066 for (pass = 0; pass < 10; pass++) {
9c620e2b
HD
1067 rc = unmap_and_move_huge_page(get_new_page, private,
1068 hpage, pass > 2, mode);
189ebff2
AK
1069 switch (rc) {
1070 case -ENOMEM:
1071 goto out;
1072 case -EAGAIN:
1073 /* try again */
290408d4 1074 cond_resched();
189ebff2 1075 break;
78bd5209 1076 case MIGRATEPAGE_SUCCESS:
189ebff2
AK
1077 goto out;
1078 default:
1079 rc = -EIO;
1080 goto out;
290408d4
NH
1081 }
1082 }
290408d4 1083out:
189ebff2 1084 return rc;
290408d4
NH
1085}
1086
742755a1
CL
1087#ifdef CONFIG_NUMA
1088/*
1089 * Move a list of individual pages
1090 */
1091struct page_to_node {
1092 unsigned long addr;
1093 struct page *page;
1094 int node;
1095 int status;
1096};
1097
1098static struct page *new_page_node(struct page *p, unsigned long private,
1099 int **result)
1100{
1101 struct page_to_node *pm = (struct page_to_node *)private;
1102
1103 while (pm->node != MAX_NUMNODES && pm->page != p)
1104 pm++;
1105
1106 if (pm->node == MAX_NUMNODES)
1107 return NULL;
1108
1109 *result = &pm->status;
1110
6484eb3e 1111 return alloc_pages_exact_node(pm->node,
769848c0 1112 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1113}
1114
1115/*
1116 * Move a set of pages as indicated in the pm array. The addr
1117 * field must be set to the virtual address of the page to be moved
1118 * and the node number must contain a valid target node.
5e9a0f02 1119 * The pm array ends with node = MAX_NUMNODES.
742755a1 1120 */
5e9a0f02
BG
1121static int do_move_page_to_node_array(struct mm_struct *mm,
1122 struct page_to_node *pm,
1123 int migrate_all)
742755a1
CL
1124{
1125 int err;
1126 struct page_to_node *pp;
1127 LIST_HEAD(pagelist);
1128
1129 down_read(&mm->mmap_sem);
1130
1131 /*
1132 * Build a list of pages to migrate
1133 */
742755a1
CL
1134 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1135 struct vm_area_struct *vma;
1136 struct page *page;
1137
742755a1
CL
1138 err = -EFAULT;
1139 vma = find_vma(mm, pp->addr);
70384dc6 1140 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1141 goto set_status;
1142
500d65d4 1143 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1144
1145 err = PTR_ERR(page);
1146 if (IS_ERR(page))
1147 goto set_status;
1148
742755a1
CL
1149 err = -ENOENT;
1150 if (!page)
1151 goto set_status;
1152
62b61f61 1153 /* Use PageReserved to check for zero page */
b79bc0a0 1154 if (PageReserved(page))
742755a1
CL
1155 goto put_and_set;
1156
1157 pp->page = page;
1158 err = page_to_nid(page);
1159
1160 if (err == pp->node)
1161 /*
1162 * Node already in the right place
1163 */
1164 goto put_and_set;
1165
1166 err = -EACCES;
1167 if (page_mapcount(page) > 1 &&
1168 !migrate_all)
1169 goto put_and_set;
1170
62695a84 1171 err = isolate_lru_page(page);
6d9c285a 1172 if (!err) {
62695a84 1173 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1174 inc_zone_page_state(page, NR_ISOLATED_ANON +
1175 page_is_file_cache(page));
1176 }
742755a1
CL
1177put_and_set:
1178 /*
1179 * Either remove the duplicate refcount from
1180 * isolate_lru_page() or drop the page ref if it was
1181 * not isolated.
1182 */
1183 put_page(page);
1184set_status:
1185 pp->status = err;
1186 }
1187
e78bbfa8 1188 err = 0;
cf608ac1 1189 if (!list_empty(&pagelist)) {
742755a1 1190 err = migrate_pages(&pagelist, new_page_node,
9c620e2b 1191 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
cf608ac1
MK
1192 if (err)
1193 putback_lru_pages(&pagelist);
1194 }
742755a1
CL
1195
1196 up_read(&mm->mmap_sem);
1197 return err;
1198}
1199
5e9a0f02
BG
1200/*
1201 * Migrate an array of page address onto an array of nodes and fill
1202 * the corresponding array of status.
1203 */
3268c63e 1204static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1205 unsigned long nr_pages,
1206 const void __user * __user *pages,
1207 const int __user *nodes,
1208 int __user *status, int flags)
1209{
3140a227 1210 struct page_to_node *pm;
3140a227
BG
1211 unsigned long chunk_nr_pages;
1212 unsigned long chunk_start;
1213 int err;
5e9a0f02 1214
3140a227
BG
1215 err = -ENOMEM;
1216 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1217 if (!pm)
5e9a0f02 1218 goto out;
35282a2d
BG
1219
1220 migrate_prep();
1221
5e9a0f02 1222 /*
3140a227
BG
1223 * Store a chunk of page_to_node array in a page,
1224 * but keep the last one as a marker
5e9a0f02 1225 */
3140a227 1226 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1227
3140a227
BG
1228 for (chunk_start = 0;
1229 chunk_start < nr_pages;
1230 chunk_start += chunk_nr_pages) {
1231 int j;
5e9a0f02 1232
3140a227
BG
1233 if (chunk_start + chunk_nr_pages > nr_pages)
1234 chunk_nr_pages = nr_pages - chunk_start;
1235
1236 /* fill the chunk pm with addrs and nodes from user-space */
1237 for (j = 0; j < chunk_nr_pages; j++) {
1238 const void __user *p;
5e9a0f02
BG
1239 int node;
1240
3140a227
BG
1241 err = -EFAULT;
1242 if (get_user(p, pages + j + chunk_start))
1243 goto out_pm;
1244 pm[j].addr = (unsigned long) p;
1245
1246 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1247 goto out_pm;
1248
1249 err = -ENODEV;
6f5a55f1
LT
1250 if (node < 0 || node >= MAX_NUMNODES)
1251 goto out_pm;
1252
389162c2 1253 if (!node_state(node, N_MEMORY))
5e9a0f02
BG
1254 goto out_pm;
1255
1256 err = -EACCES;
1257 if (!node_isset(node, task_nodes))
1258 goto out_pm;
1259
3140a227
BG
1260 pm[j].node = node;
1261 }
1262
1263 /* End marker for this chunk */
1264 pm[chunk_nr_pages].node = MAX_NUMNODES;
1265
1266 /* Migrate this chunk */
1267 err = do_move_page_to_node_array(mm, pm,
1268 flags & MPOL_MF_MOVE_ALL);
1269 if (err < 0)
1270 goto out_pm;
5e9a0f02 1271
5e9a0f02 1272 /* Return status information */
3140a227
BG
1273 for (j = 0; j < chunk_nr_pages; j++)
1274 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1275 err = -EFAULT;
3140a227
BG
1276 goto out_pm;
1277 }
1278 }
1279 err = 0;
5e9a0f02
BG
1280
1281out_pm:
3140a227 1282 free_page((unsigned long)pm);
5e9a0f02
BG
1283out:
1284 return err;
1285}
1286
742755a1 1287/*
2f007e74 1288 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1289 */
80bba129
BG
1290static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1291 const void __user **pages, int *status)
742755a1 1292{
2f007e74 1293 unsigned long i;
2f007e74 1294
742755a1
CL
1295 down_read(&mm->mmap_sem);
1296
2f007e74 1297 for (i = 0; i < nr_pages; i++) {
80bba129 1298 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1299 struct vm_area_struct *vma;
1300 struct page *page;
c095adbc 1301 int err = -EFAULT;
2f007e74
BG
1302
1303 vma = find_vma(mm, addr);
70384dc6 1304 if (!vma || addr < vma->vm_start)
742755a1
CL
1305 goto set_status;
1306
2f007e74 1307 page = follow_page(vma, addr, 0);
89f5b7da
LT
1308
1309 err = PTR_ERR(page);
1310 if (IS_ERR(page))
1311 goto set_status;
1312
742755a1
CL
1313 err = -ENOENT;
1314 /* Use PageReserved to check for zero page */
b79bc0a0 1315 if (!page || PageReserved(page))
742755a1
CL
1316 goto set_status;
1317
1318 err = page_to_nid(page);
1319set_status:
80bba129
BG
1320 *status = err;
1321
1322 pages++;
1323 status++;
1324 }
1325
1326 up_read(&mm->mmap_sem);
1327}
1328
1329/*
1330 * Determine the nodes of a user array of pages and store it in
1331 * a user array of status.
1332 */
1333static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1334 const void __user * __user *pages,
1335 int __user *status)
1336{
1337#define DO_PAGES_STAT_CHUNK_NR 16
1338 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1339 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1340
87b8d1ad
PA
1341 while (nr_pages) {
1342 unsigned long chunk_nr;
80bba129 1343
87b8d1ad
PA
1344 chunk_nr = nr_pages;
1345 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1346 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1347
1348 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1349 break;
80bba129
BG
1350
1351 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1352
87b8d1ad
PA
1353 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1354 break;
742755a1 1355
87b8d1ad
PA
1356 pages += chunk_nr;
1357 status += chunk_nr;
1358 nr_pages -= chunk_nr;
1359 }
1360 return nr_pages ? -EFAULT : 0;
742755a1
CL
1361}
1362
1363/*
1364 * Move a list of pages in the address space of the currently executing
1365 * process.
1366 */
938bb9f5
HC
1367SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1368 const void __user * __user *, pages,
1369 const int __user *, nodes,
1370 int __user *, status, int, flags)
742755a1 1371{
c69e8d9c 1372 const struct cred *cred = current_cred(), *tcred;
742755a1 1373 struct task_struct *task;
742755a1 1374 struct mm_struct *mm;
5e9a0f02 1375 int err;
3268c63e 1376 nodemask_t task_nodes;
742755a1
CL
1377
1378 /* Check flags */
1379 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1380 return -EINVAL;
1381
1382 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1383 return -EPERM;
1384
1385 /* Find the mm_struct */
a879bf58 1386 rcu_read_lock();
228ebcbe 1387 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1388 if (!task) {
a879bf58 1389 rcu_read_unlock();
742755a1
CL
1390 return -ESRCH;
1391 }
3268c63e 1392 get_task_struct(task);
742755a1
CL
1393
1394 /*
1395 * Check if this process has the right to modify the specified
1396 * process. The right exists if the process has administrative
1397 * capabilities, superuser privileges or the same
1398 * userid as the target process.
1399 */
c69e8d9c 1400 tcred = __task_cred(task);
b38a86eb
EB
1401 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1402 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
742755a1 1403 !capable(CAP_SYS_NICE)) {
c69e8d9c 1404 rcu_read_unlock();
742755a1 1405 err = -EPERM;
5e9a0f02 1406 goto out;
742755a1 1407 }
c69e8d9c 1408 rcu_read_unlock();
742755a1 1409
86c3a764
DQ
1410 err = security_task_movememory(task);
1411 if (err)
5e9a0f02 1412 goto out;
86c3a764 1413
3268c63e
CL
1414 task_nodes = cpuset_mems_allowed(task);
1415 mm = get_task_mm(task);
1416 put_task_struct(task);
1417
6e8b09ea
SL
1418 if (!mm)
1419 return -EINVAL;
1420
1421 if (nodes)
1422 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1423 nodes, status, flags);
1424 else
1425 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1426
742755a1
CL
1427 mmput(mm);
1428 return err;
3268c63e
CL
1429
1430out:
1431 put_task_struct(task);
1432 return err;
742755a1 1433}
742755a1 1434
7b2259b3
CL
1435/*
1436 * Call migration functions in the vma_ops that may prepare
1437 * memory in a vm for migration. migration functions may perform
1438 * the migration for vmas that do not have an underlying page struct.
1439 */
1440int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1441 const nodemask_t *from, unsigned long flags)
1442{
1443 struct vm_area_struct *vma;
1444 int err = 0;
1445
1001c9fb 1446 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1447 if (vma->vm_ops && vma->vm_ops->migrate) {
1448 err = vma->vm_ops->migrate(vma, to, from, flags);
1449 if (err)
1450 break;
1451 }
1452 }
1453 return err;
1454}
7039e1db
PZ
1455
1456#ifdef CONFIG_NUMA_BALANCING
1457/*
1458 * Returns true if this is a safe migration target node for misplaced NUMA
1459 * pages. Currently it only checks the watermarks which crude
1460 */
1461static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1462 unsigned long nr_migrate_pages)
7039e1db
PZ
1463{
1464 int z;
1465 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1466 struct zone *zone = pgdat->node_zones + z;
1467
1468 if (!populated_zone(zone))
1469 continue;
1470
1471 if (zone->all_unreclaimable)
1472 continue;
1473
1474 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1475 if (!zone_watermark_ok(zone, 0,
1476 high_wmark_pages(zone) +
1477 nr_migrate_pages,
1478 0, 0))
1479 continue;
1480 return true;
1481 }
1482 return false;
1483}
1484
1485static struct page *alloc_misplaced_dst_page(struct page *page,
1486 unsigned long data,
1487 int **result)
1488{
1489 int nid = (int) data;
1490 struct page *newpage;
1491
1492 newpage = alloc_pages_exact_node(nid,
1493 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1494 __GFP_NOMEMALLOC | __GFP_NORETRY |
1495 __GFP_NOWARN) &
1496 ~GFP_IOFS, 0);
bac0382c 1497 if (newpage)
22b751c3 1498 page_nid_xchg_last(newpage, page_nid_last(page));
bac0382c 1499
7039e1db
PZ
1500 return newpage;
1501}
1502
a8f60772
MG
1503/*
1504 * page migration rate limiting control.
1505 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1506 * window of time. Default here says do not migrate more than 1280M per second.
e14808b4
MG
1507 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1508 * as it is faults that reset the window, pte updates will happen unconditionally
1509 * if there has not been a fault since @pteupdate_interval_millisecs after the
1510 * throttle window closed.
a8f60772
MG
1511 */
1512static unsigned int migrate_interval_millisecs __read_mostly = 100;
e14808b4 1513static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
a8f60772
MG
1514static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1515
e14808b4
MG
1516/* Returns true if NUMA migration is currently rate limited */
1517bool migrate_ratelimited(int node)
1518{
1519 pg_data_t *pgdat = NODE_DATA(node);
1520
1521 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1522 msecs_to_jiffies(pteupdate_interval_millisecs)))
1523 return false;
1524
1525 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1526 return false;
1527
1528 return true;
1529}
1530
b32967ff 1531/* Returns true if the node is migrate rate-limited after the update */
d28d4335 1532bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
7039e1db 1533{
b32967ff 1534 bool rate_limited = false;
7039e1db 1535
a8f60772
MG
1536 /*
1537 * Rate-limit the amount of data that is being migrated to a node.
1538 * Optimal placement is no good if the memory bus is saturated and
1539 * all the time is being spent migrating!
1540 */
1541 spin_lock(&pgdat->numabalancing_migrate_lock);
1542 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1543 pgdat->numabalancing_migrate_nr_pages = 0;
1544 pgdat->numabalancing_migrate_next_window = jiffies +
1545 msecs_to_jiffies(migrate_interval_millisecs);
1546 }
b32967ff
MG
1547 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1548 rate_limited = true;
1549 else
d28d4335 1550 pgdat->numabalancing_migrate_nr_pages += nr_pages;
a8f60772 1551 spin_unlock(&pgdat->numabalancing_migrate_lock);
b32967ff
MG
1552
1553 return rate_limited;
1554}
1555
1556int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1557{
340ef390 1558 int page_lru;
a8f60772 1559
3abef4e6
MG
1560 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1561
7039e1db 1562 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1563 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1564 return 0;
7039e1db 1565
340ef390
HD
1566 if (isolate_lru_page(page))
1567 return 0;
7039e1db 1568
340ef390
HD
1569 /*
1570 * migrate_misplaced_transhuge_page() skips page migration's usual
1571 * check on page_count(), so we must do it here, now that the page
1572 * has been isolated: a GUP pin, or any other pin, prevents migration.
1573 * The expected page count is 3: 1 for page's mapcount and 1 for the
1574 * caller's pin and 1 for the reference taken by isolate_lru_page().
1575 */
1576 if (PageTransHuge(page) && page_count(page) != 3) {
1577 putback_lru_page(page);
1578 return 0;
7039e1db
PZ
1579 }
1580
340ef390
HD
1581 page_lru = page_is_file_cache(page);
1582 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1583 hpage_nr_pages(page));
1584
149c33e1 1585 /*
340ef390
HD
1586 * Isolating the page has taken another reference, so the
1587 * caller's reference can be safely dropped without the page
1588 * disappearing underneath us during migration.
149c33e1
MG
1589 */
1590 put_page(page);
340ef390 1591 return 1;
b32967ff
MG
1592}
1593
1594/*
1595 * Attempt to migrate a misplaced page to the specified destination
1596 * node. Caller is expected to have an elevated reference count on
1597 * the page that will be dropped by this function before returning.
1598 */
1599int migrate_misplaced_page(struct page *page, int node)
1600{
1601 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1602 int isolated;
b32967ff
MG
1603 int nr_remaining;
1604 LIST_HEAD(migratepages);
1605
1606 /*
1607 * Don't migrate pages that are mapped in multiple processes.
1608 * TODO: Handle false sharing detection instead of this hammer
1609 */
340ef390 1610 if (page_mapcount(page) != 1)
b32967ff 1611 goto out;
b32967ff
MG
1612
1613 /*
1614 * Rate-limit the amount of data that is being migrated to a node.
1615 * Optimal placement is no good if the memory bus is saturated and
1616 * all the time is being spent migrating!
1617 */
340ef390 1618 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1619 goto out;
b32967ff
MG
1620
1621 isolated = numamigrate_isolate_page(pgdat, page);
1622 if (!isolated)
1623 goto out;
1624
1625 list_add(&page->lru, &migratepages);
9c620e2b
HD
1626 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1627 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
b32967ff
MG
1628 if (nr_remaining) {
1629 putback_lru_pages(&migratepages);
1630 isolated = 0;
1631 } else
1632 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1633 BUG_ON(!list_empty(&migratepages));
7039e1db 1634 return isolated;
340ef390
HD
1635
1636out:
1637 put_page(page);
1638 return 0;
7039e1db 1639}
220018d3 1640#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1641
220018d3 1642#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1643/*
1644 * Migrates a THP to a given target node. page must be locked and is unlocked
1645 * before returning.
1646 */
b32967ff
MG
1647int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1648 struct vm_area_struct *vma,
1649 pmd_t *pmd, pmd_t entry,
1650 unsigned long address,
1651 struct page *page, int node)
1652{
1653 unsigned long haddr = address & HPAGE_PMD_MASK;
1654 pg_data_t *pgdat = NODE_DATA(node);
1655 int isolated = 0;
1656 struct page *new_page = NULL;
1657 struct mem_cgroup *memcg = NULL;
1658 int page_lru = page_is_file_cache(page);
1659
1660 /*
1661 * Don't migrate pages that are mapped in multiple processes.
1662 * TODO: Handle false sharing detection instead of this hammer
1663 */
1664 if (page_mapcount(page) != 1)
1665 goto out_dropref;
1666
1667 /*
1668 * Rate-limit the amount of data that is being migrated to a node.
1669 * Optimal placement is no good if the memory bus is saturated and
1670 * all the time is being spent migrating!
1671 */
d28d4335 1672 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
1673 goto out_dropref;
1674
1675 new_page = alloc_pages_node(node,
1676 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
340ef390
HD
1677 if (!new_page)
1678 goto out_fail;
1679
22b751c3 1680 page_nid_xchg_last(new_page, page_nid_last(page));
b32967ff
MG
1681
1682 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 1683 if (!isolated) {
b32967ff 1684 put_page(new_page);
340ef390 1685 goto out_fail;
b32967ff
MG
1686 }
1687
1688 /* Prepare a page as a migration target */
1689 __set_page_locked(new_page);
1690 SetPageSwapBacked(new_page);
1691
1692 /* anon mapping, we can simply copy page->mapping to the new page: */
1693 new_page->mapping = page->mapping;
1694 new_page->index = page->index;
1695 migrate_page_copy(new_page, page);
1696 WARN_ON(PageLRU(new_page));
1697
1698 /* Recheck the target PMD */
1699 spin_lock(&mm->page_table_lock);
1700 if (unlikely(!pmd_same(*pmd, entry))) {
1701 spin_unlock(&mm->page_table_lock);
1702
1703 /* Reverse changes made by migrate_page_copy() */
1704 if (TestClearPageActive(new_page))
1705 SetPageActive(page);
1706 if (TestClearPageUnevictable(new_page))
1707 SetPageUnevictable(page);
1708 mlock_migrate_page(page, new_page);
1709
1710 unlock_page(new_page);
1711 put_page(new_page); /* Free it */
1712
a490bb33
MG
1713 /* Retake the callers reference and putback on LRU */
1714 get_page(page);
b32967ff 1715 putback_lru_page(page);
a490bb33
MG
1716 mod_zone_page_state(page_zone(page),
1717 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
a29ccdd1
MG
1718
1719 goto out_unlock;
b32967ff
MG
1720 }
1721
1722 /*
1723 * Traditional migration needs to prepare the memcg charge
1724 * transaction early to prevent the old page from being
1725 * uncharged when installing migration entries. Here we can
1726 * save the potential rollback and start the charge transfer
1727 * only when migration is already known to end successfully.
1728 */
1729 mem_cgroup_prepare_migration(page, new_page, &memcg);
1730
1731 entry = mk_pmd(new_page, vma->vm_page_prot);
1732 entry = pmd_mknonnuma(entry);
1733 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1734 entry = pmd_mkhuge(entry);
1735
a490bb33 1736 pmdp_clear_flush(vma, haddr, pmd);
b32967ff 1737 set_pmd_at(mm, haddr, pmd, entry);
a490bb33 1738 page_add_new_anon_rmap(new_page, vma, haddr);
ce4a9cc5 1739 update_mmu_cache_pmd(vma, address, &entry);
b32967ff
MG
1740 page_remove_rmap(page);
1741 /*
1742 * Finish the charge transaction under the page table lock to
1743 * prevent split_huge_page() from dividing up the charge
1744 * before it's fully transferred to the new page.
1745 */
1746 mem_cgroup_end_migration(memcg, page, new_page, true);
1747 spin_unlock(&mm->page_table_lock);
1748
1749 unlock_page(new_page);
1750 unlock_page(page);
1751 put_page(page); /* Drop the rmap reference */
1752 put_page(page); /* Drop the LRU isolation reference */
1753
1754 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1755 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1756
b32967ff
MG
1757 mod_zone_page_state(page_zone(page),
1758 NR_ISOLATED_ANON + page_lru,
1759 -HPAGE_PMD_NR);
1760 return isolated;
1761
340ef390
HD
1762out_fail:
1763 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 1764out_dropref:
a490bb33
MG
1765 entry = pmd_mknonnuma(entry);
1766 set_pmd_at(mm, haddr, pmd, entry);
1767 update_mmu_cache_pmd(vma, address, &entry);
1768
a29ccdd1 1769out_unlock:
340ef390 1770 unlock_page(page);
b32967ff 1771 put_page(page);
b32967ff
MG
1772 return 0;
1773}
7039e1db
PZ
1774#endif /* CONFIG_NUMA_BALANCING */
1775
1776#endif /* CONFIG_NUMA */