swiotlb: Return physical addresses when calling swiotlb_tbl_map_single
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4 22#include <linux/mm.h>
8bc3bcc9 23#include <linux/export.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
1da177e4
LT
32
33#include <asm/io.h>
1da177e4 34#include <asm/dma.h>
17e5ad6c 35#include <asm/scatterlist.h>
1da177e4
LT
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
a8522509 39#include <linux/iommu-helper.h>
1da177e4
LT
40
41#define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
43
0b9afede
AW
44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45
46/*
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 */
51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52
1da177e4
LT
53int swiotlb_force;
54
55/*
bfc5501f
KRW
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
58 * API.
59 */
ff7204a7 60static phys_addr_t io_tlb_start, io_tlb_end;
1da177e4
LT
61
62/*
b595076a 63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
1da177e4
LT
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
65 */
66static unsigned long io_tlb_nslabs;
67
68/*
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
70 */
71static unsigned long io_tlb_overflow = 32*1024;
72
ee3f6ba8 73static phys_addr_t io_tlb_overflow_buffer;
1da177e4
LT
74
75/*
76 * This is a free list describing the number of free entries available from
77 * each index
78 */
79static unsigned int *io_tlb_list;
80static unsigned int io_tlb_index;
81
82/*
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
85 */
bc40ac66 86static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
87
88/*
89 * Protect the above data structures in the map and unmap calls
90 */
91static DEFINE_SPINLOCK(io_tlb_lock);
92
5740afdb
FT
93static int late_alloc;
94
1da177e4
LT
95static int __init
96setup_io_tlb_npages(char *str)
97{
98 if (isdigit(*str)) {
e8579e72 99 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102 }
103 if (*str == ',')
104 ++str;
b18485e7 105 if (!strcmp(str, "force"))
1da177e4 106 swiotlb_force = 1;
b18485e7 107
1da177e4
LT
108 return 1;
109}
110__setup("swiotlb=", setup_io_tlb_npages);
111/* make io_tlb_overflow tunable too? */
112
f21ffe9f 113unsigned long swiotlb_nr_tbl(void)
5f98ecdb
FT
114{
115 return io_tlb_nslabs;
116}
f21ffe9f 117EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
02ca646e 118/* Note that this doesn't work with highmem page */
70a7d3cc
JF
119static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
120 volatile void *address)
e08e1f7a 121{
862d196b 122 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
123}
124
ad32e8cb 125void swiotlb_print_info(void)
2e5b2b86 126{
ad32e8cb 127 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
ff7204a7 128 unsigned char *vstart, *vend;
2e5b2b86 129
ff7204a7 130 vstart = phys_to_virt(io_tlb_start);
c40dba06 131 vend = phys_to_virt(io_tlb_end);
2e5b2b86 132
3af684c7 133 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
ff7204a7 134 (unsigned long long)io_tlb_start,
c40dba06 135 (unsigned long long)io_tlb_end,
ff7204a7 136 bytes >> 20, vstart, vend - 1);
2e5b2b86
IC
137}
138
abbceff7 139void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 140{
ee3f6ba8 141 void *v_overflow_buffer;
563aaf06 142 unsigned long i, bytes;
1da177e4 143
abbceff7 144 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 145
abbceff7 146 io_tlb_nslabs = nslabs;
ff7204a7
AD
147 io_tlb_start = __pa(tlb);
148 io_tlb_end = io_tlb_start + bytes;
1da177e4 149
ee3f6ba8
AD
150 /*
151 * Get the overflow emergency buffer
152 */
153 v_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
154 if (!v_overflow_buffer)
155 panic("Cannot allocate SWIOTLB overflow buffer!\n");
156
157 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
158
1da177e4
LT
159 /*
160 * Allocate and initialize the free list array. This array is used
161 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
162 * between io_tlb_start and io_tlb_end.
163 */
e79f86b2 164 io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
25667d67 165 for (i = 0; i < io_tlb_nslabs; i++)
1da177e4
LT
166 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
167 io_tlb_index = 0;
e79f86b2 168 io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
1da177e4 169
ad32e8cb
FT
170 if (verbose)
171 swiotlb_print_info();
1da177e4
LT
172}
173
abbceff7
FT
174/*
175 * Statically reserve bounce buffer space and initialize bounce buffer data
176 * structures for the software IO TLB used to implement the DMA API.
177 */
74838b75 178static void __init
abbceff7
FT
179swiotlb_init_with_default_size(size_t default_size, int verbose)
180{
ff7204a7 181 unsigned char *vstart;
abbceff7
FT
182 unsigned long bytes;
183
184 if (!io_tlb_nslabs) {
185 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
186 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
187 }
188
189 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
190
191 /*
192 * Get IO TLB memory from the low pages
193 */
ff7204a7
AD
194 vstart = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
195 if (!vstart)
abbceff7
FT
196 panic("Cannot allocate SWIOTLB buffer");
197
ff7204a7 198 swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose);
abbceff7
FT
199}
200
563aaf06 201void __init
ad32e8cb 202swiotlb_init(int verbose)
1da177e4 203{
ad32e8cb 204 swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
1da177e4
LT
205}
206
0b9afede
AW
207/*
208 * Systems with larger DMA zones (those that don't support ISA) can
209 * initialize the swiotlb later using the slab allocator if needed.
210 * This should be just like above, but with some error catching.
211 */
212int
563aaf06 213swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 214{
74838b75 215 unsigned long bytes, req_nslabs = io_tlb_nslabs;
ff7204a7 216 unsigned char *vstart = NULL;
0b9afede 217 unsigned int order;
74838b75 218 int rc = 0;
0b9afede
AW
219
220 if (!io_tlb_nslabs) {
221 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
222 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
223 }
224
225 /*
226 * Get IO TLB memory from the low pages
227 */
563aaf06 228 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 229 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 230 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
231
232 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
ff7204a7
AD
233 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
234 order);
235 if (vstart)
0b9afede
AW
236 break;
237 order--;
238 }
239
ff7204a7 240 if (!vstart) {
74838b75
KRW
241 io_tlb_nslabs = req_nslabs;
242 return -ENOMEM;
243 }
563aaf06 244 if (order != get_order(bytes)) {
0b9afede
AW
245 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
246 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
247 io_tlb_nslabs = SLABS_PER_PAGE << order;
248 }
ff7204a7 249 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
74838b75 250 if (rc)
ff7204a7 251 free_pages((unsigned long)vstart, order);
74838b75
KRW
252 return rc;
253}
254
255int
256swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
257{
258 unsigned long i, bytes;
ee3f6ba8 259 unsigned char *v_overflow_buffer;
74838b75
KRW
260
261 bytes = nslabs << IO_TLB_SHIFT;
262
263 io_tlb_nslabs = nslabs;
ff7204a7
AD
264 io_tlb_start = virt_to_phys(tlb);
265 io_tlb_end = io_tlb_start + bytes;
74838b75 266
ff7204a7 267 memset(tlb, 0, bytes);
0b9afede 268
ee3f6ba8
AD
269 /*
270 * Get the overflow emergency buffer
271 */
272 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
273 get_order(io_tlb_overflow));
274 if (!v_overflow_buffer)
275 goto cleanup2;
276
277 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
278
0b9afede
AW
279 /*
280 * Allocate and initialize the free list array. This array is used
281 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
282 * between io_tlb_start and io_tlb_end.
283 */
284 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
285 get_order(io_tlb_nslabs * sizeof(int)));
286 if (!io_tlb_list)
ee3f6ba8 287 goto cleanup3;
0b9afede
AW
288
289 for (i = 0; i < io_tlb_nslabs; i++)
290 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
291 io_tlb_index = 0;
292
bc40ac66
BB
293 io_tlb_orig_addr = (phys_addr_t *)
294 __get_free_pages(GFP_KERNEL,
295 get_order(io_tlb_nslabs *
296 sizeof(phys_addr_t)));
0b9afede 297 if (!io_tlb_orig_addr)
ee3f6ba8 298 goto cleanup4;
0b9afede 299
bc40ac66 300 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
0b9afede 301
ad32e8cb 302 swiotlb_print_info();
0b9afede 303
5740afdb
FT
304 late_alloc = 1;
305
0b9afede
AW
306 return 0;
307
308cleanup4:
25667d67
TL
309 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
310 sizeof(int)));
0b9afede 311 io_tlb_list = NULL;
ee3f6ba8
AD
312cleanup3:
313 free_pages((unsigned long)v_overflow_buffer,
314 get_order(io_tlb_overflow));
315 io_tlb_overflow_buffer = 0;
0b9afede 316cleanup2:
c40dba06 317 io_tlb_end = 0;
ff7204a7 318 io_tlb_start = 0;
74838b75 319 io_tlb_nslabs = 0;
0b9afede
AW
320 return -ENOMEM;
321}
322
5740afdb
FT
323void __init swiotlb_free(void)
324{
ee3f6ba8 325 if (!io_tlb_orig_addr)
5740afdb
FT
326 return;
327
328 if (late_alloc) {
ee3f6ba8 329 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
5740afdb
FT
330 get_order(io_tlb_overflow));
331 free_pages((unsigned long)io_tlb_orig_addr,
332 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
333 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
334 sizeof(int)));
ff7204a7 335 free_pages((unsigned long)phys_to_virt(io_tlb_start),
5740afdb
FT
336 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
337 } else {
ee3f6ba8 338 free_bootmem_late(io_tlb_overflow_buffer,
e79f86b2 339 PAGE_ALIGN(io_tlb_overflow));
5740afdb 340 free_bootmem_late(__pa(io_tlb_orig_addr),
e79f86b2 341 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
5740afdb 342 free_bootmem_late(__pa(io_tlb_list),
e79f86b2 343 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
ff7204a7 344 free_bootmem_late(io_tlb_start,
e79f86b2 345 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
5740afdb 346 }
f21ffe9f 347 io_tlb_nslabs = 0;
5740afdb
FT
348}
349
02ca646e 350static int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 351{
ff7204a7 352 return paddr >= io_tlb_start && paddr < io_tlb_end;
640aebfe
FT
353}
354
fb05a379
BB
355/*
356 * Bounce: copy the swiotlb buffer back to the original dma location
357 */
d7ef1533
KRW
358void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
359 enum dma_data_direction dir)
fb05a379
BB
360{
361 unsigned long pfn = PFN_DOWN(phys);
362
363 if (PageHighMem(pfn_to_page(pfn))) {
364 /* The buffer does not have a mapping. Map it in and copy */
365 unsigned int offset = phys & ~PAGE_MASK;
366 char *buffer;
367 unsigned int sz = 0;
368 unsigned long flags;
369
370 while (size) {
67131ad0 371 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
372
373 local_irq_save(flags);
c3eede8e 374 buffer = kmap_atomic(pfn_to_page(pfn));
fb05a379
BB
375 if (dir == DMA_TO_DEVICE)
376 memcpy(dma_addr, buffer + offset, sz);
ef9b1893 377 else
fb05a379 378 memcpy(buffer + offset, dma_addr, sz);
c3eede8e 379 kunmap_atomic(buffer);
ef9b1893 380 local_irq_restore(flags);
fb05a379
BB
381
382 size -= sz;
383 pfn++;
384 dma_addr += sz;
385 offset = 0;
ef9b1893
JF
386 }
387 } else {
ef9b1893 388 if (dir == DMA_TO_DEVICE)
fb05a379 389 memcpy(dma_addr, phys_to_virt(phys), size);
ef9b1893 390 else
fb05a379 391 memcpy(phys_to_virt(phys), dma_addr, size);
ef9b1893 392 }
1b548f66 393}
d7ef1533 394EXPORT_SYMBOL_GPL(swiotlb_bounce);
1b548f66 395
e05ed4d1
AD
396phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
397 dma_addr_t tbl_dma_addr,
398 phys_addr_t orig_addr, size_t size,
399 enum dma_data_direction dir)
1da177e4
LT
400{
401 unsigned long flags;
e05ed4d1 402 phys_addr_t tlb_addr;
1da177e4
LT
403 unsigned int nslots, stride, index, wrap;
404 int i;
681cc5cd
FT
405 unsigned long mask;
406 unsigned long offset_slots;
407 unsigned long max_slots;
408
409 mask = dma_get_seg_boundary(hwdev);
681cc5cd 410
eb605a57
FT
411 tbl_dma_addr &= mask;
412
413 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
414
415 /*
416 * Carefully handle integer overflow which can occur when mask == ~0UL.
417 */
b15a3891
JB
418 max_slots = mask + 1
419 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
420 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
421
422 /*
423 * For mappings greater than a page, we limit the stride (and
424 * hence alignment) to a page size.
425 */
426 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
427 if (size > PAGE_SIZE)
428 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
429 else
430 stride = 1;
431
34814545 432 BUG_ON(!nslots);
1da177e4
LT
433
434 /*
435 * Find suitable number of IO TLB entries size that will fit this
436 * request and allocate a buffer from that IO TLB pool.
437 */
438 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
439 index = ALIGN(io_tlb_index, stride);
440 if (index >= io_tlb_nslabs)
441 index = 0;
442 wrap = index;
443
444 do {
a8522509
FT
445 while (iommu_is_span_boundary(index, nslots, offset_slots,
446 max_slots)) {
b15a3891
JB
447 index += stride;
448 if (index >= io_tlb_nslabs)
449 index = 0;
a7133a15
AM
450 if (index == wrap)
451 goto not_found;
452 }
453
454 /*
455 * If we find a slot that indicates we have 'nslots' number of
456 * contiguous buffers, we allocate the buffers from that slot
457 * and mark the entries as '0' indicating unavailable.
458 */
459 if (io_tlb_list[index] >= nslots) {
460 int count = 0;
461
462 for (i = index; i < (int) (index + nslots); i++)
463 io_tlb_list[i] = 0;
464 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
465 io_tlb_list[i] = ++count;
e05ed4d1 466 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 467
a7133a15
AM
468 /*
469 * Update the indices to avoid searching in the next
470 * round.
471 */
472 io_tlb_index = ((index + nslots) < io_tlb_nslabs
473 ? (index + nslots) : 0);
474
475 goto found;
476 }
477 index += stride;
478 if (index >= io_tlb_nslabs)
479 index = 0;
480 } while (index != wrap);
481
482not_found:
483 spin_unlock_irqrestore(&io_tlb_lock, flags);
e05ed4d1 484 return SWIOTLB_MAP_ERROR;
a7133a15 485found:
1da177e4
LT
486 spin_unlock_irqrestore(&io_tlb_lock, flags);
487
488 /*
489 * Save away the mapping from the original address to the DMA address.
490 * This is needed when we sync the memory. Then we sync the buffer if
491 * needed.
492 */
bc40ac66 493 for (i = 0; i < nslots; i++)
e05ed4d1 494 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
1da177e4 495 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
e05ed4d1
AD
496 swiotlb_bounce(orig_addr, phys_to_virt(tlb_addr), size,
497 DMA_TO_DEVICE);
1da177e4 498
e05ed4d1 499 return tlb_addr;
1da177e4 500}
d7ef1533 501EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
1da177e4 502
eb605a57
FT
503/*
504 * Allocates bounce buffer and returns its kernel virtual address.
505 */
506
e05ed4d1
AD
507phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
508 enum dma_data_direction dir)
eb605a57 509{
ff7204a7 510 dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
eb605a57
FT
511
512 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
513}
514
1da177e4
LT
515/*
516 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
517 */
d7ef1533 518void
bfc5501f 519swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
22d48269 520 enum dma_data_direction dir)
1da177e4
LT
521{
522 unsigned long flags;
523 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
ff7204a7 524 int index = (dma_addr - (char *)phys_to_virt(io_tlb_start)) >> IO_TLB_SHIFT;
bc40ac66 525 phys_addr_t phys = io_tlb_orig_addr[index];
1da177e4
LT
526
527 /*
528 * First, sync the memory before unmapping the entry
529 */
bc40ac66 530 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
fb05a379 531 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
532
533 /*
534 * Return the buffer to the free list by setting the corresponding
af901ca1 535 * entries to indicate the number of contiguous entries available.
1da177e4
LT
536 * While returning the entries to the free list, we merge the entries
537 * with slots below and above the pool being returned.
538 */
539 spin_lock_irqsave(&io_tlb_lock, flags);
540 {
541 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
542 io_tlb_list[index + nslots] : 0);
543 /*
544 * Step 1: return the slots to the free list, merging the
545 * slots with superceeding slots
546 */
547 for (i = index + nslots - 1; i >= index; i--)
548 io_tlb_list[i] = ++count;
549 /*
550 * Step 2: merge the returned slots with the preceding slots,
551 * if available (non zero)
552 */
553 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
554 io_tlb_list[i] = ++count;
555 }
556 spin_unlock_irqrestore(&io_tlb_lock, flags);
557}
d7ef1533 558EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
1da177e4 559
d7ef1533 560void
bfc5501f 561swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
d7ef1533
KRW
562 enum dma_data_direction dir,
563 enum dma_sync_target target)
1da177e4 564{
ff7204a7 565 int index = (dma_addr - (char *)phys_to_virt(io_tlb_start)) >> IO_TLB_SHIFT;
bc40ac66
BB
566 phys_addr_t phys = io_tlb_orig_addr[index];
567
568 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
df336d1c 569
de69e0f0
JL
570 switch (target) {
571 case SYNC_FOR_CPU:
572 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 573 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
34814545
ES
574 else
575 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
576 break;
577 case SYNC_FOR_DEVICE:
578 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 579 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
34814545
ES
580 else
581 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
582 break;
583 default:
1da177e4 584 BUG();
de69e0f0 585 }
1da177e4 586}
d7ef1533 587EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
1da177e4
LT
588
589void *
590swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 591 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 592{
563aaf06 593 dma_addr_t dev_addr;
1da177e4
LT
594 void *ret;
595 int order = get_order(size);
284901a9 596 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
597
598 if (hwdev && hwdev->coherent_dma_mask)
599 dma_mask = hwdev->coherent_dma_mask;
1da177e4 600
25667d67 601 ret = (void *)__get_free_pages(flags, order);
e05ed4d1
AD
602 if (ret) {
603 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
604 if (dev_addr + size - 1 > dma_mask) {
605 /*
606 * The allocated memory isn't reachable by the device.
607 */
608 free_pages((unsigned long) ret, order);
609 ret = NULL;
610 }
1da177e4
LT
611 }
612 if (!ret) {
613 /*
bfc5501f
KRW
614 * We are either out of memory or the device can't DMA to
615 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 616 * will grab memory from the lowest available address range.
1da177e4 617 */
e05ed4d1
AD
618 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
619 if (paddr == SWIOTLB_MAP_ERROR)
1da177e4 620 return NULL;
1da177e4 621
e05ed4d1
AD
622 ret = phys_to_virt(paddr);
623 dev_addr = phys_to_dma(hwdev, paddr);
624 }
1da177e4
LT
625
626 /* Confirm address can be DMA'd by device */
ac2b3e67 627 if (dev_addr + size - 1 > dma_mask) {
563aaf06 628 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
1e74f300 629 (unsigned long long)dma_mask,
563aaf06 630 (unsigned long long)dev_addr);
a2b89b59
FT
631
632 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
bfc5501f 633 swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
a2b89b59 634 return NULL;
1da177e4 635 }
e05ed4d1 636
1da177e4 637 *dma_handle = dev_addr;
e05ed4d1
AD
638 memset(ret, 0, size);
639
1da177e4
LT
640 return ret;
641}
874d6a95 642EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
643
644void
645swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 646 dma_addr_t dev_addr)
1da177e4 647{
862d196b 648 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 649
aa24886e 650 WARN_ON(irqs_disabled());
02ca646e
FT
651 if (!is_swiotlb_buffer(paddr))
652 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 653 else
bfc5501f
KRW
654 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
655 swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
1da177e4 656}
874d6a95 657EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
658
659static void
22d48269
KRW
660swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
661 int do_panic)
1da177e4
LT
662{
663 /*
664 * Ran out of IOMMU space for this operation. This is very bad.
665 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 666 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
667 * When the mapping is small enough return a static buffer to limit
668 * the damage, or panic when the transfer is too big.
669 */
563aaf06 670 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
94b32486 671 "device %s\n", size, dev ? dev_name(dev) : "?");
1da177e4 672
c7084b35
CD
673 if (size <= io_tlb_overflow || !do_panic)
674 return;
675
676 if (dir == DMA_BIDIRECTIONAL)
677 panic("DMA: Random memory could be DMA accessed\n");
678 if (dir == DMA_FROM_DEVICE)
679 panic("DMA: Random memory could be DMA written\n");
680 if (dir == DMA_TO_DEVICE)
681 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
682}
683
684/*
685 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 686 * physical address to use is returned.
1da177e4
LT
687 *
688 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 689 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 690 */
f98eee8e
FT
691dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
692 unsigned long offset, size_t size,
693 enum dma_data_direction dir,
694 struct dma_attrs *attrs)
1da177e4 695{
e05ed4d1 696 phys_addr_t map, phys = page_to_phys(page) + offset;
862d196b 697 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4 698
34814545 699 BUG_ON(dir == DMA_NONE);
1da177e4 700 /*
ceb5ac32 701 * If the address happens to be in the device's DMA window,
1da177e4
LT
702 * we can safely return the device addr and not worry about bounce
703 * buffering it.
704 */
b9394647 705 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
1da177e4
LT
706 return dev_addr;
707
e05ed4d1 708 /* Oh well, have to allocate and map a bounce buffer. */
f98eee8e 709 map = map_single(dev, phys, size, dir);
e05ed4d1 710 if (map == SWIOTLB_MAP_ERROR) {
f98eee8e 711 swiotlb_full(dev, size, dir, 1);
ee3f6ba8 712 return phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4
LT
713 }
714
e05ed4d1 715 dev_addr = phys_to_dma(dev, map);
1da177e4 716
e05ed4d1 717 /* Ensure that the address returned is DMA'ble */
fba99fa3 718 if (!dma_capable(dev, dev_addr, size)) {
e05ed4d1 719 swiotlb_tbl_unmap_single(dev, phys_to_virt(map), size, dir);
ee3f6ba8 720 return phys_to_dma(dev, io_tlb_overflow_buffer);
fba99fa3 721 }
1da177e4
LT
722
723 return dev_addr;
724}
f98eee8e 725EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 726
1da177e4
LT
727/*
728 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 729 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
730 * other usages are undefined.
731 *
732 * After this call, reads by the cpu to the buffer are guaranteed to see
733 * whatever the device wrote there.
734 */
7fcebbd2 735static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
22d48269 736 size_t size, enum dma_data_direction dir)
1da177e4 737{
862d196b 738 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 739
34814545 740 BUG_ON(dir == DMA_NONE);
7fcebbd2 741
02ca646e 742 if (is_swiotlb_buffer(paddr)) {
bfc5501f 743 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
7fcebbd2
BB
744 return;
745 }
746
747 if (dir != DMA_FROM_DEVICE)
748 return;
749
02ca646e
FT
750 /*
751 * phys_to_virt doesn't work with hihgmem page but we could
752 * call dma_mark_clean() with hihgmem page here. However, we
753 * are fine since dma_mark_clean() is null on POWERPC. We can
754 * make dma_mark_clean() take a physical address if necessary.
755 */
756 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
757}
758
759void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
760 size_t size, enum dma_data_direction dir,
761 struct dma_attrs *attrs)
762{
763 unmap_single(hwdev, dev_addr, size, dir);
1da177e4 764}
f98eee8e 765EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 766
1da177e4
LT
767/*
768 * Make physical memory consistent for a single streaming mode DMA translation
769 * after a transfer.
770 *
ceb5ac32 771 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
772 * using the cpu, yet do not wish to teardown the dma mapping, you must
773 * call this function before doing so. At the next point you give the dma
1da177e4
LT
774 * address back to the card, you must first perform a
775 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
776 */
be6b0267 777static void
8270f3f1 778swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
d7ef1533
KRW
779 size_t size, enum dma_data_direction dir,
780 enum dma_sync_target target)
1da177e4 781{
862d196b 782 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 783
34814545 784 BUG_ON(dir == DMA_NONE);
380d6878 785
02ca646e 786 if (is_swiotlb_buffer(paddr)) {
bfc5501f
KRW
787 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
788 target);
380d6878
BB
789 return;
790 }
791
792 if (dir != DMA_FROM_DEVICE)
793 return;
794
02ca646e 795 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
796}
797
8270f3f1
JL
798void
799swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 800 size_t size, enum dma_data_direction dir)
8270f3f1 801{
de69e0f0 802 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 803}
874d6a95 804EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 805
1da177e4
LT
806void
807swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 808 size_t size, enum dma_data_direction dir)
1da177e4 809{
de69e0f0 810 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 811}
874d6a95 812EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
813
814/*
815 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 816 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
817 * interface. Here the scatter gather list elements are each tagged with the
818 * appropriate dma address and length. They are obtained via
819 * sg_dma_{address,length}(SG).
820 *
821 * NOTE: An implementation may be able to use a smaller number of
822 * DMA address/length pairs than there are SG table elements.
823 * (for example via virtual mapping capabilities)
824 * The routine returns the number of addr/length pairs actually
825 * used, at most nents.
826 *
ceb5ac32 827 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
828 * same here.
829 */
830int
309df0c5 831swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
160c1d8e 832 enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 833{
dbfd49fe 834 struct scatterlist *sg;
1da177e4
LT
835 int i;
836
34814545 837 BUG_ON(dir == DMA_NONE);
1da177e4 838
dbfd49fe 839 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 840 phys_addr_t paddr = sg_phys(sg);
862d196b 841 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 842
cf56e3f2 843 if (swiotlb_force ||
b9394647 844 !dma_capable(hwdev, dev_addr, sg->length)) {
e05ed4d1
AD
845 phys_addr_t map = map_single(hwdev, sg_phys(sg),
846 sg->length, dir);
847 if (map == SWIOTLB_MAP_ERROR) {
1da177e4
LT
848 /* Don't panic here, we expect map_sg users
849 to do proper error handling. */
850 swiotlb_full(hwdev, sg->length, dir, 0);
309df0c5
AK
851 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
852 attrs);
dbfd49fe 853 sgl[0].dma_length = 0;
1da177e4
LT
854 return 0;
855 }
e05ed4d1 856 sg->dma_address = phys_to_dma(hwdev, map);
1da177e4
LT
857 } else
858 sg->dma_address = dev_addr;
859 sg->dma_length = sg->length;
860 }
861 return nelems;
862}
309df0c5
AK
863EXPORT_SYMBOL(swiotlb_map_sg_attrs);
864
865int
866swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
22d48269 867 enum dma_data_direction dir)
309df0c5
AK
868{
869 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
870}
874d6a95 871EXPORT_SYMBOL(swiotlb_map_sg);
1da177e4
LT
872
873/*
874 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 875 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
876 */
877void
309df0c5 878swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
160c1d8e 879 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 880{
dbfd49fe 881 struct scatterlist *sg;
1da177e4
LT
882 int i;
883
34814545 884 BUG_ON(dir == DMA_NONE);
1da177e4 885
7fcebbd2
BB
886 for_each_sg(sgl, sg, nelems, i)
887 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
888
1da177e4 889}
309df0c5
AK
890EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
891
892void
893swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
22d48269 894 enum dma_data_direction dir)
309df0c5
AK
895{
896 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
897}
874d6a95 898EXPORT_SYMBOL(swiotlb_unmap_sg);
1da177e4
LT
899
900/*
901 * Make physical memory consistent for a set of streaming mode DMA translations
902 * after a transfer.
903 *
904 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
905 * and usage.
906 */
be6b0267 907static void
dbfd49fe 908swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
d7ef1533
KRW
909 int nelems, enum dma_data_direction dir,
910 enum dma_sync_target target)
1da177e4 911{
dbfd49fe 912 struct scatterlist *sg;
1da177e4
LT
913 int i;
914
380d6878
BB
915 for_each_sg(sgl, sg, nelems, i)
916 swiotlb_sync_single(hwdev, sg->dma_address,
de69e0f0 917 sg->dma_length, dir, target);
1da177e4
LT
918}
919
8270f3f1
JL
920void
921swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 922 int nelems, enum dma_data_direction dir)
8270f3f1 923{
de69e0f0 924 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 925}
874d6a95 926EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 927
1da177e4
LT
928void
929swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 930 int nelems, enum dma_data_direction dir)
1da177e4 931{
de69e0f0 932 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 933}
874d6a95 934EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
935
936int
8d8bb39b 937swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 938{
ee3f6ba8 939 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1da177e4 940}
874d6a95 941EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
942
943/*
17e5ad6c 944 * Return whether the given device DMA address mask can be supported
1da177e4 945 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 946 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
947 * this function.
948 */
949int
563aaf06 950swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 951{
c40dba06 952 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1da177e4 953}
1da177e4 954EXPORT_SYMBOL(swiotlb_dma_supported);