drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
6843d925 24#include <linux/page-isolation.h>
d6606683 25
63551ae0
DG
26#include <asm/page.h>
27#include <asm/pgtable.h>
24669e58 28#include <asm/tlb.h>
63551ae0 29
24669e58 30#include <linux/io.h>
63551ae0 31#include <linux/hugetlb.h>
9dd540e2 32#include <linux/hugetlb_cgroup.h>
9a305230 33#include <linux/node.h>
7835e98b 34#include "internal.h"
1da177e4
LT
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
37static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38unsigned long hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
53ba51d2
JT
44__initdata LIST_HEAD(huge_boot_pages);
45
e5ff2159
AK
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 49static unsigned long __initdata default_hstate_size;
e5ff2159 50
3935baa9
DG
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
c3f38a38 54DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
90481622
DG
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
496ad9aa 131 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
132}
133
96822904
AW
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
84afd99b
AW
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
32f84528 143 * down_write(&mm->mmap_sem);
84afd99b 144 * or
32f84528
CF
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
147 */
148struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
25985edc 227 /* We overlap with this area, if it extends further than
96822904
AW
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267}
268
84afd99b
AW
269static long region_count(struct list_head *head, long f, long t)
270{
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
276 long seg_from;
277 long seg_to;
84afd99b
AW
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291}
292
e7c4b0bf
AW
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
a5516438
AK
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 299{
a5516438
AK
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
302}
303
0fe6e20b
NH
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306{
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
08fba699
MG
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << (hstate->order + PAGE_SHIFT);
324}
f340ca0f 325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 326
3340289d
MG
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336 return vma_kernel_pagesize(vma);
337}
338#endif
339
84afd99b
AW
340/*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 348
a1e78772
MG
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
a1e78772 367 */
e7c4b0bf
AW
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370 return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375{
376 vma->vm_private_data = (void *)value;
377}
378
84afd99b
AW
379struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382};
383
2a4b3ded 384static struct resv_map *resv_map_alloc(void)
84afd99b
AW
385{
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394}
395
2a4b3ded 396static void resv_map_release(struct kref *ref)
84afd99b
AW
397{
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
406{
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 408 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
2a4b3ded 411 return NULL;
a1e78772
MG
412}
413
84afd99b 414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
415{
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 418
84afd99b
AW
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
04f2cbe3 425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
434
435 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
436}
437
438/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
439static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
a1e78772 441{
c37f9fb1
AW
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
444
f83a275d 445 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 446 /* Shared mappings always use reserves */
a5516438 447 h->resv_huge_pages--;
84afd99b 448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
449 /*
450 * Only the process that called mmap() has reserves for
451 * private mappings.
452 */
a5516438 453 h->resv_huge_pages--;
a1e78772
MG
454 }
455}
456
04f2cbe3 457/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
458void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459{
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 461 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
462 vma->vm_private_data = (void *)0;
463}
464
465/* Returns true if the VMA has associated reserve pages */
7f09ca51 466static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 467{
f83a275d 468 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
a1e78772
MG
473}
474
0ebabb41
NH
475static void copy_gigantic_page(struct page *dst, struct page *src)
476{
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
481
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
485
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
489 }
490}
491
492void copy_huge_page(struct page *dst, struct page *src)
493{
494 int i;
495 struct hstate *h = page_hstate(src);
496
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
500 }
501
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
506 }
507}
508
a5516438 509static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
510{
511 int nid = page_to_nid(page);
0edaecfa 512 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
1da177e4
LT
515}
516
bf50bab2
NH
517static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518{
519 struct page *page;
520
6843d925
XQ
521 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
522 if (!is_migrate_isolate_page(page))
523 break;
524 /*
525 * if 'non-isolated free hugepage' not found on the list,
526 * the allocation fails.
527 */
528 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 529 return NULL;
0edaecfa 530 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 531 set_page_refcounted(page);
bf50bab2
NH
532 h->free_huge_pages--;
533 h->free_huge_pages_node[nid]--;
534 return page;
535}
536
a5516438
AK
537static struct page *dequeue_huge_page_vma(struct hstate *h,
538 struct vm_area_struct *vma,
04f2cbe3 539 unsigned long address, int avoid_reserve)
1da177e4 540{
b1c12cbc 541 struct page *page = NULL;
480eccf9 542 struct mempolicy *mpol;
19770b32 543 nodemask_t *nodemask;
c0ff7453 544 struct zonelist *zonelist;
dd1a239f
MG
545 struct zone *zone;
546 struct zoneref *z;
cc9a6c87 547 unsigned int cpuset_mems_cookie;
1da177e4 548
cc9a6c87
MG
549retry_cpuset:
550 cpuset_mems_cookie = get_mems_allowed();
c0ff7453
MX
551 zonelist = huge_zonelist(vma, address,
552 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
553 /*
554 * A child process with MAP_PRIVATE mappings created by their parent
555 * have no page reserves. This check ensures that reservations are
556 * not "stolen". The child may still get SIGKILLed
557 */
7f09ca51 558 if (!vma_has_reserves(vma) &&
a5516438 559 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 560 goto err;
a1e78772 561
04f2cbe3 562 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 563 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 564 goto err;
04f2cbe3 565
19770b32
MG
566 for_each_zone_zonelist_nodemask(zone, z, zonelist,
567 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
568 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
569 page = dequeue_huge_page_node(h, zone_to_nid(zone));
570 if (page) {
571 if (!avoid_reserve)
572 decrement_hugepage_resv_vma(h, vma);
573 break;
574 }
3abf7afd 575 }
1da177e4 576 }
cc9a6c87 577
52cd3b07 578 mpol_cond_put(mpol);
cc9a6c87
MG
579 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
580 goto retry_cpuset;
1da177e4 581 return page;
cc9a6c87
MG
582
583err:
584 mpol_cond_put(mpol);
585 return NULL;
1da177e4
LT
586}
587
a5516438 588static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
589{
590 int i;
a5516438 591
18229df5
AW
592 VM_BUG_ON(h->order >= MAX_ORDER);
593
a5516438
AK
594 h->nr_huge_pages--;
595 h->nr_huge_pages_node[page_to_nid(page)]--;
596 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
597 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
598 1 << PG_referenced | 1 << PG_dirty |
599 1 << PG_active | 1 << PG_reserved |
600 1 << PG_private | 1 << PG_writeback);
6af2acb6 601 }
9dd540e2 602 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
603 set_compound_page_dtor(page, NULL);
604 set_page_refcounted(page);
7f2e9525 605 arch_release_hugepage(page);
a5516438 606 __free_pages(page, huge_page_order(h));
6af2acb6
AL
607}
608
e5ff2159
AK
609struct hstate *size_to_hstate(unsigned long size)
610{
611 struct hstate *h;
612
613 for_each_hstate(h) {
614 if (huge_page_size(h) == size)
615 return h;
616 }
617 return NULL;
618}
619
27a85ef1
DG
620static void free_huge_page(struct page *page)
621{
a5516438
AK
622 /*
623 * Can't pass hstate in here because it is called from the
624 * compound page destructor.
625 */
e5ff2159 626 struct hstate *h = page_hstate(page);
7893d1d5 627 int nid = page_to_nid(page);
90481622
DG
628 struct hugepage_subpool *spool =
629 (struct hugepage_subpool *)page_private(page);
27a85ef1 630
e5df70ab 631 set_page_private(page, 0);
23be7468 632 page->mapping = NULL;
7893d1d5 633 BUG_ON(page_count(page));
0fe6e20b 634 BUG_ON(page_mapcount(page));
27a85ef1
DG
635
636 spin_lock(&hugetlb_lock);
6d76dcf4
AK
637 hugetlb_cgroup_uncharge_page(hstate_index(h),
638 pages_per_huge_page(h), page);
aa888a74 639 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
640 /* remove the page from active list */
641 list_del(&page->lru);
a5516438
AK
642 update_and_free_page(h, page);
643 h->surplus_huge_pages--;
644 h->surplus_huge_pages_node[nid]--;
7893d1d5 645 } else {
5d3a551c 646 arch_clear_hugepage_flags(page);
a5516438 647 enqueue_huge_page(h, page);
7893d1d5 648 }
27a85ef1 649 spin_unlock(&hugetlb_lock);
90481622 650 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
651}
652
a5516438 653static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 654{
0edaecfa 655 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
656 set_compound_page_dtor(page, free_huge_page);
657 spin_lock(&hugetlb_lock);
9dd540e2 658 set_hugetlb_cgroup(page, NULL);
a5516438
AK
659 h->nr_huge_pages++;
660 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
661 spin_unlock(&hugetlb_lock);
662 put_page(page); /* free it into the hugepage allocator */
663}
664
20a0307c
WF
665static void prep_compound_gigantic_page(struct page *page, unsigned long order)
666{
667 int i;
668 int nr_pages = 1 << order;
669 struct page *p = page + 1;
670
671 /* we rely on prep_new_huge_page to set the destructor */
672 set_compound_order(page, order);
673 __SetPageHead(page);
674 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
675 __SetPageTail(p);
58a84aa9 676 set_page_count(p, 0);
20a0307c
WF
677 p->first_page = page;
678 }
679}
680
7795912c
AM
681/*
682 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
683 * transparent huge pages. See the PageTransHuge() documentation for more
684 * details.
685 */
20a0307c
WF
686int PageHuge(struct page *page)
687{
688 compound_page_dtor *dtor;
689
690 if (!PageCompound(page))
691 return 0;
692
693 page = compound_head(page);
694 dtor = get_compound_page_dtor(page);
695
696 return dtor == free_huge_page;
697}
43131e14
NH
698EXPORT_SYMBOL_GPL(PageHuge);
699
17b6ada0
AA
700/*
701 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
702 * normal or transparent huge pages.
703 */
704int PageHeadHuge(struct page *page_head)
705{
706 compound_page_dtor *dtor;
707
708 if (!PageHead(page_head))
709 return 0;
710
711 dtor = get_compound_page_dtor(page_head);
712
713 return dtor == free_huge_page;
714}
715EXPORT_SYMBOL_GPL(PageHeadHuge);
716
ab1842f1
ZY
717pgoff_t __basepage_index(struct page *page)
718{
719 struct page *page_head = compound_head(page);
720 pgoff_t index = page_index(page_head);
721 unsigned long compound_idx;
722
723 if (!PageHuge(page_head))
724 return page_index(page);
725
726 if (compound_order(page_head) >= MAX_ORDER)
727 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
728 else
729 compound_idx = page - page_head;
730
731 return (index << compound_order(page_head)) + compound_idx;
732}
733
a5516438 734static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 735{
1da177e4 736 struct page *page;
f96efd58 737
aa888a74
AK
738 if (h->order >= MAX_ORDER)
739 return NULL;
740
6484eb3e 741 page = alloc_pages_exact_node(nid,
551883ae
NA
742 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
743 __GFP_REPEAT|__GFP_NOWARN,
a5516438 744 huge_page_order(h));
1da177e4 745 if (page) {
7f2e9525 746 if (arch_prepare_hugepage(page)) {
caff3a2c 747 __free_pages(page, huge_page_order(h));
7b8ee84d 748 return NULL;
7f2e9525 749 }
a5516438 750 prep_new_huge_page(h, page, nid);
1da177e4 751 }
63b4613c
NA
752
753 return page;
754}
755
9a76db09 756/*
6ae11b27
LS
757 * common helper functions for hstate_next_node_to_{alloc|free}.
758 * We may have allocated or freed a huge page based on a different
759 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
760 * be outside of *nodes_allowed. Ensure that we use an allowed
761 * node for alloc or free.
9a76db09 762 */
6ae11b27 763static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 764{
6ae11b27 765 nid = next_node(nid, *nodes_allowed);
9a76db09 766 if (nid == MAX_NUMNODES)
6ae11b27 767 nid = first_node(*nodes_allowed);
9a76db09
LS
768 VM_BUG_ON(nid >= MAX_NUMNODES);
769
770 return nid;
771}
772
6ae11b27
LS
773static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
774{
775 if (!node_isset(nid, *nodes_allowed))
776 nid = next_node_allowed(nid, nodes_allowed);
777 return nid;
778}
779
5ced66c9 780/*
6ae11b27
LS
781 * returns the previously saved node ["this node"] from which to
782 * allocate a persistent huge page for the pool and advance the
783 * next node from which to allocate, handling wrap at end of node
784 * mask.
5ced66c9 785 */
6ae11b27
LS
786static int hstate_next_node_to_alloc(struct hstate *h,
787 nodemask_t *nodes_allowed)
5ced66c9 788{
6ae11b27
LS
789 int nid;
790
791 VM_BUG_ON(!nodes_allowed);
792
793 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
794 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 795
9a76db09 796 return nid;
5ced66c9
AK
797}
798
6ae11b27 799static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
800{
801 struct page *page;
802 int start_nid;
803 int next_nid;
804 int ret = 0;
805
6ae11b27 806 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 807 next_nid = start_nid;
63b4613c
NA
808
809 do {
e8c5c824 810 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 811 if (page) {
63b4613c 812 ret = 1;
9a76db09
LS
813 break;
814 }
6ae11b27 815 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 816 } while (next_nid != start_nid);
63b4613c 817
3b116300
AL
818 if (ret)
819 count_vm_event(HTLB_BUDDY_PGALLOC);
820 else
821 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
822
63b4613c 823 return ret;
1da177e4
LT
824}
825
e8c5c824 826/*
6ae11b27
LS
827 * helper for free_pool_huge_page() - return the previously saved
828 * node ["this node"] from which to free a huge page. Advance the
829 * next node id whether or not we find a free huge page to free so
830 * that the next attempt to free addresses the next node.
e8c5c824 831 */
6ae11b27 832static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 833{
6ae11b27
LS
834 int nid;
835
836 VM_BUG_ON(!nodes_allowed);
837
838 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
839 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 840
9a76db09 841 return nid;
e8c5c824
LS
842}
843
844/*
845 * Free huge page from pool from next node to free.
846 * Attempt to keep persistent huge pages more or less
847 * balanced over allowed nodes.
848 * Called with hugetlb_lock locked.
849 */
6ae11b27
LS
850static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
851 bool acct_surplus)
e8c5c824
LS
852{
853 int start_nid;
854 int next_nid;
855 int ret = 0;
856
6ae11b27 857 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
858 next_nid = start_nid;
859
860 do {
685f3457
LS
861 /*
862 * If we're returning unused surplus pages, only examine
863 * nodes with surplus pages.
864 */
865 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
866 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
867 struct page *page =
868 list_entry(h->hugepage_freelists[next_nid].next,
869 struct page, lru);
870 list_del(&page->lru);
871 h->free_huge_pages--;
872 h->free_huge_pages_node[next_nid]--;
685f3457
LS
873 if (acct_surplus) {
874 h->surplus_huge_pages--;
875 h->surplus_huge_pages_node[next_nid]--;
876 }
e8c5c824
LS
877 update_and_free_page(h, page);
878 ret = 1;
9a76db09 879 break;
e8c5c824 880 }
6ae11b27 881 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 882 } while (next_nid != start_nid);
e8c5c824
LS
883
884 return ret;
885}
886
bf50bab2 887static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
888{
889 struct page *page;
bf50bab2 890 unsigned int r_nid;
7893d1d5 891
aa888a74
AK
892 if (h->order >= MAX_ORDER)
893 return NULL;
894
d1c3fb1f
NA
895 /*
896 * Assume we will successfully allocate the surplus page to
897 * prevent racing processes from causing the surplus to exceed
898 * overcommit
899 *
900 * This however introduces a different race, where a process B
901 * tries to grow the static hugepage pool while alloc_pages() is
902 * called by process A. B will only examine the per-node
903 * counters in determining if surplus huge pages can be
904 * converted to normal huge pages in adjust_pool_surplus(). A
905 * won't be able to increment the per-node counter, until the
906 * lock is dropped by B, but B doesn't drop hugetlb_lock until
907 * no more huge pages can be converted from surplus to normal
908 * state (and doesn't try to convert again). Thus, we have a
909 * case where a surplus huge page exists, the pool is grown, and
910 * the surplus huge page still exists after, even though it
911 * should just have been converted to a normal huge page. This
912 * does not leak memory, though, as the hugepage will be freed
913 * once it is out of use. It also does not allow the counters to
914 * go out of whack in adjust_pool_surplus() as we don't modify
915 * the node values until we've gotten the hugepage and only the
916 * per-node value is checked there.
917 */
918 spin_lock(&hugetlb_lock);
a5516438 919 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
920 spin_unlock(&hugetlb_lock);
921 return NULL;
922 } else {
a5516438
AK
923 h->nr_huge_pages++;
924 h->surplus_huge_pages++;
d1c3fb1f
NA
925 }
926 spin_unlock(&hugetlb_lock);
927
bf50bab2
NH
928 if (nid == NUMA_NO_NODE)
929 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
930 __GFP_REPEAT|__GFP_NOWARN,
931 huge_page_order(h));
932 else
933 page = alloc_pages_exact_node(nid,
934 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
935 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 936
caff3a2c
GS
937 if (page && arch_prepare_hugepage(page)) {
938 __free_pages(page, huge_page_order(h));
ea5768c7 939 page = NULL;
caff3a2c
GS
940 }
941
d1c3fb1f 942 spin_lock(&hugetlb_lock);
7893d1d5 943 if (page) {
0edaecfa 944 INIT_LIST_HEAD(&page->lru);
bf50bab2 945 r_nid = page_to_nid(page);
7893d1d5 946 set_compound_page_dtor(page, free_huge_page);
9dd540e2 947 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
948 /*
949 * We incremented the global counters already
950 */
bf50bab2
NH
951 h->nr_huge_pages_node[r_nid]++;
952 h->surplus_huge_pages_node[r_nid]++;
3b116300 953 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 954 } else {
a5516438
AK
955 h->nr_huge_pages--;
956 h->surplus_huge_pages--;
3b116300 957 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 958 }
d1c3fb1f 959 spin_unlock(&hugetlb_lock);
7893d1d5
AL
960
961 return page;
962}
963
bf50bab2
NH
964/*
965 * This allocation function is useful in the context where vma is irrelevant.
966 * E.g. soft-offlining uses this function because it only cares physical
967 * address of error page.
968 */
969struct page *alloc_huge_page_node(struct hstate *h, int nid)
970{
971 struct page *page;
972
973 spin_lock(&hugetlb_lock);
974 page = dequeue_huge_page_node(h, nid);
975 spin_unlock(&hugetlb_lock);
976
94ae8ba7 977 if (!page)
bf50bab2
NH
978 page = alloc_buddy_huge_page(h, nid);
979
980 return page;
981}
982
e4e574b7 983/*
25985edc 984 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
985 * of size 'delta'.
986 */
a5516438 987static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
988{
989 struct list_head surplus_list;
990 struct page *page, *tmp;
991 int ret, i;
992 int needed, allocated;
28073b02 993 bool alloc_ok = true;
e4e574b7 994
a5516438 995 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 996 if (needed <= 0) {
a5516438 997 h->resv_huge_pages += delta;
e4e574b7 998 return 0;
ac09b3a1 999 }
e4e574b7
AL
1000
1001 allocated = 0;
1002 INIT_LIST_HEAD(&surplus_list);
1003
1004 ret = -ENOMEM;
1005retry:
1006 spin_unlock(&hugetlb_lock);
1007 for (i = 0; i < needed; i++) {
bf50bab2 1008 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1009 if (!page) {
1010 alloc_ok = false;
1011 break;
1012 }
e4e574b7
AL
1013 list_add(&page->lru, &surplus_list);
1014 }
28073b02 1015 allocated += i;
e4e574b7
AL
1016
1017 /*
1018 * After retaking hugetlb_lock, we need to recalculate 'needed'
1019 * because either resv_huge_pages or free_huge_pages may have changed.
1020 */
1021 spin_lock(&hugetlb_lock);
a5516438
AK
1022 needed = (h->resv_huge_pages + delta) -
1023 (h->free_huge_pages + allocated);
28073b02
HD
1024 if (needed > 0) {
1025 if (alloc_ok)
1026 goto retry;
1027 /*
1028 * We were not able to allocate enough pages to
1029 * satisfy the entire reservation so we free what
1030 * we've allocated so far.
1031 */
1032 goto free;
1033 }
e4e574b7
AL
1034 /*
1035 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1036 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1037 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1038 * allocator. Commit the entire reservation here to prevent another
1039 * process from stealing the pages as they are added to the pool but
1040 * before they are reserved.
e4e574b7
AL
1041 */
1042 needed += allocated;
a5516438 1043 h->resv_huge_pages += delta;
e4e574b7 1044 ret = 0;
a9869b83 1045
19fc3f0a 1046 /* Free the needed pages to the hugetlb pool */
e4e574b7 1047 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1048 if ((--needed) < 0)
1049 break;
a9869b83
NH
1050 /*
1051 * This page is now managed by the hugetlb allocator and has
1052 * no users -- drop the buddy allocator's reference.
1053 */
1054 put_page_testzero(page);
1055 VM_BUG_ON(page_count(page));
a5516438 1056 enqueue_huge_page(h, page);
19fc3f0a 1057 }
28073b02 1058free:
b0365c8d 1059 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1060
1061 /* Free unnecessary surplus pages to the buddy allocator */
1062 if (!list_empty(&surplus_list)) {
19fc3f0a 1063 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
a9869b83 1064 put_page(page);
af767cbd 1065 }
e4e574b7 1066 }
a9869b83 1067 spin_lock(&hugetlb_lock);
e4e574b7
AL
1068
1069 return ret;
1070}
1071
1072/*
10e96e6b
MK
1073 * This routine has two main purposes:
1074 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1075 * in unused_resv_pages. This corresponds to the prior adjustments made
1076 * to the associated reservation map.
1077 * 2) Free any unused surplus pages that may have been allocated to satisfy
1078 * the reservation. As many as unused_resv_pages may be freed.
1079 *
1080 * Called with hugetlb_lock held. However, the lock could be dropped (and
1081 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1082 * we must make sure nobody else can claim pages we are in the process of
1083 * freeing. Do this by ensuring resv_huge_page always is greater than the
1084 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1085 */
a5516438
AK
1086static void return_unused_surplus_pages(struct hstate *h,
1087 unsigned long unused_resv_pages)
e4e574b7 1088{
e4e574b7
AL
1089 unsigned long nr_pages;
1090
aa888a74
AK
1091 /* Cannot return gigantic pages currently */
1092 if (h->order >= MAX_ORDER)
10e96e6b 1093 goto out;
aa888a74 1094
10e96e6b
MK
1095 /*
1096 * Part (or even all) of the reservation could have been backed
1097 * by pre-allocated pages. Only free surplus pages.
1098 */
a5516438 1099 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1100
685f3457
LS
1101 /*
1102 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1103 * evenly across all nodes with memory. Iterate across these nodes
1104 * until we can no longer free unreserved surplus pages. This occurs
1105 * when the nodes with surplus pages have no free pages.
1106 * free_pool_huge_page() will balance the the freed pages across the
1107 * on-line nodes with memory and will handle the hstate accounting.
10e96e6b
MK
1108 *
1109 * Note that we decrement resv_huge_pages as we free the pages. If
1110 * we drop the lock, resv_huge_pages will still be sufficiently large
1111 * to cover subsequent pages we may free.
685f3457
LS
1112 */
1113 while (nr_pages--) {
10e96e6b
MK
1114 h->resv_huge_pages--;
1115 unused_resv_pages--;
8cebfcd0 1116 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
10e96e6b 1117 goto out;
b934932a 1118 cond_resched_lock(&hugetlb_lock);
e4e574b7 1119 }
10e96e6b
MK
1120
1121out:
1122 /* Fully uncommit the reservation */
1123 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1124}
1125
c37f9fb1
AW
1126/*
1127 * Determine if the huge page at addr within the vma has an associated
1128 * reservation. Where it does not we will need to logically increase
90481622
DG
1129 * reservation and actually increase subpool usage before an allocation
1130 * can occur. Where any new reservation would be required the
1131 * reservation change is prepared, but not committed. Once the page
1132 * has been allocated from the subpool and instantiated the change should
1133 * be committed via vma_commit_reservation. No action is required on
1134 * failure.
c37f9fb1 1135 */
e2f17d94 1136static long vma_needs_reservation(struct hstate *h,
a5516438 1137 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1138{
1139 struct address_space *mapping = vma->vm_file->f_mapping;
1140 struct inode *inode = mapping->host;
1141
f83a275d 1142 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1143 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1144 return region_chg(&inode->i_mapping->private_list,
1145 idx, idx + 1);
1146
84afd99b
AW
1147 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1148 return 1;
c37f9fb1 1149
84afd99b 1150 } else {
e2f17d94 1151 long err;
a5516438 1152 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1153 struct resv_map *reservations = vma_resv_map(vma);
1154
1155 err = region_chg(&reservations->regions, idx, idx + 1);
1156 if (err < 0)
1157 return err;
1158 return 0;
1159 }
c37f9fb1 1160}
a5516438
AK
1161static void vma_commit_reservation(struct hstate *h,
1162 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1163{
1164 struct address_space *mapping = vma->vm_file->f_mapping;
1165 struct inode *inode = mapping->host;
1166
f83a275d 1167 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1168 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1169 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1170
1171 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1172 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1173 struct resv_map *reservations = vma_resv_map(vma);
1174
1175 /* Mark this page used in the map. */
1176 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1177 }
1178}
1179
a1e78772 1180static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1181 unsigned long addr, int avoid_reserve)
1da177e4 1182{
90481622 1183 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1184 struct hstate *h = hstate_vma(vma);
348ea204 1185 struct page *page;
e2f17d94 1186 long chg;
6d76dcf4
AK
1187 int ret, idx;
1188 struct hugetlb_cgroup *h_cg;
a1e78772 1189
6d76dcf4 1190 idx = hstate_index(h);
a1e78772 1191 /*
90481622
DG
1192 * Processes that did not create the mapping will have no
1193 * reserves and will not have accounted against subpool
1194 * limit. Check that the subpool limit can be made before
1195 * satisfying the allocation MAP_NORESERVE mappings may also
1196 * need pages and subpool limit allocated allocated if no reserve
1197 * mapping overlaps.
a1e78772 1198 */
a5516438 1199 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1200 if (chg < 0)
76dcee75 1201 return ERR_PTR(-ENOMEM);
c37f9fb1 1202 if (chg)
90481622 1203 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1204 return ERR_PTR(-ENOSPC);
1da177e4 1205
6d76dcf4
AK
1206 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1207 if (ret) {
1208 hugepage_subpool_put_pages(spool, chg);
1209 return ERR_PTR(-ENOSPC);
1210 }
1da177e4 1211 spin_lock(&hugetlb_lock);
a5516438 1212 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
94ae8ba7
AK
1213 if (page) {
1214 /* update page cgroup details */
1215 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1216 h_cg, page);
1217 spin_unlock(&hugetlb_lock);
1218 } else {
1219 spin_unlock(&hugetlb_lock);
bf50bab2 1220 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1221 if (!page) {
6d76dcf4
AK
1222 hugetlb_cgroup_uncharge_cgroup(idx,
1223 pages_per_huge_page(h),
1224 h_cg);
90481622 1225 hugepage_subpool_put_pages(spool, chg);
76dcee75 1226 return ERR_PTR(-ENOSPC);
68842c9b 1227 }
79dbb236 1228 spin_lock(&hugetlb_lock);
94ae8ba7
AK
1229 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1230 h_cg, page);
79dbb236
AK
1231 list_move(&page->lru, &h->hugepage_activelist);
1232 spin_unlock(&hugetlb_lock);
68842c9b 1233 }
348ea204 1234
90481622 1235 set_page_private(page, (unsigned long)spool);
90d8b7e6 1236
a5516438 1237 vma_commit_reservation(h, vma, addr);
90d8b7e6 1238 return page;
b45b5bd6
DG
1239}
1240
91f47662 1241int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1242{
1243 struct huge_bootmem_page *m;
8cebfcd0 1244 int nr_nodes = nodes_weight(node_states[N_MEMORY]);
aa888a74
AK
1245
1246 while (nr_nodes) {
1247 void *addr;
1248
1249 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1250 NODE_DATA(hstate_next_node_to_alloc(h,
8cebfcd0 1251 &node_states[N_MEMORY])),
aa888a74
AK
1252 huge_page_size(h), huge_page_size(h), 0);
1253
1254 if (addr) {
1255 /*
1256 * Use the beginning of the huge page to store the
1257 * huge_bootmem_page struct (until gather_bootmem
1258 * puts them into the mem_map).
1259 */
1260 m = addr;
91f47662 1261 goto found;
aa888a74 1262 }
aa888a74
AK
1263 nr_nodes--;
1264 }
1265 return 0;
1266
1267found:
1268 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1269 /* Put them into a private list first because mem_map is not up yet */
1270 list_add(&m->list, &huge_boot_pages);
1271 m->hstate = h;
1272 return 1;
1273}
1274
18229df5
AW
1275static void prep_compound_huge_page(struct page *page, int order)
1276{
1277 if (unlikely(order > (MAX_ORDER - 1)))
1278 prep_compound_gigantic_page(page, order);
1279 else
1280 prep_compound_page(page, order);
1281}
1282
aa888a74
AK
1283/* Put bootmem huge pages into the standard lists after mem_map is up */
1284static void __init gather_bootmem_prealloc(void)
1285{
1286 struct huge_bootmem_page *m;
1287
1288 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1289 struct hstate *h = m->hstate;
ee8f248d
BB
1290 struct page *page;
1291
1292#ifdef CONFIG_HIGHMEM
1293 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1294 free_bootmem_late((unsigned long)m,
1295 sizeof(struct huge_bootmem_page));
1296#else
1297 page = virt_to_page(m);
1298#endif
aa888a74
AK
1299 __ClearPageReserved(page);
1300 WARN_ON(page_count(page) != 1);
18229df5 1301 prep_compound_huge_page(page, h->order);
aa888a74 1302 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1303 /*
1304 * If we had gigantic hugepages allocated at boot time, we need
1305 * to restore the 'stolen' pages to totalram_pages in order to
1306 * fix confusing memory reports from free(1) and another
1307 * side-effects, like CommitLimit going negative.
1308 */
1309 if (h->order > (MAX_ORDER - 1))
1310 totalram_pages += 1 << h->order;
aa888a74
AK
1311 }
1312}
1313
8faa8b07 1314static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1315{
1316 unsigned long i;
a5516438 1317
e5ff2159 1318 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1319 if (h->order >= MAX_ORDER) {
1320 if (!alloc_bootmem_huge_page(h))
1321 break;
9b5e5d0f 1322 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1323 &node_states[N_MEMORY]))
1da177e4 1324 break;
1da177e4 1325 }
8faa8b07 1326 h->max_huge_pages = i;
e5ff2159
AK
1327}
1328
1329static void __init hugetlb_init_hstates(void)
1330{
1331 struct hstate *h;
1332
1333 for_each_hstate(h) {
8faa8b07
AK
1334 /* oversize hugepages were init'ed in early boot */
1335 if (h->order < MAX_ORDER)
1336 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1337 }
1338}
1339
4abd32db
AK
1340static char * __init memfmt(char *buf, unsigned long n)
1341{
1342 if (n >= (1UL << 30))
1343 sprintf(buf, "%lu GB", n >> 30);
1344 else if (n >= (1UL << 20))
1345 sprintf(buf, "%lu MB", n >> 20);
1346 else
1347 sprintf(buf, "%lu KB", n >> 10);
1348 return buf;
1349}
1350
e5ff2159
AK
1351static void __init report_hugepages(void)
1352{
1353 struct hstate *h;
1354
1355 for_each_hstate(h) {
4abd32db 1356 char buf[32];
ffb22af5 1357 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1358 memfmt(buf, huge_page_size(h)),
1359 h->free_huge_pages);
e5ff2159
AK
1360 }
1361}
1362
1da177e4 1363#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1364static void try_to_free_low(struct hstate *h, unsigned long count,
1365 nodemask_t *nodes_allowed)
1da177e4 1366{
4415cc8d
CL
1367 int i;
1368
aa888a74
AK
1369 if (h->order >= MAX_ORDER)
1370 return;
1371
6ae11b27 1372 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1373 struct page *page, *next;
a5516438
AK
1374 struct list_head *freel = &h->hugepage_freelists[i];
1375 list_for_each_entry_safe(page, next, freel, lru) {
1376 if (count >= h->nr_huge_pages)
6b0c880d 1377 return;
1da177e4
LT
1378 if (PageHighMem(page))
1379 continue;
1380 list_del(&page->lru);
e5ff2159 1381 update_and_free_page(h, page);
a5516438
AK
1382 h->free_huge_pages--;
1383 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1384 }
1385 }
1386}
1387#else
6ae11b27
LS
1388static inline void try_to_free_low(struct hstate *h, unsigned long count,
1389 nodemask_t *nodes_allowed)
1da177e4
LT
1390{
1391}
1392#endif
1393
20a0307c
WF
1394/*
1395 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1396 * balanced by operating on them in a round-robin fashion.
1397 * Returns 1 if an adjustment was made.
1398 */
6ae11b27
LS
1399static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1400 int delta)
20a0307c 1401{
e8c5c824 1402 int start_nid, next_nid;
20a0307c
WF
1403 int ret = 0;
1404
1405 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1406
e8c5c824 1407 if (delta < 0)
6ae11b27 1408 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1409 else
6ae11b27 1410 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1411 next_nid = start_nid;
1412
1413 do {
1414 int nid = next_nid;
1415 if (delta < 0) {
e8c5c824
LS
1416 /*
1417 * To shrink on this node, there must be a surplus page
1418 */
9a76db09 1419 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1420 next_nid = hstate_next_node_to_alloc(h,
1421 nodes_allowed);
e8c5c824 1422 continue;
9a76db09 1423 }
e8c5c824
LS
1424 }
1425 if (delta > 0) {
e8c5c824
LS
1426 /*
1427 * Surplus cannot exceed the total number of pages
1428 */
1429 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1430 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1431 next_nid = hstate_next_node_to_free(h,
1432 nodes_allowed);
e8c5c824 1433 continue;
9a76db09 1434 }
e8c5c824 1435 }
20a0307c
WF
1436
1437 h->surplus_huge_pages += delta;
1438 h->surplus_huge_pages_node[nid] += delta;
1439 ret = 1;
1440 break;
e8c5c824 1441 } while (next_nid != start_nid);
20a0307c 1442
20a0307c
WF
1443 return ret;
1444}
1445
a5516438 1446#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1447static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1448 nodemask_t *nodes_allowed)
1da177e4 1449{
7893d1d5 1450 unsigned long min_count, ret;
1da177e4 1451
aa888a74
AK
1452 if (h->order >= MAX_ORDER)
1453 return h->max_huge_pages;
1454
7893d1d5
AL
1455 /*
1456 * Increase the pool size
1457 * First take pages out of surplus state. Then make up the
1458 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1459 *
1460 * We might race with alloc_buddy_huge_page() here and be unable
1461 * to convert a surplus huge page to a normal huge page. That is
1462 * not critical, though, it just means the overall size of the
1463 * pool might be one hugepage larger than it needs to be, but
1464 * within all the constraints specified by the sysctls.
7893d1d5 1465 */
1da177e4 1466 spin_lock(&hugetlb_lock);
a5516438 1467 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1468 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1469 break;
1470 }
1471
a5516438 1472 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1473 /*
1474 * If this allocation races such that we no longer need the
1475 * page, free_huge_page will handle it by freeing the page
1476 * and reducing the surplus.
1477 */
1478 spin_unlock(&hugetlb_lock);
6ae11b27 1479 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1480 spin_lock(&hugetlb_lock);
1481 if (!ret)
1482 goto out;
1483
536240f2
MG
1484 /* Bail for signals. Probably ctrl-c from user */
1485 if (signal_pending(current))
1486 goto out;
7893d1d5 1487 }
7893d1d5
AL
1488
1489 /*
1490 * Decrease the pool size
1491 * First return free pages to the buddy allocator (being careful
1492 * to keep enough around to satisfy reservations). Then place
1493 * pages into surplus state as needed so the pool will shrink
1494 * to the desired size as pages become free.
d1c3fb1f
NA
1495 *
1496 * By placing pages into the surplus state independent of the
1497 * overcommit value, we are allowing the surplus pool size to
1498 * exceed overcommit. There are few sane options here. Since
1499 * alloc_buddy_huge_page() is checking the global counter,
1500 * though, we'll note that we're not allowed to exceed surplus
1501 * and won't grow the pool anywhere else. Not until one of the
1502 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1503 */
a5516438 1504 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1505 min_count = max(count, min_count);
6ae11b27 1506 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1507 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1508 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1509 break;
733ad2dc 1510 cond_resched_lock(&hugetlb_lock);
1da177e4 1511 }
a5516438 1512 while (count < persistent_huge_pages(h)) {
6ae11b27 1513 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1514 break;
1515 }
1516out:
a5516438 1517 ret = persistent_huge_pages(h);
1da177e4 1518 spin_unlock(&hugetlb_lock);
7893d1d5 1519 return ret;
1da177e4
LT
1520}
1521
a3437870
NA
1522#define HSTATE_ATTR_RO(_name) \
1523 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1524
1525#define HSTATE_ATTR(_name) \
1526 static struct kobj_attribute _name##_attr = \
1527 __ATTR(_name, 0644, _name##_show, _name##_store)
1528
1529static struct kobject *hugepages_kobj;
1530static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1531
9a305230
LS
1532static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1533
1534static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1535{
1536 int i;
9a305230 1537
a3437870 1538 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1539 if (hstate_kobjs[i] == kobj) {
1540 if (nidp)
1541 *nidp = NUMA_NO_NODE;
a3437870 1542 return &hstates[i];
9a305230
LS
1543 }
1544
1545 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1546}
1547
06808b08 1548static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1549 struct kobj_attribute *attr, char *buf)
1550{
9a305230
LS
1551 struct hstate *h;
1552 unsigned long nr_huge_pages;
1553 int nid;
1554
1555 h = kobj_to_hstate(kobj, &nid);
1556 if (nid == NUMA_NO_NODE)
1557 nr_huge_pages = h->nr_huge_pages;
1558 else
1559 nr_huge_pages = h->nr_huge_pages_node[nid];
1560
1561 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1562}
adbe8726 1563
06808b08
LS
1564static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1565 struct kobject *kobj, struct kobj_attribute *attr,
1566 const char *buf, size_t len)
a3437870
NA
1567{
1568 int err;
9a305230 1569 int nid;
06808b08 1570 unsigned long count;
9a305230 1571 struct hstate *h;
bad44b5b 1572 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1573
06808b08 1574 err = strict_strtoul(buf, 10, &count);
73ae31e5 1575 if (err)
adbe8726 1576 goto out;
a3437870 1577
9a305230 1578 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1579 if (h->order >= MAX_ORDER) {
1580 err = -EINVAL;
1581 goto out;
1582 }
1583
9a305230
LS
1584 if (nid == NUMA_NO_NODE) {
1585 /*
1586 * global hstate attribute
1587 */
1588 if (!(obey_mempolicy &&
1589 init_nodemask_of_mempolicy(nodes_allowed))) {
1590 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1591 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1592 }
1593 } else if (nodes_allowed) {
1594 /*
1595 * per node hstate attribute: adjust count to global,
1596 * but restrict alloc/free to the specified node.
1597 */
1598 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1599 init_nodemask_of_node(nodes_allowed, nid);
1600 } else
8cebfcd0 1601 nodes_allowed = &node_states[N_MEMORY];
9a305230 1602
06808b08 1603 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1604
8cebfcd0 1605 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1606 NODEMASK_FREE(nodes_allowed);
1607
1608 return len;
adbe8726
EM
1609out:
1610 NODEMASK_FREE(nodes_allowed);
1611 return err;
06808b08
LS
1612}
1613
1614static ssize_t nr_hugepages_show(struct kobject *kobj,
1615 struct kobj_attribute *attr, char *buf)
1616{
1617 return nr_hugepages_show_common(kobj, attr, buf);
1618}
1619
1620static ssize_t nr_hugepages_store(struct kobject *kobj,
1621 struct kobj_attribute *attr, const char *buf, size_t len)
1622{
1623 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1624}
1625HSTATE_ATTR(nr_hugepages);
1626
06808b08
LS
1627#ifdef CONFIG_NUMA
1628
1629/*
1630 * hstate attribute for optionally mempolicy-based constraint on persistent
1631 * huge page alloc/free.
1632 */
1633static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1634 struct kobj_attribute *attr, char *buf)
1635{
1636 return nr_hugepages_show_common(kobj, attr, buf);
1637}
1638
1639static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1640 struct kobj_attribute *attr, const char *buf, size_t len)
1641{
1642 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1643}
1644HSTATE_ATTR(nr_hugepages_mempolicy);
1645#endif
1646
1647
a3437870
NA
1648static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1649 struct kobj_attribute *attr, char *buf)
1650{
9a305230 1651 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1652 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1653}
adbe8726 1654
a3437870
NA
1655static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1656 struct kobj_attribute *attr, const char *buf, size_t count)
1657{
1658 int err;
1659 unsigned long input;
9a305230 1660 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1661
adbe8726
EM
1662 if (h->order >= MAX_ORDER)
1663 return -EINVAL;
1664
a3437870
NA
1665 err = strict_strtoul(buf, 10, &input);
1666 if (err)
73ae31e5 1667 return err;
a3437870
NA
1668
1669 spin_lock(&hugetlb_lock);
1670 h->nr_overcommit_huge_pages = input;
1671 spin_unlock(&hugetlb_lock);
1672
1673 return count;
1674}
1675HSTATE_ATTR(nr_overcommit_hugepages);
1676
1677static ssize_t free_hugepages_show(struct kobject *kobj,
1678 struct kobj_attribute *attr, char *buf)
1679{
9a305230
LS
1680 struct hstate *h;
1681 unsigned long free_huge_pages;
1682 int nid;
1683
1684 h = kobj_to_hstate(kobj, &nid);
1685 if (nid == NUMA_NO_NODE)
1686 free_huge_pages = h->free_huge_pages;
1687 else
1688 free_huge_pages = h->free_huge_pages_node[nid];
1689
1690 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1691}
1692HSTATE_ATTR_RO(free_hugepages);
1693
1694static ssize_t resv_hugepages_show(struct kobject *kobj,
1695 struct kobj_attribute *attr, char *buf)
1696{
9a305230 1697 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1698 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1699}
1700HSTATE_ATTR_RO(resv_hugepages);
1701
1702static ssize_t surplus_hugepages_show(struct kobject *kobj,
1703 struct kobj_attribute *attr, char *buf)
1704{
9a305230
LS
1705 struct hstate *h;
1706 unsigned long surplus_huge_pages;
1707 int nid;
1708
1709 h = kobj_to_hstate(kobj, &nid);
1710 if (nid == NUMA_NO_NODE)
1711 surplus_huge_pages = h->surplus_huge_pages;
1712 else
1713 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1714
1715 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1716}
1717HSTATE_ATTR_RO(surplus_hugepages);
1718
1719static struct attribute *hstate_attrs[] = {
1720 &nr_hugepages_attr.attr,
1721 &nr_overcommit_hugepages_attr.attr,
1722 &free_hugepages_attr.attr,
1723 &resv_hugepages_attr.attr,
1724 &surplus_hugepages_attr.attr,
06808b08
LS
1725#ifdef CONFIG_NUMA
1726 &nr_hugepages_mempolicy_attr.attr,
1727#endif
a3437870
NA
1728 NULL,
1729};
1730
1731static struct attribute_group hstate_attr_group = {
1732 .attrs = hstate_attrs,
1733};
1734
094e9539
JM
1735static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1736 struct kobject **hstate_kobjs,
1737 struct attribute_group *hstate_attr_group)
a3437870
NA
1738{
1739 int retval;
972dc4de 1740 int hi = hstate_index(h);
a3437870 1741
9a305230
LS
1742 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1743 if (!hstate_kobjs[hi])
a3437870
NA
1744 return -ENOMEM;
1745
9a305230 1746 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1747 if (retval)
9a305230 1748 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1749
1750 return retval;
1751}
1752
1753static void __init hugetlb_sysfs_init(void)
1754{
1755 struct hstate *h;
1756 int err;
1757
1758 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1759 if (!hugepages_kobj)
1760 return;
1761
1762 for_each_hstate(h) {
9a305230
LS
1763 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1764 hstate_kobjs, &hstate_attr_group);
a3437870 1765 if (err)
ffb22af5 1766 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1767 }
1768}
1769
9a305230
LS
1770#ifdef CONFIG_NUMA
1771
1772/*
1773 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1774 * with node devices in node_devices[] using a parallel array. The array
1775 * index of a node device or _hstate == node id.
1776 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1777 * the base kernel, on the hugetlb module.
1778 */
1779struct node_hstate {
1780 struct kobject *hugepages_kobj;
1781 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1782};
1783struct node_hstate node_hstates[MAX_NUMNODES];
1784
1785/*
10fbcf4c 1786 * A subset of global hstate attributes for node devices
9a305230
LS
1787 */
1788static struct attribute *per_node_hstate_attrs[] = {
1789 &nr_hugepages_attr.attr,
1790 &free_hugepages_attr.attr,
1791 &surplus_hugepages_attr.attr,
1792 NULL,
1793};
1794
1795static struct attribute_group per_node_hstate_attr_group = {
1796 .attrs = per_node_hstate_attrs,
1797};
1798
1799/*
10fbcf4c 1800 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1801 * Returns node id via non-NULL nidp.
1802 */
1803static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1804{
1805 int nid;
1806
1807 for (nid = 0; nid < nr_node_ids; nid++) {
1808 struct node_hstate *nhs = &node_hstates[nid];
1809 int i;
1810 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1811 if (nhs->hstate_kobjs[i] == kobj) {
1812 if (nidp)
1813 *nidp = nid;
1814 return &hstates[i];
1815 }
1816 }
1817
1818 BUG();
1819 return NULL;
1820}
1821
1822/*
10fbcf4c 1823 * Unregister hstate attributes from a single node device.
9a305230
LS
1824 * No-op if no hstate attributes attached.
1825 */
3cd8b44f 1826static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1827{
1828 struct hstate *h;
10fbcf4c 1829 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1830
1831 if (!nhs->hugepages_kobj)
9b5e5d0f 1832 return; /* no hstate attributes */
9a305230 1833
972dc4de
AK
1834 for_each_hstate(h) {
1835 int idx = hstate_index(h);
1836 if (nhs->hstate_kobjs[idx]) {
1837 kobject_put(nhs->hstate_kobjs[idx]);
1838 nhs->hstate_kobjs[idx] = NULL;
9a305230 1839 }
972dc4de 1840 }
9a305230
LS
1841
1842 kobject_put(nhs->hugepages_kobj);
1843 nhs->hugepages_kobj = NULL;
1844}
1845
1846/*
10fbcf4c 1847 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1848 * that have them.
1849 */
1850static void hugetlb_unregister_all_nodes(void)
1851{
1852 int nid;
1853
1854 /*
10fbcf4c 1855 * disable node device registrations.
9a305230
LS
1856 */
1857 register_hugetlbfs_with_node(NULL, NULL);
1858
1859 /*
1860 * remove hstate attributes from any nodes that have them.
1861 */
1862 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1863 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1864}
1865
1866/*
10fbcf4c 1867 * Register hstate attributes for a single node device.
9a305230
LS
1868 * No-op if attributes already registered.
1869 */
3cd8b44f 1870static void hugetlb_register_node(struct node *node)
9a305230
LS
1871{
1872 struct hstate *h;
10fbcf4c 1873 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1874 int err;
1875
1876 if (nhs->hugepages_kobj)
1877 return; /* already allocated */
1878
1879 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1880 &node->dev.kobj);
9a305230
LS
1881 if (!nhs->hugepages_kobj)
1882 return;
1883
1884 for_each_hstate(h) {
1885 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1886 nhs->hstate_kobjs,
1887 &per_node_hstate_attr_group);
1888 if (err) {
ffb22af5
AM
1889 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1890 h->name, node->dev.id);
9a305230
LS
1891 hugetlb_unregister_node(node);
1892 break;
1893 }
1894 }
1895}
1896
1897/*
9b5e5d0f 1898 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1899 * devices of nodes that have memory. All on-line nodes should have
1900 * registered their associated device by this time.
9a305230
LS
1901 */
1902static void hugetlb_register_all_nodes(void)
1903{
1904 int nid;
1905
8cebfcd0 1906 for_each_node_state(nid, N_MEMORY) {
8732794b 1907 struct node *node = node_devices[nid];
10fbcf4c 1908 if (node->dev.id == nid)
9a305230
LS
1909 hugetlb_register_node(node);
1910 }
1911
1912 /*
10fbcf4c 1913 * Let the node device driver know we're here so it can
9a305230
LS
1914 * [un]register hstate attributes on node hotplug.
1915 */
1916 register_hugetlbfs_with_node(hugetlb_register_node,
1917 hugetlb_unregister_node);
1918}
1919#else /* !CONFIG_NUMA */
1920
1921static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1922{
1923 BUG();
1924 if (nidp)
1925 *nidp = -1;
1926 return NULL;
1927}
1928
1929static void hugetlb_unregister_all_nodes(void) { }
1930
1931static void hugetlb_register_all_nodes(void) { }
1932
1933#endif
1934
a3437870
NA
1935static void __exit hugetlb_exit(void)
1936{
1937 struct hstate *h;
1938
9a305230
LS
1939 hugetlb_unregister_all_nodes();
1940
a3437870 1941 for_each_hstate(h) {
972dc4de 1942 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1943 }
1944
1945 kobject_put(hugepages_kobj);
1946}
1947module_exit(hugetlb_exit);
1948
1949static int __init hugetlb_init(void)
1950{
0ef89d25
BH
1951 /* Some platform decide whether they support huge pages at boot
1952 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1953 * there is no such support
1954 */
1955 if (HPAGE_SHIFT == 0)
1956 return 0;
a3437870 1957
e11bfbfc
NP
1958 if (!size_to_hstate(default_hstate_size)) {
1959 default_hstate_size = HPAGE_SIZE;
1960 if (!size_to_hstate(default_hstate_size))
1961 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1962 }
972dc4de 1963 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1964 if (default_hstate_max_huge_pages)
1965 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1966
1967 hugetlb_init_hstates();
aa888a74 1968 gather_bootmem_prealloc();
a3437870
NA
1969 report_hugepages();
1970
1971 hugetlb_sysfs_init();
9a305230 1972 hugetlb_register_all_nodes();
7179e7bf 1973 hugetlb_cgroup_file_init();
9a305230 1974
a3437870
NA
1975 return 0;
1976}
1977module_init(hugetlb_init);
1978
1979/* Should be called on processing a hugepagesz=... option */
1980void __init hugetlb_add_hstate(unsigned order)
1981{
1982 struct hstate *h;
8faa8b07
AK
1983 unsigned long i;
1984
a3437870 1985 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1986 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1987 return;
1988 }
47d38344 1989 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1990 BUG_ON(order == 0);
47d38344 1991 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1992 h->order = order;
1993 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1994 h->nr_huge_pages = 0;
1995 h->free_huge_pages = 0;
1996 for (i = 0; i < MAX_NUMNODES; ++i)
1997 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1998 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1999 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2000 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2001 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2002 huge_page_size(h)/1024);
8faa8b07 2003
a3437870
NA
2004 parsed_hstate = h;
2005}
2006
e11bfbfc 2007static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2008{
2009 unsigned long *mhp;
8faa8b07 2010 static unsigned long *last_mhp;
a3437870
NA
2011
2012 /*
47d38344 2013 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2014 * so this hugepages= parameter goes to the "default hstate".
2015 */
47d38344 2016 if (!hugetlb_max_hstate)
a3437870
NA
2017 mhp = &default_hstate_max_huge_pages;
2018 else
2019 mhp = &parsed_hstate->max_huge_pages;
2020
8faa8b07 2021 if (mhp == last_mhp) {
ffb22af5
AM
2022 pr_warning("hugepages= specified twice without "
2023 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2024 return 1;
2025 }
2026
a3437870
NA
2027 if (sscanf(s, "%lu", mhp) <= 0)
2028 *mhp = 0;
2029
8faa8b07
AK
2030 /*
2031 * Global state is always initialized later in hugetlb_init.
2032 * But we need to allocate >= MAX_ORDER hstates here early to still
2033 * use the bootmem allocator.
2034 */
47d38344 2035 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2036 hugetlb_hstate_alloc_pages(parsed_hstate);
2037
2038 last_mhp = mhp;
2039
a3437870
NA
2040 return 1;
2041}
e11bfbfc
NP
2042__setup("hugepages=", hugetlb_nrpages_setup);
2043
2044static int __init hugetlb_default_setup(char *s)
2045{
2046 default_hstate_size = memparse(s, &s);
2047 return 1;
2048}
2049__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2050
8a213460
NA
2051static unsigned int cpuset_mems_nr(unsigned int *array)
2052{
2053 int node;
2054 unsigned int nr = 0;
2055
2056 for_each_node_mask(node, cpuset_current_mems_allowed)
2057 nr += array[node];
2058
2059 return nr;
2060}
2061
2062#ifdef CONFIG_SYSCTL
06808b08
LS
2063static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2064 struct ctl_table *table, int write,
2065 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2066{
e5ff2159
AK
2067 struct hstate *h = &default_hstate;
2068 unsigned long tmp;
08d4a246 2069 int ret;
e5ff2159 2070
c033a93c 2071 tmp = h->max_huge_pages;
e5ff2159 2072
adbe8726
EM
2073 if (write && h->order >= MAX_ORDER)
2074 return -EINVAL;
2075
e5ff2159
AK
2076 table->data = &tmp;
2077 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2078 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2079 if (ret)
2080 goto out;
e5ff2159 2081
06808b08 2082 if (write) {
bad44b5b
DR
2083 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2084 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2085 if (!(obey_mempolicy &&
2086 init_nodemask_of_mempolicy(nodes_allowed))) {
2087 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2088 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2089 }
2090 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2091
8cebfcd0 2092 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2093 NODEMASK_FREE(nodes_allowed);
2094 }
08d4a246
MH
2095out:
2096 return ret;
1da177e4 2097}
396faf03 2098
06808b08
LS
2099int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2100 void __user *buffer, size_t *length, loff_t *ppos)
2101{
2102
2103 return hugetlb_sysctl_handler_common(false, table, write,
2104 buffer, length, ppos);
2105}
2106
2107#ifdef CONFIG_NUMA
2108int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2109 void __user *buffer, size_t *length, loff_t *ppos)
2110{
2111 return hugetlb_sysctl_handler_common(true, table, write,
2112 buffer, length, ppos);
2113}
2114#endif /* CONFIG_NUMA */
2115
396faf03 2116int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2117 void __user *buffer,
396faf03
MG
2118 size_t *length, loff_t *ppos)
2119{
8d65af78 2120 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2121 if (hugepages_treat_as_movable)
2122 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2123 else
2124 htlb_alloc_mask = GFP_HIGHUSER;
2125 return 0;
2126}
2127
a3d0c6aa 2128int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2129 void __user *buffer,
a3d0c6aa
NA
2130 size_t *length, loff_t *ppos)
2131{
a5516438 2132 struct hstate *h = &default_hstate;
e5ff2159 2133 unsigned long tmp;
08d4a246 2134 int ret;
e5ff2159 2135
c033a93c 2136 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2137
adbe8726
EM
2138 if (write && h->order >= MAX_ORDER)
2139 return -EINVAL;
2140
e5ff2159
AK
2141 table->data = &tmp;
2142 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2143 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2144 if (ret)
2145 goto out;
e5ff2159
AK
2146
2147 if (write) {
2148 spin_lock(&hugetlb_lock);
2149 h->nr_overcommit_huge_pages = tmp;
2150 spin_unlock(&hugetlb_lock);
2151 }
08d4a246
MH
2152out:
2153 return ret;
a3d0c6aa
NA
2154}
2155
1da177e4
LT
2156#endif /* CONFIG_SYSCTL */
2157
e1759c21 2158void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2159{
a5516438 2160 struct hstate *h = &default_hstate;
e1759c21 2161 seq_printf(m,
4f98a2fe
RR
2162 "HugePages_Total: %5lu\n"
2163 "HugePages_Free: %5lu\n"
2164 "HugePages_Rsvd: %5lu\n"
2165 "HugePages_Surp: %5lu\n"
2166 "Hugepagesize: %8lu kB\n",
a5516438
AK
2167 h->nr_huge_pages,
2168 h->free_huge_pages,
2169 h->resv_huge_pages,
2170 h->surplus_huge_pages,
2171 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2172}
2173
2174int hugetlb_report_node_meminfo(int nid, char *buf)
2175{
a5516438 2176 struct hstate *h = &default_hstate;
1da177e4
LT
2177 return sprintf(buf,
2178 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2179 "Node %d HugePages_Free: %5u\n"
2180 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2181 nid, h->nr_huge_pages_node[nid],
2182 nid, h->free_huge_pages_node[nid],
2183 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2184}
2185
949f7ec5
DR
2186void hugetlb_show_meminfo(void)
2187{
2188 struct hstate *h;
2189 int nid;
2190
2191 for_each_node_state(nid, N_MEMORY)
2192 for_each_hstate(h)
2193 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2194 nid,
2195 h->nr_huge_pages_node[nid],
2196 h->free_huge_pages_node[nid],
2197 h->surplus_huge_pages_node[nid],
2198 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2199}
2200
1da177e4
LT
2201/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2202unsigned long hugetlb_total_pages(void)
2203{
d0028588
WL
2204 struct hstate *h;
2205 unsigned long nr_total_pages = 0;
2206
2207 for_each_hstate(h)
2208 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2209 return nr_total_pages;
1da177e4 2210}
1da177e4 2211
a5516438 2212static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2213{
2214 int ret = -ENOMEM;
2215
2216 spin_lock(&hugetlb_lock);
2217 /*
2218 * When cpuset is configured, it breaks the strict hugetlb page
2219 * reservation as the accounting is done on a global variable. Such
2220 * reservation is completely rubbish in the presence of cpuset because
2221 * the reservation is not checked against page availability for the
2222 * current cpuset. Application can still potentially OOM'ed by kernel
2223 * with lack of free htlb page in cpuset that the task is in.
2224 * Attempt to enforce strict accounting with cpuset is almost
2225 * impossible (or too ugly) because cpuset is too fluid that
2226 * task or memory node can be dynamically moved between cpusets.
2227 *
2228 * The change of semantics for shared hugetlb mapping with cpuset is
2229 * undesirable. However, in order to preserve some of the semantics,
2230 * we fall back to check against current free page availability as
2231 * a best attempt and hopefully to minimize the impact of changing
2232 * semantics that cpuset has.
2233 */
2234 if (delta > 0) {
a5516438 2235 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2236 goto out;
2237
a5516438
AK
2238 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2239 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2240 goto out;
2241 }
2242 }
2243
2244 ret = 0;
2245 if (delta < 0)
a5516438 2246 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2247
2248out:
2249 spin_unlock(&hugetlb_lock);
2250 return ret;
2251}
2252
84afd99b
AW
2253static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2254{
2255 struct resv_map *reservations = vma_resv_map(vma);
2256
2257 /*
2258 * This new VMA should share its siblings reservation map if present.
2259 * The VMA will only ever have a valid reservation map pointer where
2260 * it is being copied for another still existing VMA. As that VMA
25985edc 2261 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2262 * after this open call completes. It is therefore safe to take a
2263 * new reference here without additional locking.
2264 */
2265 if (reservations)
2266 kref_get(&reservations->refs);
2267}
2268
c50ac050
DH
2269static void resv_map_put(struct vm_area_struct *vma)
2270{
2271 struct resv_map *reservations = vma_resv_map(vma);
2272
2273 if (!reservations)
2274 return;
2275 kref_put(&reservations->refs, resv_map_release);
2276}
2277
a1e78772
MG
2278static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2279{
a5516438 2280 struct hstate *h = hstate_vma(vma);
84afd99b 2281 struct resv_map *reservations = vma_resv_map(vma);
90481622 2282 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2283 unsigned long reserve;
2284 unsigned long start;
2285 unsigned long end;
2286
2287 if (reservations) {
a5516438
AK
2288 start = vma_hugecache_offset(h, vma, vma->vm_start);
2289 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2290
2291 reserve = (end - start) -
2292 region_count(&reservations->regions, start, end);
2293
c50ac050 2294 resv_map_put(vma);
84afd99b 2295
7251ff78 2296 if (reserve) {
a5516438 2297 hugetlb_acct_memory(h, -reserve);
90481622 2298 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2299 }
84afd99b 2300 }
a1e78772
MG
2301}
2302
1da177e4
LT
2303/*
2304 * We cannot handle pagefaults against hugetlb pages at all. They cause
2305 * handle_mm_fault() to try to instantiate regular-sized pages in the
2306 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2307 * this far.
2308 */
d0217ac0 2309static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2310{
2311 BUG();
d0217ac0 2312 return 0;
1da177e4
LT
2313}
2314
f0f37e2f 2315const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2316 .fault = hugetlb_vm_op_fault,
84afd99b 2317 .open = hugetlb_vm_op_open,
a1e78772 2318 .close = hugetlb_vm_op_close,
1da177e4
LT
2319};
2320
1e8f889b
DG
2321static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2322 int writable)
63551ae0
DG
2323{
2324 pte_t entry;
2325
1e8f889b 2326 if (writable) {
106c992a
GS
2327 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2328 vma->vm_page_prot)));
63551ae0 2329 } else {
106c992a
GS
2330 entry = huge_pte_wrprotect(mk_huge_pte(page,
2331 vma->vm_page_prot));
63551ae0
DG
2332 }
2333 entry = pte_mkyoung(entry);
2334 entry = pte_mkhuge(entry);
d9ed9faa 2335 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2336
2337 return entry;
2338}
2339
1e8f889b
DG
2340static void set_huge_ptep_writable(struct vm_area_struct *vma,
2341 unsigned long address, pte_t *ptep)
2342{
2343 pte_t entry;
2344
106c992a 2345 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2346 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2347 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2348}
2349
9b576da0
NH
2350static int is_hugetlb_entry_migration(pte_t pte)
2351{
2352 swp_entry_t swp;
2353
2354 if (huge_pte_none(pte) || pte_present(pte))
2355 return 0;
2356 swp = pte_to_swp_entry(pte);
2357 if (non_swap_entry(swp) && is_migration_entry(swp))
2358 return 1;
2359 else
2360 return 0;
2361}
2362
2363static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2364{
2365 swp_entry_t swp;
2366
2367 if (huge_pte_none(pte) || pte_present(pte))
2368 return 0;
2369 swp = pte_to_swp_entry(pte);
2370 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2371 return 1;
2372 else
2373 return 0;
2374}
1e8f889b 2375
63551ae0
DG
2376int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2377 struct vm_area_struct *vma)
2378{
2379 pte_t *src_pte, *dst_pte, entry;
2380 struct page *ptepage;
1c59827d 2381 unsigned long addr;
1e8f889b 2382 int cow;
a5516438
AK
2383 struct hstate *h = hstate_vma(vma);
2384 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2385
2386 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2387
a5516438 2388 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2389 src_pte = huge_pte_offset(src, addr);
2390 if (!src_pte)
2391 continue;
a5516438 2392 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2393 if (!dst_pte)
2394 goto nomem;
c5c99429
LW
2395
2396 /* If the pagetables are shared don't copy or take references */
2397 if (dst_pte == src_pte)
2398 continue;
2399
c74df32c 2400 spin_lock(&dst->page_table_lock);
46478758 2401 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
9b576da0
NH
2402 entry = huge_ptep_get(src_pte);
2403 if (huge_pte_none(entry)) { /* skip none entry */
2404 ;
2405 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2406 is_hugetlb_entry_hwpoisoned(entry))) {
2407 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2408
2409 if (is_write_migration_entry(swp_entry) && cow) {
2410 /*
2411 * COW mappings require pages in both
2412 * parent and child to be set to read.
2413 */
2414 make_migration_entry_read(&swp_entry);
2415 entry = swp_entry_to_pte(swp_entry);
2416 set_huge_pte_at(src, addr, src_pte, entry);
2417 }
2418 set_huge_pte_at(dst, addr, dst_pte, entry);
2419 } else {
1e8f889b 2420 if (cow)
7f2e9525 2421 huge_ptep_set_wrprotect(src, addr, src_pte);
32226c20 2422 entry = huge_ptep_get(src_pte);
1c59827d
HD
2423 ptepage = pte_page(entry);
2424 get_page(ptepage);
0fe6e20b 2425 page_dup_rmap(ptepage);
1c59827d
HD
2426 set_huge_pte_at(dst, addr, dst_pte, entry);
2427 }
2428 spin_unlock(&src->page_table_lock);
c74df32c 2429 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2430 }
2431 return 0;
2432
2433nomem:
2434 return -ENOMEM;
2435}
2436
24669e58
AK
2437void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2438 unsigned long start, unsigned long end,
2439 struct page *ref_page)
63551ae0 2440{
24669e58 2441 int force_flush = 0;
63551ae0
DG
2442 struct mm_struct *mm = vma->vm_mm;
2443 unsigned long address;
c7546f8f 2444 pte_t *ptep;
63551ae0
DG
2445 pte_t pte;
2446 struct page *page;
a5516438
AK
2447 struct hstate *h = hstate_vma(vma);
2448 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2449 const unsigned long mmun_start = start; /* For mmu_notifiers */
2450 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2451
63551ae0 2452 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2453 BUG_ON(start & ~huge_page_mask(h));
2454 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2455
24669e58 2456 tlb_start_vma(tlb, vma);
2ec74c3e 2457 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2458again:
508034a3 2459 spin_lock(&mm->page_table_lock);
a5516438 2460 for (address = start; address < end; address += sz) {
c7546f8f 2461 ptep = huge_pte_offset(mm, address);
4c887265 2462 if (!ptep)
c7546f8f
DG
2463 continue;
2464
39dde65c
KC
2465 if (huge_pmd_unshare(mm, &address, ptep))
2466 continue;
2467
6629326b
HD
2468 pte = huge_ptep_get(ptep);
2469 if (huge_pte_none(pte))
2470 continue;
2471
2472 /*
1a25fb79
NH
2473 * Migrating hugepage or HWPoisoned hugepage is already
2474 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 2475 */
1a25fb79 2476 if (unlikely(!pte_present(pte))) {
106c992a 2477 huge_pte_clear(mm, address, ptep);
6629326b 2478 continue;
8c4894c6 2479 }
6629326b
HD
2480
2481 page = pte_page(pte);
04f2cbe3
MG
2482 /*
2483 * If a reference page is supplied, it is because a specific
2484 * page is being unmapped, not a range. Ensure the page we
2485 * are about to unmap is the actual page of interest.
2486 */
2487 if (ref_page) {
04f2cbe3
MG
2488 if (page != ref_page)
2489 continue;
2490
2491 /*
2492 * Mark the VMA as having unmapped its page so that
2493 * future faults in this VMA will fail rather than
2494 * looking like data was lost
2495 */
2496 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2497 }
2498
c7546f8f 2499 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2500 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2501 if (huge_pte_dirty(pte))
6649a386 2502 set_page_dirty(page);
9e81130b 2503
24669e58
AK
2504 page_remove_rmap(page);
2505 force_flush = !__tlb_remove_page(tlb, page);
2506 if (force_flush)
2507 break;
9e81130b
HD
2508 /* Bail out after unmapping reference page if supplied */
2509 if (ref_page)
2510 break;
63551ae0 2511 }
cd2934a3 2512 spin_unlock(&mm->page_table_lock);
24669e58
AK
2513 /*
2514 * mmu_gather ran out of room to batch pages, we break out of
2515 * the PTE lock to avoid doing the potential expensive TLB invalidate
2516 * and page-free while holding it.
2517 */
2518 if (force_flush) {
2519 force_flush = 0;
2520 tlb_flush_mmu(tlb);
2521 if (address < end && !ref_page)
2522 goto again;
fe1668ae 2523 }
2ec74c3e 2524 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2525 tlb_end_vma(tlb, vma);
1da177e4 2526}
63551ae0 2527
d833352a
MG
2528void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2529 struct vm_area_struct *vma, unsigned long start,
2530 unsigned long end, struct page *ref_page)
2531{
2532 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2533
2534 /*
2535 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2536 * test will fail on a vma being torn down, and not grab a page table
2537 * on its way out. We're lucky that the flag has such an appropriate
2538 * name, and can in fact be safely cleared here. We could clear it
2539 * before the __unmap_hugepage_range above, but all that's necessary
2540 * is to clear it before releasing the i_mmap_mutex. This works
2541 * because in the context this is called, the VMA is about to be
2542 * destroyed and the i_mmap_mutex is held.
2543 */
2544 vma->vm_flags &= ~VM_MAYSHARE;
2545}
2546
502717f4 2547void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2548 unsigned long end, struct page *ref_page)
502717f4 2549{
24669e58
AK
2550 struct mm_struct *mm;
2551 struct mmu_gather tlb;
2552
2553 mm = vma->vm_mm;
2554
8e220cfd 2555 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2556 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2557 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2558}
2559
04f2cbe3
MG
2560/*
2561 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2562 * mappping it owns the reserve page for. The intention is to unmap the page
2563 * from other VMAs and let the children be SIGKILLed if they are faulting the
2564 * same region.
2565 */
2a4b3ded
HH
2566static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2567 struct page *page, unsigned long address)
04f2cbe3 2568{
7526674d 2569 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2570 struct vm_area_struct *iter_vma;
2571 struct address_space *mapping;
04f2cbe3
MG
2572 pgoff_t pgoff;
2573
2574 /*
2575 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2576 * from page cache lookup which is in HPAGE_SIZE units.
2577 */
7526674d 2578 address = address & huge_page_mask(h);
36e4f20a
MH
2579 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2580 vma->vm_pgoff;
496ad9aa 2581 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2582
4eb2b1dc
MG
2583 /*
2584 * Take the mapping lock for the duration of the table walk. As
2585 * this mapping should be shared between all the VMAs,
2586 * __unmap_hugepage_range() is called as the lock is already held
2587 */
3d48ae45 2588 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2589 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2590 /* Do not unmap the current VMA */
2591 if (iter_vma == vma)
2592 continue;
2593
9834213f
MG
2594 /*
2595 * Shared VMAs have their own reserves and do not affect
2596 * MAP_PRIVATE accounting but it is possible that a shared
2597 * VMA is using the same page so check and skip such VMAs.
2598 */
2599 if (iter_vma->vm_flags & VM_MAYSHARE)
2600 continue;
2601
04f2cbe3
MG
2602 /*
2603 * Unmap the page from other VMAs without their own reserves.
2604 * They get marked to be SIGKILLed if they fault in these
2605 * areas. This is because a future no-page fault on this VMA
2606 * could insert a zeroed page instead of the data existing
2607 * from the time of fork. This would look like data corruption
2608 */
2609 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2610 unmap_hugepage_range(iter_vma, address,
2611 address + huge_page_size(h), page);
04f2cbe3 2612 }
3d48ae45 2613 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2614
2615 return 1;
2616}
2617
0fe6e20b
NH
2618/*
2619 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2620 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2621 * cannot race with other handlers or page migration.
2622 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2623 */
1e8f889b 2624static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2625 unsigned long address, pte_t *ptep, pte_t pte,
2626 struct page *pagecache_page)
1e8f889b 2627{
a5516438 2628 struct hstate *h = hstate_vma(vma);
1e8f889b 2629 struct page *old_page, *new_page;
79ac6ba4 2630 int avoidcopy;
04f2cbe3 2631 int outside_reserve = 0;
2ec74c3e
SG
2632 unsigned long mmun_start; /* For mmu_notifiers */
2633 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2634
2635 old_page = pte_page(pte);
2636
04f2cbe3 2637retry_avoidcopy:
1e8f889b
DG
2638 /* If no-one else is actually using this page, avoid the copy
2639 * and just make the page writable */
0fe6e20b 2640 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2641 if (avoidcopy) {
56c9cfb1
NH
2642 if (PageAnon(old_page))
2643 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2644 set_huge_ptep_writable(vma, address, ptep);
83c54070 2645 return 0;
1e8f889b
DG
2646 }
2647
04f2cbe3
MG
2648 /*
2649 * If the process that created a MAP_PRIVATE mapping is about to
2650 * perform a COW due to a shared page count, attempt to satisfy
2651 * the allocation without using the existing reserves. The pagecache
2652 * page is used to determine if the reserve at this address was
2653 * consumed or not. If reserves were used, a partial faulted mapping
2654 * at the time of fork() could consume its reserves on COW instead
2655 * of the full address range.
2656 */
f83a275d 2657 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2658 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2659 old_page != pagecache_page)
2660 outside_reserve = 1;
2661
1e8f889b 2662 page_cache_get(old_page);
b76c8cfb
LW
2663
2664 /* Drop page_table_lock as buddy allocator may be called */
2665 spin_unlock(&mm->page_table_lock);
04f2cbe3 2666 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2667
2fc39cec 2668 if (IS_ERR(new_page)) {
76dcee75 2669 long err = PTR_ERR(new_page);
1e8f889b 2670 page_cache_release(old_page);
04f2cbe3
MG
2671
2672 /*
2673 * If a process owning a MAP_PRIVATE mapping fails to COW,
2674 * it is due to references held by a child and an insufficient
2675 * huge page pool. To guarantee the original mappers
2676 * reliability, unmap the page from child processes. The child
2677 * may get SIGKILLed if it later faults.
2678 */
2679 if (outside_reserve) {
2680 BUG_ON(huge_pte_none(pte));
2681 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2682 BUG_ON(huge_pte_none(pte));
b76c8cfb 2683 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2684 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2685 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2686 goto retry_avoidcopy;
2687 /*
2688 * race occurs while re-acquiring page_table_lock, and
2689 * our job is done.
2690 */
2691 return 0;
04f2cbe3
MG
2692 }
2693 WARN_ON_ONCE(1);
2694 }
2695
b76c8cfb
LW
2696 /* Caller expects lock to be held */
2697 spin_lock(&mm->page_table_lock);
76dcee75
AK
2698 if (err == -ENOMEM)
2699 return VM_FAULT_OOM;
2700 else
2701 return VM_FAULT_SIGBUS;
1e8f889b
DG
2702 }
2703
0fe6e20b
NH
2704 /*
2705 * When the original hugepage is shared one, it does not have
2706 * anon_vma prepared.
2707 */
44e2aa93 2708 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2709 page_cache_release(new_page);
2710 page_cache_release(old_page);
44e2aa93
DN
2711 /* Caller expects lock to be held */
2712 spin_lock(&mm->page_table_lock);
0fe6e20b 2713 return VM_FAULT_OOM;
44e2aa93 2714 }
0fe6e20b 2715
47ad8475
AA
2716 copy_user_huge_page(new_page, old_page, address, vma,
2717 pages_per_huge_page(h));
0ed361de 2718 __SetPageUptodate(new_page);
1e8f889b 2719
2ec74c3e
SG
2720 mmun_start = address & huge_page_mask(h);
2721 mmun_end = mmun_start + huge_page_size(h);
2722 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb
LW
2723 /*
2724 * Retake the page_table_lock to check for racing updates
2725 * before the page tables are altered
2726 */
2727 spin_lock(&mm->page_table_lock);
a5516438 2728 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2729 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2730 /* Break COW */
8fe627ec 2731 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2732 set_huge_pte_at(mm, address, ptep,
2733 make_huge_pte(vma, new_page, 1));
0fe6e20b 2734 page_remove_rmap(old_page);
cd67f0d2 2735 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2736 /* Make the old page be freed below */
2737 new_page = old_page;
2738 }
2ec74c3e
SG
2739 spin_unlock(&mm->page_table_lock);
2740 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2741 /* Caller expects lock to be held */
2742 spin_lock(&mm->page_table_lock);
1e8f889b
DG
2743 page_cache_release(new_page);
2744 page_cache_release(old_page);
83c54070 2745 return 0;
1e8f889b
DG
2746}
2747
04f2cbe3 2748/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2749static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2750 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2751{
2752 struct address_space *mapping;
e7c4b0bf 2753 pgoff_t idx;
04f2cbe3
MG
2754
2755 mapping = vma->vm_file->f_mapping;
a5516438 2756 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2757
2758 return find_lock_page(mapping, idx);
2759}
2760
3ae77f43
HD
2761/*
2762 * Return whether there is a pagecache page to back given address within VMA.
2763 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2764 */
2765static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2766 struct vm_area_struct *vma, unsigned long address)
2767{
2768 struct address_space *mapping;
2769 pgoff_t idx;
2770 struct page *page;
2771
2772 mapping = vma->vm_file->f_mapping;
2773 idx = vma_hugecache_offset(h, vma, address);
2774
2775 page = find_get_page(mapping, idx);
2776 if (page)
2777 put_page(page);
2778 return page != NULL;
2779}
2780
a1ed3dda 2781static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2782 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2783{
a5516438 2784 struct hstate *h = hstate_vma(vma);
ac9b9c66 2785 int ret = VM_FAULT_SIGBUS;
409eb8c2 2786 int anon_rmap = 0;
e7c4b0bf 2787 pgoff_t idx;
4c887265 2788 unsigned long size;
4c887265
AL
2789 struct page *page;
2790 struct address_space *mapping;
1e8f889b 2791 pte_t new_pte;
4c887265 2792
04f2cbe3
MG
2793 /*
2794 * Currently, we are forced to kill the process in the event the
2795 * original mapper has unmapped pages from the child due to a failed
25985edc 2796 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2797 */
2798 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2799 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2800 current->pid);
04f2cbe3
MG
2801 return ret;
2802 }
2803
4c887265 2804 mapping = vma->vm_file->f_mapping;
a5516438 2805 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2806
2807 /*
2808 * Use page lock to guard against racing truncation
2809 * before we get page_table_lock.
2810 */
6bda666a
CL
2811retry:
2812 page = find_lock_page(mapping, idx);
2813 if (!page) {
a5516438 2814 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2815 if (idx >= size)
2816 goto out;
04f2cbe3 2817 page = alloc_huge_page(vma, address, 0);
2fc39cec 2818 if (IS_ERR(page)) {
76dcee75
AK
2819 ret = PTR_ERR(page);
2820 if (ret == -ENOMEM)
2821 ret = VM_FAULT_OOM;
2822 else
2823 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2824 goto out;
2825 }
47ad8475 2826 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2827 __SetPageUptodate(page);
ac9b9c66 2828
f83a275d 2829 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2830 int err;
45c682a6 2831 struct inode *inode = mapping->host;
6bda666a
CL
2832
2833 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2834 if (err) {
2835 put_page(page);
6bda666a
CL
2836 if (err == -EEXIST)
2837 goto retry;
2838 goto out;
2839 }
45c682a6
KC
2840
2841 spin_lock(&inode->i_lock);
a5516438 2842 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2843 spin_unlock(&inode->i_lock);
23be7468 2844 } else {
6bda666a 2845 lock_page(page);
0fe6e20b
NH
2846 if (unlikely(anon_vma_prepare(vma))) {
2847 ret = VM_FAULT_OOM;
2848 goto backout_unlocked;
2849 }
409eb8c2 2850 anon_rmap = 1;
23be7468 2851 }
0fe6e20b 2852 } else {
998b4382
NH
2853 /*
2854 * If memory error occurs between mmap() and fault, some process
2855 * don't have hwpoisoned swap entry for errored virtual address.
2856 * So we need to block hugepage fault by PG_hwpoison bit check.
2857 */
2858 if (unlikely(PageHWPoison(page))) {
32f84528 2859 ret = VM_FAULT_HWPOISON |
972dc4de 2860 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2861 goto backout_unlocked;
2862 }
6bda666a 2863 }
1e8f889b 2864
57303d80
AW
2865 /*
2866 * If we are going to COW a private mapping later, we examine the
2867 * pending reservations for this page now. This will ensure that
2868 * any allocations necessary to record that reservation occur outside
2869 * the spinlock.
2870 */
788c7df4 2871 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2872 if (vma_needs_reservation(h, vma, address) < 0) {
2873 ret = VM_FAULT_OOM;
2874 goto backout_unlocked;
2875 }
57303d80 2876
ac9b9c66 2877 spin_lock(&mm->page_table_lock);
a5516438 2878 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2879 if (idx >= size)
2880 goto backout;
2881
83c54070 2882 ret = 0;
7f2e9525 2883 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2884 goto backout;
2885
409eb8c2
HD
2886 if (anon_rmap)
2887 hugepage_add_new_anon_rmap(page, vma, address);
2888 else
2889 page_dup_rmap(page);
1e8f889b
DG
2890 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2891 && (vma->vm_flags & VM_SHARED)));
2892 set_huge_pte_at(mm, address, ptep, new_pte);
2893
788c7df4 2894 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2895 /* Optimization, do the COW without a second fault */
04f2cbe3 2896 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2897 }
2898
ac9b9c66 2899 spin_unlock(&mm->page_table_lock);
4c887265
AL
2900 unlock_page(page);
2901out:
ac9b9c66 2902 return ret;
4c887265
AL
2903
2904backout:
2905 spin_unlock(&mm->page_table_lock);
2b26736c 2906backout_unlocked:
4c887265
AL
2907 unlock_page(page);
2908 put_page(page);
2909 goto out;
ac9b9c66
HD
2910}
2911
86e5216f 2912int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2913 unsigned long address, unsigned int flags)
86e5216f
AL
2914{
2915 pte_t *ptep;
2916 pte_t entry;
1e8f889b 2917 int ret;
0fe6e20b 2918 struct page *page = NULL;
57303d80 2919 struct page *pagecache_page = NULL;
3935baa9 2920 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2921 struct hstate *h = hstate_vma(vma);
86e5216f 2922
1e16a539
KH
2923 address &= huge_page_mask(h);
2924
fd6a03ed
NH
2925 ptep = huge_pte_offset(mm, address);
2926 if (ptep) {
2927 entry = huge_ptep_get(ptep);
290408d4 2928 if (unlikely(is_hugetlb_entry_migration(entry))) {
30dad309 2929 migration_entry_wait_huge(mm, ptep);
290408d4
NH
2930 return 0;
2931 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2932 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2933 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2934 }
2935
a5516438 2936 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2937 if (!ptep)
2938 return VM_FAULT_OOM;
2939
3935baa9
DG
2940 /*
2941 * Serialize hugepage allocation and instantiation, so that we don't
2942 * get spurious allocation failures if two CPUs race to instantiate
2943 * the same page in the page cache.
2944 */
2945 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2946 entry = huge_ptep_get(ptep);
2947 if (huge_pte_none(entry)) {
788c7df4 2948 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2949 goto out_mutex;
3935baa9 2950 }
86e5216f 2951
83c54070 2952 ret = 0;
1e8f889b 2953
57303d80
AW
2954 /*
2955 * If we are going to COW the mapping later, we examine the pending
2956 * reservations for this page now. This will ensure that any
2957 * allocations necessary to record that reservation occur outside the
2958 * spinlock. For private mappings, we also lookup the pagecache
2959 * page now as it is used to determine if a reservation has been
2960 * consumed.
2961 */
106c992a 2962 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2963 if (vma_needs_reservation(h, vma, address) < 0) {
2964 ret = VM_FAULT_OOM;
b4d1d99f 2965 goto out_mutex;
2b26736c 2966 }
57303d80 2967
f83a275d 2968 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2969 pagecache_page = hugetlbfs_pagecache_page(h,
2970 vma, address);
2971 }
2972
56c9cfb1
NH
2973 /*
2974 * hugetlb_cow() requires page locks of pte_page(entry) and
2975 * pagecache_page, so here we need take the former one
2976 * when page != pagecache_page or !pagecache_page.
2977 * Note that locking order is always pagecache_page -> page,
2978 * so no worry about deadlock.
2979 */
2980 page = pte_page(entry);
66aebce7 2981 get_page(page);
56c9cfb1 2982 if (page != pagecache_page)
0fe6e20b 2983 lock_page(page);
0fe6e20b 2984
1e8f889b
DG
2985 spin_lock(&mm->page_table_lock);
2986 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2987 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2988 goto out_page_table_lock;
2989
2990
788c7df4 2991 if (flags & FAULT_FLAG_WRITE) {
106c992a 2992 if (!huge_pte_write(entry)) {
57303d80
AW
2993 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2994 pagecache_page);
b4d1d99f
DG
2995 goto out_page_table_lock;
2996 }
106c992a 2997 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2998 }
2999 entry = pte_mkyoung(entry);
788c7df4
HD
3000 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3001 flags & FAULT_FLAG_WRITE))
4b3073e1 3002 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
3003
3004out_page_table_lock:
1e8f889b 3005 spin_unlock(&mm->page_table_lock);
57303d80
AW
3006
3007 if (pagecache_page) {
3008 unlock_page(pagecache_page);
3009 put_page(pagecache_page);
3010 }
1f64d69c
DN
3011 if (page != pagecache_page)
3012 unlock_page(page);
66aebce7 3013 put_page(page);
57303d80 3014
b4d1d99f 3015out_mutex:
3935baa9 3016 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
3017
3018 return ret;
86e5216f
AL
3019}
3020
ceb86879
AK
3021/* Can be overriden by architectures */
3022__attribute__((weak)) struct page *
3023follow_huge_pud(struct mm_struct *mm, unsigned long address,
3024 pud_t *pud, int write)
3025{
3026 BUG();
3027 return NULL;
3028}
3029
28a35716
ML
3030long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3031 struct page **pages, struct vm_area_struct **vmas,
3032 unsigned long *position, unsigned long *nr_pages,
3033 long i, unsigned int flags)
63551ae0 3034{
d5d4b0aa
KC
3035 unsigned long pfn_offset;
3036 unsigned long vaddr = *position;
28a35716 3037 unsigned long remainder = *nr_pages;
a5516438 3038 struct hstate *h = hstate_vma(vma);
63551ae0 3039
1c59827d 3040 spin_lock(&mm->page_table_lock);
63551ae0 3041 while (vaddr < vma->vm_end && remainder) {
4c887265 3042 pte_t *pte;
2a15efc9 3043 int absent;
4c887265 3044 struct page *page;
63551ae0 3045
4c887265
AL
3046 /*
3047 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3048 * each hugepage. We have to make sure we get the
4c887265
AL
3049 * first, for the page indexing below to work.
3050 */
a5516438 3051 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
3052 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3053
3054 /*
3055 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3056 * an error where there's an empty slot with no huge pagecache
3057 * to back it. This way, we avoid allocating a hugepage, and
3058 * the sparse dumpfile avoids allocating disk blocks, but its
3059 * huge holes still show up with zeroes where they need to be.
2a15efc9 3060 */
3ae77f43
HD
3061 if (absent && (flags & FOLL_DUMP) &&
3062 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
3063 remainder = 0;
3064 break;
3065 }
63551ae0 3066
9cc3a5bd
NH
3067 /*
3068 * We need call hugetlb_fault for both hugepages under migration
3069 * (in which case hugetlb_fault waits for the migration,) and
3070 * hwpoisoned hugepages (in which case we need to prevent the
3071 * caller from accessing to them.) In order to do this, we use
3072 * here is_swap_pte instead of is_hugetlb_entry_migration and
3073 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3074 * both cases, and because we can't follow correct pages
3075 * directly from any kind of swap entries.
3076 */
3077 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3078 ((flags & FOLL_WRITE) &&
3079 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3080 int ret;
63551ae0 3081
4c887265 3082 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
3083 ret = hugetlb_fault(mm, vma, vaddr,
3084 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 3085 spin_lock(&mm->page_table_lock);
a89182c7 3086 if (!(ret & VM_FAULT_ERROR))
4c887265 3087 continue;
63551ae0 3088
4c887265 3089 remainder = 0;
4c887265
AL
3090 break;
3091 }
3092
a5516438 3093 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3094 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3095same_page:
d6692183 3096 if (pages) {
2a15efc9 3097 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 3098 get_page(pages[i]);
d6692183 3099 }
63551ae0
DG
3100
3101 if (vmas)
3102 vmas[i] = vma;
3103
3104 vaddr += PAGE_SIZE;
d5d4b0aa 3105 ++pfn_offset;
63551ae0
DG
3106 --remainder;
3107 ++i;
d5d4b0aa 3108 if (vaddr < vma->vm_end && remainder &&
a5516438 3109 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3110 /*
3111 * We use pfn_offset to avoid touching the pageframes
3112 * of this compound page.
3113 */
3114 goto same_page;
3115 }
63551ae0 3116 }
1c59827d 3117 spin_unlock(&mm->page_table_lock);
28a35716 3118 *nr_pages = remainder;
63551ae0
DG
3119 *position = vaddr;
3120
2a15efc9 3121 return i ? i : -EFAULT;
63551ae0 3122}
8f860591 3123
7da4d641 3124unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3125 unsigned long address, unsigned long end, pgprot_t newprot)
3126{
3127 struct mm_struct *mm = vma->vm_mm;
3128 unsigned long start = address;
3129 pte_t *ptep;
3130 pte_t pte;
a5516438 3131 struct hstate *h = hstate_vma(vma);
7da4d641 3132 unsigned long pages = 0;
8f860591
ZY
3133
3134 BUG_ON(address >= end);
3135 flush_cache_range(vma, address, end);
3136
3d48ae45 3137 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3138 spin_lock(&mm->page_table_lock);
a5516438 3139 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3140 ptep = huge_pte_offset(mm, address);
3141 if (!ptep)
3142 continue;
7da4d641
PZ
3143 if (huge_pmd_unshare(mm, &address, ptep)) {
3144 pages++;
39dde65c 3145 continue;
7da4d641 3146 }
7f2e9525 3147 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3148 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3149 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3150 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3151 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3152 pages++;
8f860591
ZY
3153 }
3154 }
3155 spin_unlock(&mm->page_table_lock);
d833352a
MG
3156 /*
3157 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3158 * may have cleared our pud entry and done put_page on the page table:
3159 * once we release i_mmap_mutex, another task can do the final put_page
3160 * and that page table be reused and filled with junk.
3161 */
8f860591 3162 flush_tlb_range(vma, start, end);
d833352a 3163 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3164
3165 return pages << h->order;
8f860591
ZY
3166}
3167
a1e78772
MG
3168int hugetlb_reserve_pages(struct inode *inode,
3169 long from, long to,
5a6fe125 3170 struct vm_area_struct *vma,
ca16d140 3171 vm_flags_t vm_flags)
e4e574b7 3172{
17c9d12e 3173 long ret, chg;
a5516438 3174 struct hstate *h = hstate_inode(inode);
90481622 3175 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3176
17c9d12e
MG
3177 /*
3178 * Only apply hugepage reservation if asked. At fault time, an
3179 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3180 * without using reserves
17c9d12e 3181 */
ca16d140 3182 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3183 return 0;
3184
a1e78772
MG
3185 /*
3186 * Shared mappings base their reservation on the number of pages that
3187 * are already allocated on behalf of the file. Private mappings need
3188 * to reserve the full area even if read-only as mprotect() may be
3189 * called to make the mapping read-write. Assume !vma is a shm mapping
3190 */
f83a275d 3191 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3192 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3193 else {
3194 struct resv_map *resv_map = resv_map_alloc();
3195 if (!resv_map)
3196 return -ENOMEM;
3197
a1e78772 3198 chg = to - from;
84afd99b 3199
17c9d12e
MG
3200 set_vma_resv_map(vma, resv_map);
3201 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3202 }
3203
c50ac050
DH
3204 if (chg < 0) {
3205 ret = chg;
3206 goto out_err;
3207 }
8a630112 3208
90481622 3209 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3210 if (hugepage_subpool_get_pages(spool, chg)) {
3211 ret = -ENOSPC;
3212 goto out_err;
3213 }
5a6fe125
MG
3214
3215 /*
17c9d12e 3216 * Check enough hugepages are available for the reservation.
90481622 3217 * Hand the pages back to the subpool if there are not
5a6fe125 3218 */
a5516438 3219 ret = hugetlb_acct_memory(h, chg);
68842c9b 3220 if (ret < 0) {
90481622 3221 hugepage_subpool_put_pages(spool, chg);
c50ac050 3222 goto out_err;
68842c9b 3223 }
17c9d12e
MG
3224
3225 /*
3226 * Account for the reservations made. Shared mappings record regions
3227 * that have reservations as they are shared by multiple VMAs.
3228 * When the last VMA disappears, the region map says how much
3229 * the reservation was and the page cache tells how much of
3230 * the reservation was consumed. Private mappings are per-VMA and
3231 * only the consumed reservations are tracked. When the VMA
3232 * disappears, the original reservation is the VMA size and the
3233 * consumed reservations are stored in the map. Hence, nothing
3234 * else has to be done for private mappings here
3235 */
f83a275d 3236 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3237 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3238 return 0;
c50ac050 3239out_err:
4523e145
DH
3240 if (vma)
3241 resv_map_put(vma);
c50ac050 3242 return ret;
a43a8c39
KC
3243}
3244
3245void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3246{
a5516438 3247 struct hstate *h = hstate_inode(inode);
a43a8c39 3248 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3249 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3250
3251 spin_lock(&inode->i_lock);
e4c6f8be 3252 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3253 spin_unlock(&inode->i_lock);
3254
90481622 3255 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3256 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3257}
93f70f90 3258
d5bd9106
AK
3259#ifdef CONFIG_MEMORY_FAILURE
3260
6de2b1aa
NH
3261/* Should be called in hugetlb_lock */
3262static int is_hugepage_on_freelist(struct page *hpage)
3263{
3264 struct page *page;
3265 struct page *tmp;
3266 struct hstate *h = page_hstate(hpage);
3267 int nid = page_to_nid(hpage);
3268
3269 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3270 if (page == hpage)
3271 return 1;
3272 return 0;
3273}
3274
93f70f90
NH
3275/*
3276 * This function is called from memory failure code.
3277 * Assume the caller holds page lock of the head page.
3278 */
6de2b1aa 3279int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3280{
3281 struct hstate *h = page_hstate(hpage);
3282 int nid = page_to_nid(hpage);
6de2b1aa 3283 int ret = -EBUSY;
93f70f90
NH
3284
3285 spin_lock(&hugetlb_lock);
6de2b1aa 3286 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3287 /*
3288 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3289 * but dangling hpage->lru can trigger list-debug warnings
3290 * (this happens when we call unpoison_memory() on it),
3291 * so let it point to itself with list_del_init().
3292 */
3293 list_del_init(&hpage->lru);
8c6c2ecb 3294 set_page_refcounted(hpage);
6de2b1aa
NH
3295 h->free_huge_pages--;
3296 h->free_huge_pages_node[nid]--;
3297 ret = 0;
3298 }
93f70f90 3299 spin_unlock(&hugetlb_lock);
6de2b1aa 3300 return ret;
93f70f90 3301}
6de2b1aa 3302#endif