mm: close PageTail race
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
6a46079c
AK
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
6a46079c
AK
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
478c5ffc 41#include <linux/kernel-page-flags.h>
6a46079c 42#include <linux/sched.h>
01e00f88 43#include <linux/ksm.h>
6a46079c 44#include <linux/rmap.h>
b9e15baf 45#include <linux/export.h>
6a46079c
AK
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
facb6011
AK
49#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
5a0e3ad6 52#include <linux/slab.h>
bf998156 53#include <linux/swapops.h>
7af446a8 54#include <linux/hugetlb.h>
20d6c96b 55#include <linux/memory_hotplug.h>
5db8a73a 56#include <linux/mm_inline.h>
ea8f5fb8 57#include <linux/kfifo.h>
6a46079c
AK
58#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
293c07e3 64atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 65
27df5068
AK
66#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
1bfe5feb 68u32 hwpoison_filter_enable = 0;
7c116f2b
WF
69u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
71u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
1bfe5feb 73EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
78
79static int hwpoison_filter_dev(struct page *p)
80{
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
1c80b990 89 * page_mapping() does not accept slab pages.
7c116f2b
WF
90 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107}
108
478c5ffc
WF
109static int hwpoison_filter_flags(struct page *p)
110{
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119}
120
4fd466eb
AK
121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
c255a458 131#ifdef CONFIG_MEMCG_SWAP
4fd466eb
AK
132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 /* root_mem_cgroup has NULL dentries */
149 if (!css->cgroup->dentry)
150 return -EINVAL;
151
152 ino = css->cgroup->dentry->d_inode->i_ino;
153 css_put(css);
154
155 if (ino != hwpoison_filter_memcg)
156 return -EINVAL;
157
158 return 0;
159}
160#else
161static int hwpoison_filter_task(struct page *p) { return 0; }
162#endif
163
7c116f2b
WF
164int hwpoison_filter(struct page *p)
165{
1bfe5feb
HL
166 if (!hwpoison_filter_enable)
167 return 0;
168
7c116f2b
WF
169 if (hwpoison_filter_dev(p))
170 return -EINVAL;
171
478c5ffc
WF
172 if (hwpoison_filter_flags(p))
173 return -EINVAL;
174
4fd466eb
AK
175 if (hwpoison_filter_task(p))
176 return -EINVAL;
177
7c116f2b
WF
178 return 0;
179}
27df5068
AK
180#else
181int hwpoison_filter(struct page *p)
182{
183 return 0;
184}
185#endif
186
7c116f2b
WF
187EXPORT_SYMBOL_GPL(hwpoison_filter);
188
6a46079c 189/*
7329bbeb
TL
190 * Send all the processes who have the page mapped a signal.
191 * ``action optional'' if they are not immediately affected by the error
192 * ``action required'' if error happened in current execution context
6a46079c 193 */
7329bbeb
TL
194static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
196{
197 struct siginfo si;
198 int ret;
199
200 printk(KERN_ERR
7329bbeb 201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
6a46079c
AK
202 pfn, t->comm, t->pid);
203 si.si_signo = SIGBUS;
204 si.si_errno = 0;
6a46079c
AK
205 si.si_addr = (void *)addr;
206#ifdef __ARCH_SI_TRAPNO
207 si.si_trapno = trapno;
208#endif
37c2ac78 209 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb
TL
210
211 if ((flags & MF_ACTION_REQUIRED) && t == current) {
212 si.si_code = BUS_MCEERR_AR;
213 ret = force_sig_info(SIGBUS, &si, t);
214 } else {
215 /*
216 * Don't use force here, it's convenient if the signal
217 * can be temporarily blocked.
218 * This could cause a loop when the user sets SIGBUS
219 * to SIG_IGN, but hopefully no one will do that?
220 */
221 si.si_code = BUS_MCEERR_AO;
222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
223 }
6a46079c
AK
224 if (ret < 0)
225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 t->comm, t->pid, ret);
227 return ret;
228}
229
588f9ce6
AK
230/*
231 * When a unknown page type is encountered drain as many buffers as possible
232 * in the hope to turn the page into a LRU or free page, which we can handle.
233 */
facb6011 234void shake_page(struct page *p, int access)
588f9ce6
AK
235{
236 if (!PageSlab(p)) {
237 lru_add_drain_all();
238 if (PageLRU(p))
239 return;
240 drain_all_pages();
241 if (PageLRU(p) || is_free_buddy_page(p))
242 return;
243 }
facb6011 244
588f9ce6 245 /*
af241a08
JD
246 * Only call shrink_slab here (which would also shrink other caches) if
247 * access is not potentially fatal.
588f9ce6 248 */
facb6011
AK
249 if (access) {
250 int nr;
251 do {
a09ed5e0
YH
252 struct shrink_control shrink = {
253 .gfp_mask = GFP_KERNEL,
a09ed5e0
YH
254 };
255
1495f230 256 nr = shrink_slab(&shrink, 1000, 1000);
47f43e7e 257 if (page_count(p) == 1)
facb6011
AK
258 break;
259 } while (nr > 10);
260 }
588f9ce6
AK
261}
262EXPORT_SYMBOL_GPL(shake_page);
263
6a46079c
AK
264/*
265 * Kill all processes that have a poisoned page mapped and then isolate
266 * the page.
267 *
268 * General strategy:
269 * Find all processes having the page mapped and kill them.
270 * But we keep a page reference around so that the page is not
271 * actually freed yet.
272 * Then stash the page away
273 *
274 * There's no convenient way to get back to mapped processes
275 * from the VMAs. So do a brute-force search over all
276 * running processes.
277 *
278 * Remember that machine checks are not common (or rather
279 * if they are common you have other problems), so this shouldn't
280 * be a performance issue.
281 *
282 * Also there are some races possible while we get from the
283 * error detection to actually handle it.
284 */
285
286struct to_kill {
287 struct list_head nd;
288 struct task_struct *tsk;
289 unsigned long addr;
9033ae16 290 char addr_valid;
6a46079c
AK
291};
292
293/*
294 * Failure handling: if we can't find or can't kill a process there's
295 * not much we can do. We just print a message and ignore otherwise.
296 */
297
298/*
299 * Schedule a process for later kill.
300 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301 * TBD would GFP_NOIO be enough?
302 */
303static void add_to_kill(struct task_struct *tsk, struct page *p,
304 struct vm_area_struct *vma,
305 struct list_head *to_kill,
306 struct to_kill **tkc)
307{
308 struct to_kill *tk;
309
310 if (*tkc) {
311 tk = *tkc;
312 *tkc = NULL;
313 } else {
314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 if (!tk) {
316 printk(KERN_ERR
317 "MCE: Out of memory while machine check handling\n");
318 return;
319 }
320 }
321 tk->addr = page_address_in_vma(p, vma);
322 tk->addr_valid = 1;
323
324 /*
325 * In theory we don't have to kill when the page was
326 * munmaped. But it could be also a mremap. Since that's
327 * likely very rare kill anyways just out of paranoia, but use
328 * a SIGKILL because the error is not contained anymore.
329 */
330 if (tk->addr == -EFAULT) {
fb46e735 331 pr_info("MCE: Unable to find user space address %lx in %s\n",
6a46079c
AK
332 page_to_pfn(p), tsk->comm);
333 tk->addr_valid = 0;
334 }
335 get_task_struct(tsk);
336 tk->tsk = tsk;
337 list_add_tail(&tk->nd, to_kill);
338}
339
340/*
341 * Kill the processes that have been collected earlier.
342 *
343 * Only do anything when DOIT is set, otherwise just free the list
344 * (this is used for clean pages which do not need killing)
345 * Also when FAIL is set do a force kill because something went
346 * wrong earlier.
347 */
6751ed65 348static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
7329bbeb
TL
349 int fail, struct page *page, unsigned long pfn,
350 int flags)
6a46079c
AK
351{
352 struct to_kill *tk, *next;
353
354 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 355 if (forcekill) {
6a46079c 356 /*
af901ca1 357 * In case something went wrong with munmapping
6a46079c
AK
358 * make sure the process doesn't catch the
359 * signal and then access the memory. Just kill it.
6a46079c
AK
360 */
361 if (fail || tk->addr_valid == 0) {
362 printk(KERN_ERR
363 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364 pfn, tk->tsk->comm, tk->tsk->pid);
365 force_sig(SIGKILL, tk->tsk);
366 }
367
368 /*
369 * In theory the process could have mapped
370 * something else on the address in-between. We could
371 * check for that, but we need to tell the
372 * process anyways.
373 */
7329bbeb
TL
374 else if (kill_proc(tk->tsk, tk->addr, trapno,
375 pfn, page, flags) < 0)
6a46079c
AK
376 printk(KERN_ERR
377 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378 pfn, tk->tsk->comm, tk->tsk->pid);
379 }
380 put_task_struct(tk->tsk);
381 kfree(tk);
382 }
383}
384
385static int task_early_kill(struct task_struct *tsk)
386{
387 if (!tsk->mm)
388 return 0;
389 if (tsk->flags & PF_MCE_PROCESS)
390 return !!(tsk->flags & PF_MCE_EARLY);
391 return sysctl_memory_failure_early_kill;
392}
393
394/*
395 * Collect processes when the error hit an anonymous page.
396 */
397static void collect_procs_anon(struct page *page, struct list_head *to_kill,
398 struct to_kill **tkc)
399{
400 struct vm_area_struct *vma;
401 struct task_struct *tsk;
402 struct anon_vma *av;
bf181b9f 403 pgoff_t pgoff;
6a46079c 404
4fc3f1d6 405 av = page_lock_anon_vma_read(page);
6a46079c 406 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
407 return;
408
bf181b9f 409 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
9b679320 410 read_lock(&tasklist_lock);
6a46079c 411 for_each_process (tsk) {
5beb4930
RR
412 struct anon_vma_chain *vmac;
413
6a46079c
AK
414 if (!task_early_kill(tsk))
415 continue;
bf181b9f
ML
416 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
417 pgoff, pgoff) {
5beb4930 418 vma = vmac->vma;
6a46079c
AK
419 if (!page_mapped_in_vma(page, vma))
420 continue;
421 if (vma->vm_mm == tsk->mm)
422 add_to_kill(tsk, page, vma, to_kill, tkc);
423 }
424 }
6a46079c 425 read_unlock(&tasklist_lock);
4fc3f1d6 426 page_unlock_anon_vma_read(av);
6a46079c
AK
427}
428
429/*
430 * Collect processes when the error hit a file mapped page.
431 */
432static void collect_procs_file(struct page *page, struct list_head *to_kill,
433 struct to_kill **tkc)
434{
435 struct vm_area_struct *vma;
436 struct task_struct *tsk;
6a46079c
AK
437 struct address_space *mapping = page->mapping;
438
3d48ae45 439 mutex_lock(&mapping->i_mmap_mutex);
9b679320 440 read_lock(&tasklist_lock);
6a46079c
AK
441 for_each_process(tsk) {
442 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
443
444 if (!task_early_kill(tsk))
445 continue;
446
6b2dbba8 447 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
448 pgoff) {
449 /*
450 * Send early kill signal to tasks where a vma covers
451 * the page but the corrupted page is not necessarily
452 * mapped it in its pte.
453 * Assume applications who requested early kill want
454 * to be informed of all such data corruptions.
455 */
456 if (vma->vm_mm == tsk->mm)
457 add_to_kill(tsk, page, vma, to_kill, tkc);
458 }
459 }
6a46079c 460 read_unlock(&tasklist_lock);
9b679320 461 mutex_unlock(&mapping->i_mmap_mutex);
6a46079c
AK
462}
463
464/*
465 * Collect the processes who have the corrupted page mapped to kill.
466 * This is done in two steps for locking reasons.
467 * First preallocate one tokill structure outside the spin locks,
468 * so that we can kill at least one process reasonably reliable.
469 */
470static void collect_procs(struct page *page, struct list_head *tokill)
471{
472 struct to_kill *tk;
473
474 if (!page->mapping)
475 return;
476
477 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
478 if (!tk)
479 return;
480 if (PageAnon(page))
481 collect_procs_anon(page, tokill, &tk);
482 else
483 collect_procs_file(page, tokill, &tk);
484 kfree(tk);
485}
486
487/*
488 * Error handlers for various types of pages.
489 */
490
491enum outcome {
d95ea51e
WF
492 IGNORED, /* Error: cannot be handled */
493 FAILED, /* Error: handling failed */
6a46079c 494 DELAYED, /* Will be handled later */
6a46079c
AK
495 RECOVERED, /* Successfully recovered */
496};
497
498static const char *action_name[] = {
d95ea51e 499 [IGNORED] = "Ignored",
6a46079c
AK
500 [FAILED] = "Failed",
501 [DELAYED] = "Delayed",
6a46079c
AK
502 [RECOVERED] = "Recovered",
503};
504
dc2a1cbf
WF
505/*
506 * XXX: It is possible that a page is isolated from LRU cache,
507 * and then kept in swap cache or failed to remove from page cache.
508 * The page count will stop it from being freed by unpoison.
509 * Stress tests should be aware of this memory leak problem.
510 */
511static int delete_from_lru_cache(struct page *p)
512{
513 if (!isolate_lru_page(p)) {
514 /*
515 * Clear sensible page flags, so that the buddy system won't
516 * complain when the page is unpoison-and-freed.
517 */
518 ClearPageActive(p);
519 ClearPageUnevictable(p);
520 /*
521 * drop the page count elevated by isolate_lru_page()
522 */
523 page_cache_release(p);
524 return 0;
525 }
526 return -EIO;
527}
528
6a46079c
AK
529/*
530 * Error hit kernel page.
531 * Do nothing, try to be lucky and not touch this instead. For a few cases we
532 * could be more sophisticated.
533 */
534static int me_kernel(struct page *p, unsigned long pfn)
6a46079c
AK
535{
536 return IGNORED;
537}
538
539/*
540 * Page in unknown state. Do nothing.
541 */
542static int me_unknown(struct page *p, unsigned long pfn)
543{
544 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
545 return FAILED;
546}
547
6a46079c
AK
548/*
549 * Clean (or cleaned) page cache page.
550 */
551static int me_pagecache_clean(struct page *p, unsigned long pfn)
552{
553 int err;
554 int ret = FAILED;
555 struct address_space *mapping;
556
dc2a1cbf
WF
557 delete_from_lru_cache(p);
558
6a46079c
AK
559 /*
560 * For anonymous pages we're done the only reference left
561 * should be the one m_f() holds.
562 */
563 if (PageAnon(p))
564 return RECOVERED;
565
566 /*
567 * Now truncate the page in the page cache. This is really
568 * more like a "temporary hole punch"
569 * Don't do this for block devices when someone else
570 * has a reference, because it could be file system metadata
571 * and that's not safe to truncate.
572 */
573 mapping = page_mapping(p);
574 if (!mapping) {
575 /*
576 * Page has been teared down in the meanwhile
577 */
578 return FAILED;
579 }
580
581 /*
582 * Truncation is a bit tricky. Enable it per file system for now.
583 *
584 * Open: to take i_mutex or not for this? Right now we don't.
585 */
586 if (mapping->a_ops->error_remove_page) {
587 err = mapping->a_ops->error_remove_page(mapping, p);
588 if (err != 0) {
589 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
590 pfn, err);
591 } else if (page_has_private(p) &&
592 !try_to_release_page(p, GFP_NOIO)) {
fb46e735 593 pr_info("MCE %#lx: failed to release buffers\n", pfn);
6a46079c
AK
594 } else {
595 ret = RECOVERED;
596 }
597 } else {
598 /*
599 * If the file system doesn't support it just invalidate
600 * This fails on dirty or anything with private pages
601 */
602 if (invalidate_inode_page(p))
603 ret = RECOVERED;
604 else
605 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
606 pfn);
607 }
608 return ret;
609}
610
611/*
612 * Dirty cache page page
613 * Issues: when the error hit a hole page the error is not properly
614 * propagated.
615 */
616static int me_pagecache_dirty(struct page *p, unsigned long pfn)
617{
618 struct address_space *mapping = page_mapping(p);
619
620 SetPageError(p);
621 /* TBD: print more information about the file. */
622 if (mapping) {
623 /*
624 * IO error will be reported by write(), fsync(), etc.
625 * who check the mapping.
626 * This way the application knows that something went
627 * wrong with its dirty file data.
628 *
629 * There's one open issue:
630 *
631 * The EIO will be only reported on the next IO
632 * operation and then cleared through the IO map.
633 * Normally Linux has two mechanisms to pass IO error
634 * first through the AS_EIO flag in the address space
635 * and then through the PageError flag in the page.
636 * Since we drop pages on memory failure handling the
637 * only mechanism open to use is through AS_AIO.
638 *
639 * This has the disadvantage that it gets cleared on
640 * the first operation that returns an error, while
641 * the PageError bit is more sticky and only cleared
642 * when the page is reread or dropped. If an
643 * application assumes it will always get error on
644 * fsync, but does other operations on the fd before
25985edc 645 * and the page is dropped between then the error
6a46079c
AK
646 * will not be properly reported.
647 *
648 * This can already happen even without hwpoisoned
649 * pages: first on metadata IO errors (which only
650 * report through AS_EIO) or when the page is dropped
651 * at the wrong time.
652 *
653 * So right now we assume that the application DTRT on
654 * the first EIO, but we're not worse than other parts
655 * of the kernel.
656 */
657 mapping_set_error(mapping, EIO);
658 }
659
660 return me_pagecache_clean(p, pfn);
661}
662
663/*
664 * Clean and dirty swap cache.
665 *
666 * Dirty swap cache page is tricky to handle. The page could live both in page
667 * cache and swap cache(ie. page is freshly swapped in). So it could be
668 * referenced concurrently by 2 types of PTEs:
669 * normal PTEs and swap PTEs. We try to handle them consistently by calling
670 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
671 * and then
672 * - clear dirty bit to prevent IO
673 * - remove from LRU
674 * - but keep in the swap cache, so that when we return to it on
675 * a later page fault, we know the application is accessing
676 * corrupted data and shall be killed (we installed simple
677 * interception code in do_swap_page to catch it).
678 *
679 * Clean swap cache pages can be directly isolated. A later page fault will
680 * bring in the known good data from disk.
681 */
682static int me_swapcache_dirty(struct page *p, unsigned long pfn)
683{
6a46079c
AK
684 ClearPageDirty(p);
685 /* Trigger EIO in shmem: */
686 ClearPageUptodate(p);
687
dc2a1cbf
WF
688 if (!delete_from_lru_cache(p))
689 return DELAYED;
690 else
691 return FAILED;
6a46079c
AK
692}
693
694static int me_swapcache_clean(struct page *p, unsigned long pfn)
695{
6a46079c 696 delete_from_swap_cache(p);
e43c3afb 697
dc2a1cbf
WF
698 if (!delete_from_lru_cache(p))
699 return RECOVERED;
700 else
701 return FAILED;
6a46079c
AK
702}
703
704/*
705 * Huge pages. Needs work.
706 * Issues:
93f70f90
NH
707 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
708 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
709 */
710static int me_huge_page(struct page *p, unsigned long pfn)
711{
6de2b1aa 712 int res = 0;
93f70f90
NH
713 struct page *hpage = compound_head(p);
714 /*
715 * We can safely recover from error on free or reserved (i.e.
716 * not in-use) hugepage by dequeuing it from freelist.
717 * To check whether a hugepage is in-use or not, we can't use
718 * page->lru because it can be used in other hugepage operations,
719 * such as __unmap_hugepage_range() and gather_surplus_pages().
720 * So instead we use page_mapping() and PageAnon().
721 * We assume that this function is called with page lock held,
722 * so there is no race between isolation and mapping/unmapping.
723 */
724 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
725 res = dequeue_hwpoisoned_huge_page(hpage);
726 if (!res)
727 return RECOVERED;
93f70f90
NH
728 }
729 return DELAYED;
6a46079c
AK
730}
731
732/*
733 * Various page states we can handle.
734 *
735 * A page state is defined by its current page->flags bits.
736 * The table matches them in order and calls the right handler.
737 *
738 * This is quite tricky because we can access page at any time
25985edc 739 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
740 *
741 * This is not complete. More states could be added.
742 * For any missing state don't attempt recovery.
743 */
744
745#define dirty (1UL << PG_dirty)
746#define sc (1UL << PG_swapcache)
747#define unevict (1UL << PG_unevictable)
748#define mlock (1UL << PG_mlocked)
749#define writeback (1UL << PG_writeback)
750#define lru (1UL << PG_lru)
751#define swapbacked (1UL << PG_swapbacked)
752#define head (1UL << PG_head)
753#define tail (1UL << PG_tail)
754#define compound (1UL << PG_compound)
755#define slab (1UL << PG_slab)
6a46079c
AK
756#define reserved (1UL << PG_reserved)
757
758static struct page_state {
759 unsigned long mask;
760 unsigned long res;
761 char *msg;
762 int (*action)(struct page *p, unsigned long pfn);
763} error_states[] = {
d95ea51e 764 { reserved, reserved, "reserved kernel", me_kernel },
95d01fc6
WF
765 /*
766 * free pages are specially detected outside this table:
767 * PG_buddy pages only make a small fraction of all free pages.
768 */
6a46079c
AK
769
770 /*
771 * Could in theory check if slab page is free or if we can drop
772 * currently unused objects without touching them. But just
773 * treat it as standard kernel for now.
774 */
775 { slab, slab, "kernel slab", me_kernel },
776
777#ifdef CONFIG_PAGEFLAGS_EXTENDED
778 { head, head, "huge", me_huge_page },
779 { tail, tail, "huge", me_huge_page },
780#else
781 { compound, compound, "huge", me_huge_page },
782#endif
783
ff604cf6
NH
784 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
785 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
6a46079c 786
ff604cf6 787 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
e3986295 788 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
6a46079c 789
5f4b9fc5 790 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
e3986295 791 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
5f4b9fc5 792
ff604cf6 793 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
6a46079c 794 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
6a46079c
AK
795
796 /*
797 * Catchall entry: must be at end.
798 */
799 { 0, 0, "unknown page state", me_unknown },
800};
801
2326c467
AK
802#undef dirty
803#undef sc
804#undef unevict
805#undef mlock
806#undef writeback
807#undef lru
808#undef swapbacked
809#undef head
810#undef tail
811#undef compound
812#undef slab
813#undef reserved
814
ff604cf6
NH
815/*
816 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
817 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
818 */
6a46079c
AK
819static void action_result(unsigned long pfn, char *msg, int result)
820{
ff604cf6
NH
821 pr_err("MCE %#lx: %s page recovery: %s\n",
822 pfn, msg, action_name[result]);
6a46079c
AK
823}
824
825static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 826 unsigned long pfn)
6a46079c
AK
827{
828 int result;
7456b040 829 int count;
6a46079c
AK
830
831 result = ps->action(p, pfn);
832 action_result(pfn, ps->msg, result);
7456b040 833
bd1ce5f9 834 count = page_count(p) - 1;
138ce286
WF
835 if (ps->action == me_swapcache_dirty && result == DELAYED)
836 count--;
837 if (count != 0) {
6a46079c
AK
838 printk(KERN_ERR
839 "MCE %#lx: %s page still referenced by %d users\n",
7456b040 840 pfn, ps->msg, count);
138ce286
WF
841 result = FAILED;
842 }
6a46079c
AK
843
844 /* Could do more checks here if page looks ok */
845 /*
846 * Could adjust zone counters here to correct for the missing page.
847 */
848
138ce286 849 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
6a46079c
AK
850}
851
6a46079c
AK
852/*
853 * Do all that is necessary to remove user space mappings. Unmap
854 * the pages and send SIGBUS to the processes if the data was dirty.
855 */
1668bfd5 856static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
9fa1577a 857 int trapno, int flags, struct page **hpagep)
6a46079c
AK
858{
859 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
860 struct address_space *mapping;
861 LIST_HEAD(tokill);
862 int ret;
6751ed65 863 int kill = 1, forcekill;
9fa1577a 864 struct page *hpage = *hpagep;
a6d30ddd 865 struct page *ppage;
6a46079c 866
1668bfd5
WF
867 if (PageReserved(p) || PageSlab(p))
868 return SWAP_SUCCESS;
6a46079c 869
6a46079c
AK
870 /*
871 * This check implies we don't kill processes if their pages
872 * are in the swap cache early. Those are always late kills.
873 */
7af446a8 874 if (!page_mapped(hpage))
1668bfd5
WF
875 return SWAP_SUCCESS;
876
7af446a8 877 if (PageKsm(p))
1668bfd5 878 return SWAP_FAIL;
6a46079c
AK
879
880 if (PageSwapCache(p)) {
881 printk(KERN_ERR
882 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
883 ttu |= TTU_IGNORE_HWPOISON;
884 }
885
886 /*
887 * Propagate the dirty bit from PTEs to struct page first, because we
888 * need this to decide if we should kill or just drop the page.
db0480b3
WF
889 * XXX: the dirty test could be racy: set_page_dirty() may not always
890 * be called inside page lock (it's recommended but not enforced).
6a46079c 891 */
7af446a8 892 mapping = page_mapping(hpage);
6751ed65 893 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
894 mapping_cap_writeback_dirty(mapping)) {
895 if (page_mkclean(hpage)) {
896 SetPageDirty(hpage);
6a46079c
AK
897 } else {
898 kill = 0;
899 ttu |= TTU_IGNORE_HWPOISON;
900 printk(KERN_INFO
901 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
902 pfn);
903 }
904 }
905
a6d30ddd
JD
906 /*
907 * ppage: poisoned page
908 * if p is regular page(4k page)
909 * ppage == real poisoned page;
910 * else p is hugetlb or THP, ppage == head page.
911 */
912 ppage = hpage;
913
efeda7a4
JD
914 if (PageTransHuge(hpage)) {
915 /*
916 * Verify that this isn't a hugetlbfs head page, the check for
917 * PageAnon is just for avoid tripping a split_huge_page
918 * internal debug check, as split_huge_page refuses to deal with
919 * anything that isn't an anon page. PageAnon can't go away fro
920 * under us because we hold a refcount on the hpage, without a
921 * refcount on the hpage. split_huge_page can't be safely called
922 * in the first place, having a refcount on the tail isn't
923 * enough * to be safe.
924 */
925 if (!PageHuge(hpage) && PageAnon(hpage)) {
926 if (unlikely(split_huge_page(hpage))) {
927 /*
928 * FIXME: if splitting THP is failed, it is
929 * better to stop the following operation rather
930 * than causing panic by unmapping. System might
931 * survive if the page is freed later.
932 */
933 printk(KERN_INFO
934 "MCE %#lx: failed to split THP\n", pfn);
935
936 BUG_ON(!PageHWPoison(p));
937 return SWAP_FAIL;
938 }
c074c8f4
NH
939 /*
940 * We pinned the head page for hwpoison handling,
941 * now we split the thp and we are interested in
942 * the hwpoisoned raw page, so move the refcount
9fa1577a 943 * to it. Similarly, page lock is shifted.
c074c8f4
NH
944 */
945 if (hpage != p) {
2186bb4e
NH
946 if (!(flags & MF_COUNT_INCREASED)) {
947 put_page(hpage);
948 get_page(p);
949 }
9fa1577a
NH
950 lock_page(p);
951 unlock_page(hpage);
952 *hpagep = p;
c074c8f4 953 }
a6d30ddd
JD
954 /* THP is split, so ppage should be the real poisoned page. */
955 ppage = p;
efeda7a4
JD
956 }
957 }
958
6a46079c
AK
959 /*
960 * First collect all the processes that have the page
961 * mapped in dirty form. This has to be done before try_to_unmap,
962 * because ttu takes the rmap data structures down.
963 *
964 * Error handling: We ignore errors here because
965 * there's nothing that can be done.
966 */
967 if (kill)
a6d30ddd 968 collect_procs(ppage, &tokill);
6a46079c 969
a6d30ddd 970 ret = try_to_unmap(ppage, ttu);
6a46079c
AK
971 if (ret != SWAP_SUCCESS)
972 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
a6d30ddd
JD
973 pfn, page_mapcount(ppage));
974
6a46079c
AK
975 /*
976 * Now that the dirty bit has been propagated to the
977 * struct page and all unmaps done we can decide if
978 * killing is needed or not. Only kill when the page
6751ed65
TL
979 * was dirty or the process is not restartable,
980 * otherwise the tokill list is merely
6a46079c
AK
981 * freed. When there was a problem unmapping earlier
982 * use a more force-full uncatchable kill to prevent
983 * any accesses to the poisoned memory.
984 */
6751ed65
TL
985 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
986 kill_procs(&tokill, forcekill, trapno,
7329bbeb 987 ret != SWAP_SUCCESS, p, pfn, flags);
1668bfd5
WF
988
989 return ret;
6a46079c
AK
990}
991
7013febc
NH
992static void set_page_hwpoison_huge_page(struct page *hpage)
993{
994 int i;
37c2ac78 995 int nr_pages = 1 << compound_trans_order(hpage);
7013febc
NH
996 for (i = 0; i < nr_pages; i++)
997 SetPageHWPoison(hpage + i);
998}
999
1000static void clear_page_hwpoison_huge_page(struct page *hpage)
1001{
1002 int i;
37c2ac78 1003 int nr_pages = 1 << compound_trans_order(hpage);
7013febc
NH
1004 for (i = 0; i < nr_pages; i++)
1005 ClearPageHWPoison(hpage + i);
1006}
1007
cd42f4a3
TL
1008/**
1009 * memory_failure - Handle memory failure of a page.
1010 * @pfn: Page Number of the corrupted page
1011 * @trapno: Trap number reported in the signal to user space.
1012 * @flags: fine tune action taken
1013 *
1014 * This function is called by the low level machine check code
1015 * of an architecture when it detects hardware memory corruption
1016 * of a page. It tries its best to recover, which includes
1017 * dropping pages, killing processes etc.
1018 *
1019 * The function is primarily of use for corruptions that
1020 * happen outside the current execution context (e.g. when
1021 * detected by a background scrubber)
1022 *
1023 * Must run in process context (e.g. a work queue) with interrupts
1024 * enabled and no spinlocks hold.
1025 */
1026int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
1027{
1028 struct page_state *ps;
1029 struct page *p;
7af446a8 1030 struct page *hpage;
6a46079c 1031 int res;
c9fbdd5f 1032 unsigned int nr_pages;
524fca1e 1033 unsigned long page_flags;
6a46079c
AK
1034
1035 if (!sysctl_memory_failure_recovery)
1036 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1037
1038 if (!pfn_valid(pfn)) {
a7560fc8
WF
1039 printk(KERN_ERR
1040 "MCE %#lx: memory outside kernel control\n",
1041 pfn);
1042 return -ENXIO;
6a46079c
AK
1043 }
1044
1045 p = pfn_to_page(pfn);
7af446a8 1046 hpage = compound_head(p);
6a46079c 1047 if (TestSetPageHWPoison(p)) {
d95ea51e 1048 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
1049 return 0;
1050 }
1051
4db0e950
NH
1052 /*
1053 * Currently errors on hugetlbfs pages are measured in hugepage units,
1054 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1055 * transparent hugepages, they are supposed to be split and error
1056 * measurement is done in normal page units. So nr_pages should be one
1057 * in this case.
1058 */
1059 if (PageHuge(p))
1060 nr_pages = 1 << compound_order(hpage);
1061 else /* normal page or thp */
1062 nr_pages = 1;
293c07e3 1063 atomic_long_add(nr_pages, &num_poisoned_pages);
6a46079c
AK
1064
1065 /*
1066 * We need/can do nothing about count=0 pages.
1067 * 1) it's a free page, and therefore in safe hand:
1068 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
1069 * 2) it's a free hugepage, which is also safe:
1070 * an affected hugepage will be dequeued from hugepage freelist,
1071 * so there's no concern about reusing it ever after.
1072 * 3) it's part of a non-compound high order page.
6a46079c
AK
1073 * Implies some kernel user: cannot stop them from
1074 * R/W the page; let's pray that the page has been
1075 * used and will be freed some time later.
1076 * In fact it's dangerous to directly bump up page count from 0,
1077 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1078 */
82ba011b 1079 if (!(flags & MF_COUNT_INCREASED) &&
7af446a8 1080 !get_page_unless_zero(hpage)) {
8d22ba1b
WF
1081 if (is_free_buddy_page(p)) {
1082 action_result(pfn, "free buddy", DELAYED);
1083 return 0;
8c6c2ecb
NH
1084 } else if (PageHuge(hpage)) {
1085 /*
1086 * Check "just unpoisoned", "filter hit", and
1087 * "race with other subpage."
1088 */
7eaceacc 1089 lock_page(hpage);
8c6c2ecb
NH
1090 if (!PageHWPoison(hpage)
1091 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1092 || (p != hpage && TestSetPageHWPoison(hpage))) {
293c07e3 1093 atomic_long_sub(nr_pages, &num_poisoned_pages);
8c6c2ecb
NH
1094 return 0;
1095 }
1096 set_page_hwpoison_huge_page(hpage);
1097 res = dequeue_hwpoisoned_huge_page(hpage);
1098 action_result(pfn, "free huge",
1099 res ? IGNORED : DELAYED);
1100 unlock_page(hpage);
1101 return res;
8d22ba1b
WF
1102 } else {
1103 action_result(pfn, "high order kernel", IGNORED);
1104 return -EBUSY;
1105 }
6a46079c
AK
1106 }
1107
e43c3afb
WF
1108 /*
1109 * We ignore non-LRU pages for good reasons.
1110 * - PG_locked is only well defined for LRU pages and a few others
1111 * - to avoid races with __set_page_locked()
1112 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1113 * The check (unnecessarily) ignores LRU pages being isolated and
1114 * walked by the page reclaim code, however that's not a big loss.
1115 */
385de357 1116 if (!PageHuge(p) && !PageTransTail(p)) {
af241a08
JD
1117 if (!PageLRU(p))
1118 shake_page(p, 0);
1119 if (!PageLRU(p)) {
1120 /*
1121 * shake_page could have turned it free.
1122 */
1123 if (is_free_buddy_page(p)) {
1124 action_result(pfn, "free buddy, 2nd try",
1125 DELAYED);
1126 return 0;
1127 }
1128 action_result(pfn, "non LRU", IGNORED);
1129 put_page(p);
1130 return -EBUSY;
0474a60e 1131 }
e43c3afb 1132 }
e43c3afb 1133
6a46079c
AK
1134 /*
1135 * Lock the page and wait for writeback to finish.
1136 * It's very difficult to mess with pages currently under IO
1137 * and in many cases impossible, so we just avoid it here.
1138 */
7eaceacc 1139 lock_page(hpage);
847ce401 1140
524fca1e
NH
1141 /*
1142 * We use page flags to determine what action should be taken, but
1143 * the flags can be modified by the error containment action. One
1144 * example is an mlocked page, where PG_mlocked is cleared by
1145 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1146 * correctly, we save a copy of the page flags at this time.
1147 */
1148 page_flags = p->flags;
1149
847ce401
WF
1150 /*
1151 * unpoison always clear PG_hwpoison inside page lock
1152 */
1153 if (!PageHWPoison(p)) {
d95ea51e 1154 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
847ce401
WF
1155 res = 0;
1156 goto out;
1157 }
7c116f2b
WF
1158 if (hwpoison_filter(p)) {
1159 if (TestClearPageHWPoison(p))
293c07e3 1160 atomic_long_sub(nr_pages, &num_poisoned_pages);
7af446a8
NH
1161 unlock_page(hpage);
1162 put_page(hpage);
7c116f2b
WF
1163 return 0;
1164 }
847ce401 1165
7013febc
NH
1166 /*
1167 * For error on the tail page, we should set PG_hwpoison
1168 * on the head page to show that the hugepage is hwpoisoned
1169 */
a6d30ddd 1170 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
7013febc
NH
1171 action_result(pfn, "hugepage already hardware poisoned",
1172 IGNORED);
1173 unlock_page(hpage);
1174 put_page(hpage);
1175 return 0;
1176 }
1177 /*
1178 * Set PG_hwpoison on all pages in an error hugepage,
1179 * because containment is done in hugepage unit for now.
1180 * Since we have done TestSetPageHWPoison() for the head page with
1181 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1182 */
1183 if (PageHuge(p))
1184 set_page_hwpoison_huge_page(hpage);
1185
6a46079c
AK
1186 wait_on_page_writeback(p);
1187
1188 /*
1189 * Now take care of user space mappings.
e64a782f 1190 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
9fa1577a
NH
1191 *
1192 * When the raw error page is thp tail page, hpage points to the raw
1193 * page after thp split.
6a46079c 1194 */
9fa1577a
NH
1195 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1196 != SWAP_SUCCESS) {
1668bfd5
WF
1197 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1198 res = -EBUSY;
1199 goto out;
1200 }
6a46079c
AK
1201
1202 /*
1203 * Torn down by someone else?
1204 */
dc2a1cbf 1205 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
6a46079c 1206 action_result(pfn, "already truncated LRU", IGNORED);
d95ea51e 1207 res = -EBUSY;
6a46079c
AK
1208 goto out;
1209 }
1210
1211 res = -EBUSY;
524fca1e
NH
1212 /*
1213 * The first check uses the current page flags which may not have any
1214 * relevant information. The second check with the saved page flagss is
1215 * carried out only if the first check can't determine the page status.
1216 */
1217 for (ps = error_states;; ps++)
1218 if ((p->flags & ps->mask) == ps->res)
6a46079c 1219 break;
524fca1e
NH
1220 if (!ps->mask)
1221 for (ps = error_states;; ps++)
1222 if ((page_flags & ps->mask) == ps->res)
1223 break;
1224 res = page_action(ps, p, pfn);
6a46079c 1225out:
7af446a8 1226 unlock_page(hpage);
6a46079c
AK
1227 return res;
1228}
cd42f4a3 1229EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1230
ea8f5fb8
HY
1231#define MEMORY_FAILURE_FIFO_ORDER 4
1232#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1233
1234struct memory_failure_entry {
1235 unsigned long pfn;
1236 int trapno;
1237 int flags;
1238};
1239
1240struct memory_failure_cpu {
1241 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1242 MEMORY_FAILURE_FIFO_SIZE);
1243 spinlock_t lock;
1244 struct work_struct work;
1245};
1246
1247static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1248
1249/**
1250 * memory_failure_queue - Schedule handling memory failure of a page.
1251 * @pfn: Page Number of the corrupted page
1252 * @trapno: Trap number reported in the signal to user space.
1253 * @flags: Flags for memory failure handling
1254 *
1255 * This function is called by the low level hardware error handler
1256 * when it detects hardware memory corruption of a page. It schedules
1257 * the recovering of error page, including dropping pages, killing
1258 * processes etc.
1259 *
1260 * The function is primarily of use for corruptions that
1261 * happen outside the current execution context (e.g. when
1262 * detected by a background scrubber)
1263 *
1264 * Can run in IRQ context.
1265 */
1266void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1267{
1268 struct memory_failure_cpu *mf_cpu;
1269 unsigned long proc_flags;
1270 struct memory_failure_entry entry = {
1271 .pfn = pfn,
1272 .trapno = trapno,
1273 .flags = flags,
1274 };
1275
1276 mf_cpu = &get_cpu_var(memory_failure_cpu);
1277 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1278 if (kfifo_put(&mf_cpu->fifo, &entry))
1279 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1280 else
1281 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1282 pfn);
1283 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1284 put_cpu_var(memory_failure_cpu);
1285}
1286EXPORT_SYMBOL_GPL(memory_failure_queue);
1287
1288static void memory_failure_work_func(struct work_struct *work)
1289{
1290 struct memory_failure_cpu *mf_cpu;
1291 struct memory_failure_entry entry = { 0, };
1292 unsigned long proc_flags;
1293 int gotten;
1294
1295 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1296 for (;;) {
1297 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1298 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1299 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1300 if (!gotten)
1301 break;
cd42f4a3 1302 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1303 }
1304}
1305
1306static int __init memory_failure_init(void)
1307{
1308 struct memory_failure_cpu *mf_cpu;
1309 int cpu;
1310
1311 for_each_possible_cpu(cpu) {
1312 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1313 spin_lock_init(&mf_cpu->lock);
1314 INIT_KFIFO(mf_cpu->fifo);
1315 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1316 }
1317
1318 return 0;
1319}
1320core_initcall(memory_failure_init);
1321
847ce401
WF
1322/**
1323 * unpoison_memory - Unpoison a previously poisoned page
1324 * @pfn: Page number of the to be unpoisoned page
1325 *
1326 * Software-unpoison a page that has been poisoned by
1327 * memory_failure() earlier.
1328 *
1329 * This is only done on the software-level, so it only works
1330 * for linux injected failures, not real hardware failures
1331 *
1332 * Returns 0 for success, otherwise -errno.
1333 */
1334int unpoison_memory(unsigned long pfn)
1335{
1336 struct page *page;
1337 struct page *p;
1338 int freeit = 0;
c9fbdd5f 1339 unsigned int nr_pages;
847ce401
WF
1340
1341 if (!pfn_valid(pfn))
1342 return -ENXIO;
1343
1344 p = pfn_to_page(pfn);
1345 page = compound_head(p);
1346
1347 if (!PageHWPoison(p)) {
fb46e735 1348 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
847ce401
WF
1349 return 0;
1350 }
1351
37c2ac78 1352 nr_pages = 1 << compound_trans_order(page);
c9fbdd5f 1353
847ce401 1354 if (!get_page_unless_zero(page)) {
8c6c2ecb
NH
1355 /*
1356 * Since HWPoisoned hugepage should have non-zero refcount,
1357 * race between memory failure and unpoison seems to happen.
1358 * In such case unpoison fails and memory failure runs
1359 * to the end.
1360 */
1361 if (PageHuge(page)) {
dd73e85f 1362 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
8c6c2ecb
NH
1363 return 0;
1364 }
847ce401 1365 if (TestClearPageHWPoison(p))
293c07e3 1366 atomic_long_sub(nr_pages, &num_poisoned_pages);
fb46e735 1367 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
847ce401
WF
1368 return 0;
1369 }
1370
7eaceacc 1371 lock_page(page);
847ce401
WF
1372 /*
1373 * This test is racy because PG_hwpoison is set outside of page lock.
1374 * That's acceptable because that won't trigger kernel panic. Instead,
1375 * the PG_hwpoison page will be caught and isolated on the entrance to
1376 * the free buddy page pool.
1377 */
c9fbdd5f 1378 if (TestClearPageHWPoison(page)) {
fb46e735 1379 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
293c07e3 1380 atomic_long_sub(nr_pages, &num_poisoned_pages);
847ce401 1381 freeit = 1;
6a90181c
NH
1382 if (PageHuge(page))
1383 clear_page_hwpoison_huge_page(page);
847ce401
WF
1384 }
1385 unlock_page(page);
1386
1387 put_page(page);
1388 if (freeit)
1389 put_page(page);
1390
1391 return 0;
1392}
1393EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1394
1395static struct page *new_page(struct page *p, unsigned long private, int **x)
1396{
12686d15 1397 int nid = page_to_nid(p);
d950b958
NH
1398 if (PageHuge(p))
1399 return alloc_huge_page_node(page_hstate(compound_head(p)),
1400 nid);
1401 else
1402 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1403}
1404
1405/*
1406 * Safely get reference count of an arbitrary page.
1407 * Returns 0 for a free page, -EIO for a zero refcount page
1408 * that is not free, and 1 for any other page type.
1409 * For 1 the page is returned with increased page count, otherwise not.
1410 */
af8fae7c 1411static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1412{
1413 int ret;
1414
1415 if (flags & MF_COUNT_INCREASED)
1416 return 1;
1417
1418 /*
20d6c96b 1419 * The lock_memory_hotplug prevents a race with memory hotplug.
facb6011
AK
1420 * This is a big hammer, a better would be nicer.
1421 */
20d6c96b 1422 lock_memory_hotplug();
facb6011
AK
1423
1424 /*
1425 * Isolate the page, so that it doesn't get reallocated if it
b0d4c0f8
NH
1426 * was free. This flag should be kept set until the source page
1427 * is freed and PG_hwpoison on it is set.
facb6011 1428 */
b023f468 1429 set_migratetype_isolate(p, true);
d950b958
NH
1430 /*
1431 * When the target page is a free hugepage, just remove it
1432 * from free hugepage list.
1433 */
facb6011 1434 if (!get_page_unless_zero(compound_head(p))) {
d950b958 1435 if (PageHuge(p)) {
71dd0b8a 1436 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1437 ret = 0;
d950b958 1438 } else if (is_free_buddy_page(p)) {
71dd0b8a 1439 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1440 ret = 0;
1441 } else {
71dd0b8a
BP
1442 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1443 __func__, pfn, p->flags);
facb6011
AK
1444 ret = -EIO;
1445 }
1446 } else {
1447 /* Not a free page */
1448 ret = 1;
1449 }
20d6c96b 1450 unlock_memory_hotplug();
facb6011
AK
1451 return ret;
1452}
1453
af8fae7c
NH
1454static int get_any_page(struct page *page, unsigned long pfn, int flags)
1455{
1456 int ret = __get_any_page(page, pfn, flags);
1457
1458 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1459 /*
1460 * Try to free it.
1461 */
1462 put_page(page);
1463 shake_page(page, 1);
1464
1465 /*
1466 * Did it turn free?
1467 */
1468 ret = __get_any_page(page, pfn, 0);
1469 if (!PageLRU(page)) {
1470 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1471 pfn, page->flags);
1472 return -EIO;
1473 }
1474 }
1475 return ret;
1476}
1477
d950b958
NH
1478static int soft_offline_huge_page(struct page *page, int flags)
1479{
1480 int ret;
1481 unsigned long pfn = page_to_pfn(page);
1482 struct page *hpage = compound_head(page);
d950b958 1483
af8fae7c
NH
1484 /*
1485 * This double-check of PageHWPoison is to avoid the race with
1486 * memory_failure(). See also comment in __soft_offline_page().
1487 */
1488 lock_page(hpage);
0ebff32c 1489 if (PageHWPoison(hpage)) {
af8fae7c
NH
1490 unlock_page(hpage);
1491 put_page(hpage);
0ebff32c 1492 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1493 return -EBUSY;
0ebff32c 1494 }
af8fae7c 1495 unlock_page(hpage);
d950b958 1496
d950b958 1497 /* Keep page count to indicate a given hugepage is isolated. */
9c620e2b 1498 ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL,
dc32f634 1499 MIGRATE_SYNC);
189ebff2 1500 put_page(hpage);
d950b958 1501 if (ret) {
dd73e85f
DN
1502 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1503 pfn, ret, page->flags);
af8fae7c 1504 } else {
deb19aaf
JW
1505 /* overcommit hugetlb page will be freed to buddy */
1506 if (PageHuge(page)) {
1507 set_page_hwpoison_huge_page(hpage);
1508 dequeue_hwpoisoned_huge_page(hpage);
1509 atomic_long_add(1 << compound_order(hpage),
1510 &num_poisoned_pages);
1511 } else {
1512 SetPageHWPoison(page);
1513 atomic_long_inc(&num_poisoned_pages);
1514 }
d950b958 1515 }
d950b958
NH
1516 return ret;
1517}
1518
af8fae7c
NH
1519static int __soft_offline_page(struct page *page, int flags);
1520
facb6011
AK
1521/**
1522 * soft_offline_page - Soft offline a page.
1523 * @page: page to offline
1524 * @flags: flags. Same as memory_failure().
1525 *
1526 * Returns 0 on success, otherwise negated errno.
1527 *
1528 * Soft offline a page, by migration or invalidation,
1529 * without killing anything. This is for the case when
1530 * a page is not corrupted yet (so it's still valid to access),
1531 * but has had a number of corrected errors and is better taken
1532 * out.
1533 *
1534 * The actual policy on when to do that is maintained by
1535 * user space.
1536 *
1537 * This should never impact any application or cause data loss,
1538 * however it might take some time.
1539 *
1540 * This is not a 100% solution for all memory, but tries to be
1541 * ``good enough'' for the majority of memory.
1542 */
1543int soft_offline_page(struct page *page, int flags)
1544{
1545 int ret;
1546 unsigned long pfn = page_to_pfn(page);
def52acc 1547 struct page *hpage = compound_head(page);
facb6011 1548
af8fae7c
NH
1549 if (PageHWPoison(page)) {
1550 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1551 return -EBUSY;
fa8dd8a9 1552 }
af8fae7c 1553 if (!PageHuge(page) && PageTransHuge(hpage)) {
783657a7
NH
1554 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1555 pr_info("soft offline: %#lx: failed to split THP\n",
1556 pfn);
af8fae7c 1557 return -EBUSY;
783657a7
NH
1558 }
1559 }
d950b958 1560
facb6011
AK
1561 ret = get_any_page(page, pfn, flags);
1562 if (ret < 0)
af8fae7c
NH
1563 return ret;
1564 if (ret) { /* for in-use pages */
1565 if (PageHuge(page))
1566 ret = soft_offline_huge_page(page, flags);
1567 else
1568 ret = __soft_offline_page(page, flags);
1569 } else { /* for free pages */
1570 if (PageHuge(page)) {
1571 set_page_hwpoison_huge_page(hpage);
1572 dequeue_hwpoisoned_huge_page(hpage);
1573 atomic_long_add(1 << compound_trans_order(hpage),
1574 &num_poisoned_pages);
1575 } else {
1576 SetPageHWPoison(page);
1577 atomic_long_inc(&num_poisoned_pages);
1578 }
facb6011 1579 }
b0d4c0f8 1580 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
af8fae7c
NH
1581 return ret;
1582}
1583
1584static int __soft_offline_page(struct page *page, int flags)
1585{
1586 int ret;
1587 unsigned long pfn = page_to_pfn(page);
facb6011 1588
facb6011 1589 /*
af8fae7c
NH
1590 * Check PageHWPoison again inside page lock because PageHWPoison
1591 * is set by memory_failure() outside page lock. Note that
1592 * memory_failure() also double-checks PageHWPoison inside page lock,
1593 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1594 */
0ebff32c
XQ
1595 lock_page(page);
1596 wait_on_page_writeback(page);
af8fae7c
NH
1597 if (PageHWPoison(page)) {
1598 unlock_page(page);
1599 put_page(page);
1600 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1601 return -EBUSY;
1602 }
facb6011
AK
1603 /*
1604 * Try to invalidate first. This should work for
1605 * non dirty unmapped page cache pages.
1606 */
1607 ret = invalidate_inode_page(page);
1608 unlock_page(page);
facb6011 1609 /*
facb6011
AK
1610 * RED-PEN would be better to keep it isolated here, but we
1611 * would need to fix isolation locking first.
1612 */
facb6011 1613 if (ret == 1) {
bd486285 1614 put_page(page);
fb46e735 1615 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c
NH
1616 SetPageHWPoison(page);
1617 atomic_long_inc(&num_poisoned_pages);
1618 return 0;
facb6011
AK
1619 }
1620
1621 /*
1622 * Simple invalidation didn't work.
1623 * Try to migrate to a new page instead. migrate.c
1624 * handles a large number of cases for us.
1625 */
1626 ret = isolate_lru_page(page);
bd486285
KK
1627 /*
1628 * Drop page reference which is came from get_any_page()
1629 * successful isolate_lru_page() already took another one.
1630 */
1631 put_page(page);
facb6011
AK
1632 if (!ret) {
1633 LIST_HEAD(pagelist);
5db8a73a 1634 inc_zone_page_state(page, NR_ISOLATED_ANON +
9c620e2b 1635 page_is_file_cache(page));
facb6011 1636 list_add(&page->lru, &pagelist);
77f1fe6b 1637 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
9c620e2b 1638 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1639 if (ret) {
57fc4a5e 1640 putback_lru_pages(&pagelist);
fb46e735 1641 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
facb6011
AK
1642 pfn, ret, page->flags);
1643 if (ret > 0)
1644 ret = -EIO;
af8fae7c 1645 } else {
b0d4c0f8
NH
1646 /*
1647 * After page migration succeeds, the source page can
1648 * be trapped in pagevec and actual freeing is delayed.
1649 * Freeing code works differently based on PG_hwpoison,
1650 * so there's a race. We need to make sure that the
1651 * source page should be freed back to buddy before
1652 * setting PG_hwpoison.
1653 */
1654 if (!is_free_buddy_page(page))
1655 lru_add_drain_all();
1656 if (!is_free_buddy_page(page))
1657 drain_all_pages();
af8fae7c 1658 SetPageHWPoison(page);
b0d4c0f8
NH
1659 if (!is_free_buddy_page(page))
1660 pr_info("soft offline: %#lx: page leaked\n",
1661 pfn);
af8fae7c 1662 atomic_long_inc(&num_poisoned_pages);
facb6011
AK
1663 }
1664 } else {
fb46e735 1665 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
dd73e85f 1666 pfn, ret, page_count(page), page->flags);
facb6011 1667 }
facb6011
AK
1668 return ret;
1669}