Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
6a46079c
AK
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
6a46079c
AK
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
478c5ffc 41#include <linux/kernel-page-flags.h>
6a46079c 42#include <linux/sched.h>
01e00f88 43#include <linux/ksm.h>
6a46079c 44#include <linux/rmap.h>
b9e15baf 45#include <linux/export.h>
6a46079c
AK
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
facb6011
AK
49#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
5a0e3ad6 52#include <linux/slab.h>
bf998156 53#include <linux/swapops.h>
7af446a8 54#include <linux/hugetlb.h>
20d6c96b 55#include <linux/memory_hotplug.h>
5db8a73a 56#include <linux/mm_inline.h>
ea8f5fb8 57#include <linux/kfifo.h>
6a46079c
AK
58#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
293c07e3 64atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 65
27df5068
AK
66#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
1bfe5feb 68u32 hwpoison_filter_enable = 0;
7c116f2b
WF
69u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
71u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
1bfe5feb 73EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
78
79static int hwpoison_filter_dev(struct page *p)
80{
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
1c80b990 89 * page_mapping() does not accept slab pages.
7c116f2b
WF
90 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107}
108
478c5ffc
WF
109static int hwpoison_filter_flags(struct page *p)
110{
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119}
120
4fd466eb
AK
121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
c255a458 131#ifdef CONFIG_MEMCG_SWAP
4fd466eb
AK
132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 /* root_mem_cgroup has NULL dentries */
149 if (!css->cgroup->dentry)
150 return -EINVAL;
151
152 ino = css->cgroup->dentry->d_inode->i_ino;
153 css_put(css);
154
155 if (ino != hwpoison_filter_memcg)
156 return -EINVAL;
157
158 return 0;
159}
160#else
161static int hwpoison_filter_task(struct page *p) { return 0; }
162#endif
163
7c116f2b
WF
164int hwpoison_filter(struct page *p)
165{
1bfe5feb
HL
166 if (!hwpoison_filter_enable)
167 return 0;
168
7c116f2b
WF
169 if (hwpoison_filter_dev(p))
170 return -EINVAL;
171
478c5ffc
WF
172 if (hwpoison_filter_flags(p))
173 return -EINVAL;
174
4fd466eb
AK
175 if (hwpoison_filter_task(p))
176 return -EINVAL;
177
7c116f2b
WF
178 return 0;
179}
27df5068
AK
180#else
181int hwpoison_filter(struct page *p)
182{
183 return 0;
184}
185#endif
186
7c116f2b
WF
187EXPORT_SYMBOL_GPL(hwpoison_filter);
188
6a46079c 189/*
7329bbeb
TL
190 * Send all the processes who have the page mapped a signal.
191 * ``action optional'' if they are not immediately affected by the error
192 * ``action required'' if error happened in current execution context
6a46079c 193 */
7329bbeb
TL
194static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
196{
197 struct siginfo si;
198 int ret;
199
200 printk(KERN_ERR
7329bbeb 201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
6a46079c
AK
202 pfn, t->comm, t->pid);
203 si.si_signo = SIGBUS;
204 si.si_errno = 0;
6a46079c
AK
205 si.si_addr = (void *)addr;
206#ifdef __ARCH_SI_TRAPNO
207 si.si_trapno = trapno;
208#endif
37c2ac78 209 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 210
4451dd21 211 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 212 si.si_code = BUS_MCEERR_AR;
4451dd21 213 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
214 } else {
215 /*
216 * Don't use force here, it's convenient if the signal
217 * can be temporarily blocked.
218 * This could cause a loop when the user sets SIGBUS
219 * to SIG_IGN, but hopefully no one will do that?
220 */
221 si.si_code = BUS_MCEERR_AO;
222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
223 }
6a46079c
AK
224 if (ret < 0)
225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 t->comm, t->pid, ret);
227 return ret;
228}
229
588f9ce6
AK
230/*
231 * When a unknown page type is encountered drain as many buffers as possible
232 * in the hope to turn the page into a LRU or free page, which we can handle.
233 */
facb6011 234void shake_page(struct page *p, int access)
588f9ce6
AK
235{
236 if (!PageSlab(p)) {
237 lru_add_drain_all();
238 if (PageLRU(p))
239 return;
240 drain_all_pages();
241 if (PageLRU(p) || is_free_buddy_page(p))
242 return;
243 }
facb6011 244
588f9ce6 245 /*
af241a08
JD
246 * Only call shrink_slab here (which would also shrink other caches) if
247 * access is not potentially fatal.
588f9ce6 248 */
facb6011
AK
249 if (access) {
250 int nr;
251 do {
a09ed5e0
YH
252 struct shrink_control shrink = {
253 .gfp_mask = GFP_KERNEL,
a09ed5e0
YH
254 };
255
1495f230 256 nr = shrink_slab(&shrink, 1000, 1000);
47f43e7e 257 if (page_count(p) == 1)
facb6011
AK
258 break;
259 } while (nr > 10);
260 }
588f9ce6
AK
261}
262EXPORT_SYMBOL_GPL(shake_page);
263
6a46079c
AK
264/*
265 * Kill all processes that have a poisoned page mapped and then isolate
266 * the page.
267 *
268 * General strategy:
269 * Find all processes having the page mapped and kill them.
270 * But we keep a page reference around so that the page is not
271 * actually freed yet.
272 * Then stash the page away
273 *
274 * There's no convenient way to get back to mapped processes
275 * from the VMAs. So do a brute-force search over all
276 * running processes.
277 *
278 * Remember that machine checks are not common (or rather
279 * if they are common you have other problems), so this shouldn't
280 * be a performance issue.
281 *
282 * Also there are some races possible while we get from the
283 * error detection to actually handle it.
284 */
285
286struct to_kill {
287 struct list_head nd;
288 struct task_struct *tsk;
289 unsigned long addr;
9033ae16 290 char addr_valid;
6a46079c
AK
291};
292
293/*
294 * Failure handling: if we can't find or can't kill a process there's
295 * not much we can do. We just print a message and ignore otherwise.
296 */
297
298/*
299 * Schedule a process for later kill.
300 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301 * TBD would GFP_NOIO be enough?
302 */
303static void add_to_kill(struct task_struct *tsk, struct page *p,
304 struct vm_area_struct *vma,
305 struct list_head *to_kill,
306 struct to_kill **tkc)
307{
308 struct to_kill *tk;
309
310 if (*tkc) {
311 tk = *tkc;
312 *tkc = NULL;
313 } else {
314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 if (!tk) {
316 printk(KERN_ERR
317 "MCE: Out of memory while machine check handling\n");
318 return;
319 }
320 }
321 tk->addr = page_address_in_vma(p, vma);
322 tk->addr_valid = 1;
323
324 /*
325 * In theory we don't have to kill when the page was
326 * munmaped. But it could be also a mremap. Since that's
327 * likely very rare kill anyways just out of paranoia, but use
328 * a SIGKILL because the error is not contained anymore.
329 */
330 if (tk->addr == -EFAULT) {
fb46e735 331 pr_info("MCE: Unable to find user space address %lx in %s\n",
6a46079c
AK
332 page_to_pfn(p), tsk->comm);
333 tk->addr_valid = 0;
334 }
335 get_task_struct(tsk);
336 tk->tsk = tsk;
337 list_add_tail(&tk->nd, to_kill);
338}
339
340/*
341 * Kill the processes that have been collected earlier.
342 *
343 * Only do anything when DOIT is set, otherwise just free the list
344 * (this is used for clean pages which do not need killing)
345 * Also when FAIL is set do a force kill because something went
346 * wrong earlier.
347 */
6751ed65 348static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
7329bbeb
TL
349 int fail, struct page *page, unsigned long pfn,
350 int flags)
6a46079c
AK
351{
352 struct to_kill *tk, *next;
353
354 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 355 if (forcekill) {
6a46079c 356 /*
af901ca1 357 * In case something went wrong with munmapping
6a46079c
AK
358 * make sure the process doesn't catch the
359 * signal and then access the memory. Just kill it.
6a46079c
AK
360 */
361 if (fail || tk->addr_valid == 0) {
362 printk(KERN_ERR
363 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364 pfn, tk->tsk->comm, tk->tsk->pid);
365 force_sig(SIGKILL, tk->tsk);
366 }
367
368 /*
369 * In theory the process could have mapped
370 * something else on the address in-between. We could
371 * check for that, but we need to tell the
372 * process anyways.
373 */
7329bbeb
TL
374 else if (kill_proc(tk->tsk, tk->addr, trapno,
375 pfn, page, flags) < 0)
6a46079c
AK
376 printk(KERN_ERR
377 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378 pfn, tk->tsk->comm, tk->tsk->pid);
379 }
380 put_task_struct(tk->tsk);
381 kfree(tk);
382 }
383}
384
15e09f82 385static int task_early_kill(struct task_struct *tsk, int force_early)
6a46079c
AK
386{
387 if (!tsk->mm)
388 return 0;
15e09f82
TL
389 if (force_early)
390 return 1;
6a46079c
AK
391 if (tsk->flags & PF_MCE_PROCESS)
392 return !!(tsk->flags & PF_MCE_EARLY);
393 return sysctl_memory_failure_early_kill;
394}
395
396/*
397 * Collect processes when the error hit an anonymous page.
398 */
399static void collect_procs_anon(struct page *page, struct list_head *to_kill,
15e09f82 400 struct to_kill **tkc, int force_early)
6a46079c
AK
401{
402 struct vm_area_struct *vma;
403 struct task_struct *tsk;
404 struct anon_vma *av;
bf181b9f 405 pgoff_t pgoff;
6a46079c 406
4fc3f1d6 407 av = page_lock_anon_vma_read(page);
6a46079c 408 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
409 return;
410
bf181b9f 411 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
9b679320 412 read_lock(&tasklist_lock);
6a46079c 413 for_each_process (tsk) {
5beb4930
RR
414 struct anon_vma_chain *vmac;
415
15e09f82 416 if (!task_early_kill(tsk, force_early))
6a46079c 417 continue;
bf181b9f
ML
418 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
419 pgoff, pgoff) {
5beb4930 420 vma = vmac->vma;
6a46079c
AK
421 if (!page_mapped_in_vma(page, vma))
422 continue;
423 if (vma->vm_mm == tsk->mm)
424 add_to_kill(tsk, page, vma, to_kill, tkc);
425 }
426 }
6a46079c 427 read_unlock(&tasklist_lock);
4fc3f1d6 428 page_unlock_anon_vma_read(av);
6a46079c
AK
429}
430
431/*
432 * Collect processes when the error hit a file mapped page.
433 */
434static void collect_procs_file(struct page *page, struct list_head *to_kill,
15e09f82 435 struct to_kill **tkc, int force_early)
6a46079c
AK
436{
437 struct vm_area_struct *vma;
438 struct task_struct *tsk;
6a46079c
AK
439 struct address_space *mapping = page->mapping;
440
3d48ae45 441 mutex_lock(&mapping->i_mmap_mutex);
9b679320 442 read_lock(&tasklist_lock);
6a46079c
AK
443 for_each_process(tsk) {
444 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
445
15e09f82 446 if (!task_early_kill(tsk, force_early))
6a46079c
AK
447 continue;
448
6b2dbba8 449 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
450 pgoff) {
451 /*
452 * Send early kill signal to tasks where a vma covers
453 * the page but the corrupted page is not necessarily
454 * mapped it in its pte.
455 * Assume applications who requested early kill want
456 * to be informed of all such data corruptions.
457 */
458 if (vma->vm_mm == tsk->mm)
459 add_to_kill(tsk, page, vma, to_kill, tkc);
460 }
461 }
6a46079c 462 read_unlock(&tasklist_lock);
9b679320 463 mutex_unlock(&mapping->i_mmap_mutex);
6a46079c
AK
464}
465
466/*
467 * Collect the processes who have the corrupted page mapped to kill.
468 * This is done in two steps for locking reasons.
469 * First preallocate one tokill structure outside the spin locks,
470 * so that we can kill at least one process reasonably reliable.
471 */
15e09f82
TL
472static void collect_procs(struct page *page, struct list_head *tokill,
473 int force_early)
6a46079c
AK
474{
475 struct to_kill *tk;
476
477 if (!page->mapping)
478 return;
479
480 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
481 if (!tk)
482 return;
483 if (PageAnon(page))
15e09f82 484 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 485 else
15e09f82 486 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
487 kfree(tk);
488}
489
490/*
491 * Error handlers for various types of pages.
492 */
493
494enum outcome {
d95ea51e
WF
495 IGNORED, /* Error: cannot be handled */
496 FAILED, /* Error: handling failed */
6a46079c 497 DELAYED, /* Will be handled later */
6a46079c
AK
498 RECOVERED, /* Successfully recovered */
499};
500
501static const char *action_name[] = {
d95ea51e 502 [IGNORED] = "Ignored",
6a46079c
AK
503 [FAILED] = "Failed",
504 [DELAYED] = "Delayed",
6a46079c
AK
505 [RECOVERED] = "Recovered",
506};
507
dc2a1cbf
WF
508/*
509 * XXX: It is possible that a page is isolated from LRU cache,
510 * and then kept in swap cache or failed to remove from page cache.
511 * The page count will stop it from being freed by unpoison.
512 * Stress tests should be aware of this memory leak problem.
513 */
514static int delete_from_lru_cache(struct page *p)
515{
516 if (!isolate_lru_page(p)) {
517 /*
518 * Clear sensible page flags, so that the buddy system won't
519 * complain when the page is unpoison-and-freed.
520 */
521 ClearPageActive(p);
522 ClearPageUnevictable(p);
523 /*
524 * drop the page count elevated by isolate_lru_page()
525 */
526 page_cache_release(p);
527 return 0;
528 }
529 return -EIO;
530}
531
6a46079c
AK
532/*
533 * Error hit kernel page.
534 * Do nothing, try to be lucky and not touch this instead. For a few cases we
535 * could be more sophisticated.
536 */
537static int me_kernel(struct page *p, unsigned long pfn)
6a46079c
AK
538{
539 return IGNORED;
540}
541
542/*
543 * Page in unknown state. Do nothing.
544 */
545static int me_unknown(struct page *p, unsigned long pfn)
546{
547 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
548 return FAILED;
549}
550
6a46079c
AK
551/*
552 * Clean (or cleaned) page cache page.
553 */
554static int me_pagecache_clean(struct page *p, unsigned long pfn)
555{
556 int err;
557 int ret = FAILED;
558 struct address_space *mapping;
559
dc2a1cbf
WF
560 delete_from_lru_cache(p);
561
6a46079c
AK
562 /*
563 * For anonymous pages we're done the only reference left
564 * should be the one m_f() holds.
565 */
566 if (PageAnon(p))
567 return RECOVERED;
568
569 /*
570 * Now truncate the page in the page cache. This is really
571 * more like a "temporary hole punch"
572 * Don't do this for block devices when someone else
573 * has a reference, because it could be file system metadata
574 * and that's not safe to truncate.
575 */
576 mapping = page_mapping(p);
577 if (!mapping) {
578 /*
579 * Page has been teared down in the meanwhile
580 */
581 return FAILED;
582 }
583
584 /*
585 * Truncation is a bit tricky. Enable it per file system for now.
586 *
587 * Open: to take i_mutex or not for this? Right now we don't.
588 */
589 if (mapping->a_ops->error_remove_page) {
590 err = mapping->a_ops->error_remove_page(mapping, p);
591 if (err != 0) {
592 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
593 pfn, err);
594 } else if (page_has_private(p) &&
595 !try_to_release_page(p, GFP_NOIO)) {
fb46e735 596 pr_info("MCE %#lx: failed to release buffers\n", pfn);
6a46079c
AK
597 } else {
598 ret = RECOVERED;
599 }
600 } else {
601 /*
602 * If the file system doesn't support it just invalidate
603 * This fails on dirty or anything with private pages
604 */
605 if (invalidate_inode_page(p))
606 ret = RECOVERED;
607 else
608 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
609 pfn);
610 }
611 return ret;
612}
613
614/*
615 * Dirty cache page page
616 * Issues: when the error hit a hole page the error is not properly
617 * propagated.
618 */
619static int me_pagecache_dirty(struct page *p, unsigned long pfn)
620{
621 struct address_space *mapping = page_mapping(p);
622
623 SetPageError(p);
624 /* TBD: print more information about the file. */
625 if (mapping) {
626 /*
627 * IO error will be reported by write(), fsync(), etc.
628 * who check the mapping.
629 * This way the application knows that something went
630 * wrong with its dirty file data.
631 *
632 * There's one open issue:
633 *
634 * The EIO will be only reported on the next IO
635 * operation and then cleared through the IO map.
636 * Normally Linux has two mechanisms to pass IO error
637 * first through the AS_EIO flag in the address space
638 * and then through the PageError flag in the page.
639 * Since we drop pages on memory failure handling the
640 * only mechanism open to use is through AS_AIO.
641 *
642 * This has the disadvantage that it gets cleared on
643 * the first operation that returns an error, while
644 * the PageError bit is more sticky and only cleared
645 * when the page is reread or dropped. If an
646 * application assumes it will always get error on
647 * fsync, but does other operations on the fd before
25985edc 648 * and the page is dropped between then the error
6a46079c
AK
649 * will not be properly reported.
650 *
651 * This can already happen even without hwpoisoned
652 * pages: first on metadata IO errors (which only
653 * report through AS_EIO) or when the page is dropped
654 * at the wrong time.
655 *
656 * So right now we assume that the application DTRT on
657 * the first EIO, but we're not worse than other parts
658 * of the kernel.
659 */
660 mapping_set_error(mapping, EIO);
661 }
662
663 return me_pagecache_clean(p, pfn);
664}
665
666/*
667 * Clean and dirty swap cache.
668 *
669 * Dirty swap cache page is tricky to handle. The page could live both in page
670 * cache and swap cache(ie. page is freshly swapped in). So it could be
671 * referenced concurrently by 2 types of PTEs:
672 * normal PTEs and swap PTEs. We try to handle them consistently by calling
673 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
674 * and then
675 * - clear dirty bit to prevent IO
676 * - remove from LRU
677 * - but keep in the swap cache, so that when we return to it on
678 * a later page fault, we know the application is accessing
679 * corrupted data and shall be killed (we installed simple
680 * interception code in do_swap_page to catch it).
681 *
682 * Clean swap cache pages can be directly isolated. A later page fault will
683 * bring in the known good data from disk.
684 */
685static int me_swapcache_dirty(struct page *p, unsigned long pfn)
686{
6a46079c
AK
687 ClearPageDirty(p);
688 /* Trigger EIO in shmem: */
689 ClearPageUptodate(p);
690
dc2a1cbf
WF
691 if (!delete_from_lru_cache(p))
692 return DELAYED;
693 else
694 return FAILED;
6a46079c
AK
695}
696
697static int me_swapcache_clean(struct page *p, unsigned long pfn)
698{
6a46079c 699 delete_from_swap_cache(p);
e43c3afb 700
dc2a1cbf
WF
701 if (!delete_from_lru_cache(p))
702 return RECOVERED;
703 else
704 return FAILED;
6a46079c
AK
705}
706
707/*
708 * Huge pages. Needs work.
709 * Issues:
93f70f90
NH
710 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
711 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
712 */
713static int me_huge_page(struct page *p, unsigned long pfn)
714{
6de2b1aa 715 int res = 0;
93f70f90
NH
716 struct page *hpage = compound_head(p);
717 /*
718 * We can safely recover from error on free or reserved (i.e.
719 * not in-use) hugepage by dequeuing it from freelist.
720 * To check whether a hugepage is in-use or not, we can't use
721 * page->lru because it can be used in other hugepage operations,
722 * such as __unmap_hugepage_range() and gather_surplus_pages().
723 * So instead we use page_mapping() and PageAnon().
724 * We assume that this function is called with page lock held,
725 * so there is no race between isolation and mapping/unmapping.
726 */
727 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
728 res = dequeue_hwpoisoned_huge_page(hpage);
729 if (!res)
730 return RECOVERED;
93f70f90
NH
731 }
732 return DELAYED;
6a46079c
AK
733}
734
735/*
736 * Various page states we can handle.
737 *
738 * A page state is defined by its current page->flags bits.
739 * The table matches them in order and calls the right handler.
740 *
741 * This is quite tricky because we can access page at any time
25985edc 742 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
743 *
744 * This is not complete. More states could be added.
745 * For any missing state don't attempt recovery.
746 */
747
748#define dirty (1UL << PG_dirty)
749#define sc (1UL << PG_swapcache)
750#define unevict (1UL << PG_unevictable)
751#define mlock (1UL << PG_mlocked)
752#define writeback (1UL << PG_writeback)
753#define lru (1UL << PG_lru)
754#define swapbacked (1UL << PG_swapbacked)
755#define head (1UL << PG_head)
756#define tail (1UL << PG_tail)
757#define compound (1UL << PG_compound)
758#define slab (1UL << PG_slab)
6a46079c
AK
759#define reserved (1UL << PG_reserved)
760
761static struct page_state {
762 unsigned long mask;
763 unsigned long res;
764 char *msg;
765 int (*action)(struct page *p, unsigned long pfn);
766} error_states[] = {
d95ea51e 767 { reserved, reserved, "reserved kernel", me_kernel },
95d01fc6
WF
768 /*
769 * free pages are specially detected outside this table:
770 * PG_buddy pages only make a small fraction of all free pages.
771 */
6a46079c
AK
772
773 /*
774 * Could in theory check if slab page is free or if we can drop
775 * currently unused objects without touching them. But just
776 * treat it as standard kernel for now.
777 */
778 { slab, slab, "kernel slab", me_kernel },
779
780#ifdef CONFIG_PAGEFLAGS_EXTENDED
781 { head, head, "huge", me_huge_page },
782 { tail, tail, "huge", me_huge_page },
783#else
784 { compound, compound, "huge", me_huge_page },
785#endif
786
ff604cf6
NH
787 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
788 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
6a46079c 789
ff604cf6 790 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
e3986295 791 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
6a46079c 792
5f4b9fc5 793 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
e3986295 794 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
5f4b9fc5 795
ff604cf6 796 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
6a46079c 797 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
6a46079c
AK
798
799 /*
800 * Catchall entry: must be at end.
801 */
802 { 0, 0, "unknown page state", me_unknown },
803};
804
2326c467
AK
805#undef dirty
806#undef sc
807#undef unevict
808#undef mlock
809#undef writeback
810#undef lru
811#undef swapbacked
812#undef head
813#undef tail
814#undef compound
815#undef slab
816#undef reserved
817
ff604cf6
NH
818/*
819 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
820 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
821 */
6a46079c
AK
822static void action_result(unsigned long pfn, char *msg, int result)
823{
ff604cf6
NH
824 pr_err("MCE %#lx: %s page recovery: %s\n",
825 pfn, msg, action_name[result]);
6a46079c
AK
826}
827
828static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 829 unsigned long pfn)
6a46079c
AK
830{
831 int result;
7456b040 832 int count;
6a46079c
AK
833
834 result = ps->action(p, pfn);
835 action_result(pfn, ps->msg, result);
7456b040 836
bd1ce5f9 837 count = page_count(p) - 1;
138ce286
WF
838 if (ps->action == me_swapcache_dirty && result == DELAYED)
839 count--;
840 if (count != 0) {
6a46079c
AK
841 printk(KERN_ERR
842 "MCE %#lx: %s page still referenced by %d users\n",
7456b040 843 pfn, ps->msg, count);
138ce286
WF
844 result = FAILED;
845 }
6a46079c
AK
846
847 /* Could do more checks here if page looks ok */
848 /*
849 * Could adjust zone counters here to correct for the missing page.
850 */
851
138ce286 852 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
6a46079c
AK
853}
854
6a46079c
AK
855/*
856 * Do all that is necessary to remove user space mappings. Unmap
857 * the pages and send SIGBUS to the processes if the data was dirty.
858 */
1668bfd5 859static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
9fa1577a 860 int trapno, int flags, struct page **hpagep)
6a46079c
AK
861{
862 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
863 struct address_space *mapping;
864 LIST_HEAD(tokill);
865 int ret;
6751ed65 866 int kill = 1, forcekill;
9fa1577a 867 struct page *hpage = *hpagep;
a6d30ddd 868 struct page *ppage;
6a46079c 869
1668bfd5
WF
870 if (PageReserved(p) || PageSlab(p))
871 return SWAP_SUCCESS;
6a46079c 872
6a46079c
AK
873 /*
874 * This check implies we don't kill processes if their pages
875 * are in the swap cache early. Those are always late kills.
876 */
7af446a8 877 if (!page_mapped(hpage))
1668bfd5
WF
878 return SWAP_SUCCESS;
879
7af446a8 880 if (PageKsm(p))
1668bfd5 881 return SWAP_FAIL;
6a46079c
AK
882
883 if (PageSwapCache(p)) {
884 printk(KERN_ERR
885 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
886 ttu |= TTU_IGNORE_HWPOISON;
887 }
888
889 /*
890 * Propagate the dirty bit from PTEs to struct page first, because we
891 * need this to decide if we should kill or just drop the page.
db0480b3
WF
892 * XXX: the dirty test could be racy: set_page_dirty() may not always
893 * be called inside page lock (it's recommended but not enforced).
6a46079c 894 */
7af446a8 895 mapping = page_mapping(hpage);
6751ed65 896 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
897 mapping_cap_writeback_dirty(mapping)) {
898 if (page_mkclean(hpage)) {
899 SetPageDirty(hpage);
6a46079c
AK
900 } else {
901 kill = 0;
902 ttu |= TTU_IGNORE_HWPOISON;
903 printk(KERN_INFO
904 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
905 pfn);
906 }
907 }
908
a6d30ddd
JD
909 /*
910 * ppage: poisoned page
911 * if p is regular page(4k page)
912 * ppage == real poisoned page;
913 * else p is hugetlb or THP, ppage == head page.
914 */
915 ppage = hpage;
916
efeda7a4
JD
917 if (PageTransHuge(hpage)) {
918 /*
919 * Verify that this isn't a hugetlbfs head page, the check for
920 * PageAnon is just for avoid tripping a split_huge_page
921 * internal debug check, as split_huge_page refuses to deal with
922 * anything that isn't an anon page. PageAnon can't go away fro
923 * under us because we hold a refcount on the hpage, without a
924 * refcount on the hpage. split_huge_page can't be safely called
925 * in the first place, having a refcount on the tail isn't
926 * enough * to be safe.
927 */
928 if (!PageHuge(hpage) && PageAnon(hpage)) {
929 if (unlikely(split_huge_page(hpage))) {
930 /*
931 * FIXME: if splitting THP is failed, it is
932 * better to stop the following operation rather
933 * than causing panic by unmapping. System might
934 * survive if the page is freed later.
935 */
936 printk(KERN_INFO
937 "MCE %#lx: failed to split THP\n", pfn);
938
939 BUG_ON(!PageHWPoison(p));
940 return SWAP_FAIL;
941 }
c074c8f4
NH
942 /*
943 * We pinned the head page for hwpoison handling,
944 * now we split the thp and we are interested in
945 * the hwpoisoned raw page, so move the refcount
9fa1577a 946 * to it. Similarly, page lock is shifted.
c074c8f4
NH
947 */
948 if (hpage != p) {
2186bb4e
NH
949 if (!(flags & MF_COUNT_INCREASED)) {
950 put_page(hpage);
951 get_page(p);
952 }
9fa1577a
NH
953 lock_page(p);
954 unlock_page(hpage);
955 *hpagep = p;
c074c8f4 956 }
a6d30ddd
JD
957 /* THP is split, so ppage should be the real poisoned page. */
958 ppage = p;
efeda7a4
JD
959 }
960 }
961
6a46079c
AK
962 /*
963 * First collect all the processes that have the page
964 * mapped in dirty form. This has to be done before try_to_unmap,
965 * because ttu takes the rmap data structures down.
966 *
967 * Error handling: We ignore errors here because
968 * there's nothing that can be done.
969 */
970 if (kill)
15e09f82 971 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 972
a6d30ddd 973 ret = try_to_unmap(ppage, ttu);
6a46079c
AK
974 if (ret != SWAP_SUCCESS)
975 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
a6d30ddd
JD
976 pfn, page_mapcount(ppage));
977
6a46079c
AK
978 /*
979 * Now that the dirty bit has been propagated to the
980 * struct page and all unmaps done we can decide if
981 * killing is needed or not. Only kill when the page
6751ed65
TL
982 * was dirty or the process is not restartable,
983 * otherwise the tokill list is merely
6a46079c
AK
984 * freed. When there was a problem unmapping earlier
985 * use a more force-full uncatchable kill to prevent
986 * any accesses to the poisoned memory.
987 */
6751ed65
TL
988 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
989 kill_procs(&tokill, forcekill, trapno,
7329bbeb 990 ret != SWAP_SUCCESS, p, pfn, flags);
1668bfd5
WF
991
992 return ret;
6a46079c
AK
993}
994
7013febc
NH
995static void set_page_hwpoison_huge_page(struct page *hpage)
996{
997 int i;
37c2ac78 998 int nr_pages = 1 << compound_trans_order(hpage);
7013febc
NH
999 for (i = 0; i < nr_pages; i++)
1000 SetPageHWPoison(hpage + i);
1001}
1002
1003static void clear_page_hwpoison_huge_page(struct page *hpage)
1004{
1005 int i;
37c2ac78 1006 int nr_pages = 1 << compound_trans_order(hpage);
7013febc
NH
1007 for (i = 0; i < nr_pages; i++)
1008 ClearPageHWPoison(hpage + i);
1009}
1010
cd42f4a3
TL
1011/**
1012 * memory_failure - Handle memory failure of a page.
1013 * @pfn: Page Number of the corrupted page
1014 * @trapno: Trap number reported in the signal to user space.
1015 * @flags: fine tune action taken
1016 *
1017 * This function is called by the low level machine check code
1018 * of an architecture when it detects hardware memory corruption
1019 * of a page. It tries its best to recover, which includes
1020 * dropping pages, killing processes etc.
1021 *
1022 * The function is primarily of use for corruptions that
1023 * happen outside the current execution context (e.g. when
1024 * detected by a background scrubber)
1025 *
1026 * Must run in process context (e.g. a work queue) with interrupts
1027 * enabled and no spinlocks hold.
1028 */
1029int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
1030{
1031 struct page_state *ps;
1032 struct page *p;
7af446a8 1033 struct page *hpage;
6a46079c 1034 int res;
c9fbdd5f 1035 unsigned int nr_pages;
524fca1e 1036 unsigned long page_flags;
6a46079c
AK
1037
1038 if (!sysctl_memory_failure_recovery)
1039 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1040
1041 if (!pfn_valid(pfn)) {
a7560fc8
WF
1042 printk(KERN_ERR
1043 "MCE %#lx: memory outside kernel control\n",
1044 pfn);
1045 return -ENXIO;
6a46079c
AK
1046 }
1047
1048 p = pfn_to_page(pfn);
7af446a8 1049 hpage = compound_head(p);
6a46079c 1050 if (TestSetPageHWPoison(p)) {
d95ea51e 1051 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
1052 return 0;
1053 }
1054
4db0e950
NH
1055 /*
1056 * Currently errors on hugetlbfs pages are measured in hugepage units,
1057 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1058 * transparent hugepages, they are supposed to be split and error
1059 * measurement is done in normal page units. So nr_pages should be one
1060 * in this case.
1061 */
1062 if (PageHuge(p))
1063 nr_pages = 1 << compound_order(hpage);
1064 else /* normal page or thp */
1065 nr_pages = 1;
293c07e3 1066 atomic_long_add(nr_pages, &num_poisoned_pages);
6a46079c
AK
1067
1068 /*
1069 * We need/can do nothing about count=0 pages.
1070 * 1) it's a free page, and therefore in safe hand:
1071 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
1072 * 2) it's a free hugepage, which is also safe:
1073 * an affected hugepage will be dequeued from hugepage freelist,
1074 * so there's no concern about reusing it ever after.
1075 * 3) it's part of a non-compound high order page.
6a46079c
AK
1076 * Implies some kernel user: cannot stop them from
1077 * R/W the page; let's pray that the page has been
1078 * used and will be freed some time later.
1079 * In fact it's dangerous to directly bump up page count from 0,
1080 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1081 */
82ba011b 1082 if (!(flags & MF_COUNT_INCREASED) &&
7af446a8 1083 !get_page_unless_zero(hpage)) {
8d22ba1b
WF
1084 if (is_free_buddy_page(p)) {
1085 action_result(pfn, "free buddy", DELAYED);
1086 return 0;
8c6c2ecb
NH
1087 } else if (PageHuge(hpage)) {
1088 /*
ed32bcbb 1089 * Check "filter hit" and "race with other subpage."
8c6c2ecb 1090 */
7eaceacc 1091 lock_page(hpage);
ed32bcbb
CY
1092 if (PageHWPoison(hpage)) {
1093 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1094 || (p != hpage && TestSetPageHWPoison(hpage))) {
1095 atomic_long_sub(nr_pages, &num_poisoned_pages);
1096 unlock_page(hpage);
1097 return 0;
1098 }
8c6c2ecb
NH
1099 }
1100 set_page_hwpoison_huge_page(hpage);
1101 res = dequeue_hwpoisoned_huge_page(hpage);
1102 action_result(pfn, "free huge",
1103 res ? IGNORED : DELAYED);
1104 unlock_page(hpage);
1105 return res;
8d22ba1b
WF
1106 } else {
1107 action_result(pfn, "high order kernel", IGNORED);
1108 return -EBUSY;
1109 }
6a46079c
AK
1110 }
1111
e43c3afb
WF
1112 /*
1113 * We ignore non-LRU pages for good reasons.
1114 * - PG_locked is only well defined for LRU pages and a few others
1115 * - to avoid races with __set_page_locked()
1116 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1117 * The check (unnecessarily) ignores LRU pages being isolated and
1118 * walked by the page reclaim code, however that's not a big loss.
1119 */
385de357 1120 if (!PageHuge(p) && !PageTransTail(p)) {
af241a08
JD
1121 if (!PageLRU(p))
1122 shake_page(p, 0);
1123 if (!PageLRU(p)) {
1124 /*
1125 * shake_page could have turned it free.
1126 */
1127 if (is_free_buddy_page(p)) {
1128 action_result(pfn, "free buddy, 2nd try",
1129 DELAYED);
1130 return 0;
1131 }
1132 action_result(pfn, "non LRU", IGNORED);
1133 put_page(p);
1134 return -EBUSY;
0474a60e 1135 }
e43c3afb 1136 }
e43c3afb 1137
6a46079c
AK
1138 /*
1139 * Lock the page and wait for writeback to finish.
1140 * It's very difficult to mess with pages currently under IO
1141 * and in many cases impossible, so we just avoid it here.
1142 */
7eaceacc 1143 lock_page(hpage);
847ce401 1144
524fca1e
NH
1145 /*
1146 * We use page flags to determine what action should be taken, but
1147 * the flags can be modified by the error containment action. One
1148 * example is an mlocked page, where PG_mlocked is cleared by
1149 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1150 * correctly, we save a copy of the page flags at this time.
1151 */
1152 page_flags = p->flags;
1153
847ce401
WF
1154 /*
1155 * unpoison always clear PG_hwpoison inside page lock
1156 */
1157 if (!PageHWPoison(p)) {
d95ea51e 1158 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
53e8565a
NH
1159 atomic_long_sub(nr_pages, &num_poisoned_pages);
1160 put_page(hpage);
847ce401
WF
1161 res = 0;
1162 goto out;
1163 }
7c116f2b
WF
1164 if (hwpoison_filter(p)) {
1165 if (TestClearPageHWPoison(p))
293c07e3 1166 atomic_long_sub(nr_pages, &num_poisoned_pages);
7af446a8
NH
1167 unlock_page(hpage);
1168 put_page(hpage);
7c116f2b
WF
1169 return 0;
1170 }
847ce401 1171
7013febc
NH
1172 /*
1173 * For error on the tail page, we should set PG_hwpoison
1174 * on the head page to show that the hugepage is hwpoisoned
1175 */
a6d30ddd 1176 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
7013febc
NH
1177 action_result(pfn, "hugepage already hardware poisoned",
1178 IGNORED);
1179 unlock_page(hpage);
1180 put_page(hpage);
1181 return 0;
1182 }
1183 /*
1184 * Set PG_hwpoison on all pages in an error hugepage,
1185 * because containment is done in hugepage unit for now.
1186 * Since we have done TestSetPageHWPoison() for the head page with
1187 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1188 */
1189 if (PageHuge(p))
1190 set_page_hwpoison_huge_page(hpage);
1191
6a46079c
AK
1192 wait_on_page_writeback(p);
1193
1194 /*
1195 * Now take care of user space mappings.
e64a782f 1196 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
9fa1577a
NH
1197 *
1198 * When the raw error page is thp tail page, hpage points to the raw
1199 * page after thp split.
6a46079c 1200 */
9fa1577a
NH
1201 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1202 != SWAP_SUCCESS) {
1668bfd5
WF
1203 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1204 res = -EBUSY;
1205 goto out;
1206 }
6a46079c
AK
1207
1208 /*
1209 * Torn down by someone else?
1210 */
dc2a1cbf 1211 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
6a46079c 1212 action_result(pfn, "already truncated LRU", IGNORED);
d95ea51e 1213 res = -EBUSY;
6a46079c
AK
1214 goto out;
1215 }
1216
1217 res = -EBUSY;
524fca1e
NH
1218 /*
1219 * The first check uses the current page flags which may not have any
1220 * relevant information. The second check with the saved page flagss is
1221 * carried out only if the first check can't determine the page status.
1222 */
1223 for (ps = error_states;; ps++)
1224 if ((p->flags & ps->mask) == ps->res)
6a46079c 1225 break;
524fca1e
NH
1226 if (!ps->mask)
1227 for (ps = error_states;; ps++)
1228 if ((page_flags & ps->mask) == ps->res)
1229 break;
1230 res = page_action(ps, p, pfn);
6a46079c 1231out:
7af446a8 1232 unlock_page(hpage);
6a46079c
AK
1233 return res;
1234}
cd42f4a3 1235EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1236
ea8f5fb8
HY
1237#define MEMORY_FAILURE_FIFO_ORDER 4
1238#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1239
1240struct memory_failure_entry {
1241 unsigned long pfn;
1242 int trapno;
1243 int flags;
1244};
1245
1246struct memory_failure_cpu {
1247 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1248 MEMORY_FAILURE_FIFO_SIZE);
1249 spinlock_t lock;
1250 struct work_struct work;
1251};
1252
1253static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1254
1255/**
1256 * memory_failure_queue - Schedule handling memory failure of a page.
1257 * @pfn: Page Number of the corrupted page
1258 * @trapno: Trap number reported in the signal to user space.
1259 * @flags: Flags for memory failure handling
1260 *
1261 * This function is called by the low level hardware error handler
1262 * when it detects hardware memory corruption of a page. It schedules
1263 * the recovering of error page, including dropping pages, killing
1264 * processes etc.
1265 *
1266 * The function is primarily of use for corruptions that
1267 * happen outside the current execution context (e.g. when
1268 * detected by a background scrubber)
1269 *
1270 * Can run in IRQ context.
1271 */
1272void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1273{
1274 struct memory_failure_cpu *mf_cpu;
1275 unsigned long proc_flags;
1276 struct memory_failure_entry entry = {
1277 .pfn = pfn,
1278 .trapno = trapno,
1279 .flags = flags,
1280 };
1281
1282 mf_cpu = &get_cpu_var(memory_failure_cpu);
1283 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1284 if (kfifo_put(&mf_cpu->fifo, &entry))
1285 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1286 else
1287 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1288 pfn);
1289 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1290 put_cpu_var(memory_failure_cpu);
1291}
1292EXPORT_SYMBOL_GPL(memory_failure_queue);
1293
1294static void memory_failure_work_func(struct work_struct *work)
1295{
1296 struct memory_failure_cpu *mf_cpu;
1297 struct memory_failure_entry entry = { 0, };
1298 unsigned long proc_flags;
1299 int gotten;
1300
1301 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1302 for (;;) {
1303 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1304 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1305 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1306 if (!gotten)
1307 break;
cd42f4a3 1308 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1309 }
1310}
1311
1312static int __init memory_failure_init(void)
1313{
1314 struct memory_failure_cpu *mf_cpu;
1315 int cpu;
1316
1317 for_each_possible_cpu(cpu) {
1318 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1319 spin_lock_init(&mf_cpu->lock);
1320 INIT_KFIFO(mf_cpu->fifo);
1321 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1322 }
1323
1324 return 0;
1325}
1326core_initcall(memory_failure_init);
1327
847ce401
WF
1328/**
1329 * unpoison_memory - Unpoison a previously poisoned page
1330 * @pfn: Page number of the to be unpoisoned page
1331 *
1332 * Software-unpoison a page that has been poisoned by
1333 * memory_failure() earlier.
1334 *
1335 * This is only done on the software-level, so it only works
1336 * for linux injected failures, not real hardware failures
1337 *
1338 * Returns 0 for success, otherwise -errno.
1339 */
1340int unpoison_memory(unsigned long pfn)
1341{
1342 struct page *page;
1343 struct page *p;
1344 int freeit = 0;
c9fbdd5f 1345 unsigned int nr_pages;
847ce401
WF
1346
1347 if (!pfn_valid(pfn))
1348 return -ENXIO;
1349
1350 p = pfn_to_page(pfn);
1351 page = compound_head(p);
1352
1353 if (!PageHWPoison(p)) {
fb46e735 1354 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
847ce401
WF
1355 return 0;
1356 }
1357
37c2ac78 1358 nr_pages = 1 << compound_trans_order(page);
c9fbdd5f 1359
847ce401 1360 if (!get_page_unless_zero(page)) {
8c6c2ecb
NH
1361 /*
1362 * Since HWPoisoned hugepage should have non-zero refcount,
1363 * race between memory failure and unpoison seems to happen.
1364 * In such case unpoison fails and memory failure runs
1365 * to the end.
1366 */
1367 if (PageHuge(page)) {
dd73e85f 1368 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
8c6c2ecb
NH
1369 return 0;
1370 }
847ce401 1371 if (TestClearPageHWPoison(p))
293c07e3 1372 atomic_long_sub(nr_pages, &num_poisoned_pages);
fb46e735 1373 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
847ce401
WF
1374 return 0;
1375 }
1376
7eaceacc 1377 lock_page(page);
847ce401
WF
1378 /*
1379 * This test is racy because PG_hwpoison is set outside of page lock.
1380 * That's acceptable because that won't trigger kernel panic. Instead,
1381 * the PG_hwpoison page will be caught and isolated on the entrance to
1382 * the free buddy page pool.
1383 */
c9fbdd5f 1384 if (TestClearPageHWPoison(page)) {
fb46e735 1385 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
293c07e3 1386 atomic_long_sub(nr_pages, &num_poisoned_pages);
847ce401 1387 freeit = 1;
6a90181c
NH
1388 if (PageHuge(page))
1389 clear_page_hwpoison_huge_page(page);
847ce401
WF
1390 }
1391 unlock_page(page);
1392
1393 put_page(page);
1394 if (freeit)
1395 put_page(page);
1396
1397 return 0;
1398}
1399EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1400
1401static struct page *new_page(struct page *p, unsigned long private, int **x)
1402{
12686d15 1403 int nid = page_to_nid(p);
d950b958
NH
1404 if (PageHuge(p))
1405 return alloc_huge_page_node(page_hstate(compound_head(p)),
1406 nid);
1407 else
1408 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1409}
1410
1411/*
1412 * Safely get reference count of an arbitrary page.
1413 * Returns 0 for a free page, -EIO for a zero refcount page
1414 * that is not free, and 1 for any other page type.
1415 * For 1 the page is returned with increased page count, otherwise not.
1416 */
af8fae7c 1417static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1418{
1419 int ret;
1420
1421 if (flags & MF_COUNT_INCREASED)
1422 return 1;
1423
1424 /*
20d6c96b 1425 * The lock_memory_hotplug prevents a race with memory hotplug.
facb6011
AK
1426 * This is a big hammer, a better would be nicer.
1427 */
20d6c96b 1428 lock_memory_hotplug();
facb6011
AK
1429
1430 /*
1431 * Isolate the page, so that it doesn't get reallocated if it
b0d4c0f8
NH
1432 * was free. This flag should be kept set until the source page
1433 * is freed and PG_hwpoison on it is set.
facb6011 1434 */
b023f468 1435 set_migratetype_isolate(p, true);
d950b958
NH
1436 /*
1437 * When the target page is a free hugepage, just remove it
1438 * from free hugepage list.
1439 */
facb6011 1440 if (!get_page_unless_zero(compound_head(p))) {
d950b958 1441 if (PageHuge(p)) {
71dd0b8a 1442 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1443 ret = 0;
d950b958 1444 } else if (is_free_buddy_page(p)) {
71dd0b8a 1445 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1446 ret = 0;
1447 } else {
71dd0b8a
BP
1448 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1449 __func__, pfn, p->flags);
facb6011
AK
1450 ret = -EIO;
1451 }
1452 } else {
1453 /* Not a free page */
1454 ret = 1;
1455 }
20d6c96b 1456 unlock_memory_hotplug();
facb6011
AK
1457 return ret;
1458}
1459
af8fae7c
NH
1460static int get_any_page(struct page *page, unsigned long pfn, int flags)
1461{
1462 int ret = __get_any_page(page, pfn, flags);
1463
1464 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1465 /*
1466 * Try to free it.
1467 */
1468 put_page(page);
1469 shake_page(page, 1);
1470
1471 /*
1472 * Did it turn free?
1473 */
1474 ret = __get_any_page(page, pfn, 0);
1475 if (!PageLRU(page)) {
1476 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1477 pfn, page->flags);
1478 return -EIO;
1479 }
1480 }
1481 return ret;
1482}
1483
d950b958
NH
1484static int soft_offline_huge_page(struct page *page, int flags)
1485{
1486 int ret;
1487 unsigned long pfn = page_to_pfn(page);
1488 struct page *hpage = compound_head(page);
d950b958 1489
af8fae7c
NH
1490 /*
1491 * This double-check of PageHWPoison is to avoid the race with
1492 * memory_failure(). See also comment in __soft_offline_page().
1493 */
1494 lock_page(hpage);
0ebff32c 1495 if (PageHWPoison(hpage)) {
af8fae7c
NH
1496 unlock_page(hpage);
1497 put_page(hpage);
0ebff32c 1498 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1499 return -EBUSY;
0ebff32c 1500 }
af8fae7c 1501 unlock_page(hpage);
d950b958 1502
d950b958 1503 /* Keep page count to indicate a given hugepage is isolated. */
9c620e2b 1504 ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL,
dc32f634 1505 MIGRATE_SYNC);
189ebff2 1506 put_page(hpage);
d950b958 1507 if (ret) {
dd73e85f
DN
1508 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1509 pfn, ret, page->flags);
af8fae7c 1510 } else {
deb19aaf
JW
1511 /* overcommit hugetlb page will be freed to buddy */
1512 if (PageHuge(page)) {
1513 set_page_hwpoison_huge_page(hpage);
1514 dequeue_hwpoisoned_huge_page(hpage);
1515 atomic_long_add(1 << compound_order(hpage),
1516 &num_poisoned_pages);
1517 } else {
1518 SetPageHWPoison(page);
1519 atomic_long_inc(&num_poisoned_pages);
1520 }
d950b958 1521 }
d950b958
NH
1522 return ret;
1523}
1524
af8fae7c
NH
1525static int __soft_offline_page(struct page *page, int flags);
1526
facb6011
AK
1527/**
1528 * soft_offline_page - Soft offline a page.
1529 * @page: page to offline
1530 * @flags: flags. Same as memory_failure().
1531 *
1532 * Returns 0 on success, otherwise negated errno.
1533 *
1534 * Soft offline a page, by migration or invalidation,
1535 * without killing anything. This is for the case when
1536 * a page is not corrupted yet (so it's still valid to access),
1537 * but has had a number of corrected errors and is better taken
1538 * out.
1539 *
1540 * The actual policy on when to do that is maintained by
1541 * user space.
1542 *
1543 * This should never impact any application or cause data loss,
1544 * however it might take some time.
1545 *
1546 * This is not a 100% solution for all memory, but tries to be
1547 * ``good enough'' for the majority of memory.
1548 */
1549int soft_offline_page(struct page *page, int flags)
1550{
1551 int ret;
1552 unsigned long pfn = page_to_pfn(page);
def52acc 1553 struct page *hpage = compound_head(page);
facb6011 1554
af8fae7c
NH
1555 if (PageHWPoison(page)) {
1556 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1557 return -EBUSY;
fa8dd8a9 1558 }
af8fae7c 1559 if (!PageHuge(page) && PageTransHuge(hpage)) {
783657a7
NH
1560 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1561 pr_info("soft offline: %#lx: failed to split THP\n",
1562 pfn);
af8fae7c 1563 return -EBUSY;
783657a7
NH
1564 }
1565 }
d950b958 1566
facb6011
AK
1567 ret = get_any_page(page, pfn, flags);
1568 if (ret < 0)
af8fae7c
NH
1569 return ret;
1570 if (ret) { /* for in-use pages */
1571 if (PageHuge(page))
1572 ret = soft_offline_huge_page(page, flags);
1573 else
1574 ret = __soft_offline_page(page, flags);
1575 } else { /* for free pages */
1576 if (PageHuge(page)) {
1577 set_page_hwpoison_huge_page(hpage);
1578 dequeue_hwpoisoned_huge_page(hpage);
1579 atomic_long_add(1 << compound_trans_order(hpage),
1580 &num_poisoned_pages);
1581 } else {
1582 SetPageHWPoison(page);
1583 atomic_long_inc(&num_poisoned_pages);
1584 }
facb6011 1585 }
b0d4c0f8 1586 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
af8fae7c
NH
1587 return ret;
1588}
1589
1590static int __soft_offline_page(struct page *page, int flags)
1591{
1592 int ret;
1593 unsigned long pfn = page_to_pfn(page);
facb6011 1594
facb6011 1595 /*
af8fae7c
NH
1596 * Check PageHWPoison again inside page lock because PageHWPoison
1597 * is set by memory_failure() outside page lock. Note that
1598 * memory_failure() also double-checks PageHWPoison inside page lock,
1599 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1600 */
0ebff32c
XQ
1601 lock_page(page);
1602 wait_on_page_writeback(page);
af8fae7c
NH
1603 if (PageHWPoison(page)) {
1604 unlock_page(page);
1605 put_page(page);
1606 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1607 return -EBUSY;
1608 }
facb6011
AK
1609 /*
1610 * Try to invalidate first. This should work for
1611 * non dirty unmapped page cache pages.
1612 */
1613 ret = invalidate_inode_page(page);
1614 unlock_page(page);
facb6011 1615 /*
facb6011
AK
1616 * RED-PEN would be better to keep it isolated here, but we
1617 * would need to fix isolation locking first.
1618 */
facb6011 1619 if (ret == 1) {
bd486285 1620 put_page(page);
fb46e735 1621 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c
NH
1622 SetPageHWPoison(page);
1623 atomic_long_inc(&num_poisoned_pages);
1624 return 0;
facb6011
AK
1625 }
1626
1627 /*
1628 * Simple invalidation didn't work.
1629 * Try to migrate to a new page instead. migrate.c
1630 * handles a large number of cases for us.
1631 */
1632 ret = isolate_lru_page(page);
bd486285
KK
1633 /*
1634 * Drop page reference which is came from get_any_page()
1635 * successful isolate_lru_page() already took another one.
1636 */
1637 put_page(page);
facb6011
AK
1638 if (!ret) {
1639 LIST_HEAD(pagelist);
5db8a73a 1640 inc_zone_page_state(page, NR_ISOLATED_ANON +
9c620e2b 1641 page_is_file_cache(page));
facb6011 1642 list_add(&page->lru, &pagelist);
77f1fe6b 1643 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
9c620e2b 1644 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1645 if (ret) {
57fc4a5e 1646 putback_lru_pages(&pagelist);
fb46e735 1647 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
facb6011
AK
1648 pfn, ret, page->flags);
1649 if (ret > 0)
1650 ret = -EIO;
af8fae7c 1651 } else {
b0d4c0f8
NH
1652 /*
1653 * After page migration succeeds, the source page can
1654 * be trapped in pagevec and actual freeing is delayed.
1655 * Freeing code works differently based on PG_hwpoison,
1656 * so there's a race. We need to make sure that the
1657 * source page should be freed back to buddy before
1658 * setting PG_hwpoison.
1659 */
1660 if (!is_free_buddy_page(page))
1661 lru_add_drain_all();
1662 if (!is_free_buddy_page(page))
1663 drain_all_pages();
af8fae7c 1664 SetPageHWPoison(page);
b0d4c0f8
NH
1665 if (!is_free_buddy_page(page))
1666 pr_info("soft offline: %#lx: page leaked\n",
1667 pfn);
af8fae7c 1668 atomic_long_inc(&num_poisoned_pages);
facb6011
AK
1669 }
1670 } else {
fb46e735 1671 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
dd73e85f 1672 pfn, ret, page_count(page), page->flags);
facb6011 1673 }
facb6011
AK
1674 return ret;
1675}