mm,ksm: fix endless looping in allocating memory when ksm enable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3 35#include <linux/ksm.h>
4ca3a69b 36#include <linux/hashtable.h>
878aee7d 37#include <linux/freezer.h>
72788c38 38#include <linux/oom.h>
90bd6fd3 39#include <linux/numa.h>
f8af4da3 40
31dbd01f 41#include <asm/tlbflush.h>
73848b46 42#include "internal.h"
31dbd01f 43
e850dcf5
HD
44#ifdef CONFIG_NUMA
45#define NUMA(x) (x)
46#define DO_NUMA(x) do { (x); } while (0)
47#else
48#define NUMA(x) (0)
49#define DO_NUMA(x) do { } while (0)
50#endif
51
31dbd01f
IE
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
93 */
94
95/**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
100 * @mm: the mm that this information is valid for
101 */
102struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
6514d511 105 struct rmap_item *rmap_list;
31dbd01f
IE
106 struct mm_struct *mm;
107};
108
109/**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
6514d511 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
6514d511 121 struct rmap_item **rmap_list;
31dbd01f
IE
122 unsigned long seqnr;
123};
124
7b6ba2c7
HD
125/**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
4146d2d6
HD
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 130 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6
HD
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
133 */
134struct stable_node {
4146d2d6
HD
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
7b6ba2c7 142 struct hlist_head hlist;
62b61f61 143 unsigned long kpfn;
4146d2d6
HD
144#ifdef CONFIG_NUMA
145 int nid;
146#endif
7b6ba2c7
HD
147};
148
31dbd01f
IE
149/**
150 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
160 */
161struct rmap_item {
6514d511 162 struct rmap_item *rmap_list;
bc56620b
HD
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165#ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167#endif
168 };
31dbd01f
IE
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 171 unsigned int oldchecksum; /* when unstable */
31dbd01f 172 union {
7b6ba2c7
HD
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
31dbd01f
IE
178 };
179};
180
181#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
182#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
184
185/* The stable and unstable tree heads */
ef53d16c
HD
186static struct rb_root one_stable_tree[1] = { RB_ROOT };
187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188static struct rb_root *root_stable_tree = one_stable_tree;
189static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 190
4146d2d6
HD
191/* Recently migrated nodes of stable tree, pending proper placement */
192static LIST_HEAD(migrate_nodes);
193
4ca3a69b
SL
194#define MM_SLOTS_HASH_BITS 10
195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
196
197static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199};
200static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202};
203
204static struct kmem_cache *rmap_item_cache;
7b6ba2c7 205static struct kmem_cache *stable_node_cache;
31dbd01f
IE
206static struct kmem_cache *mm_slot_cache;
207
208/* The number of nodes in the stable tree */
b4028260 209static unsigned long ksm_pages_shared;
31dbd01f 210
e178dfde 211/* The number of page slots additionally sharing those nodes */
b4028260 212static unsigned long ksm_pages_sharing;
31dbd01f 213
473b0ce4
HD
214/* The number of nodes in the unstable tree */
215static unsigned long ksm_pages_unshared;
216
217/* The number of rmap_items in use: to calculate pages_volatile */
218static unsigned long ksm_rmap_items;
219
31dbd01f 220/* Number of pages ksmd should scan in one batch */
2c6854fd 221static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
222
223/* Milliseconds ksmd should sleep between batches */
2ffd8679 224static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 225
e850dcf5 226#ifdef CONFIG_NUMA
90bd6fd3
PH
227/* Zeroed when merging across nodes is not allowed */
228static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 229static int ksm_nr_node_ids = 1;
e850dcf5
HD
230#else
231#define ksm_merge_across_nodes 1U
ef53d16c 232#define ksm_nr_node_ids 1
e850dcf5 233#endif
90bd6fd3 234
31dbd01f
IE
235#define KSM_RUN_STOP 0
236#define KSM_RUN_MERGE 1
237#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
238#define KSM_RUN_OFFLINE 4
239static unsigned long ksm_run = KSM_RUN_STOP;
240static void wait_while_offlining(void);
31dbd01f
IE
241
242static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243static DEFINE_MUTEX(ksm_thread_mutex);
244static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
249
250static int __init ksm_slab_init(void)
251{
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
255
7b6ba2c7
HD
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
259
31dbd01f
IE
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
7b6ba2c7 262 goto out_free2;
31dbd01f
IE
263
264 return 0;
265
7b6ba2c7
HD
266out_free2:
267 kmem_cache_destroy(stable_node_cache);
268out_free1:
31dbd01f
IE
269 kmem_cache_destroy(rmap_item_cache);
270out:
271 return -ENOMEM;
272}
273
274static void __init ksm_slab_free(void)
275{
276 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 277 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
280}
281
282static inline struct rmap_item *alloc_rmap_item(void)
283{
473b0ce4
HD
284 struct rmap_item *rmap_item;
285
3419dc51 286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
287 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
288 if (rmap_item)
289 ksm_rmap_items++;
290 return rmap_item;
31dbd01f
IE
291}
292
293static inline void free_rmap_item(struct rmap_item *rmap_item)
294{
473b0ce4 295 ksm_rmap_items--;
31dbd01f
IE
296 rmap_item->mm = NULL; /* debug safety */
297 kmem_cache_free(rmap_item_cache, rmap_item);
298}
299
7b6ba2c7
HD
300static inline struct stable_node *alloc_stable_node(void)
301{
302 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
303}
304
305static inline void free_stable_node(struct stable_node *stable_node)
306{
307 kmem_cache_free(stable_node_cache, stable_node);
308}
309
31dbd01f
IE
310static inline struct mm_slot *alloc_mm_slot(void)
311{
312 if (!mm_slot_cache) /* initialization failed */
313 return NULL;
314 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
315}
316
317static inline void free_mm_slot(struct mm_slot *mm_slot)
318{
319 kmem_cache_free(mm_slot_cache, mm_slot);
320}
321
31dbd01f
IE
322static struct mm_slot *get_mm_slot(struct mm_struct *mm)
323{
4ca3a69b
SL
324 struct mm_slot *slot;
325
b67bfe0d 326 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
327 if (slot->mm == mm)
328 return slot;
31dbd01f 329
31dbd01f
IE
330 return NULL;
331}
332
333static void insert_to_mm_slots_hash(struct mm_struct *mm,
334 struct mm_slot *mm_slot)
335{
31dbd01f 336 mm_slot->mm = mm;
4ca3a69b 337 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
338}
339
a913e182
HD
340/*
341 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
342 * page tables after it has passed through ksm_exit() - which, if necessary,
343 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
344 * a special flag: they can just back out as soon as mm_users goes to zero.
345 * ksm_test_exit() is used throughout to make this test for exit: in some
346 * places for correctness, in some places just to avoid unnecessary work.
347 */
348static inline bool ksm_test_exit(struct mm_struct *mm)
349{
350 return atomic_read(&mm->mm_users) == 0;
351}
352
31dbd01f
IE
353/*
354 * We use break_ksm to break COW on a ksm page: it's a stripped down
355 *
356 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
357 * put_page(page);
358 *
359 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
360 * in case the application has unmapped and remapped mm,addr meanwhile.
361 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
362 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
363 */
d952b791 364static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
365{
366 struct page *page;
d952b791 367 int ret = 0;
31dbd01f
IE
368
369 do {
370 cond_resched();
5117b3b8 371 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
22eccdd7 372 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
373 break;
374 if (PageKsm(page))
375 ret = handle_mm_fault(vma->vm_mm, vma, addr,
376 FAULT_FLAG_WRITE);
377 else
378 ret = VM_FAULT_WRITE;
379 put_page(page);
0c42d1fb 380 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
381 /*
382 * We must loop because handle_mm_fault() may back out if there's
383 * any difficulty e.g. if pte accessed bit gets updated concurrently.
384 *
385 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
386 * COW has been broken, even if the vma does not permit VM_WRITE;
387 * but note that a concurrent fault might break PageKsm for us.
388 *
389 * VM_FAULT_SIGBUS could occur if we race with truncation of the
390 * backing file, which also invalidates anonymous pages: that's
391 * okay, that truncation will have unmapped the PageKsm for us.
392 *
393 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
394 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
395 * current task has TIF_MEMDIE set, and will be OOM killed on return
396 * to user; and ksmd, having no mm, would never be chosen for that.
397 *
398 * But if the mm is in a limited mem_cgroup, then the fault may fail
399 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
400 * even ksmd can fail in this way - though it's usually breaking ksm
401 * just to undo a merge it made a moment before, so unlikely to oom.
402 *
403 * That's a pity: we might therefore have more kernel pages allocated
404 * than we're counting as nodes in the stable tree; but ksm_do_scan
405 * will retry to break_cow on each pass, so should recover the page
406 * in due course. The important thing is to not let VM_MERGEABLE
407 * be cleared while any such pages might remain in the area.
408 */
409 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
410}
411
ef694222
BL
412static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
413 unsigned long addr)
414{
415 struct vm_area_struct *vma;
416 if (ksm_test_exit(mm))
417 return NULL;
418 vma = find_vma(mm, addr);
419 if (!vma || vma->vm_start > addr)
420 return NULL;
421 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
422 return NULL;
423 return vma;
424}
425
8dd3557a 426static void break_cow(struct rmap_item *rmap_item)
31dbd01f 427{
8dd3557a
HD
428 struct mm_struct *mm = rmap_item->mm;
429 unsigned long addr = rmap_item->address;
31dbd01f
IE
430 struct vm_area_struct *vma;
431
4035c07a
HD
432 /*
433 * It is not an accident that whenever we want to break COW
434 * to undo, we also need to drop a reference to the anon_vma.
435 */
9e60109f 436 put_anon_vma(rmap_item->anon_vma);
4035c07a 437
81464e30 438 down_read(&mm->mmap_sem);
ef694222
BL
439 vma = find_mergeable_vma(mm, addr);
440 if (vma)
441 break_ksm(vma, addr);
31dbd01f
IE
442 up_read(&mm->mmap_sem);
443}
444
29ad768c
AA
445static struct page *page_trans_compound_anon(struct page *page)
446{
447 if (PageTransCompound(page)) {
def52acc 448 struct page *head = compound_head(page);
29ad768c 449 /*
22e5c47e
AA
450 * head may actually be splitted and freed from under
451 * us but it's ok here.
29ad768c 452 */
29ad768c
AA
453 if (PageAnon(head))
454 return head;
455 }
456 return NULL;
457}
458
31dbd01f
IE
459static struct page *get_mergeable_page(struct rmap_item *rmap_item)
460{
461 struct mm_struct *mm = rmap_item->mm;
462 unsigned long addr = rmap_item->address;
463 struct vm_area_struct *vma;
464 struct page *page;
465
466 down_read(&mm->mmap_sem);
ef694222
BL
467 vma = find_mergeable_vma(mm, addr);
468 if (!vma)
31dbd01f
IE
469 goto out;
470
471 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 472 if (IS_ERR_OR_NULL(page))
31dbd01f 473 goto out;
29ad768c 474 if (PageAnon(page) || page_trans_compound_anon(page)) {
31dbd01f
IE
475 flush_anon_page(vma, page, addr);
476 flush_dcache_page(page);
477 } else {
478 put_page(page);
479out: page = NULL;
480 }
481 up_read(&mm->mmap_sem);
482 return page;
483}
484
90bd6fd3
PH
485/*
486 * This helper is used for getting right index into array of tree roots.
487 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
488 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
489 * every node has its own stable and unstable tree.
490 */
491static inline int get_kpfn_nid(unsigned long kpfn)
492{
d8fc16a8 493 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
494}
495
4035c07a
HD
496static void remove_node_from_stable_tree(struct stable_node *stable_node)
497{
498 struct rmap_item *rmap_item;
4035c07a 499
b67bfe0d 500 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
501 if (rmap_item->hlist.next)
502 ksm_pages_sharing--;
503 else
504 ksm_pages_shared--;
9e60109f 505 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
506 rmap_item->address &= PAGE_MASK;
507 cond_resched();
508 }
509
4146d2d6
HD
510 if (stable_node->head == &migrate_nodes)
511 list_del(&stable_node->list);
512 else
513 rb_erase(&stable_node->node,
ef53d16c 514 root_stable_tree + NUMA(stable_node->nid));
4035c07a
HD
515 free_stable_node(stable_node);
516}
517
518/*
519 * get_ksm_page: checks if the page indicated by the stable node
520 * is still its ksm page, despite having held no reference to it.
521 * In which case we can trust the content of the page, and it
522 * returns the gotten page; but if the page has now been zapped,
523 * remove the stale node from the stable tree and return NULL.
c8d6553b 524 * But beware, the stable node's page might be being migrated.
4035c07a
HD
525 *
526 * You would expect the stable_node to hold a reference to the ksm page.
527 * But if it increments the page's count, swapping out has to wait for
528 * ksmd to come around again before it can free the page, which may take
529 * seconds or even minutes: much too unresponsive. So instead we use a
530 * "keyhole reference": access to the ksm page from the stable node peeps
531 * out through its keyhole to see if that page still holds the right key,
532 * pointing back to this stable node. This relies on freeing a PageAnon
533 * page to reset its page->mapping to NULL, and relies on no other use of
534 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
535 * is on its way to being freed; but it is an anomaly to bear in mind.
536 */
8fdb3dbf 537static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
538{
539 struct page *page;
540 void *expected_mapping;
c8d6553b 541 unsigned long kpfn;
4035c07a 542
4035c07a
HD
543 expected_mapping = (void *)stable_node +
544 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
c8d6553b
HD
545again:
546 kpfn = ACCESS_ONCE(stable_node->kpfn);
547 page = pfn_to_page(kpfn);
548
549 /*
550 * page is computed from kpfn, so on most architectures reading
551 * page->mapping is naturally ordered after reading node->kpfn,
552 * but on Alpha we need to be more careful.
553 */
554 smp_read_barrier_depends();
555 if (ACCESS_ONCE(page->mapping) != expected_mapping)
4035c07a 556 goto stale;
c8d6553b
HD
557
558 /*
559 * We cannot do anything with the page while its refcount is 0.
560 * Usually 0 means free, or tail of a higher-order page: in which
561 * case this node is no longer referenced, and should be freed;
562 * however, it might mean that the page is under page_freeze_refs().
563 * The __remove_mapping() case is easy, again the node is now stale;
564 * but if page is swapcache in migrate_page_move_mapping(), it might
565 * still be our page, in which case it's essential to keep the node.
566 */
567 while (!get_page_unless_zero(page)) {
568 /*
569 * Another check for page->mapping != expected_mapping would
570 * work here too. We have chosen the !PageSwapCache test to
571 * optimize the common case, when the page is or is about to
572 * be freed: PageSwapCache is cleared (under spin_lock_irq)
573 * in the freeze_refs section of __remove_mapping(); but Anon
574 * page->mapping reset to NULL later, in free_pages_prepare().
575 */
576 if (!PageSwapCache(page))
577 goto stale;
578 cpu_relax();
579 }
580
581 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
582 put_page(page);
583 goto stale;
584 }
c8d6553b 585
8fdb3dbf 586 if (lock_it) {
8aafa6a4 587 lock_page(page);
c8d6553b 588 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
589 unlock_page(page);
590 put_page(page);
591 goto stale;
592 }
593 }
4035c07a 594 return page;
c8d6553b 595
4035c07a 596stale:
c8d6553b
HD
597 /*
598 * We come here from above when page->mapping or !PageSwapCache
599 * suggests that the node is stale; but it might be under migration.
600 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
601 * before checking whether node->kpfn has been changed.
602 */
603 smp_rmb();
604 if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
605 goto again;
4035c07a
HD
606 remove_node_from_stable_tree(stable_node);
607 return NULL;
608}
609
31dbd01f
IE
610/*
611 * Removing rmap_item from stable or unstable tree.
612 * This function will clean the information from the stable/unstable tree.
613 */
614static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
615{
7b6ba2c7
HD
616 if (rmap_item->address & STABLE_FLAG) {
617 struct stable_node *stable_node;
5ad64688 618 struct page *page;
31dbd01f 619
7b6ba2c7 620 stable_node = rmap_item->head;
8aafa6a4 621 page = get_ksm_page(stable_node, true);
4035c07a
HD
622 if (!page)
623 goto out;
5ad64688 624
7b6ba2c7 625 hlist_del(&rmap_item->hlist);
4035c07a
HD
626 unlock_page(page);
627 put_page(page);
08beca44 628
4035c07a
HD
629 if (stable_node->hlist.first)
630 ksm_pages_sharing--;
631 else
7b6ba2c7 632 ksm_pages_shared--;
31dbd01f 633
9e60109f 634 put_anon_vma(rmap_item->anon_vma);
93d17715 635 rmap_item->address &= PAGE_MASK;
31dbd01f 636
7b6ba2c7 637 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
638 unsigned char age;
639 /*
9ba69294 640 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 641 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
642 * But be careful when an mm is exiting: do the rb_erase
643 * if this rmap_item was inserted by this scan, rather
644 * than left over from before.
31dbd01f
IE
645 */
646 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 647 BUG_ON(age > 1);
31dbd01f 648 if (!age)
90bd6fd3 649 rb_erase(&rmap_item->node,
ef53d16c 650 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 651 ksm_pages_unshared--;
93d17715 652 rmap_item->address &= PAGE_MASK;
31dbd01f 653 }
4035c07a 654out:
31dbd01f
IE
655 cond_resched(); /* we're called from many long loops */
656}
657
31dbd01f 658static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 659 struct rmap_item **rmap_list)
31dbd01f 660{
6514d511
HD
661 while (*rmap_list) {
662 struct rmap_item *rmap_item = *rmap_list;
663 *rmap_list = rmap_item->rmap_list;
31dbd01f 664 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
665 free_rmap_item(rmap_item);
666 }
667}
668
669/*
e850dcf5 670 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
671 * than check every pte of a given vma, the locking doesn't quite work for
672 * that - an rmap_item is assigned to the stable tree after inserting ksm
673 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
674 * rmap_items from parent to child at fork time (so as not to waste time
675 * if exit comes before the next scan reaches it).
81464e30
HD
676 *
677 * Similarly, although we'd like to remove rmap_items (so updating counts
678 * and freeing memory) when unmerging an area, it's easier to leave that
679 * to the next pass of ksmd - consider, for example, how ksmd might be
680 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 681 */
d952b791
HD
682static int unmerge_ksm_pages(struct vm_area_struct *vma,
683 unsigned long start, unsigned long end)
31dbd01f
IE
684{
685 unsigned long addr;
d952b791 686 int err = 0;
31dbd01f 687
d952b791 688 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
689 if (ksm_test_exit(vma->vm_mm))
690 break;
d952b791
HD
691 if (signal_pending(current))
692 err = -ERESTARTSYS;
693 else
694 err = break_ksm(vma, addr);
695 }
696 return err;
31dbd01f
IE
697}
698
2ffd8679
HD
699#ifdef CONFIG_SYSFS
700/*
701 * Only called through the sysfs control interface:
702 */
cbf86cfe
HD
703static int remove_stable_node(struct stable_node *stable_node)
704{
705 struct page *page;
706 int err;
707
708 page = get_ksm_page(stable_node, true);
709 if (!page) {
710 /*
711 * get_ksm_page did remove_node_from_stable_tree itself.
712 */
713 return 0;
714 }
715
8fdb3dbf
HD
716 if (WARN_ON_ONCE(page_mapped(page))) {
717 /*
718 * This should not happen: but if it does, just refuse to let
719 * merge_across_nodes be switched - there is no need to panic.
720 */
cbf86cfe 721 err = -EBUSY;
8fdb3dbf 722 } else {
cbf86cfe 723 /*
8fdb3dbf
HD
724 * The stable node did not yet appear stale to get_ksm_page(),
725 * since that allows for an unmapped ksm page to be recognized
726 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
727 * This page might be in a pagevec waiting to be freed,
728 * or it might be PageSwapCache (perhaps under writeback),
729 * or it might have been removed from swapcache a moment ago.
730 */
731 set_page_stable_node(page, NULL);
732 remove_node_from_stable_tree(stable_node);
733 err = 0;
734 }
735
736 unlock_page(page);
737 put_page(page);
738 return err;
739}
740
741static int remove_all_stable_nodes(void)
742{
743 struct stable_node *stable_node;
4146d2d6 744 struct list_head *this, *next;
cbf86cfe
HD
745 int nid;
746 int err = 0;
747
ef53d16c 748 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
749 while (root_stable_tree[nid].rb_node) {
750 stable_node = rb_entry(root_stable_tree[nid].rb_node,
751 struct stable_node, node);
752 if (remove_stable_node(stable_node)) {
753 err = -EBUSY;
754 break; /* proceed to next nid */
755 }
756 cond_resched();
757 }
758 }
4146d2d6
HD
759 list_for_each_safe(this, next, &migrate_nodes) {
760 stable_node = list_entry(this, struct stable_node, list);
761 if (remove_stable_node(stable_node))
762 err = -EBUSY;
763 cond_resched();
764 }
cbf86cfe
HD
765 return err;
766}
767
d952b791 768static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
769{
770 struct mm_slot *mm_slot;
771 struct mm_struct *mm;
772 struct vm_area_struct *vma;
d952b791
HD
773 int err = 0;
774
775 spin_lock(&ksm_mmlist_lock);
9ba69294 776 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
777 struct mm_slot, mm_list);
778 spin_unlock(&ksm_mmlist_lock);
31dbd01f 779
9ba69294
HD
780 for (mm_slot = ksm_scan.mm_slot;
781 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
782 mm = mm_slot->mm;
783 down_read(&mm->mmap_sem);
784 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
785 if (ksm_test_exit(mm))
786 break;
31dbd01f
IE
787 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
788 continue;
d952b791
HD
789 err = unmerge_ksm_pages(vma,
790 vma->vm_start, vma->vm_end);
9ba69294
HD
791 if (err)
792 goto error;
31dbd01f 793 }
9ba69294 794
6514d511 795 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
796
797 spin_lock(&ksm_mmlist_lock);
9ba69294 798 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 799 struct mm_slot, mm_list);
9ba69294 800 if (ksm_test_exit(mm)) {
4ca3a69b 801 hash_del(&mm_slot->link);
9ba69294
HD
802 list_del(&mm_slot->mm_list);
803 spin_unlock(&ksm_mmlist_lock);
804
805 free_mm_slot(mm_slot);
806 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
807 up_read(&mm->mmap_sem);
808 mmdrop(mm);
809 } else {
810 spin_unlock(&ksm_mmlist_lock);
811 up_read(&mm->mmap_sem);
812 }
31dbd01f
IE
813 }
814
cbf86cfe
HD
815 /* Clean up stable nodes, but don't worry if some are still busy */
816 remove_all_stable_nodes();
d952b791 817 ksm_scan.seqnr = 0;
9ba69294
HD
818 return 0;
819
820error:
821 up_read(&mm->mmap_sem);
31dbd01f 822 spin_lock(&ksm_mmlist_lock);
d952b791 823 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 824 spin_unlock(&ksm_mmlist_lock);
d952b791 825 return err;
31dbd01f 826}
2ffd8679 827#endif /* CONFIG_SYSFS */
31dbd01f 828
31dbd01f
IE
829static u32 calc_checksum(struct page *page)
830{
831 u32 checksum;
9b04c5fe 832 void *addr = kmap_atomic(page);
31dbd01f 833 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 834 kunmap_atomic(addr);
31dbd01f
IE
835 return checksum;
836}
837
838static int memcmp_pages(struct page *page1, struct page *page2)
839{
840 char *addr1, *addr2;
841 int ret;
842
9b04c5fe
CW
843 addr1 = kmap_atomic(page1);
844 addr2 = kmap_atomic(page2);
31dbd01f 845 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
846 kunmap_atomic(addr2);
847 kunmap_atomic(addr1);
31dbd01f
IE
848 return ret;
849}
850
851static inline int pages_identical(struct page *page1, struct page *page2)
852{
853 return !memcmp_pages(page1, page2);
854}
855
856static int write_protect_page(struct vm_area_struct *vma, struct page *page,
857 pte_t *orig_pte)
858{
859 struct mm_struct *mm = vma->vm_mm;
860 unsigned long addr;
861 pte_t *ptep;
862 spinlock_t *ptl;
863 int swapped;
864 int err = -EFAULT;
6bdb913f
HE
865 unsigned long mmun_start; /* For mmu_notifiers */
866 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f
IE
867
868 addr = page_address_in_vma(page, vma);
869 if (addr == -EFAULT)
870 goto out;
871
29ad768c 872 BUG_ON(PageTransCompound(page));
6bdb913f
HE
873
874 mmun_start = addr;
875 mmun_end = addr + PAGE_SIZE;
876 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
877
31dbd01f
IE
878 ptep = page_check_address(page, mm, addr, &ptl, 0);
879 if (!ptep)
6bdb913f 880 goto out_mn;
31dbd01f 881
4e31635c 882 if (pte_write(*ptep) || pte_dirty(*ptep)) {
31dbd01f
IE
883 pte_t entry;
884
885 swapped = PageSwapCache(page);
886 flush_cache_page(vma, addr, page_to_pfn(page));
887 /*
25985edc 888 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
889 * take any lock, therefore the check that we are going to make
890 * with the pagecount against the mapcount is racey and
891 * O_DIRECT can happen right after the check.
892 * So we clear the pte and flush the tlb before the check
893 * this assure us that no O_DIRECT can happen after the check
894 * or in the middle of the check.
895 */
896 entry = ptep_clear_flush(vma, addr, ptep);
897 /*
898 * Check that no O_DIRECT or similar I/O is in progress on the
899 * page
900 */
31e855ea 901 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
cb532375 902 set_pte_at(mm, addr, ptep, entry);
31dbd01f
IE
903 goto out_unlock;
904 }
4e31635c
HD
905 if (pte_dirty(entry))
906 set_page_dirty(page);
907 entry = pte_mkclean(pte_wrprotect(entry));
31dbd01f
IE
908 set_pte_at_notify(mm, addr, ptep, entry);
909 }
910 *orig_pte = *ptep;
911 err = 0;
912
913out_unlock:
914 pte_unmap_unlock(ptep, ptl);
6bdb913f
HE
915out_mn:
916 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
917out:
918 return err;
919}
920
921/**
922 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
923 * @vma: vma that holds the pte pointing to page
924 * @page: the page we are replacing by kpage
925 * @kpage: the ksm page we replace page by
31dbd01f
IE
926 * @orig_pte: the original value of the pte
927 *
928 * Returns 0 on success, -EFAULT on failure.
929 */
8dd3557a
HD
930static int replace_page(struct vm_area_struct *vma, struct page *page,
931 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
932{
933 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
934 pmd_t *pmd;
935 pte_t *ptep;
936 spinlock_t *ptl;
937 unsigned long addr;
31dbd01f 938 int err = -EFAULT;
6bdb913f
HE
939 unsigned long mmun_start; /* For mmu_notifiers */
940 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 941
8dd3557a 942 addr = page_address_in_vma(page, vma);
31dbd01f
IE
943 if (addr == -EFAULT)
944 goto out;
945
6219049a
BL
946 pmd = mm_find_pmd(mm, addr);
947 if (!pmd)
31dbd01f 948 goto out;
29ad768c 949 BUG_ON(pmd_trans_huge(*pmd));
31dbd01f 950
6bdb913f
HE
951 mmun_start = addr;
952 mmun_end = addr + PAGE_SIZE;
953 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
954
31dbd01f
IE
955 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
956 if (!pte_same(*ptep, orig_pte)) {
957 pte_unmap_unlock(ptep, ptl);
6bdb913f 958 goto out_mn;
31dbd01f
IE
959 }
960
8dd3557a 961 get_page(kpage);
5ad64688 962 page_add_anon_rmap(kpage, vma, addr);
31dbd01f
IE
963
964 flush_cache_page(vma, addr, pte_pfn(*ptep));
965 ptep_clear_flush(vma, addr, ptep);
8dd3557a 966 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 967
8dd3557a 968 page_remove_rmap(page);
ae52a2ad
HD
969 if (!page_mapped(page))
970 try_to_free_swap(page);
8dd3557a 971 put_page(page);
31dbd01f
IE
972
973 pte_unmap_unlock(ptep, ptl);
974 err = 0;
6bdb913f
HE
975out_mn:
976 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
977out:
978 return err;
979}
980
29ad768c
AA
981static int page_trans_compound_anon_split(struct page *page)
982{
983 int ret = 0;
984 struct page *transhuge_head = page_trans_compound_anon(page);
985 if (transhuge_head) {
986 /* Get the reference on the head to split it. */
987 if (get_page_unless_zero(transhuge_head)) {
988 /*
989 * Recheck we got the reference while the head
990 * was still anonymous.
991 */
992 if (PageAnon(transhuge_head))
993 ret = split_huge_page(transhuge_head);
994 else
995 /*
996 * Retry later if split_huge_page run
997 * from under us.
998 */
999 ret = 1;
1000 put_page(transhuge_head);
1001 } else
1002 /* Retry later if split_huge_page run from under us. */
1003 ret = 1;
1004 }
1005 return ret;
1006}
1007
31dbd01f
IE
1008/*
1009 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1010 * @vma: the vma that holds the pte pointing to page
1011 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1012 * @kpage: the PageKsm page that we want to map instead of page,
1013 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1014 *
1015 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1016 */
1017static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1018 struct page *page, struct page *kpage)
31dbd01f
IE
1019{
1020 pte_t orig_pte = __pte(0);
1021 int err = -EFAULT;
1022
db114b83
HD
1023 if (page == kpage) /* ksm page forked */
1024 return 0;
1025
31dbd01f
IE
1026 if (!(vma->vm_flags & VM_MERGEABLE))
1027 goto out;
29ad768c
AA
1028 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1029 goto out;
1030 BUG_ON(PageTransCompound(page));
8dd3557a 1031 if (!PageAnon(page))
31dbd01f
IE
1032 goto out;
1033
31dbd01f
IE
1034 /*
1035 * We need the page lock to read a stable PageSwapCache in
1036 * write_protect_page(). We use trylock_page() instead of
1037 * lock_page() because we don't want to wait here - we
1038 * prefer to continue scanning and merging different pages,
1039 * then come back to this page when it is unlocked.
1040 */
8dd3557a 1041 if (!trylock_page(page))
31e855ea 1042 goto out;
31dbd01f
IE
1043 /*
1044 * If this anonymous page is mapped only here, its pte may need
1045 * to be write-protected. If it's mapped elsewhere, all of its
1046 * ptes are necessarily already write-protected. But in either
1047 * case, we need to lock and check page_count is not raised.
1048 */
80e14822
HD
1049 if (write_protect_page(vma, page, &orig_pte) == 0) {
1050 if (!kpage) {
1051 /*
1052 * While we hold page lock, upgrade page from
1053 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1054 * stable_tree_insert() will update stable_node.
1055 */
1056 set_page_stable_node(page, NULL);
1057 mark_page_accessed(page);
1058 err = 0;
1059 } else if (pages_identical(page, kpage))
1060 err = replace_page(vma, page, kpage, orig_pte);
1061 }
31dbd01f 1062
80e14822 1063 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1064 munlock_vma_page(page);
5ad64688
HD
1065 if (!PageMlocked(kpage)) {
1066 unlock_page(page);
5ad64688
HD
1067 lock_page(kpage);
1068 mlock_vma_page(kpage);
1069 page = kpage; /* for final unlock */
1070 }
1071 }
73848b46 1072
8dd3557a 1073 unlock_page(page);
31dbd01f
IE
1074out:
1075 return err;
1076}
1077
81464e30
HD
1078/*
1079 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1080 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1081 *
1082 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1083 */
8dd3557a
HD
1084static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1085 struct page *page, struct page *kpage)
81464e30 1086{
8dd3557a 1087 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1088 struct vm_area_struct *vma;
1089 int err = -EFAULT;
1090
8dd3557a
HD
1091 down_read(&mm->mmap_sem);
1092 if (ksm_test_exit(mm))
9ba69294 1093 goto out;
8dd3557a
HD
1094 vma = find_vma(mm, rmap_item->address);
1095 if (!vma || vma->vm_start > rmap_item->address)
81464e30
HD
1096 goto out;
1097
8dd3557a 1098 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1099 if (err)
1100 goto out;
1101
bc56620b
HD
1102 /* Unstable nid is in union with stable anon_vma: remove first */
1103 remove_rmap_item_from_tree(rmap_item);
1104
db114b83 1105 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1106 rmap_item->anon_vma = vma->anon_vma;
1107 get_anon_vma(vma->anon_vma);
81464e30 1108out:
8dd3557a 1109 up_read(&mm->mmap_sem);
81464e30
HD
1110 return err;
1111}
1112
31dbd01f
IE
1113/*
1114 * try_to_merge_two_pages - take two identical pages and prepare them
1115 * to be merged into one page.
1116 *
8dd3557a
HD
1117 * This function returns the kpage if we successfully merged two identical
1118 * pages into one ksm page, NULL otherwise.
31dbd01f 1119 *
80e14822 1120 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1121 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1122 */
8dd3557a
HD
1123static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1124 struct page *page,
1125 struct rmap_item *tree_rmap_item,
1126 struct page *tree_page)
31dbd01f 1127{
80e14822 1128 int err;
31dbd01f 1129
80e14822 1130 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1131 if (!err) {
8dd3557a 1132 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1133 tree_page, page);
31dbd01f 1134 /*
81464e30
HD
1135 * If that fails, we have a ksm page with only one pte
1136 * pointing to it: so break it.
31dbd01f 1137 */
4035c07a 1138 if (err)
8dd3557a 1139 break_cow(rmap_item);
31dbd01f 1140 }
80e14822 1141 return err ? NULL : page;
31dbd01f
IE
1142}
1143
31dbd01f 1144/*
8dd3557a 1145 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1146 *
1147 * This function checks if there is a page inside the stable tree
1148 * with identical content to the page that we are scanning right now.
1149 *
7b6ba2c7 1150 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1151 * NULL otherwise.
1152 */
62b61f61 1153static struct page *stable_tree_search(struct page *page)
31dbd01f 1154{
90bd6fd3 1155 int nid;
ef53d16c 1156 struct rb_root *root;
4146d2d6
HD
1157 struct rb_node **new;
1158 struct rb_node *parent;
1159 struct stable_node *stable_node;
1160 struct stable_node *page_node;
31dbd01f 1161
4146d2d6
HD
1162 page_node = page_stable_node(page);
1163 if (page_node && page_node->head != &migrate_nodes) {
1164 /* ksm page forked */
08beca44 1165 get_page(page);
62b61f61 1166 return page;
08beca44
HD
1167 }
1168
90bd6fd3 1169 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1170 root = root_stable_tree + nid;
4146d2d6 1171again:
ef53d16c 1172 new = &root->rb_node;
4146d2d6 1173 parent = NULL;
90bd6fd3 1174
4146d2d6 1175 while (*new) {
4035c07a 1176 struct page *tree_page;
31dbd01f
IE
1177 int ret;
1178
08beca44 1179 cond_resched();
4146d2d6 1180 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1181 tree_page = get_ksm_page(stable_node, false);
4035c07a
HD
1182 if (!tree_page)
1183 return NULL;
31dbd01f 1184
4035c07a 1185 ret = memcmp_pages(page, tree_page);
c8d6553b 1186 put_page(tree_page);
31dbd01f 1187
4146d2d6 1188 parent = *new;
c8d6553b 1189 if (ret < 0)
4146d2d6 1190 new = &parent->rb_left;
c8d6553b 1191 else if (ret > 0)
4146d2d6 1192 new = &parent->rb_right;
c8d6553b
HD
1193 else {
1194 /*
1195 * Lock and unlock the stable_node's page (which
1196 * might already have been migrated) so that page
1197 * migration is sure to notice its raised count.
1198 * It would be more elegant to return stable_node
1199 * than kpage, but that involves more changes.
1200 */
1201 tree_page = get_ksm_page(stable_node, true);
4146d2d6 1202 if (tree_page) {
c8d6553b 1203 unlock_page(tree_page);
4146d2d6
HD
1204 if (get_kpfn_nid(stable_node->kpfn) !=
1205 NUMA(stable_node->nid)) {
1206 put_page(tree_page);
1207 goto replace;
1208 }
1209 return tree_page;
1210 }
1211 /*
1212 * There is now a place for page_node, but the tree may
1213 * have been rebalanced, so re-evaluate parent and new.
1214 */
1215 if (page_node)
1216 goto again;
1217 return NULL;
c8d6553b 1218 }
31dbd01f
IE
1219 }
1220
4146d2d6
HD
1221 if (!page_node)
1222 return NULL;
1223
1224 list_del(&page_node->list);
1225 DO_NUMA(page_node->nid = nid);
1226 rb_link_node(&page_node->node, parent, new);
ef53d16c 1227 rb_insert_color(&page_node->node, root);
4146d2d6
HD
1228 get_page(page);
1229 return page;
1230
1231replace:
1232 if (page_node) {
1233 list_del(&page_node->list);
1234 DO_NUMA(page_node->nid = nid);
ef53d16c 1235 rb_replace_node(&stable_node->node, &page_node->node, root);
4146d2d6
HD
1236 get_page(page);
1237 } else {
ef53d16c 1238 rb_erase(&stable_node->node, root);
4146d2d6
HD
1239 page = NULL;
1240 }
1241 stable_node->head = &migrate_nodes;
1242 list_add(&stable_node->list, stable_node->head);
1243 return page;
31dbd01f
IE
1244}
1245
1246/*
e850dcf5 1247 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1248 * into the stable tree.
1249 *
7b6ba2c7
HD
1250 * This function returns the stable tree node just allocated on success,
1251 * NULL otherwise.
31dbd01f 1252 */
7b6ba2c7 1253static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1254{
90bd6fd3
PH
1255 int nid;
1256 unsigned long kpfn;
ef53d16c 1257 struct rb_root *root;
90bd6fd3 1258 struct rb_node **new;
31dbd01f 1259 struct rb_node *parent = NULL;
7b6ba2c7 1260 struct stable_node *stable_node;
31dbd01f 1261
90bd6fd3
PH
1262 kpfn = page_to_pfn(kpage);
1263 nid = get_kpfn_nid(kpfn);
ef53d16c
HD
1264 root = root_stable_tree + nid;
1265 new = &root->rb_node;
90bd6fd3 1266
31dbd01f 1267 while (*new) {
4035c07a 1268 struct page *tree_page;
31dbd01f
IE
1269 int ret;
1270
08beca44 1271 cond_resched();
7b6ba2c7 1272 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1273 tree_page = get_ksm_page(stable_node, false);
4035c07a
HD
1274 if (!tree_page)
1275 return NULL;
31dbd01f 1276
4035c07a
HD
1277 ret = memcmp_pages(kpage, tree_page);
1278 put_page(tree_page);
31dbd01f
IE
1279
1280 parent = *new;
1281 if (ret < 0)
1282 new = &parent->rb_left;
1283 else if (ret > 0)
1284 new = &parent->rb_right;
1285 else {
1286 /*
1287 * It is not a bug that stable_tree_search() didn't
1288 * find this node: because at that time our page was
1289 * not yet write-protected, so may have changed since.
1290 */
1291 return NULL;
1292 }
1293 }
1294
7b6ba2c7
HD
1295 stable_node = alloc_stable_node();
1296 if (!stable_node)
1297 return NULL;
31dbd01f 1298
7b6ba2c7 1299 INIT_HLIST_HEAD(&stable_node->hlist);
90bd6fd3 1300 stable_node->kpfn = kpfn;
08beca44 1301 set_page_stable_node(kpage, stable_node);
4146d2d6 1302 DO_NUMA(stable_node->nid = nid);
e850dcf5 1303 rb_link_node(&stable_node->node, parent, new);
ef53d16c 1304 rb_insert_color(&stable_node->node, root);
08beca44 1305
7b6ba2c7 1306 return stable_node;
31dbd01f
IE
1307}
1308
1309/*
8dd3557a
HD
1310 * unstable_tree_search_insert - search for identical page,
1311 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1312 *
1313 * This function searches for a page in the unstable tree identical to the
1314 * page currently being scanned; and if no identical page is found in the
1315 * tree, we insert rmap_item as a new object into the unstable tree.
1316 *
1317 * This function returns pointer to rmap_item found to be identical
1318 * to the currently scanned page, NULL otherwise.
1319 *
1320 * This function does both searching and inserting, because they share
1321 * the same walking algorithm in an rbtree.
1322 */
8dd3557a
HD
1323static
1324struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1325 struct page *page,
1326 struct page **tree_pagep)
31dbd01f 1327{
90bd6fd3
PH
1328 struct rb_node **new;
1329 struct rb_root *root;
31dbd01f 1330 struct rb_node *parent = NULL;
90bd6fd3
PH
1331 int nid;
1332
1333 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1334 root = root_unstable_tree + nid;
90bd6fd3 1335 new = &root->rb_node;
31dbd01f
IE
1336
1337 while (*new) {
1338 struct rmap_item *tree_rmap_item;
8dd3557a 1339 struct page *tree_page;
31dbd01f
IE
1340 int ret;
1341
d178f27f 1342 cond_resched();
31dbd01f 1343 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1344 tree_page = get_mergeable_page(tree_rmap_item);
22eccdd7 1345 if (IS_ERR_OR_NULL(tree_page))
31dbd01f
IE
1346 return NULL;
1347
1348 /*
8dd3557a 1349 * Don't substitute a ksm page for a forked page.
31dbd01f 1350 */
8dd3557a
HD
1351 if (page == tree_page) {
1352 put_page(tree_page);
31dbd01f
IE
1353 return NULL;
1354 }
1355
8dd3557a 1356 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1357
1358 parent = *new;
1359 if (ret < 0) {
8dd3557a 1360 put_page(tree_page);
31dbd01f
IE
1361 new = &parent->rb_left;
1362 } else if (ret > 0) {
8dd3557a 1363 put_page(tree_page);
31dbd01f 1364 new = &parent->rb_right;
b599cbdf
HD
1365 } else if (!ksm_merge_across_nodes &&
1366 page_to_nid(tree_page) != nid) {
1367 /*
1368 * If tree_page has been migrated to another NUMA node,
1369 * it will be flushed out and put in the right unstable
1370 * tree next time: only merge with it when across_nodes.
1371 */
1372 put_page(tree_page);
1373 return NULL;
31dbd01f 1374 } else {
8dd3557a 1375 *tree_pagep = tree_page;
31dbd01f
IE
1376 return tree_rmap_item;
1377 }
1378 }
1379
7b6ba2c7 1380 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1381 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1382 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1383 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1384 rb_insert_color(&rmap_item->node, root);
31dbd01f 1385
473b0ce4 1386 ksm_pages_unshared++;
31dbd01f
IE
1387 return NULL;
1388}
1389
1390/*
1391 * stable_tree_append - add another rmap_item to the linked list of
1392 * rmap_items hanging off a given node of the stable tree, all sharing
1393 * the same ksm page.
1394 */
1395static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1396 struct stable_node *stable_node)
31dbd01f 1397{
7b6ba2c7 1398 rmap_item->head = stable_node;
31dbd01f 1399 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1400 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1401
7b6ba2c7
HD
1402 if (rmap_item->hlist.next)
1403 ksm_pages_sharing++;
1404 else
1405 ksm_pages_shared++;
31dbd01f
IE
1406}
1407
1408/*
81464e30
HD
1409 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1410 * if not, compare checksum to previous and if it's the same, see if page can
1411 * be inserted into the unstable tree, or merged with a page already there and
1412 * both transferred to the stable tree.
31dbd01f
IE
1413 *
1414 * @page: the page that we are searching identical page to.
1415 * @rmap_item: the reverse mapping into the virtual address of this page
1416 */
1417static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1418{
31dbd01f 1419 struct rmap_item *tree_rmap_item;
8dd3557a 1420 struct page *tree_page = NULL;
7b6ba2c7 1421 struct stable_node *stable_node;
8dd3557a 1422 struct page *kpage;
31dbd01f
IE
1423 unsigned int checksum;
1424 int err;
1425
4146d2d6
HD
1426 stable_node = page_stable_node(page);
1427 if (stable_node) {
1428 if (stable_node->head != &migrate_nodes &&
1429 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1430 rb_erase(&stable_node->node,
ef53d16c 1431 root_stable_tree + NUMA(stable_node->nid));
4146d2d6
HD
1432 stable_node->head = &migrate_nodes;
1433 list_add(&stable_node->list, stable_node->head);
1434 }
1435 if (stable_node->head != &migrate_nodes &&
1436 rmap_item->head == stable_node)
1437 return;
1438 }
31dbd01f
IE
1439
1440 /* We first start with searching the page inside the stable tree */
62b61f61 1441 kpage = stable_tree_search(page);
4146d2d6
HD
1442 if (kpage == page && rmap_item->head == stable_node) {
1443 put_page(kpage);
1444 return;
1445 }
1446
1447 remove_rmap_item_from_tree(rmap_item);
1448
62b61f61 1449 if (kpage) {
08beca44 1450 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1451 if (!err) {
1452 /*
1453 * The page was successfully merged:
1454 * add its rmap_item to the stable tree.
1455 */
5ad64688 1456 lock_page(kpage);
62b61f61 1457 stable_tree_append(rmap_item, page_stable_node(kpage));
5ad64688 1458 unlock_page(kpage);
31dbd01f 1459 }
8dd3557a 1460 put_page(kpage);
31dbd01f
IE
1461 return;
1462 }
1463
1464 /*
4035c07a
HD
1465 * If the hash value of the page has changed from the last time
1466 * we calculated it, this page is changing frequently: therefore we
1467 * don't want to insert it in the unstable tree, and we don't want
1468 * to waste our time searching for something identical to it there.
31dbd01f
IE
1469 */
1470 checksum = calc_checksum(page);
1471 if (rmap_item->oldchecksum != checksum) {
1472 rmap_item->oldchecksum = checksum;
1473 return;
1474 }
1475
8dd3557a
HD
1476 tree_rmap_item =
1477 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1478 if (tree_rmap_item) {
8dd3557a
HD
1479 kpage = try_to_merge_two_pages(rmap_item, page,
1480 tree_rmap_item, tree_page);
1481 put_page(tree_page);
8dd3557a 1482 if (kpage) {
bc56620b
HD
1483 /*
1484 * The pages were successfully merged: insert new
1485 * node in the stable tree and add both rmap_items.
1486 */
5ad64688 1487 lock_page(kpage);
7b6ba2c7
HD
1488 stable_node = stable_tree_insert(kpage);
1489 if (stable_node) {
1490 stable_tree_append(tree_rmap_item, stable_node);
1491 stable_tree_append(rmap_item, stable_node);
1492 }
5ad64688 1493 unlock_page(kpage);
7b6ba2c7 1494
31dbd01f
IE
1495 /*
1496 * If we fail to insert the page into the stable tree,
1497 * we will have 2 virtual addresses that are pointing
1498 * to a ksm page left outside the stable tree,
1499 * in which case we need to break_cow on both.
1500 */
7b6ba2c7 1501 if (!stable_node) {
8dd3557a
HD
1502 break_cow(tree_rmap_item);
1503 break_cow(rmap_item);
31dbd01f
IE
1504 }
1505 }
31dbd01f
IE
1506 }
1507}
1508
1509static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1510 struct rmap_item **rmap_list,
31dbd01f
IE
1511 unsigned long addr)
1512{
1513 struct rmap_item *rmap_item;
1514
6514d511
HD
1515 while (*rmap_list) {
1516 rmap_item = *rmap_list;
93d17715 1517 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1518 return rmap_item;
31dbd01f
IE
1519 if (rmap_item->address > addr)
1520 break;
6514d511 1521 *rmap_list = rmap_item->rmap_list;
31dbd01f 1522 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1523 free_rmap_item(rmap_item);
1524 }
1525
1526 rmap_item = alloc_rmap_item();
1527 if (rmap_item) {
1528 /* It has already been zeroed */
1529 rmap_item->mm = mm_slot->mm;
1530 rmap_item->address = addr;
6514d511
HD
1531 rmap_item->rmap_list = *rmap_list;
1532 *rmap_list = rmap_item;
31dbd01f
IE
1533 }
1534 return rmap_item;
1535}
1536
1537static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1538{
1539 struct mm_struct *mm;
1540 struct mm_slot *slot;
1541 struct vm_area_struct *vma;
1542 struct rmap_item *rmap_item;
90bd6fd3 1543 int nid;
31dbd01f
IE
1544
1545 if (list_empty(&ksm_mm_head.mm_list))
1546 return NULL;
1547
1548 slot = ksm_scan.mm_slot;
1549 if (slot == &ksm_mm_head) {
2919bfd0
HD
1550 /*
1551 * A number of pages can hang around indefinitely on per-cpu
1552 * pagevecs, raised page count preventing write_protect_page
1553 * from merging them. Though it doesn't really matter much,
1554 * it is puzzling to see some stuck in pages_volatile until
1555 * other activity jostles them out, and they also prevented
1556 * LTP's KSM test from succeeding deterministically; so drain
1557 * them here (here rather than on entry to ksm_do_scan(),
1558 * so we don't IPI too often when pages_to_scan is set low).
1559 */
1560 lru_add_drain_all();
1561
4146d2d6
HD
1562 /*
1563 * Whereas stale stable_nodes on the stable_tree itself
1564 * get pruned in the regular course of stable_tree_search(),
1565 * those moved out to the migrate_nodes list can accumulate:
1566 * so prune them once before each full scan.
1567 */
1568 if (!ksm_merge_across_nodes) {
1569 struct stable_node *stable_node;
1570 struct list_head *this, *next;
1571 struct page *page;
1572
1573 list_for_each_safe(this, next, &migrate_nodes) {
1574 stable_node = list_entry(this,
1575 struct stable_node, list);
1576 page = get_ksm_page(stable_node, false);
1577 if (page)
1578 put_page(page);
1579 cond_resched();
1580 }
1581 }
1582
ef53d16c 1583 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 1584 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
1585
1586 spin_lock(&ksm_mmlist_lock);
1587 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1588 ksm_scan.mm_slot = slot;
1589 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
1590 /*
1591 * Although we tested list_empty() above, a racing __ksm_exit
1592 * of the last mm on the list may have removed it since then.
1593 */
1594 if (slot == &ksm_mm_head)
1595 return NULL;
31dbd01f
IE
1596next_mm:
1597 ksm_scan.address = 0;
6514d511 1598 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1599 }
1600
1601 mm = slot->mm;
1602 down_read(&mm->mmap_sem);
9ba69294
HD
1603 if (ksm_test_exit(mm))
1604 vma = NULL;
1605 else
1606 vma = find_vma(mm, ksm_scan.address);
1607
1608 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1609 if (!(vma->vm_flags & VM_MERGEABLE))
1610 continue;
1611 if (ksm_scan.address < vma->vm_start)
1612 ksm_scan.address = vma->vm_start;
1613 if (!vma->anon_vma)
1614 ksm_scan.address = vma->vm_end;
1615
1616 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1617 if (ksm_test_exit(mm))
1618 break;
31dbd01f 1619 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
1620 if (IS_ERR_OR_NULL(*page)) {
1621 ksm_scan.address += PAGE_SIZE;
1622 cond_resched();
1623 continue;
1624 }
29ad768c
AA
1625 if (PageAnon(*page) ||
1626 page_trans_compound_anon(*page)) {
31dbd01f
IE
1627 flush_anon_page(vma, *page, ksm_scan.address);
1628 flush_dcache_page(*page);
1629 rmap_item = get_next_rmap_item(slot,
6514d511 1630 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1631 if (rmap_item) {
6514d511
HD
1632 ksm_scan.rmap_list =
1633 &rmap_item->rmap_list;
31dbd01f
IE
1634 ksm_scan.address += PAGE_SIZE;
1635 } else
1636 put_page(*page);
1637 up_read(&mm->mmap_sem);
1638 return rmap_item;
1639 }
21ae5b01 1640 put_page(*page);
31dbd01f
IE
1641 ksm_scan.address += PAGE_SIZE;
1642 cond_resched();
1643 }
1644 }
1645
9ba69294
HD
1646 if (ksm_test_exit(mm)) {
1647 ksm_scan.address = 0;
6514d511 1648 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1649 }
31dbd01f
IE
1650 /*
1651 * Nuke all the rmap_items that are above this current rmap:
1652 * because there were no VM_MERGEABLE vmas with such addresses.
1653 */
6514d511 1654 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1655
1656 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1657 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1658 struct mm_slot, mm_list);
1659 if (ksm_scan.address == 0) {
1660 /*
1661 * We've completed a full scan of all vmas, holding mmap_sem
1662 * throughout, and found no VM_MERGEABLE: so do the same as
1663 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1664 * This applies either when cleaning up after __ksm_exit
1665 * (but beware: we can reach here even before __ksm_exit),
1666 * or when all VM_MERGEABLE areas have been unmapped (and
1667 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 1668 */
4ca3a69b 1669 hash_del(&slot->link);
cd551f97 1670 list_del(&slot->mm_list);
9ba69294
HD
1671 spin_unlock(&ksm_mmlist_lock);
1672
cd551f97
HD
1673 free_mm_slot(slot);
1674 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1675 up_read(&mm->mmap_sem);
1676 mmdrop(mm);
1677 } else {
1678 spin_unlock(&ksm_mmlist_lock);
1679 up_read(&mm->mmap_sem);
cd551f97 1680 }
31dbd01f
IE
1681
1682 /* Repeat until we've completed scanning the whole list */
cd551f97 1683 slot = ksm_scan.mm_slot;
31dbd01f
IE
1684 if (slot != &ksm_mm_head)
1685 goto next_mm;
1686
31dbd01f
IE
1687 ksm_scan.seqnr++;
1688 return NULL;
1689}
1690
1691/**
1692 * ksm_do_scan - the ksm scanner main worker function.
1693 * @scan_npages - number of pages we want to scan before we return.
1694 */
1695static void ksm_do_scan(unsigned int scan_npages)
1696{
1697 struct rmap_item *rmap_item;
22eccdd7 1698 struct page *uninitialized_var(page);
31dbd01f 1699
878aee7d 1700 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
1701 cond_resched();
1702 rmap_item = scan_get_next_rmap_item(&page);
1703 if (!rmap_item)
1704 return;
4146d2d6 1705 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
1706 put_page(page);
1707 }
1708}
1709
6e158384
HD
1710static int ksmd_should_run(void)
1711{
1712 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1713}
1714
31dbd01f
IE
1715static int ksm_scan_thread(void *nothing)
1716{
878aee7d 1717 set_freezable();
339aa624 1718 set_user_nice(current, 5);
31dbd01f
IE
1719
1720 while (!kthread_should_stop()) {
6e158384 1721 mutex_lock(&ksm_thread_mutex);
ef4d43a8 1722 wait_while_offlining();
6e158384 1723 if (ksmd_should_run())
31dbd01f 1724 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1725 mutex_unlock(&ksm_thread_mutex);
1726
878aee7d
AA
1727 try_to_freeze();
1728
6e158384 1729 if (ksmd_should_run()) {
31dbd01f
IE
1730 schedule_timeout_interruptible(
1731 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1732 } else {
878aee7d 1733 wait_event_freezable(ksm_thread_wait,
6e158384 1734 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1735 }
1736 }
1737 return 0;
1738}
1739
f8af4da3
HD
1740int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1741 unsigned long end, int advice, unsigned long *vm_flags)
1742{
1743 struct mm_struct *mm = vma->vm_mm;
d952b791 1744 int err;
f8af4da3
HD
1745
1746 switch (advice) {
1747 case MADV_MERGEABLE:
1748 /*
1749 * Be somewhat over-protective for now!
1750 */
1751 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1752 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
314e51b9 1753 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
f8af4da3
HD
1754 return 0; /* just ignore the advice */
1755
cc2383ec
KK
1756#ifdef VM_SAO
1757 if (*vm_flags & VM_SAO)
1758 return 0;
1759#endif
1760
d952b791
HD
1761 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1762 err = __ksm_enter(mm);
1763 if (err)
1764 return err;
1765 }
f8af4da3
HD
1766
1767 *vm_flags |= VM_MERGEABLE;
1768 break;
1769
1770 case MADV_UNMERGEABLE:
1771 if (!(*vm_flags & VM_MERGEABLE))
1772 return 0; /* just ignore the advice */
1773
d952b791
HD
1774 if (vma->anon_vma) {
1775 err = unmerge_ksm_pages(vma, start, end);
1776 if (err)
1777 return err;
1778 }
f8af4da3
HD
1779
1780 *vm_flags &= ~VM_MERGEABLE;
1781 break;
1782 }
1783
1784 return 0;
1785}
1786
1787int __ksm_enter(struct mm_struct *mm)
1788{
6e158384
HD
1789 struct mm_slot *mm_slot;
1790 int needs_wakeup;
1791
1792 mm_slot = alloc_mm_slot();
31dbd01f
IE
1793 if (!mm_slot)
1794 return -ENOMEM;
1795
6e158384
HD
1796 /* Check ksm_run too? Would need tighter locking */
1797 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1798
31dbd01f
IE
1799 spin_lock(&ksm_mmlist_lock);
1800 insert_to_mm_slots_hash(mm, mm_slot);
1801 /*
cbf86cfe
HD
1802 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1803 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
1804 * down a little; when fork is followed by immediate exec, we don't
1805 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
1806 *
1807 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1808 * scanning cursor, otherwise KSM pages in newly forked mms will be
1809 * missed: then we might as well insert at the end of the list.
31dbd01f 1810 */
cbf86cfe
HD
1811 if (ksm_run & KSM_RUN_UNMERGE)
1812 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1813 else
1814 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
1815 spin_unlock(&ksm_mmlist_lock);
1816
f8af4da3 1817 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1818 atomic_inc(&mm->mm_count);
6e158384
HD
1819
1820 if (needs_wakeup)
1821 wake_up_interruptible(&ksm_thread_wait);
1822
f8af4da3
HD
1823 return 0;
1824}
1825
1c2fb7a4 1826void __ksm_exit(struct mm_struct *mm)
f8af4da3 1827{
cd551f97 1828 struct mm_slot *mm_slot;
9ba69294 1829 int easy_to_free = 0;
cd551f97 1830
31dbd01f 1831 /*
9ba69294
HD
1832 * This process is exiting: if it's straightforward (as is the
1833 * case when ksmd was never running), free mm_slot immediately.
1834 * But if it's at the cursor or has rmap_items linked to it, use
1835 * mmap_sem to synchronize with any break_cows before pagetables
1836 * are freed, and leave the mm_slot on the list for ksmd to free.
1837 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1838 */
9ba69294 1839
cd551f97
HD
1840 spin_lock(&ksm_mmlist_lock);
1841 mm_slot = get_mm_slot(mm);
9ba69294 1842 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1843 if (!mm_slot->rmap_list) {
4ca3a69b 1844 hash_del(&mm_slot->link);
9ba69294
HD
1845 list_del(&mm_slot->mm_list);
1846 easy_to_free = 1;
1847 } else {
1848 list_move(&mm_slot->mm_list,
1849 &ksm_scan.mm_slot->mm_list);
1850 }
cd551f97 1851 }
cd551f97
HD
1852 spin_unlock(&ksm_mmlist_lock);
1853
9ba69294
HD
1854 if (easy_to_free) {
1855 free_mm_slot(mm_slot);
1856 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1857 mmdrop(mm);
1858 } else if (mm_slot) {
9ba69294
HD
1859 down_write(&mm->mmap_sem);
1860 up_write(&mm->mmap_sem);
9ba69294 1861 }
31dbd01f
IE
1862}
1863
cbf86cfe 1864struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
1865 struct vm_area_struct *vma, unsigned long address)
1866{
cbf86cfe 1867 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
1868 struct page *new_page;
1869
cbf86cfe
HD
1870 if (PageKsm(page)) {
1871 if (page_stable_node(page) &&
1872 !(ksm_run & KSM_RUN_UNMERGE))
1873 return page; /* no need to copy it */
1874 } else if (!anon_vma) {
1875 return page; /* no need to copy it */
1876 } else if (anon_vma->root == vma->anon_vma->root &&
1877 page->index == linear_page_index(vma, address)) {
1878 return page; /* still no need to copy it */
1879 }
1880 if (!PageUptodate(page))
1881 return page; /* let do_swap_page report the error */
1882
5ad64688
HD
1883 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1884 if (new_page) {
1885 copy_user_highpage(new_page, page, address, vma);
1886
1887 SetPageDirty(new_page);
1888 __SetPageUptodate(new_page);
5ad64688 1889 __set_page_locked(new_page);
5ad64688
HD
1890 }
1891
5ad64688
HD
1892 return new_page;
1893}
1894
1895int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1896 unsigned long *vm_flags)
1897{
1898 struct stable_node *stable_node;
1899 struct rmap_item *rmap_item;
5ad64688
HD
1900 unsigned int mapcount = page_mapcount(page);
1901 int referenced = 0;
db114b83 1902 int search_new_forks = 0;
5ad64688
HD
1903
1904 VM_BUG_ON(!PageKsm(page));
1905 VM_BUG_ON(!PageLocked(page));
1906
1907 stable_node = page_stable_node(page);
1908 if (!stable_node)
1909 return 0;
db114b83 1910again:
b67bfe0d 1911 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
db114b83 1912 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1913 struct anon_vma_chain *vmac;
db114b83 1914 struct vm_area_struct *vma;
5ad64688 1915
b6b19f25 1916 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1917 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1918 0, ULONG_MAX) {
5beb4930 1919 vma = vmac->vma;
db114b83
HD
1920 if (rmap_item->address < vma->vm_start ||
1921 rmap_item->address >= vma->vm_end)
1922 continue;
1923 /*
1924 * Initially we examine only the vma which covers this
1925 * rmap_item; but later, if there is still work to do,
1926 * we examine covering vmas in other mms: in case they
1927 * were forked from the original since ksmd passed.
1928 */
1929 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1930 continue;
1931
1932 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1933 continue;
5ad64688 1934
db114b83 1935 referenced += page_referenced_one(page, vma,
5ad64688 1936 rmap_item->address, &mapcount, vm_flags);
db114b83
HD
1937 if (!search_new_forks || !mapcount)
1938 break;
1939 }
b6b19f25 1940 anon_vma_unlock_read(anon_vma);
5ad64688
HD
1941 if (!mapcount)
1942 goto out;
1943 }
db114b83
HD
1944 if (!search_new_forks++)
1945 goto again;
5ad64688 1946out:
5ad64688
HD
1947 return referenced;
1948}
1949
1950int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1951{
1952 struct stable_node *stable_node;
5ad64688
HD
1953 struct rmap_item *rmap_item;
1954 int ret = SWAP_AGAIN;
db114b83 1955 int search_new_forks = 0;
5ad64688
HD
1956
1957 VM_BUG_ON(!PageKsm(page));
1958 VM_BUG_ON(!PageLocked(page));
1959
1960 stable_node = page_stable_node(page);
1961 if (!stable_node)
1962 return SWAP_FAIL;
db114b83 1963again:
b67bfe0d 1964 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
db114b83 1965 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1966 struct anon_vma_chain *vmac;
db114b83 1967 struct vm_area_struct *vma;
5ad64688 1968
b6b19f25 1969 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1970 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1971 0, ULONG_MAX) {
5beb4930 1972 vma = vmac->vma;
db114b83
HD
1973 if (rmap_item->address < vma->vm_start ||
1974 rmap_item->address >= vma->vm_end)
1975 continue;
1976 /*
1977 * Initially we examine only the vma which covers this
1978 * rmap_item; but later, if there is still work to do,
1979 * we examine covering vmas in other mms: in case they
1980 * were forked from the original since ksmd passed.
1981 */
1982 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1983 continue;
1984
1985 ret = try_to_unmap_one(page, vma,
1986 rmap_item->address, flags);
1987 if (ret != SWAP_AGAIN || !page_mapped(page)) {
b6b19f25 1988 anon_vma_unlock_read(anon_vma);
db114b83
HD
1989 goto out;
1990 }
1991 }
b6b19f25 1992 anon_vma_unlock_read(anon_vma);
5ad64688 1993 }
db114b83
HD
1994 if (!search_new_forks++)
1995 goto again;
5ad64688 1996out:
5ad64688
HD
1997 return ret;
1998}
1999
e9995ef9
HD
2000#ifdef CONFIG_MIGRATION
2001int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
2002 struct vm_area_struct *, unsigned long, void *), void *arg)
2003{
2004 struct stable_node *stable_node;
e9995ef9
HD
2005 struct rmap_item *rmap_item;
2006 int ret = SWAP_AGAIN;
2007 int search_new_forks = 0;
2008
2009 VM_BUG_ON(!PageKsm(page));
2010 VM_BUG_ON(!PageLocked(page));
2011
2012 stable_node = page_stable_node(page);
2013 if (!stable_node)
2014 return ret;
2015again:
b67bfe0d 2016 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2017 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2018 struct anon_vma_chain *vmac;
e9995ef9
HD
2019 struct vm_area_struct *vma;
2020
b6b19f25 2021 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2022 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2023 0, ULONG_MAX) {
5beb4930 2024 vma = vmac->vma;
e9995ef9
HD
2025 if (rmap_item->address < vma->vm_start ||
2026 rmap_item->address >= vma->vm_end)
2027 continue;
2028 /*
2029 * Initially we examine only the vma which covers this
2030 * rmap_item; but later, if there is still work to do,
2031 * we examine covering vmas in other mms: in case they
2032 * were forked from the original since ksmd passed.
2033 */
2034 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2035 continue;
2036
2037 ret = rmap_one(page, vma, rmap_item->address, arg);
2038 if (ret != SWAP_AGAIN) {
b6b19f25 2039 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2040 goto out;
2041 }
2042 }
b6b19f25 2043 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2044 }
2045 if (!search_new_forks++)
2046 goto again;
2047out:
2048 return ret;
2049}
2050
2051void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2052{
2053 struct stable_node *stable_node;
2054
2055 VM_BUG_ON(!PageLocked(oldpage));
2056 VM_BUG_ON(!PageLocked(newpage));
2057 VM_BUG_ON(newpage->mapping != oldpage->mapping);
2058
2059 stable_node = page_stable_node(newpage);
2060 if (stable_node) {
62b61f61
HD
2061 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
2062 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2063 /*
2064 * newpage->mapping was set in advance; now we need smp_wmb()
2065 * to make sure that the new stable_node->kpfn is visible
2066 * to get_ksm_page() before it can see that oldpage->mapping
2067 * has gone stale (or that PageSwapCache has been cleared).
2068 */
2069 smp_wmb();
2070 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2071 }
2072}
2073#endif /* CONFIG_MIGRATION */
2074
62b61f61 2075#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2076static int just_wait(void *word)
2077{
2078 schedule();
2079 return 0;
2080}
2081
2082static void wait_while_offlining(void)
2083{
2084 while (ksm_run & KSM_RUN_OFFLINE) {
2085 mutex_unlock(&ksm_thread_mutex);
2086 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2087 just_wait, TASK_UNINTERRUPTIBLE);
2088 mutex_lock(&ksm_thread_mutex);
2089 }
2090}
2091
ee0ea59c
HD
2092static void ksm_check_stable_tree(unsigned long start_pfn,
2093 unsigned long end_pfn)
62b61f61 2094{
ee0ea59c 2095 struct stable_node *stable_node;
4146d2d6 2096 struct list_head *this, *next;
62b61f61 2097 struct rb_node *node;
90bd6fd3 2098 int nid;
62b61f61 2099
ef53d16c
HD
2100 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2101 node = rb_first(root_stable_tree + nid);
ee0ea59c 2102 while (node) {
90bd6fd3
PH
2103 stable_node = rb_entry(node, struct stable_node, node);
2104 if (stable_node->kpfn >= start_pfn &&
ee0ea59c
HD
2105 stable_node->kpfn < end_pfn) {
2106 /*
2107 * Don't get_ksm_page, page has already gone:
2108 * which is why we keep kpfn instead of page*
2109 */
2110 remove_node_from_stable_tree(stable_node);
ef53d16c 2111 node = rb_first(root_stable_tree + nid);
ee0ea59c
HD
2112 } else
2113 node = rb_next(node);
2114 cond_resched();
90bd6fd3 2115 }
ee0ea59c 2116 }
4146d2d6
HD
2117 list_for_each_safe(this, next, &migrate_nodes) {
2118 stable_node = list_entry(this, struct stable_node, list);
2119 if (stable_node->kpfn >= start_pfn &&
2120 stable_node->kpfn < end_pfn)
2121 remove_node_from_stable_tree(stable_node);
2122 cond_resched();
2123 }
62b61f61
HD
2124}
2125
2126static int ksm_memory_callback(struct notifier_block *self,
2127 unsigned long action, void *arg)
2128{
2129 struct memory_notify *mn = arg;
62b61f61
HD
2130
2131 switch (action) {
2132 case MEM_GOING_OFFLINE:
2133 /*
ef4d43a8
HD
2134 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2135 * and remove_all_stable_nodes() while memory is going offline:
2136 * it is unsafe for them to touch the stable tree at this time.
2137 * But unmerge_ksm_pages(), rmap lookups and other entry points
2138 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2139 */
ef4d43a8
HD
2140 mutex_lock(&ksm_thread_mutex);
2141 ksm_run |= KSM_RUN_OFFLINE;
2142 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2143 break;
2144
2145 case MEM_OFFLINE:
2146 /*
2147 * Most of the work is done by page migration; but there might
2148 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2149 * pages which have been offlined: prune those from the tree,
2150 * otherwise get_ksm_page() might later try to access a
2151 * non-existent struct page.
62b61f61 2152 */
ee0ea59c
HD
2153 ksm_check_stable_tree(mn->start_pfn,
2154 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2155 /* fallthrough */
2156
2157 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2158 mutex_lock(&ksm_thread_mutex);
2159 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2160 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2161
2162 smp_mb(); /* wake_up_bit advises this */
2163 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2164 break;
2165 }
2166 return NOTIFY_OK;
2167}
ef4d43a8
HD
2168#else
2169static void wait_while_offlining(void)
2170{
2171}
62b61f61
HD
2172#endif /* CONFIG_MEMORY_HOTREMOVE */
2173
2ffd8679
HD
2174#ifdef CONFIG_SYSFS
2175/*
2176 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2177 */
2178
31dbd01f
IE
2179#define KSM_ATTR_RO(_name) \
2180 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2181#define KSM_ATTR(_name) \
2182 static struct kobj_attribute _name##_attr = \
2183 __ATTR(_name, 0644, _name##_show, _name##_store)
2184
2185static ssize_t sleep_millisecs_show(struct kobject *kobj,
2186 struct kobj_attribute *attr, char *buf)
2187{
2188 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2189}
2190
2191static ssize_t sleep_millisecs_store(struct kobject *kobj,
2192 struct kobj_attribute *attr,
2193 const char *buf, size_t count)
2194{
2195 unsigned long msecs;
2196 int err;
2197
2198 err = strict_strtoul(buf, 10, &msecs);
2199 if (err || msecs > UINT_MAX)
2200 return -EINVAL;
2201
2202 ksm_thread_sleep_millisecs = msecs;
2203
2204 return count;
2205}
2206KSM_ATTR(sleep_millisecs);
2207
2208static ssize_t pages_to_scan_show(struct kobject *kobj,
2209 struct kobj_attribute *attr, char *buf)
2210{
2211 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2212}
2213
2214static ssize_t pages_to_scan_store(struct kobject *kobj,
2215 struct kobj_attribute *attr,
2216 const char *buf, size_t count)
2217{
2218 int err;
2219 unsigned long nr_pages;
2220
2221 err = strict_strtoul(buf, 10, &nr_pages);
2222 if (err || nr_pages > UINT_MAX)
2223 return -EINVAL;
2224
2225 ksm_thread_pages_to_scan = nr_pages;
2226
2227 return count;
2228}
2229KSM_ATTR(pages_to_scan);
2230
2231static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2232 char *buf)
2233{
ef4d43a8 2234 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2235}
2236
2237static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2238 const char *buf, size_t count)
2239{
2240 int err;
2241 unsigned long flags;
2242
2243 err = strict_strtoul(buf, 10, &flags);
2244 if (err || flags > UINT_MAX)
2245 return -EINVAL;
2246 if (flags > KSM_RUN_UNMERGE)
2247 return -EINVAL;
2248
2249 /*
2250 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2251 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2252 * breaking COW to free the pages_shared (but leaves mm_slots
2253 * on the list for when ksmd may be set running again).
31dbd01f
IE
2254 */
2255
2256 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2257 wait_while_offlining();
31dbd01f
IE
2258 if (ksm_run != flags) {
2259 ksm_run = flags;
d952b791 2260 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2261 set_current_oom_origin();
d952b791 2262 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2263 clear_current_oom_origin();
d952b791
HD
2264 if (err) {
2265 ksm_run = KSM_RUN_STOP;
2266 count = err;
2267 }
2268 }
31dbd01f
IE
2269 }
2270 mutex_unlock(&ksm_thread_mutex);
2271
2272 if (flags & KSM_RUN_MERGE)
2273 wake_up_interruptible(&ksm_thread_wait);
2274
2275 return count;
2276}
2277KSM_ATTR(run);
2278
90bd6fd3
PH
2279#ifdef CONFIG_NUMA
2280static ssize_t merge_across_nodes_show(struct kobject *kobj,
2281 struct kobj_attribute *attr, char *buf)
2282{
2283 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2284}
2285
2286static ssize_t merge_across_nodes_store(struct kobject *kobj,
2287 struct kobj_attribute *attr,
2288 const char *buf, size_t count)
2289{
2290 int err;
2291 unsigned long knob;
2292
2293 err = kstrtoul(buf, 10, &knob);
2294 if (err)
2295 return err;
2296 if (knob > 1)
2297 return -EINVAL;
2298
2299 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2300 wait_while_offlining();
90bd6fd3 2301 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2302 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2303 err = -EBUSY;
ef53d16c
HD
2304 else if (root_stable_tree == one_stable_tree) {
2305 struct rb_root *buf;
2306 /*
2307 * This is the first time that we switch away from the
2308 * default of merging across nodes: must now allocate
2309 * a buffer to hold as many roots as may be needed.
2310 * Allocate stable and unstable together:
2311 * MAXSMP NODES_SHIFT 10 will use 16kB.
2312 */
2313 buf = kcalloc(nr_node_ids + nr_node_ids,
2314 sizeof(*buf), GFP_KERNEL | __GFP_ZERO);
2315 /* Let us assume that RB_ROOT is NULL is zero */
2316 if (!buf)
2317 err = -ENOMEM;
2318 else {
2319 root_stable_tree = buf;
2320 root_unstable_tree = buf + nr_node_ids;
2321 /* Stable tree is empty but not the unstable */
2322 root_unstable_tree[0] = one_unstable_tree[0];
2323 }
2324 }
2325 if (!err) {
90bd6fd3 2326 ksm_merge_across_nodes = knob;
ef53d16c
HD
2327 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2328 }
90bd6fd3
PH
2329 }
2330 mutex_unlock(&ksm_thread_mutex);
2331
2332 return err ? err : count;
2333}
2334KSM_ATTR(merge_across_nodes);
2335#endif
2336
b4028260
HD
2337static ssize_t pages_shared_show(struct kobject *kobj,
2338 struct kobj_attribute *attr, char *buf)
2339{
2340 return sprintf(buf, "%lu\n", ksm_pages_shared);
2341}
2342KSM_ATTR_RO(pages_shared);
2343
2344static ssize_t pages_sharing_show(struct kobject *kobj,
2345 struct kobj_attribute *attr, char *buf)
2346{
e178dfde 2347 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2348}
2349KSM_ATTR_RO(pages_sharing);
2350
473b0ce4
HD
2351static ssize_t pages_unshared_show(struct kobject *kobj,
2352 struct kobj_attribute *attr, char *buf)
2353{
2354 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2355}
2356KSM_ATTR_RO(pages_unshared);
2357
2358static ssize_t pages_volatile_show(struct kobject *kobj,
2359 struct kobj_attribute *attr, char *buf)
2360{
2361 long ksm_pages_volatile;
2362
2363 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2364 - ksm_pages_sharing - ksm_pages_unshared;
2365 /*
2366 * It was not worth any locking to calculate that statistic,
2367 * but it might therefore sometimes be negative: conceal that.
2368 */
2369 if (ksm_pages_volatile < 0)
2370 ksm_pages_volatile = 0;
2371 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2372}
2373KSM_ATTR_RO(pages_volatile);
2374
2375static ssize_t full_scans_show(struct kobject *kobj,
2376 struct kobj_attribute *attr, char *buf)
2377{
2378 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2379}
2380KSM_ATTR_RO(full_scans);
2381
31dbd01f
IE
2382static struct attribute *ksm_attrs[] = {
2383 &sleep_millisecs_attr.attr,
2384 &pages_to_scan_attr.attr,
2385 &run_attr.attr,
b4028260
HD
2386 &pages_shared_attr.attr,
2387 &pages_sharing_attr.attr,
473b0ce4
HD
2388 &pages_unshared_attr.attr,
2389 &pages_volatile_attr.attr,
2390 &full_scans_attr.attr,
90bd6fd3
PH
2391#ifdef CONFIG_NUMA
2392 &merge_across_nodes_attr.attr,
2393#endif
31dbd01f
IE
2394 NULL,
2395};
2396
2397static struct attribute_group ksm_attr_group = {
2398 .attrs = ksm_attrs,
2399 .name = "ksm",
2400};
2ffd8679 2401#endif /* CONFIG_SYSFS */
31dbd01f
IE
2402
2403static int __init ksm_init(void)
2404{
2405 struct task_struct *ksm_thread;
2406 int err;
2407
2408 err = ksm_slab_init();
2409 if (err)
2410 goto out;
2411
31dbd01f
IE
2412 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2413 if (IS_ERR(ksm_thread)) {
2414 printk(KERN_ERR "ksm: creating kthread failed\n");
2415 err = PTR_ERR(ksm_thread);
d9f8984c 2416 goto out_free;
31dbd01f
IE
2417 }
2418
2ffd8679 2419#ifdef CONFIG_SYSFS
31dbd01f
IE
2420 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2421 if (err) {
2422 printk(KERN_ERR "ksm: register sysfs failed\n");
2ffd8679 2423 kthread_stop(ksm_thread);
d9f8984c 2424 goto out_free;
31dbd01f 2425 }
c73602ad
HD
2426#else
2427 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2428
2ffd8679 2429#endif /* CONFIG_SYSFS */
31dbd01f 2430
62b61f61 2431#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 2432 /* There is no significance to this priority 100 */
62b61f61
HD
2433 hotplug_memory_notifier(ksm_memory_callback, 100);
2434#endif
31dbd01f
IE
2435 return 0;
2436
d9f8984c 2437out_free:
31dbd01f
IE
2438 ksm_slab_free();
2439out:
2440 return err;
f8af4da3 2441}
31dbd01f 2442module_init(ksm_init)