mm/ksm.c: use new hashtable implementation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3 35#include <linux/ksm.h>
4ca3a69b 36#include <linux/hashtable.h>
878aee7d 37#include <linux/freezer.h>
72788c38 38#include <linux/oom.h>
f8af4da3 39
31dbd01f 40#include <asm/tlbflush.h>
73848b46 41#include "internal.h"
31dbd01f
IE
42
43/*
44 * A few notes about the KSM scanning process,
45 * to make it easier to understand the data structures below:
46 *
47 * In order to reduce excessive scanning, KSM sorts the memory pages by their
48 * contents into a data structure that holds pointers to the pages' locations.
49 *
50 * Since the contents of the pages may change at any moment, KSM cannot just
51 * insert the pages into a normal sorted tree and expect it to find anything.
52 * Therefore KSM uses two data structures - the stable and the unstable tree.
53 *
54 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
55 * by their contents. Because each such page is write-protected, searching on
56 * this tree is fully assured to be working (except when pages are unmapped),
57 * and therefore this tree is called the stable tree.
58 *
59 * In addition to the stable tree, KSM uses a second data structure called the
60 * unstable tree: this tree holds pointers to pages which have been found to
61 * be "unchanged for a period of time". The unstable tree sorts these pages
62 * by their contents, but since they are not write-protected, KSM cannot rely
63 * upon the unstable tree to work correctly - the unstable tree is liable to
64 * be corrupted as its contents are modified, and so it is called unstable.
65 *
66 * KSM solves this problem by several techniques:
67 *
68 * 1) The unstable tree is flushed every time KSM completes scanning all
69 * memory areas, and then the tree is rebuilt again from the beginning.
70 * 2) KSM will only insert into the unstable tree, pages whose hash value
71 * has not changed since the previous scan of all memory areas.
72 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
73 * colors of the nodes and not on their contents, assuring that even when
74 * the tree gets "corrupted" it won't get out of balance, so scanning time
75 * remains the same (also, searching and inserting nodes in an rbtree uses
76 * the same algorithm, so we have no overhead when we flush and rebuild).
77 * 4) KSM never flushes the stable tree, which means that even if it were to
78 * take 10 attempts to find a page in the unstable tree, once it is found,
79 * it is secured in the stable tree. (When we scan a new page, we first
80 * compare it against the stable tree, and then against the unstable tree.)
81 */
82
83/**
84 * struct mm_slot - ksm information per mm that is being scanned
85 * @link: link to the mm_slots hash list
86 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 87 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
88 * @mm: the mm that this information is valid for
89 */
90struct mm_slot {
91 struct hlist_node link;
92 struct list_head mm_list;
6514d511 93 struct rmap_item *rmap_list;
31dbd01f
IE
94 struct mm_struct *mm;
95};
96
97/**
98 * struct ksm_scan - cursor for scanning
99 * @mm_slot: the current mm_slot we are scanning
100 * @address: the next address inside that to be scanned
6514d511 101 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
102 * @seqnr: count of completed full scans (needed when removing unstable node)
103 *
104 * There is only the one ksm_scan instance of this cursor structure.
105 */
106struct ksm_scan {
107 struct mm_slot *mm_slot;
108 unsigned long address;
6514d511 109 struct rmap_item **rmap_list;
31dbd01f
IE
110 unsigned long seqnr;
111};
112
7b6ba2c7
HD
113/**
114 * struct stable_node - node of the stable rbtree
115 * @node: rb node of this ksm page in the stable tree
116 * @hlist: hlist head of rmap_items using this ksm page
62b61f61 117 * @kpfn: page frame number of this ksm page
7b6ba2c7
HD
118 */
119struct stable_node {
120 struct rb_node node;
121 struct hlist_head hlist;
62b61f61 122 unsigned long kpfn;
7b6ba2c7
HD
123};
124
31dbd01f
IE
125/**
126 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 127 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 128 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
31dbd01f
IE
129 * @mm: the memory structure this rmap_item is pointing into
130 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
131 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
132 * @node: rb node of this rmap_item in the unstable tree
133 * @head: pointer to stable_node heading this list in the stable tree
134 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
135 */
136struct rmap_item {
6514d511 137 struct rmap_item *rmap_list;
db114b83 138 struct anon_vma *anon_vma; /* when stable */
31dbd01f
IE
139 struct mm_struct *mm;
140 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 141 unsigned int oldchecksum; /* when unstable */
31dbd01f 142 union {
7b6ba2c7
HD
143 struct rb_node node; /* when node of unstable tree */
144 struct { /* when listed from stable tree */
145 struct stable_node *head;
146 struct hlist_node hlist;
147 };
31dbd01f
IE
148 };
149};
150
151#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
152#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
153#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
154
155/* The stable and unstable tree heads */
156static struct rb_root root_stable_tree = RB_ROOT;
157static struct rb_root root_unstable_tree = RB_ROOT;
158
4ca3a69b
SL
159#define MM_SLOTS_HASH_BITS 10
160static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
161
162static struct mm_slot ksm_mm_head = {
163 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
164};
165static struct ksm_scan ksm_scan = {
166 .mm_slot = &ksm_mm_head,
167};
168
169static struct kmem_cache *rmap_item_cache;
7b6ba2c7 170static struct kmem_cache *stable_node_cache;
31dbd01f
IE
171static struct kmem_cache *mm_slot_cache;
172
173/* The number of nodes in the stable tree */
b4028260 174static unsigned long ksm_pages_shared;
31dbd01f 175
e178dfde 176/* The number of page slots additionally sharing those nodes */
b4028260 177static unsigned long ksm_pages_sharing;
31dbd01f 178
473b0ce4
HD
179/* The number of nodes in the unstable tree */
180static unsigned long ksm_pages_unshared;
181
182/* The number of rmap_items in use: to calculate pages_volatile */
183static unsigned long ksm_rmap_items;
184
31dbd01f 185/* Number of pages ksmd should scan in one batch */
2c6854fd 186static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
187
188/* Milliseconds ksmd should sleep between batches */
2ffd8679 189static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f
IE
190
191#define KSM_RUN_STOP 0
192#define KSM_RUN_MERGE 1
193#define KSM_RUN_UNMERGE 2
2c6854fd 194static unsigned int ksm_run = KSM_RUN_STOP;
31dbd01f
IE
195
196static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
197static DEFINE_MUTEX(ksm_thread_mutex);
198static DEFINE_SPINLOCK(ksm_mmlist_lock);
199
200#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
201 sizeof(struct __struct), __alignof__(struct __struct),\
202 (__flags), NULL)
203
204static int __init ksm_slab_init(void)
205{
206 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
207 if (!rmap_item_cache)
208 goto out;
209
7b6ba2c7
HD
210 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
211 if (!stable_node_cache)
212 goto out_free1;
213
31dbd01f
IE
214 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
215 if (!mm_slot_cache)
7b6ba2c7 216 goto out_free2;
31dbd01f
IE
217
218 return 0;
219
7b6ba2c7
HD
220out_free2:
221 kmem_cache_destroy(stable_node_cache);
222out_free1:
31dbd01f
IE
223 kmem_cache_destroy(rmap_item_cache);
224out:
225 return -ENOMEM;
226}
227
228static void __init ksm_slab_free(void)
229{
230 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 231 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
232 kmem_cache_destroy(rmap_item_cache);
233 mm_slot_cache = NULL;
234}
235
236static inline struct rmap_item *alloc_rmap_item(void)
237{
473b0ce4
HD
238 struct rmap_item *rmap_item;
239
240 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
241 if (rmap_item)
242 ksm_rmap_items++;
243 return rmap_item;
31dbd01f
IE
244}
245
246static inline void free_rmap_item(struct rmap_item *rmap_item)
247{
473b0ce4 248 ksm_rmap_items--;
31dbd01f
IE
249 rmap_item->mm = NULL; /* debug safety */
250 kmem_cache_free(rmap_item_cache, rmap_item);
251}
252
7b6ba2c7
HD
253static inline struct stable_node *alloc_stable_node(void)
254{
255 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
256}
257
258static inline void free_stable_node(struct stable_node *stable_node)
259{
260 kmem_cache_free(stable_node_cache, stable_node);
261}
262
31dbd01f
IE
263static inline struct mm_slot *alloc_mm_slot(void)
264{
265 if (!mm_slot_cache) /* initialization failed */
266 return NULL;
267 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
268}
269
270static inline void free_mm_slot(struct mm_slot *mm_slot)
271{
272 kmem_cache_free(mm_slot_cache, mm_slot);
273}
274
31dbd01f
IE
275static struct mm_slot *get_mm_slot(struct mm_struct *mm)
276{
31dbd01f 277 struct hlist_node *node;
4ca3a69b
SL
278 struct mm_slot *slot;
279
280 hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
281 if (slot->mm == mm)
282 return slot;
31dbd01f 283
31dbd01f
IE
284 return NULL;
285}
286
287static void insert_to_mm_slots_hash(struct mm_struct *mm,
288 struct mm_slot *mm_slot)
289{
31dbd01f 290 mm_slot->mm = mm;
4ca3a69b 291 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
292}
293
294static inline int in_stable_tree(struct rmap_item *rmap_item)
295{
296 return rmap_item->address & STABLE_FLAG;
297}
298
a913e182
HD
299/*
300 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
301 * page tables after it has passed through ksm_exit() - which, if necessary,
302 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
303 * a special flag: they can just back out as soon as mm_users goes to zero.
304 * ksm_test_exit() is used throughout to make this test for exit: in some
305 * places for correctness, in some places just to avoid unnecessary work.
306 */
307static inline bool ksm_test_exit(struct mm_struct *mm)
308{
309 return atomic_read(&mm->mm_users) == 0;
310}
311
31dbd01f
IE
312/*
313 * We use break_ksm to break COW on a ksm page: it's a stripped down
314 *
315 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
316 * put_page(page);
317 *
318 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
319 * in case the application has unmapped and remapped mm,addr meanwhile.
320 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
321 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
322 */
d952b791 323static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
324{
325 struct page *page;
d952b791 326 int ret = 0;
31dbd01f
IE
327
328 do {
329 cond_resched();
330 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 331 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
332 break;
333 if (PageKsm(page))
334 ret = handle_mm_fault(vma->vm_mm, vma, addr,
335 FAULT_FLAG_WRITE);
336 else
337 ret = VM_FAULT_WRITE;
338 put_page(page);
d952b791
HD
339 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
340 /*
341 * We must loop because handle_mm_fault() may back out if there's
342 * any difficulty e.g. if pte accessed bit gets updated concurrently.
343 *
344 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
345 * COW has been broken, even if the vma does not permit VM_WRITE;
346 * but note that a concurrent fault might break PageKsm for us.
347 *
348 * VM_FAULT_SIGBUS could occur if we race with truncation of the
349 * backing file, which also invalidates anonymous pages: that's
350 * okay, that truncation will have unmapped the PageKsm for us.
351 *
352 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
353 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
354 * current task has TIF_MEMDIE set, and will be OOM killed on return
355 * to user; and ksmd, having no mm, would never be chosen for that.
356 *
357 * But if the mm is in a limited mem_cgroup, then the fault may fail
358 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
359 * even ksmd can fail in this way - though it's usually breaking ksm
360 * just to undo a merge it made a moment before, so unlikely to oom.
361 *
362 * That's a pity: we might therefore have more kernel pages allocated
363 * than we're counting as nodes in the stable tree; but ksm_do_scan
364 * will retry to break_cow on each pass, so should recover the page
365 * in due course. The important thing is to not let VM_MERGEABLE
366 * be cleared while any such pages might remain in the area.
367 */
368 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
369}
370
ef694222
BL
371static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
372 unsigned long addr)
373{
374 struct vm_area_struct *vma;
375 if (ksm_test_exit(mm))
376 return NULL;
377 vma = find_vma(mm, addr);
378 if (!vma || vma->vm_start > addr)
379 return NULL;
380 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
381 return NULL;
382 return vma;
383}
384
8dd3557a 385static void break_cow(struct rmap_item *rmap_item)
31dbd01f 386{
8dd3557a
HD
387 struct mm_struct *mm = rmap_item->mm;
388 unsigned long addr = rmap_item->address;
31dbd01f
IE
389 struct vm_area_struct *vma;
390
4035c07a
HD
391 /*
392 * It is not an accident that whenever we want to break COW
393 * to undo, we also need to drop a reference to the anon_vma.
394 */
9e60109f 395 put_anon_vma(rmap_item->anon_vma);
4035c07a 396
81464e30 397 down_read(&mm->mmap_sem);
ef694222
BL
398 vma = find_mergeable_vma(mm, addr);
399 if (vma)
400 break_ksm(vma, addr);
31dbd01f
IE
401 up_read(&mm->mmap_sem);
402}
403
29ad768c
AA
404static struct page *page_trans_compound_anon(struct page *page)
405{
406 if (PageTransCompound(page)) {
22e5c47e 407 struct page *head = compound_trans_head(page);
29ad768c 408 /*
22e5c47e
AA
409 * head may actually be splitted and freed from under
410 * us but it's ok here.
29ad768c 411 */
29ad768c
AA
412 if (PageAnon(head))
413 return head;
414 }
415 return NULL;
416}
417
31dbd01f
IE
418static struct page *get_mergeable_page(struct rmap_item *rmap_item)
419{
420 struct mm_struct *mm = rmap_item->mm;
421 unsigned long addr = rmap_item->address;
422 struct vm_area_struct *vma;
423 struct page *page;
424
425 down_read(&mm->mmap_sem);
ef694222
BL
426 vma = find_mergeable_vma(mm, addr);
427 if (!vma)
31dbd01f
IE
428 goto out;
429
430 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 431 if (IS_ERR_OR_NULL(page))
31dbd01f 432 goto out;
29ad768c 433 if (PageAnon(page) || page_trans_compound_anon(page)) {
31dbd01f
IE
434 flush_anon_page(vma, page, addr);
435 flush_dcache_page(page);
436 } else {
437 put_page(page);
438out: page = NULL;
439 }
440 up_read(&mm->mmap_sem);
441 return page;
442}
443
4035c07a
HD
444static void remove_node_from_stable_tree(struct stable_node *stable_node)
445{
446 struct rmap_item *rmap_item;
447 struct hlist_node *hlist;
448
449 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
450 if (rmap_item->hlist.next)
451 ksm_pages_sharing--;
452 else
453 ksm_pages_shared--;
9e60109f 454 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
455 rmap_item->address &= PAGE_MASK;
456 cond_resched();
457 }
458
459 rb_erase(&stable_node->node, &root_stable_tree);
460 free_stable_node(stable_node);
461}
462
463/*
464 * get_ksm_page: checks if the page indicated by the stable node
465 * is still its ksm page, despite having held no reference to it.
466 * In which case we can trust the content of the page, and it
467 * returns the gotten page; but if the page has now been zapped,
468 * remove the stale node from the stable tree and return NULL.
469 *
470 * You would expect the stable_node to hold a reference to the ksm page.
471 * But if it increments the page's count, swapping out has to wait for
472 * ksmd to come around again before it can free the page, which may take
473 * seconds or even minutes: much too unresponsive. So instead we use a
474 * "keyhole reference": access to the ksm page from the stable node peeps
475 * out through its keyhole to see if that page still holds the right key,
476 * pointing back to this stable node. This relies on freeing a PageAnon
477 * page to reset its page->mapping to NULL, and relies on no other use of
478 * a page to put something that might look like our key in page->mapping.
479 *
480 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
481 * but this is different - made simpler by ksm_thread_mutex being held, but
482 * interesting for assuming that no other use of the struct page could ever
483 * put our expected_mapping into page->mapping (or a field of the union which
484 * coincides with page->mapping). The RCU calls are not for KSM at all, but
485 * to keep the page_count protocol described with page_cache_get_speculative.
486 *
487 * Note: it is possible that get_ksm_page() will return NULL one moment,
488 * then page the next, if the page is in between page_freeze_refs() and
489 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
490 * is on its way to being freed; but it is an anomaly to bear in mind.
491 */
492static struct page *get_ksm_page(struct stable_node *stable_node)
493{
494 struct page *page;
495 void *expected_mapping;
496
62b61f61 497 page = pfn_to_page(stable_node->kpfn);
4035c07a
HD
498 expected_mapping = (void *)stable_node +
499 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
500 rcu_read_lock();
501 if (page->mapping != expected_mapping)
502 goto stale;
503 if (!get_page_unless_zero(page))
504 goto stale;
505 if (page->mapping != expected_mapping) {
506 put_page(page);
507 goto stale;
508 }
509 rcu_read_unlock();
510 return page;
511stale:
512 rcu_read_unlock();
513 remove_node_from_stable_tree(stable_node);
514 return NULL;
515}
516
31dbd01f
IE
517/*
518 * Removing rmap_item from stable or unstable tree.
519 * This function will clean the information from the stable/unstable tree.
520 */
521static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
522{
7b6ba2c7
HD
523 if (rmap_item->address & STABLE_FLAG) {
524 struct stable_node *stable_node;
5ad64688 525 struct page *page;
31dbd01f 526
7b6ba2c7 527 stable_node = rmap_item->head;
4035c07a
HD
528 page = get_ksm_page(stable_node);
529 if (!page)
530 goto out;
5ad64688 531
4035c07a 532 lock_page(page);
7b6ba2c7 533 hlist_del(&rmap_item->hlist);
4035c07a
HD
534 unlock_page(page);
535 put_page(page);
08beca44 536
4035c07a
HD
537 if (stable_node->hlist.first)
538 ksm_pages_sharing--;
539 else
7b6ba2c7 540 ksm_pages_shared--;
31dbd01f 541
9e60109f 542 put_anon_vma(rmap_item->anon_vma);
93d17715 543 rmap_item->address &= PAGE_MASK;
31dbd01f 544
7b6ba2c7 545 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
546 unsigned char age;
547 /*
9ba69294 548 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 549 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
550 * But be careful when an mm is exiting: do the rb_erase
551 * if this rmap_item was inserted by this scan, rather
552 * than left over from before.
31dbd01f
IE
553 */
554 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 555 BUG_ON(age > 1);
31dbd01f
IE
556 if (!age)
557 rb_erase(&rmap_item->node, &root_unstable_tree);
93d17715 558
473b0ce4 559 ksm_pages_unshared--;
93d17715 560 rmap_item->address &= PAGE_MASK;
31dbd01f 561 }
4035c07a 562out:
31dbd01f
IE
563 cond_resched(); /* we're called from many long loops */
564}
565
31dbd01f 566static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 567 struct rmap_item **rmap_list)
31dbd01f 568{
6514d511
HD
569 while (*rmap_list) {
570 struct rmap_item *rmap_item = *rmap_list;
571 *rmap_list = rmap_item->rmap_list;
31dbd01f 572 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
573 free_rmap_item(rmap_item);
574 }
575}
576
577/*
578 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
579 * than check every pte of a given vma, the locking doesn't quite work for
580 * that - an rmap_item is assigned to the stable tree after inserting ksm
581 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
582 * rmap_items from parent to child at fork time (so as not to waste time
583 * if exit comes before the next scan reaches it).
81464e30
HD
584 *
585 * Similarly, although we'd like to remove rmap_items (so updating counts
586 * and freeing memory) when unmerging an area, it's easier to leave that
587 * to the next pass of ksmd - consider, for example, how ksmd might be
588 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 589 */
d952b791
HD
590static int unmerge_ksm_pages(struct vm_area_struct *vma,
591 unsigned long start, unsigned long end)
31dbd01f
IE
592{
593 unsigned long addr;
d952b791 594 int err = 0;
31dbd01f 595
d952b791 596 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
597 if (ksm_test_exit(vma->vm_mm))
598 break;
d952b791
HD
599 if (signal_pending(current))
600 err = -ERESTARTSYS;
601 else
602 err = break_ksm(vma, addr);
603 }
604 return err;
31dbd01f
IE
605}
606
2ffd8679
HD
607#ifdef CONFIG_SYSFS
608/*
609 * Only called through the sysfs control interface:
610 */
d952b791 611static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
612{
613 struct mm_slot *mm_slot;
614 struct mm_struct *mm;
615 struct vm_area_struct *vma;
d952b791
HD
616 int err = 0;
617
618 spin_lock(&ksm_mmlist_lock);
9ba69294 619 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
620 struct mm_slot, mm_list);
621 spin_unlock(&ksm_mmlist_lock);
31dbd01f 622
9ba69294
HD
623 for (mm_slot = ksm_scan.mm_slot;
624 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
625 mm = mm_slot->mm;
626 down_read(&mm->mmap_sem);
627 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
628 if (ksm_test_exit(mm))
629 break;
31dbd01f
IE
630 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
631 continue;
d952b791
HD
632 err = unmerge_ksm_pages(vma,
633 vma->vm_start, vma->vm_end);
9ba69294
HD
634 if (err)
635 goto error;
31dbd01f 636 }
9ba69294 637
6514d511 638 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
639
640 spin_lock(&ksm_mmlist_lock);
9ba69294 641 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 642 struct mm_slot, mm_list);
9ba69294 643 if (ksm_test_exit(mm)) {
4ca3a69b 644 hash_del(&mm_slot->link);
9ba69294
HD
645 list_del(&mm_slot->mm_list);
646 spin_unlock(&ksm_mmlist_lock);
647
648 free_mm_slot(mm_slot);
649 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
650 up_read(&mm->mmap_sem);
651 mmdrop(mm);
652 } else {
653 spin_unlock(&ksm_mmlist_lock);
654 up_read(&mm->mmap_sem);
655 }
31dbd01f
IE
656 }
657
d952b791 658 ksm_scan.seqnr = 0;
9ba69294
HD
659 return 0;
660
661error:
662 up_read(&mm->mmap_sem);
31dbd01f 663 spin_lock(&ksm_mmlist_lock);
d952b791 664 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 665 spin_unlock(&ksm_mmlist_lock);
d952b791 666 return err;
31dbd01f 667}
2ffd8679 668#endif /* CONFIG_SYSFS */
31dbd01f 669
31dbd01f
IE
670static u32 calc_checksum(struct page *page)
671{
672 u32 checksum;
9b04c5fe 673 void *addr = kmap_atomic(page);
31dbd01f 674 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 675 kunmap_atomic(addr);
31dbd01f
IE
676 return checksum;
677}
678
679static int memcmp_pages(struct page *page1, struct page *page2)
680{
681 char *addr1, *addr2;
682 int ret;
683
9b04c5fe
CW
684 addr1 = kmap_atomic(page1);
685 addr2 = kmap_atomic(page2);
31dbd01f 686 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
687 kunmap_atomic(addr2);
688 kunmap_atomic(addr1);
31dbd01f
IE
689 return ret;
690}
691
692static inline int pages_identical(struct page *page1, struct page *page2)
693{
694 return !memcmp_pages(page1, page2);
695}
696
697static int write_protect_page(struct vm_area_struct *vma, struct page *page,
698 pte_t *orig_pte)
699{
700 struct mm_struct *mm = vma->vm_mm;
701 unsigned long addr;
702 pte_t *ptep;
703 spinlock_t *ptl;
704 int swapped;
705 int err = -EFAULT;
6bdb913f
HE
706 unsigned long mmun_start; /* For mmu_notifiers */
707 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f
IE
708
709 addr = page_address_in_vma(page, vma);
710 if (addr == -EFAULT)
711 goto out;
712
29ad768c 713 BUG_ON(PageTransCompound(page));
6bdb913f
HE
714
715 mmun_start = addr;
716 mmun_end = addr + PAGE_SIZE;
717 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
718
31dbd01f
IE
719 ptep = page_check_address(page, mm, addr, &ptl, 0);
720 if (!ptep)
6bdb913f 721 goto out_mn;
31dbd01f 722
4e31635c 723 if (pte_write(*ptep) || pte_dirty(*ptep)) {
31dbd01f
IE
724 pte_t entry;
725
726 swapped = PageSwapCache(page);
727 flush_cache_page(vma, addr, page_to_pfn(page));
728 /*
25985edc 729 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
730 * take any lock, therefore the check that we are going to make
731 * with the pagecount against the mapcount is racey and
732 * O_DIRECT can happen right after the check.
733 * So we clear the pte and flush the tlb before the check
734 * this assure us that no O_DIRECT can happen after the check
735 * or in the middle of the check.
736 */
737 entry = ptep_clear_flush(vma, addr, ptep);
738 /*
739 * Check that no O_DIRECT or similar I/O is in progress on the
740 * page
741 */
31e855ea 742 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
cb532375 743 set_pte_at(mm, addr, ptep, entry);
31dbd01f
IE
744 goto out_unlock;
745 }
4e31635c
HD
746 if (pte_dirty(entry))
747 set_page_dirty(page);
748 entry = pte_mkclean(pte_wrprotect(entry));
31dbd01f
IE
749 set_pte_at_notify(mm, addr, ptep, entry);
750 }
751 *orig_pte = *ptep;
752 err = 0;
753
754out_unlock:
755 pte_unmap_unlock(ptep, ptl);
6bdb913f
HE
756out_mn:
757 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
758out:
759 return err;
760}
761
762/**
763 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
764 * @vma: vma that holds the pte pointing to page
765 * @page: the page we are replacing by kpage
766 * @kpage: the ksm page we replace page by
31dbd01f
IE
767 * @orig_pte: the original value of the pte
768 *
769 * Returns 0 on success, -EFAULT on failure.
770 */
8dd3557a
HD
771static int replace_page(struct vm_area_struct *vma, struct page *page,
772 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
773{
774 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
775 pmd_t *pmd;
776 pte_t *ptep;
777 spinlock_t *ptl;
778 unsigned long addr;
31dbd01f 779 int err = -EFAULT;
6bdb913f
HE
780 unsigned long mmun_start; /* For mmu_notifiers */
781 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 782
8dd3557a 783 addr = page_address_in_vma(page, vma);
31dbd01f
IE
784 if (addr == -EFAULT)
785 goto out;
786
6219049a
BL
787 pmd = mm_find_pmd(mm, addr);
788 if (!pmd)
31dbd01f 789 goto out;
29ad768c 790 BUG_ON(pmd_trans_huge(*pmd));
31dbd01f 791
6bdb913f
HE
792 mmun_start = addr;
793 mmun_end = addr + PAGE_SIZE;
794 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
795
31dbd01f
IE
796 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
797 if (!pte_same(*ptep, orig_pte)) {
798 pte_unmap_unlock(ptep, ptl);
6bdb913f 799 goto out_mn;
31dbd01f
IE
800 }
801
8dd3557a 802 get_page(kpage);
5ad64688 803 page_add_anon_rmap(kpage, vma, addr);
31dbd01f
IE
804
805 flush_cache_page(vma, addr, pte_pfn(*ptep));
806 ptep_clear_flush(vma, addr, ptep);
8dd3557a 807 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 808
8dd3557a 809 page_remove_rmap(page);
ae52a2ad
HD
810 if (!page_mapped(page))
811 try_to_free_swap(page);
8dd3557a 812 put_page(page);
31dbd01f
IE
813
814 pte_unmap_unlock(ptep, ptl);
815 err = 0;
6bdb913f
HE
816out_mn:
817 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
818out:
819 return err;
820}
821
29ad768c
AA
822static int page_trans_compound_anon_split(struct page *page)
823{
824 int ret = 0;
825 struct page *transhuge_head = page_trans_compound_anon(page);
826 if (transhuge_head) {
827 /* Get the reference on the head to split it. */
828 if (get_page_unless_zero(transhuge_head)) {
829 /*
830 * Recheck we got the reference while the head
831 * was still anonymous.
832 */
833 if (PageAnon(transhuge_head))
834 ret = split_huge_page(transhuge_head);
835 else
836 /*
837 * Retry later if split_huge_page run
838 * from under us.
839 */
840 ret = 1;
841 put_page(transhuge_head);
842 } else
843 /* Retry later if split_huge_page run from under us. */
844 ret = 1;
845 }
846 return ret;
847}
848
31dbd01f
IE
849/*
850 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
851 * @vma: the vma that holds the pte pointing to page
852 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
853 * @kpage: the PageKsm page that we want to map instead of page,
854 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
855 *
856 * This function returns 0 if the pages were merged, -EFAULT otherwise.
857 */
858static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 859 struct page *page, struct page *kpage)
31dbd01f
IE
860{
861 pte_t orig_pte = __pte(0);
862 int err = -EFAULT;
863
db114b83
HD
864 if (page == kpage) /* ksm page forked */
865 return 0;
866
31dbd01f
IE
867 if (!(vma->vm_flags & VM_MERGEABLE))
868 goto out;
29ad768c
AA
869 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
870 goto out;
871 BUG_ON(PageTransCompound(page));
8dd3557a 872 if (!PageAnon(page))
31dbd01f
IE
873 goto out;
874
31dbd01f
IE
875 /*
876 * We need the page lock to read a stable PageSwapCache in
877 * write_protect_page(). We use trylock_page() instead of
878 * lock_page() because we don't want to wait here - we
879 * prefer to continue scanning and merging different pages,
880 * then come back to this page when it is unlocked.
881 */
8dd3557a 882 if (!trylock_page(page))
31e855ea 883 goto out;
31dbd01f
IE
884 /*
885 * If this anonymous page is mapped only here, its pte may need
886 * to be write-protected. If it's mapped elsewhere, all of its
887 * ptes are necessarily already write-protected. But in either
888 * case, we need to lock and check page_count is not raised.
889 */
80e14822
HD
890 if (write_protect_page(vma, page, &orig_pte) == 0) {
891 if (!kpage) {
892 /*
893 * While we hold page lock, upgrade page from
894 * PageAnon+anon_vma to PageKsm+NULL stable_node:
895 * stable_tree_insert() will update stable_node.
896 */
897 set_page_stable_node(page, NULL);
898 mark_page_accessed(page);
899 err = 0;
900 } else if (pages_identical(page, kpage))
901 err = replace_page(vma, page, kpage, orig_pte);
902 }
31dbd01f 903
80e14822 904 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 905 munlock_vma_page(page);
5ad64688
HD
906 if (!PageMlocked(kpage)) {
907 unlock_page(page);
5ad64688
HD
908 lock_page(kpage);
909 mlock_vma_page(kpage);
910 page = kpage; /* for final unlock */
911 }
912 }
73848b46 913
8dd3557a 914 unlock_page(page);
31dbd01f
IE
915out:
916 return err;
917}
918
81464e30
HD
919/*
920 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
921 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
922 *
923 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 924 */
8dd3557a
HD
925static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
926 struct page *page, struct page *kpage)
81464e30 927{
8dd3557a 928 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
929 struct vm_area_struct *vma;
930 int err = -EFAULT;
931
8dd3557a
HD
932 down_read(&mm->mmap_sem);
933 if (ksm_test_exit(mm))
9ba69294 934 goto out;
8dd3557a
HD
935 vma = find_vma(mm, rmap_item->address);
936 if (!vma || vma->vm_start > rmap_item->address)
81464e30
HD
937 goto out;
938
8dd3557a 939 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
940 if (err)
941 goto out;
942
943 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
944 rmap_item->anon_vma = vma->anon_vma;
945 get_anon_vma(vma->anon_vma);
81464e30 946out:
8dd3557a 947 up_read(&mm->mmap_sem);
81464e30
HD
948 return err;
949}
950
31dbd01f
IE
951/*
952 * try_to_merge_two_pages - take two identical pages and prepare them
953 * to be merged into one page.
954 *
8dd3557a
HD
955 * This function returns the kpage if we successfully merged two identical
956 * pages into one ksm page, NULL otherwise.
31dbd01f 957 *
80e14822 958 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
959 * is already a ksm page, try_to_merge_with_ksm_page should be used.
960 */
8dd3557a
HD
961static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
962 struct page *page,
963 struct rmap_item *tree_rmap_item,
964 struct page *tree_page)
31dbd01f 965{
80e14822 966 int err;
31dbd01f 967
80e14822 968 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 969 if (!err) {
8dd3557a 970 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 971 tree_page, page);
31dbd01f 972 /*
81464e30
HD
973 * If that fails, we have a ksm page with only one pte
974 * pointing to it: so break it.
31dbd01f 975 */
4035c07a 976 if (err)
8dd3557a 977 break_cow(rmap_item);
31dbd01f 978 }
80e14822 979 return err ? NULL : page;
31dbd01f
IE
980}
981
31dbd01f 982/*
8dd3557a 983 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
984 *
985 * This function checks if there is a page inside the stable tree
986 * with identical content to the page that we are scanning right now.
987 *
7b6ba2c7 988 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
989 * NULL otherwise.
990 */
62b61f61 991static struct page *stable_tree_search(struct page *page)
31dbd01f
IE
992{
993 struct rb_node *node = root_stable_tree.rb_node;
7b6ba2c7 994 struct stable_node *stable_node;
31dbd01f 995
08beca44
HD
996 stable_node = page_stable_node(page);
997 if (stable_node) { /* ksm page forked */
998 get_page(page);
62b61f61 999 return page;
08beca44
HD
1000 }
1001
31dbd01f 1002 while (node) {
4035c07a 1003 struct page *tree_page;
31dbd01f
IE
1004 int ret;
1005
08beca44 1006 cond_resched();
7b6ba2c7 1007 stable_node = rb_entry(node, struct stable_node, node);
4035c07a
HD
1008 tree_page = get_ksm_page(stable_node);
1009 if (!tree_page)
1010 return NULL;
31dbd01f 1011
4035c07a 1012 ret = memcmp_pages(page, tree_page);
31dbd01f 1013
4035c07a
HD
1014 if (ret < 0) {
1015 put_page(tree_page);
31dbd01f 1016 node = node->rb_left;
4035c07a
HD
1017 } else if (ret > 0) {
1018 put_page(tree_page);
31dbd01f 1019 node = node->rb_right;
4035c07a 1020 } else
62b61f61 1021 return tree_page;
31dbd01f
IE
1022 }
1023
1024 return NULL;
1025}
1026
1027/*
1028 * stable_tree_insert - insert rmap_item pointing to new ksm page
1029 * into the stable tree.
1030 *
7b6ba2c7
HD
1031 * This function returns the stable tree node just allocated on success,
1032 * NULL otherwise.
31dbd01f 1033 */
7b6ba2c7 1034static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f
IE
1035{
1036 struct rb_node **new = &root_stable_tree.rb_node;
1037 struct rb_node *parent = NULL;
7b6ba2c7 1038 struct stable_node *stable_node;
31dbd01f
IE
1039
1040 while (*new) {
4035c07a 1041 struct page *tree_page;
31dbd01f
IE
1042 int ret;
1043
08beca44 1044 cond_resched();
7b6ba2c7 1045 stable_node = rb_entry(*new, struct stable_node, node);
4035c07a
HD
1046 tree_page = get_ksm_page(stable_node);
1047 if (!tree_page)
1048 return NULL;
31dbd01f 1049
4035c07a
HD
1050 ret = memcmp_pages(kpage, tree_page);
1051 put_page(tree_page);
31dbd01f
IE
1052
1053 parent = *new;
1054 if (ret < 0)
1055 new = &parent->rb_left;
1056 else if (ret > 0)
1057 new = &parent->rb_right;
1058 else {
1059 /*
1060 * It is not a bug that stable_tree_search() didn't
1061 * find this node: because at that time our page was
1062 * not yet write-protected, so may have changed since.
1063 */
1064 return NULL;
1065 }
1066 }
1067
7b6ba2c7
HD
1068 stable_node = alloc_stable_node();
1069 if (!stable_node)
1070 return NULL;
31dbd01f 1071
7b6ba2c7
HD
1072 rb_link_node(&stable_node->node, parent, new);
1073 rb_insert_color(&stable_node->node, &root_stable_tree);
1074
1075 INIT_HLIST_HEAD(&stable_node->hlist);
1076
62b61f61 1077 stable_node->kpfn = page_to_pfn(kpage);
08beca44
HD
1078 set_page_stable_node(kpage, stable_node);
1079
7b6ba2c7 1080 return stable_node;
31dbd01f
IE
1081}
1082
1083/*
8dd3557a
HD
1084 * unstable_tree_search_insert - search for identical page,
1085 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1086 *
1087 * This function searches for a page in the unstable tree identical to the
1088 * page currently being scanned; and if no identical page is found in the
1089 * tree, we insert rmap_item as a new object into the unstable tree.
1090 *
1091 * This function returns pointer to rmap_item found to be identical
1092 * to the currently scanned page, NULL otherwise.
1093 *
1094 * This function does both searching and inserting, because they share
1095 * the same walking algorithm in an rbtree.
1096 */
8dd3557a
HD
1097static
1098struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1099 struct page *page,
1100 struct page **tree_pagep)
1101
31dbd01f
IE
1102{
1103 struct rb_node **new = &root_unstable_tree.rb_node;
1104 struct rb_node *parent = NULL;
1105
1106 while (*new) {
1107 struct rmap_item *tree_rmap_item;
8dd3557a 1108 struct page *tree_page;
31dbd01f
IE
1109 int ret;
1110
d178f27f 1111 cond_resched();
31dbd01f 1112 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1113 tree_page = get_mergeable_page(tree_rmap_item);
22eccdd7 1114 if (IS_ERR_OR_NULL(tree_page))
31dbd01f
IE
1115 return NULL;
1116
1117 /*
8dd3557a 1118 * Don't substitute a ksm page for a forked page.
31dbd01f 1119 */
8dd3557a
HD
1120 if (page == tree_page) {
1121 put_page(tree_page);
31dbd01f
IE
1122 return NULL;
1123 }
1124
8dd3557a 1125 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1126
1127 parent = *new;
1128 if (ret < 0) {
8dd3557a 1129 put_page(tree_page);
31dbd01f
IE
1130 new = &parent->rb_left;
1131 } else if (ret > 0) {
8dd3557a 1132 put_page(tree_page);
31dbd01f
IE
1133 new = &parent->rb_right;
1134 } else {
8dd3557a 1135 *tree_pagep = tree_page;
31dbd01f
IE
1136 return tree_rmap_item;
1137 }
1138 }
1139
7b6ba2c7 1140 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f
IE
1141 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1142 rb_link_node(&rmap_item->node, parent, new);
1143 rb_insert_color(&rmap_item->node, &root_unstable_tree);
1144
473b0ce4 1145 ksm_pages_unshared++;
31dbd01f
IE
1146 return NULL;
1147}
1148
1149/*
1150 * stable_tree_append - add another rmap_item to the linked list of
1151 * rmap_items hanging off a given node of the stable tree, all sharing
1152 * the same ksm page.
1153 */
1154static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1155 struct stable_node *stable_node)
31dbd01f 1156{
7b6ba2c7 1157 rmap_item->head = stable_node;
31dbd01f 1158 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1159 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1160
7b6ba2c7
HD
1161 if (rmap_item->hlist.next)
1162 ksm_pages_sharing++;
1163 else
1164 ksm_pages_shared++;
31dbd01f
IE
1165}
1166
1167/*
81464e30
HD
1168 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1169 * if not, compare checksum to previous and if it's the same, see if page can
1170 * be inserted into the unstable tree, or merged with a page already there and
1171 * both transferred to the stable tree.
31dbd01f
IE
1172 *
1173 * @page: the page that we are searching identical page to.
1174 * @rmap_item: the reverse mapping into the virtual address of this page
1175 */
1176static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1177{
31dbd01f 1178 struct rmap_item *tree_rmap_item;
8dd3557a 1179 struct page *tree_page = NULL;
7b6ba2c7 1180 struct stable_node *stable_node;
8dd3557a 1181 struct page *kpage;
31dbd01f
IE
1182 unsigned int checksum;
1183 int err;
1184
93d17715 1185 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1186
1187 /* We first start with searching the page inside the stable tree */
62b61f61
HD
1188 kpage = stable_tree_search(page);
1189 if (kpage) {
08beca44 1190 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1191 if (!err) {
1192 /*
1193 * The page was successfully merged:
1194 * add its rmap_item to the stable tree.
1195 */
5ad64688 1196 lock_page(kpage);
62b61f61 1197 stable_tree_append(rmap_item, page_stable_node(kpage));
5ad64688 1198 unlock_page(kpage);
31dbd01f 1199 }
8dd3557a 1200 put_page(kpage);
31dbd01f
IE
1201 return;
1202 }
1203
1204 /*
4035c07a
HD
1205 * If the hash value of the page has changed from the last time
1206 * we calculated it, this page is changing frequently: therefore we
1207 * don't want to insert it in the unstable tree, and we don't want
1208 * to waste our time searching for something identical to it there.
31dbd01f
IE
1209 */
1210 checksum = calc_checksum(page);
1211 if (rmap_item->oldchecksum != checksum) {
1212 rmap_item->oldchecksum = checksum;
1213 return;
1214 }
1215
8dd3557a
HD
1216 tree_rmap_item =
1217 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1218 if (tree_rmap_item) {
8dd3557a
HD
1219 kpage = try_to_merge_two_pages(rmap_item, page,
1220 tree_rmap_item, tree_page);
1221 put_page(tree_page);
31dbd01f
IE
1222 /*
1223 * As soon as we merge this page, we want to remove the
1224 * rmap_item of the page we have merged with from the unstable
1225 * tree, and insert it instead as new node in the stable tree.
1226 */
8dd3557a 1227 if (kpage) {
93d17715 1228 remove_rmap_item_from_tree(tree_rmap_item);
473b0ce4 1229
5ad64688 1230 lock_page(kpage);
7b6ba2c7
HD
1231 stable_node = stable_tree_insert(kpage);
1232 if (stable_node) {
1233 stable_tree_append(tree_rmap_item, stable_node);
1234 stable_tree_append(rmap_item, stable_node);
1235 }
5ad64688 1236 unlock_page(kpage);
7b6ba2c7 1237
31dbd01f
IE
1238 /*
1239 * If we fail to insert the page into the stable tree,
1240 * we will have 2 virtual addresses that are pointing
1241 * to a ksm page left outside the stable tree,
1242 * in which case we need to break_cow on both.
1243 */
7b6ba2c7 1244 if (!stable_node) {
8dd3557a
HD
1245 break_cow(tree_rmap_item);
1246 break_cow(rmap_item);
31dbd01f
IE
1247 }
1248 }
31dbd01f
IE
1249 }
1250}
1251
1252static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1253 struct rmap_item **rmap_list,
31dbd01f
IE
1254 unsigned long addr)
1255{
1256 struct rmap_item *rmap_item;
1257
6514d511
HD
1258 while (*rmap_list) {
1259 rmap_item = *rmap_list;
93d17715 1260 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1261 return rmap_item;
31dbd01f
IE
1262 if (rmap_item->address > addr)
1263 break;
6514d511 1264 *rmap_list = rmap_item->rmap_list;
31dbd01f 1265 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1266 free_rmap_item(rmap_item);
1267 }
1268
1269 rmap_item = alloc_rmap_item();
1270 if (rmap_item) {
1271 /* It has already been zeroed */
1272 rmap_item->mm = mm_slot->mm;
1273 rmap_item->address = addr;
6514d511
HD
1274 rmap_item->rmap_list = *rmap_list;
1275 *rmap_list = rmap_item;
31dbd01f
IE
1276 }
1277 return rmap_item;
1278}
1279
1280static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1281{
1282 struct mm_struct *mm;
1283 struct mm_slot *slot;
1284 struct vm_area_struct *vma;
1285 struct rmap_item *rmap_item;
1286
1287 if (list_empty(&ksm_mm_head.mm_list))
1288 return NULL;
1289
1290 slot = ksm_scan.mm_slot;
1291 if (slot == &ksm_mm_head) {
2919bfd0
HD
1292 /*
1293 * A number of pages can hang around indefinitely on per-cpu
1294 * pagevecs, raised page count preventing write_protect_page
1295 * from merging them. Though it doesn't really matter much,
1296 * it is puzzling to see some stuck in pages_volatile until
1297 * other activity jostles them out, and they also prevented
1298 * LTP's KSM test from succeeding deterministically; so drain
1299 * them here (here rather than on entry to ksm_do_scan(),
1300 * so we don't IPI too often when pages_to_scan is set low).
1301 */
1302 lru_add_drain_all();
1303
31dbd01f
IE
1304 root_unstable_tree = RB_ROOT;
1305
1306 spin_lock(&ksm_mmlist_lock);
1307 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1308 ksm_scan.mm_slot = slot;
1309 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
1310 /*
1311 * Although we tested list_empty() above, a racing __ksm_exit
1312 * of the last mm on the list may have removed it since then.
1313 */
1314 if (slot == &ksm_mm_head)
1315 return NULL;
31dbd01f
IE
1316next_mm:
1317 ksm_scan.address = 0;
6514d511 1318 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1319 }
1320
1321 mm = slot->mm;
1322 down_read(&mm->mmap_sem);
9ba69294
HD
1323 if (ksm_test_exit(mm))
1324 vma = NULL;
1325 else
1326 vma = find_vma(mm, ksm_scan.address);
1327
1328 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1329 if (!(vma->vm_flags & VM_MERGEABLE))
1330 continue;
1331 if (ksm_scan.address < vma->vm_start)
1332 ksm_scan.address = vma->vm_start;
1333 if (!vma->anon_vma)
1334 ksm_scan.address = vma->vm_end;
1335
1336 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1337 if (ksm_test_exit(mm))
1338 break;
31dbd01f 1339 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
1340 if (IS_ERR_OR_NULL(*page)) {
1341 ksm_scan.address += PAGE_SIZE;
1342 cond_resched();
1343 continue;
1344 }
29ad768c
AA
1345 if (PageAnon(*page) ||
1346 page_trans_compound_anon(*page)) {
31dbd01f
IE
1347 flush_anon_page(vma, *page, ksm_scan.address);
1348 flush_dcache_page(*page);
1349 rmap_item = get_next_rmap_item(slot,
6514d511 1350 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1351 if (rmap_item) {
6514d511
HD
1352 ksm_scan.rmap_list =
1353 &rmap_item->rmap_list;
31dbd01f
IE
1354 ksm_scan.address += PAGE_SIZE;
1355 } else
1356 put_page(*page);
1357 up_read(&mm->mmap_sem);
1358 return rmap_item;
1359 }
21ae5b01 1360 put_page(*page);
31dbd01f
IE
1361 ksm_scan.address += PAGE_SIZE;
1362 cond_resched();
1363 }
1364 }
1365
9ba69294
HD
1366 if (ksm_test_exit(mm)) {
1367 ksm_scan.address = 0;
6514d511 1368 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1369 }
31dbd01f
IE
1370 /*
1371 * Nuke all the rmap_items that are above this current rmap:
1372 * because there were no VM_MERGEABLE vmas with such addresses.
1373 */
6514d511 1374 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1375
1376 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1377 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1378 struct mm_slot, mm_list);
1379 if (ksm_scan.address == 0) {
1380 /*
1381 * We've completed a full scan of all vmas, holding mmap_sem
1382 * throughout, and found no VM_MERGEABLE: so do the same as
1383 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1384 * This applies either when cleaning up after __ksm_exit
1385 * (but beware: we can reach here even before __ksm_exit),
1386 * or when all VM_MERGEABLE areas have been unmapped (and
1387 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 1388 */
4ca3a69b 1389 hash_del(&slot->link);
cd551f97 1390 list_del(&slot->mm_list);
9ba69294
HD
1391 spin_unlock(&ksm_mmlist_lock);
1392
cd551f97
HD
1393 free_mm_slot(slot);
1394 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1395 up_read(&mm->mmap_sem);
1396 mmdrop(mm);
1397 } else {
1398 spin_unlock(&ksm_mmlist_lock);
1399 up_read(&mm->mmap_sem);
cd551f97 1400 }
31dbd01f
IE
1401
1402 /* Repeat until we've completed scanning the whole list */
cd551f97 1403 slot = ksm_scan.mm_slot;
31dbd01f
IE
1404 if (slot != &ksm_mm_head)
1405 goto next_mm;
1406
31dbd01f
IE
1407 ksm_scan.seqnr++;
1408 return NULL;
1409}
1410
1411/**
1412 * ksm_do_scan - the ksm scanner main worker function.
1413 * @scan_npages - number of pages we want to scan before we return.
1414 */
1415static void ksm_do_scan(unsigned int scan_npages)
1416{
1417 struct rmap_item *rmap_item;
22eccdd7 1418 struct page *uninitialized_var(page);
31dbd01f 1419
878aee7d 1420 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
1421 cond_resched();
1422 rmap_item = scan_get_next_rmap_item(&page);
1423 if (!rmap_item)
1424 return;
1425 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1426 cmp_and_merge_page(page, rmap_item);
1427 put_page(page);
1428 }
1429}
1430
6e158384
HD
1431static int ksmd_should_run(void)
1432{
1433 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1434}
1435
31dbd01f
IE
1436static int ksm_scan_thread(void *nothing)
1437{
878aee7d 1438 set_freezable();
339aa624 1439 set_user_nice(current, 5);
31dbd01f
IE
1440
1441 while (!kthread_should_stop()) {
6e158384
HD
1442 mutex_lock(&ksm_thread_mutex);
1443 if (ksmd_should_run())
31dbd01f 1444 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1445 mutex_unlock(&ksm_thread_mutex);
1446
878aee7d
AA
1447 try_to_freeze();
1448
6e158384 1449 if (ksmd_should_run()) {
31dbd01f
IE
1450 schedule_timeout_interruptible(
1451 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1452 } else {
878aee7d 1453 wait_event_freezable(ksm_thread_wait,
6e158384 1454 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1455 }
1456 }
1457 return 0;
1458}
1459
f8af4da3
HD
1460int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1461 unsigned long end, int advice, unsigned long *vm_flags)
1462{
1463 struct mm_struct *mm = vma->vm_mm;
d952b791 1464 int err;
f8af4da3
HD
1465
1466 switch (advice) {
1467 case MADV_MERGEABLE:
1468 /*
1469 * Be somewhat over-protective for now!
1470 */
1471 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1472 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
314e51b9 1473 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
f8af4da3
HD
1474 return 0; /* just ignore the advice */
1475
cc2383ec
KK
1476#ifdef VM_SAO
1477 if (*vm_flags & VM_SAO)
1478 return 0;
1479#endif
1480
d952b791
HD
1481 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1482 err = __ksm_enter(mm);
1483 if (err)
1484 return err;
1485 }
f8af4da3
HD
1486
1487 *vm_flags |= VM_MERGEABLE;
1488 break;
1489
1490 case MADV_UNMERGEABLE:
1491 if (!(*vm_flags & VM_MERGEABLE))
1492 return 0; /* just ignore the advice */
1493
d952b791
HD
1494 if (vma->anon_vma) {
1495 err = unmerge_ksm_pages(vma, start, end);
1496 if (err)
1497 return err;
1498 }
f8af4da3
HD
1499
1500 *vm_flags &= ~VM_MERGEABLE;
1501 break;
1502 }
1503
1504 return 0;
1505}
1506
1507int __ksm_enter(struct mm_struct *mm)
1508{
6e158384
HD
1509 struct mm_slot *mm_slot;
1510 int needs_wakeup;
1511
1512 mm_slot = alloc_mm_slot();
31dbd01f
IE
1513 if (!mm_slot)
1514 return -ENOMEM;
1515
6e158384
HD
1516 /* Check ksm_run too? Would need tighter locking */
1517 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1518
31dbd01f
IE
1519 spin_lock(&ksm_mmlist_lock);
1520 insert_to_mm_slots_hash(mm, mm_slot);
1521 /*
1522 * Insert just behind the scanning cursor, to let the area settle
1523 * down a little; when fork is followed by immediate exec, we don't
1524 * want ksmd to waste time setting up and tearing down an rmap_list.
1525 */
1526 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1527 spin_unlock(&ksm_mmlist_lock);
1528
f8af4da3 1529 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1530 atomic_inc(&mm->mm_count);
6e158384
HD
1531
1532 if (needs_wakeup)
1533 wake_up_interruptible(&ksm_thread_wait);
1534
f8af4da3
HD
1535 return 0;
1536}
1537
1c2fb7a4 1538void __ksm_exit(struct mm_struct *mm)
f8af4da3 1539{
cd551f97 1540 struct mm_slot *mm_slot;
9ba69294 1541 int easy_to_free = 0;
cd551f97 1542
31dbd01f 1543 /*
9ba69294
HD
1544 * This process is exiting: if it's straightforward (as is the
1545 * case when ksmd was never running), free mm_slot immediately.
1546 * But if it's at the cursor or has rmap_items linked to it, use
1547 * mmap_sem to synchronize with any break_cows before pagetables
1548 * are freed, and leave the mm_slot on the list for ksmd to free.
1549 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1550 */
9ba69294 1551
cd551f97
HD
1552 spin_lock(&ksm_mmlist_lock);
1553 mm_slot = get_mm_slot(mm);
9ba69294 1554 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1555 if (!mm_slot->rmap_list) {
4ca3a69b 1556 hash_del(&mm_slot->link);
9ba69294
HD
1557 list_del(&mm_slot->mm_list);
1558 easy_to_free = 1;
1559 } else {
1560 list_move(&mm_slot->mm_list,
1561 &ksm_scan.mm_slot->mm_list);
1562 }
cd551f97 1563 }
cd551f97
HD
1564 spin_unlock(&ksm_mmlist_lock);
1565
9ba69294
HD
1566 if (easy_to_free) {
1567 free_mm_slot(mm_slot);
1568 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1569 mmdrop(mm);
1570 } else if (mm_slot) {
9ba69294
HD
1571 down_write(&mm->mmap_sem);
1572 up_write(&mm->mmap_sem);
9ba69294 1573 }
31dbd01f
IE
1574}
1575
5ad64688
HD
1576struct page *ksm_does_need_to_copy(struct page *page,
1577 struct vm_area_struct *vma, unsigned long address)
1578{
1579 struct page *new_page;
1580
5ad64688
HD
1581 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1582 if (new_page) {
1583 copy_user_highpage(new_page, page, address, vma);
1584
1585 SetPageDirty(new_page);
1586 __SetPageUptodate(new_page);
5ad64688 1587 __set_page_locked(new_page);
5ad64688
HD
1588 }
1589
5ad64688
HD
1590 return new_page;
1591}
1592
1593int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1594 unsigned long *vm_flags)
1595{
1596 struct stable_node *stable_node;
1597 struct rmap_item *rmap_item;
1598 struct hlist_node *hlist;
1599 unsigned int mapcount = page_mapcount(page);
1600 int referenced = 0;
db114b83 1601 int search_new_forks = 0;
5ad64688
HD
1602
1603 VM_BUG_ON(!PageKsm(page));
1604 VM_BUG_ON(!PageLocked(page));
1605
1606 stable_node = page_stable_node(page);
1607 if (!stable_node)
1608 return 0;
db114b83 1609again:
5ad64688 1610 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83 1611 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1612 struct anon_vma_chain *vmac;
db114b83 1613 struct vm_area_struct *vma;
5ad64688 1614
b6b19f25 1615 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1616 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1617 0, ULONG_MAX) {
5beb4930 1618 vma = vmac->vma;
db114b83
HD
1619 if (rmap_item->address < vma->vm_start ||
1620 rmap_item->address >= vma->vm_end)
1621 continue;
1622 /*
1623 * Initially we examine only the vma which covers this
1624 * rmap_item; but later, if there is still work to do,
1625 * we examine covering vmas in other mms: in case they
1626 * were forked from the original since ksmd passed.
1627 */
1628 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1629 continue;
1630
1631 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1632 continue;
5ad64688 1633
db114b83 1634 referenced += page_referenced_one(page, vma,
5ad64688 1635 rmap_item->address, &mapcount, vm_flags);
db114b83
HD
1636 if (!search_new_forks || !mapcount)
1637 break;
1638 }
b6b19f25 1639 anon_vma_unlock_read(anon_vma);
5ad64688
HD
1640 if (!mapcount)
1641 goto out;
1642 }
db114b83
HD
1643 if (!search_new_forks++)
1644 goto again;
5ad64688 1645out:
5ad64688
HD
1646 return referenced;
1647}
1648
1649int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1650{
1651 struct stable_node *stable_node;
1652 struct hlist_node *hlist;
1653 struct rmap_item *rmap_item;
1654 int ret = SWAP_AGAIN;
db114b83 1655 int search_new_forks = 0;
5ad64688
HD
1656
1657 VM_BUG_ON(!PageKsm(page));
1658 VM_BUG_ON(!PageLocked(page));
1659
1660 stable_node = page_stable_node(page);
1661 if (!stable_node)
1662 return SWAP_FAIL;
db114b83 1663again:
5ad64688 1664 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83 1665 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1666 struct anon_vma_chain *vmac;
db114b83 1667 struct vm_area_struct *vma;
5ad64688 1668
b6b19f25 1669 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1670 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1671 0, ULONG_MAX) {
5beb4930 1672 vma = vmac->vma;
db114b83
HD
1673 if (rmap_item->address < vma->vm_start ||
1674 rmap_item->address >= vma->vm_end)
1675 continue;
1676 /*
1677 * Initially we examine only the vma which covers this
1678 * rmap_item; but later, if there is still work to do,
1679 * we examine covering vmas in other mms: in case they
1680 * were forked from the original since ksmd passed.
1681 */
1682 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1683 continue;
1684
1685 ret = try_to_unmap_one(page, vma,
1686 rmap_item->address, flags);
1687 if (ret != SWAP_AGAIN || !page_mapped(page)) {
b6b19f25 1688 anon_vma_unlock_read(anon_vma);
db114b83
HD
1689 goto out;
1690 }
1691 }
b6b19f25 1692 anon_vma_unlock_read(anon_vma);
5ad64688 1693 }
db114b83
HD
1694 if (!search_new_forks++)
1695 goto again;
5ad64688 1696out:
5ad64688
HD
1697 return ret;
1698}
1699
e9995ef9
HD
1700#ifdef CONFIG_MIGRATION
1701int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1702 struct vm_area_struct *, unsigned long, void *), void *arg)
1703{
1704 struct stable_node *stable_node;
1705 struct hlist_node *hlist;
1706 struct rmap_item *rmap_item;
1707 int ret = SWAP_AGAIN;
1708 int search_new_forks = 0;
1709
1710 VM_BUG_ON(!PageKsm(page));
1711 VM_BUG_ON(!PageLocked(page));
1712
1713 stable_node = page_stable_node(page);
1714 if (!stable_node)
1715 return ret;
1716again:
1717 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1718 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1719 struct anon_vma_chain *vmac;
e9995ef9
HD
1720 struct vm_area_struct *vma;
1721
b6b19f25 1722 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1723 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1724 0, ULONG_MAX) {
5beb4930 1725 vma = vmac->vma;
e9995ef9
HD
1726 if (rmap_item->address < vma->vm_start ||
1727 rmap_item->address >= vma->vm_end)
1728 continue;
1729 /*
1730 * Initially we examine only the vma which covers this
1731 * rmap_item; but later, if there is still work to do,
1732 * we examine covering vmas in other mms: in case they
1733 * were forked from the original since ksmd passed.
1734 */
1735 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1736 continue;
1737
1738 ret = rmap_one(page, vma, rmap_item->address, arg);
1739 if (ret != SWAP_AGAIN) {
b6b19f25 1740 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1741 goto out;
1742 }
1743 }
b6b19f25 1744 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1745 }
1746 if (!search_new_forks++)
1747 goto again;
1748out:
1749 return ret;
1750}
1751
1752void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1753{
1754 struct stable_node *stable_node;
1755
1756 VM_BUG_ON(!PageLocked(oldpage));
1757 VM_BUG_ON(!PageLocked(newpage));
1758 VM_BUG_ON(newpage->mapping != oldpage->mapping);
1759
1760 stable_node = page_stable_node(newpage);
1761 if (stable_node) {
62b61f61
HD
1762 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1763 stable_node->kpfn = page_to_pfn(newpage);
e9995ef9
HD
1764 }
1765}
1766#endif /* CONFIG_MIGRATION */
1767
62b61f61
HD
1768#ifdef CONFIG_MEMORY_HOTREMOVE
1769static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1770 unsigned long end_pfn)
1771{
1772 struct rb_node *node;
1773
1774 for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1775 struct stable_node *stable_node;
1776
1777 stable_node = rb_entry(node, struct stable_node, node);
1778 if (stable_node->kpfn >= start_pfn &&
1779 stable_node->kpfn < end_pfn)
1780 return stable_node;
1781 }
1782 return NULL;
1783}
1784
1785static int ksm_memory_callback(struct notifier_block *self,
1786 unsigned long action, void *arg)
1787{
1788 struct memory_notify *mn = arg;
1789 struct stable_node *stable_node;
1790
1791 switch (action) {
1792 case MEM_GOING_OFFLINE:
1793 /*
1794 * Keep it very simple for now: just lock out ksmd and
1795 * MADV_UNMERGEABLE while any memory is going offline.
a0b0f58c
KM
1796 * mutex_lock_nested() is necessary because lockdep was alarmed
1797 * that here we take ksm_thread_mutex inside notifier chain
1798 * mutex, and later take notifier chain mutex inside
1799 * ksm_thread_mutex to unlock it. But that's safe because both
1800 * are inside mem_hotplug_mutex.
62b61f61 1801 */
a0b0f58c 1802 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
62b61f61
HD
1803 break;
1804
1805 case MEM_OFFLINE:
1806 /*
1807 * Most of the work is done by page migration; but there might
1808 * be a few stable_nodes left over, still pointing to struct
1809 * pages which have been offlined: prune those from the tree.
1810 */
1811 while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1812 mn->start_pfn + mn->nr_pages)) != NULL)
1813 remove_node_from_stable_tree(stable_node);
1814 /* fallthrough */
1815
1816 case MEM_CANCEL_OFFLINE:
1817 mutex_unlock(&ksm_thread_mutex);
1818 break;
1819 }
1820 return NOTIFY_OK;
1821}
1822#endif /* CONFIG_MEMORY_HOTREMOVE */
1823
2ffd8679
HD
1824#ifdef CONFIG_SYSFS
1825/*
1826 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1827 */
1828
31dbd01f
IE
1829#define KSM_ATTR_RO(_name) \
1830 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1831#define KSM_ATTR(_name) \
1832 static struct kobj_attribute _name##_attr = \
1833 __ATTR(_name, 0644, _name##_show, _name##_store)
1834
1835static ssize_t sleep_millisecs_show(struct kobject *kobj,
1836 struct kobj_attribute *attr, char *buf)
1837{
1838 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1839}
1840
1841static ssize_t sleep_millisecs_store(struct kobject *kobj,
1842 struct kobj_attribute *attr,
1843 const char *buf, size_t count)
1844{
1845 unsigned long msecs;
1846 int err;
1847
1848 err = strict_strtoul(buf, 10, &msecs);
1849 if (err || msecs > UINT_MAX)
1850 return -EINVAL;
1851
1852 ksm_thread_sleep_millisecs = msecs;
1853
1854 return count;
1855}
1856KSM_ATTR(sleep_millisecs);
1857
1858static ssize_t pages_to_scan_show(struct kobject *kobj,
1859 struct kobj_attribute *attr, char *buf)
1860{
1861 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1862}
1863
1864static ssize_t pages_to_scan_store(struct kobject *kobj,
1865 struct kobj_attribute *attr,
1866 const char *buf, size_t count)
1867{
1868 int err;
1869 unsigned long nr_pages;
1870
1871 err = strict_strtoul(buf, 10, &nr_pages);
1872 if (err || nr_pages > UINT_MAX)
1873 return -EINVAL;
1874
1875 ksm_thread_pages_to_scan = nr_pages;
1876
1877 return count;
1878}
1879KSM_ATTR(pages_to_scan);
1880
1881static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1882 char *buf)
1883{
1884 return sprintf(buf, "%u\n", ksm_run);
1885}
1886
1887static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1888 const char *buf, size_t count)
1889{
1890 int err;
1891 unsigned long flags;
1892
1893 err = strict_strtoul(buf, 10, &flags);
1894 if (err || flags > UINT_MAX)
1895 return -EINVAL;
1896 if (flags > KSM_RUN_UNMERGE)
1897 return -EINVAL;
1898
1899 /*
1900 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1901 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
1902 * breaking COW to free the pages_shared (but leaves mm_slots
1903 * on the list for when ksmd may be set running again).
31dbd01f
IE
1904 */
1905
1906 mutex_lock(&ksm_thread_mutex);
1907 if (ksm_run != flags) {
1908 ksm_run = flags;
d952b791 1909 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 1910 set_current_oom_origin();
d952b791 1911 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 1912 clear_current_oom_origin();
d952b791
HD
1913 if (err) {
1914 ksm_run = KSM_RUN_STOP;
1915 count = err;
1916 }
1917 }
31dbd01f
IE
1918 }
1919 mutex_unlock(&ksm_thread_mutex);
1920
1921 if (flags & KSM_RUN_MERGE)
1922 wake_up_interruptible(&ksm_thread_wait);
1923
1924 return count;
1925}
1926KSM_ATTR(run);
1927
b4028260
HD
1928static ssize_t pages_shared_show(struct kobject *kobj,
1929 struct kobj_attribute *attr, char *buf)
1930{
1931 return sprintf(buf, "%lu\n", ksm_pages_shared);
1932}
1933KSM_ATTR_RO(pages_shared);
1934
1935static ssize_t pages_sharing_show(struct kobject *kobj,
1936 struct kobj_attribute *attr, char *buf)
1937{
e178dfde 1938 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
1939}
1940KSM_ATTR_RO(pages_sharing);
1941
473b0ce4
HD
1942static ssize_t pages_unshared_show(struct kobject *kobj,
1943 struct kobj_attribute *attr, char *buf)
1944{
1945 return sprintf(buf, "%lu\n", ksm_pages_unshared);
1946}
1947KSM_ATTR_RO(pages_unshared);
1948
1949static ssize_t pages_volatile_show(struct kobject *kobj,
1950 struct kobj_attribute *attr, char *buf)
1951{
1952 long ksm_pages_volatile;
1953
1954 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1955 - ksm_pages_sharing - ksm_pages_unshared;
1956 /*
1957 * It was not worth any locking to calculate that statistic,
1958 * but it might therefore sometimes be negative: conceal that.
1959 */
1960 if (ksm_pages_volatile < 0)
1961 ksm_pages_volatile = 0;
1962 return sprintf(buf, "%ld\n", ksm_pages_volatile);
1963}
1964KSM_ATTR_RO(pages_volatile);
1965
1966static ssize_t full_scans_show(struct kobject *kobj,
1967 struct kobj_attribute *attr, char *buf)
1968{
1969 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1970}
1971KSM_ATTR_RO(full_scans);
1972
31dbd01f
IE
1973static struct attribute *ksm_attrs[] = {
1974 &sleep_millisecs_attr.attr,
1975 &pages_to_scan_attr.attr,
1976 &run_attr.attr,
b4028260
HD
1977 &pages_shared_attr.attr,
1978 &pages_sharing_attr.attr,
473b0ce4
HD
1979 &pages_unshared_attr.attr,
1980 &pages_volatile_attr.attr,
1981 &full_scans_attr.attr,
31dbd01f
IE
1982 NULL,
1983};
1984
1985static struct attribute_group ksm_attr_group = {
1986 .attrs = ksm_attrs,
1987 .name = "ksm",
1988};
2ffd8679 1989#endif /* CONFIG_SYSFS */
31dbd01f
IE
1990
1991static int __init ksm_init(void)
1992{
1993 struct task_struct *ksm_thread;
1994 int err;
1995
1996 err = ksm_slab_init();
1997 if (err)
1998 goto out;
1999
31dbd01f
IE
2000 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2001 if (IS_ERR(ksm_thread)) {
2002 printk(KERN_ERR "ksm: creating kthread failed\n");
2003 err = PTR_ERR(ksm_thread);
d9f8984c 2004 goto out_free;
31dbd01f
IE
2005 }
2006
2ffd8679 2007#ifdef CONFIG_SYSFS
31dbd01f
IE
2008 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2009 if (err) {
2010 printk(KERN_ERR "ksm: register sysfs failed\n");
2ffd8679 2011 kthread_stop(ksm_thread);
d9f8984c 2012 goto out_free;
31dbd01f 2013 }
c73602ad
HD
2014#else
2015 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2016
2ffd8679 2017#endif /* CONFIG_SYSFS */
31dbd01f 2018
62b61f61
HD
2019#ifdef CONFIG_MEMORY_HOTREMOVE
2020 /*
2021 * Choose a high priority since the callback takes ksm_thread_mutex:
2022 * later callbacks could only be taking locks which nest within that.
2023 */
2024 hotplug_memory_notifier(ksm_memory_callback, 100);
2025#endif
31dbd01f
IE
2026 return 0;
2027
d9f8984c 2028out_free:
31dbd01f
IE
2029 ksm_slab_free();
2030out:
2031 return err;
f8af4da3 2032}
31dbd01f 2033module_init(ksm_init)