drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / lib / idr.c
CommitLineData
1da177e4
LT
1/*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
3219b3b7
ND
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
e15ae2dd 11 * Small id to pointer translation service.
1da177e4 12 *
e15ae2dd 13 * It uses a radix tree like structure as a sparse array indexed
1da177e4 14 * by the id to obtain the pointer. The bitmap makes allocating
e15ae2dd 15 * a new id quick.
1da177e4
LT
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
e15ae2dd 22 * You can release ids at any time. When all ids are released, most of
125c4c70 23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
e15ae2dd 24 * don't need to go to the memory "store" during an id allocate, just
1da177e4
LT
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29#ifndef TEST // to test in user space...
30#include <linux/slab.h>
31#include <linux/init.h>
8bc3bcc9 32#include <linux/export.h>
1da177e4 33#endif
5806f07c 34#include <linux/err.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/idr.h>
88eca020 37#include <linux/spinlock.h>
d5c7409f
TH
38#include <linux/percpu.h>
39#include <linux/hardirq.h>
1da177e4 40
e8c8d1bc
TH
41#define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
42#define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
43
44/* Leave the possibility of an incomplete final layer */
45#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
46
47/* Number of id_layer structs to leave in free list */
48#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
49
e18b890b 50static struct kmem_cache *idr_layer_cache;
d5c7409f
TH
51static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52static DEFINE_PER_CPU(int, idr_preload_cnt);
88eca020 53static DEFINE_SPINLOCK(simple_ida_lock);
1da177e4 54
326cf0f0
TH
55/* the maximum ID which can be allocated given idr->layers */
56static int idr_max(int layers)
57{
58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
59
60 return (1 << bits) - 1;
61}
62
54616283
TH
63/*
64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
66 * so on.
67 */
68static int idr_layer_prefix_mask(int layer)
69{
70 return ~idr_max(layer + 1);
71}
72
4ae53789 73static struct idr_layer *get_from_free_list(struct idr *idp)
1da177e4
LT
74{
75 struct idr_layer *p;
c259cc28 76 unsigned long flags;
1da177e4 77
c259cc28 78 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
79 if ((p = idp->id_free)) {
80 idp->id_free = p->ary[0];
81 idp->id_free_cnt--;
82 p->ary[0] = NULL;
83 }
c259cc28 84 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
85 return(p);
86}
87
d5c7409f
TH
88/**
89 * idr_layer_alloc - allocate a new idr_layer
90 * @gfp_mask: allocation mask
91 * @layer_idr: optional idr to allocate from
92 *
93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
95 * an idr_layer from @idr->id_free.
96 *
97 * @layer_idr is to maintain backward compatibility with the old alloc
98 * interface - idr_pre_get() and idr_get_new*() - and will be removed
99 * together with per-pool preload buffer.
100 */
101static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
102{
103 struct idr_layer *new;
104
105 /* this is the old path, bypass to get_from_free_list() */
106 if (layer_idr)
107 return get_from_free_list(layer_idr);
108
59bfbcf0
TH
109 /*
110 * Try to allocate directly from kmem_cache. We want to try this
111 * before preload buffer; otherwise, non-preloading idr_alloc()
112 * users will end up taking advantage of preloading ones. As the
113 * following is allowed to fail for preloaded cases, suppress
114 * warning this time.
115 */
116 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
d5c7409f
TH
117 if (new)
118 return new;
119
120 /*
121 * Try to fetch one from the per-cpu preload buffer if in process
122 * context. See idr_preload() for details.
123 */
59bfbcf0
TH
124 if (!in_interrupt()) {
125 preempt_disable();
126 new = __this_cpu_read(idr_preload_head);
127 if (new) {
128 __this_cpu_write(idr_preload_head, new->ary[0]);
129 __this_cpu_dec(idr_preload_cnt);
130 new->ary[0] = NULL;
131 }
132 preempt_enable();
133 if (new)
134 return new;
d5c7409f 135 }
59bfbcf0
TH
136
137 /*
138 * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so
139 * that memory allocation failure warning is printed as intended.
140 */
141 return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
d5c7409f
TH
142}
143
cf481c20
ND
144static void idr_layer_rcu_free(struct rcu_head *head)
145{
146 struct idr_layer *layer;
147
148 layer = container_of(head, struct idr_layer, rcu_head);
149 kmem_cache_free(idr_layer_cache, layer);
150}
151
0ffc2a9c 152static inline void free_layer(struct idr *idr, struct idr_layer *p)
cf481c20 153{
0ffc2a9c
TH
154 if (idr->hint && idr->hint == p)
155 RCU_INIT_POINTER(idr->hint, NULL);
cf481c20
ND
156 call_rcu(&p->rcu_head, idr_layer_rcu_free);
157}
158
1eec0056 159/* only called when idp->lock is held */
4ae53789 160static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
1eec0056
SR
161{
162 p->ary[0] = idp->id_free;
163 idp->id_free = p;
164 idp->id_free_cnt++;
165}
166
4ae53789 167static void move_to_free_list(struct idr *idp, struct idr_layer *p)
1da177e4 168{
c259cc28
RD
169 unsigned long flags;
170
1da177e4
LT
171 /*
172 * Depends on the return element being zeroed.
173 */
c259cc28 174 spin_lock_irqsave(&idp->lock, flags);
4ae53789 175 __move_to_free_list(idp, p);
c259cc28 176 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
177}
178
e33ac8bd
TH
179static void idr_mark_full(struct idr_layer **pa, int id)
180{
181 struct idr_layer *p = pa[0];
182 int l = 0;
183
1d9b2e1e 184 __set_bit(id & IDR_MASK, p->bitmap);
e33ac8bd
TH
185 /*
186 * If this layer is full mark the bit in the layer above to
187 * show that this part of the radix tree is full. This may
188 * complete the layer above and require walking up the radix
189 * tree.
190 */
1d9b2e1e 191 while (bitmap_full(p->bitmap, IDR_SIZE)) {
e33ac8bd
TH
192 if (!(p = pa[++l]))
193 break;
194 id = id >> IDR_BITS;
1d9b2e1e 195 __set_bit((id & IDR_MASK), p->bitmap);
e33ac8bd
TH
196 }
197}
198
c8615d37 199int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
1da177e4 200{
125c4c70 201 while (idp->id_free_cnt < MAX_IDR_FREE) {
1da177e4 202 struct idr_layer *new;
5b019e99 203 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
e15ae2dd 204 if (new == NULL)
1da177e4 205 return (0);
4ae53789 206 move_to_free_list(idp, new);
1da177e4
LT
207 }
208 return 1;
209}
c8615d37 210EXPORT_SYMBOL(__idr_pre_get);
1da177e4 211
12d1b439
TH
212/**
213 * sub_alloc - try to allocate an id without growing the tree depth
214 * @idp: idr handle
215 * @starting_id: id to start search at
12d1b439 216 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
d5c7409f
TH
217 * @gfp_mask: allocation mask for idr_layer_alloc()
218 * @layer_idr: optional idr passed to idr_layer_alloc()
12d1b439
TH
219 *
220 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
221 * growing its depth. Returns
222 *
223 * the allocated id >= 0 if successful,
224 * -EAGAIN if the tree needs to grow for allocation to succeed,
225 * -ENOSPC if the id space is exhausted,
226 * -ENOMEM if more idr_layers need to be allocated.
227 */
d5c7409f
TH
228static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
229 gfp_t gfp_mask, struct idr *layer_idr)
1da177e4
LT
230{
231 int n, m, sh;
232 struct idr_layer *p, *new;
7aae6dd8 233 int l, id, oid;
1da177e4
LT
234
235 id = *starting_id;
7aae6dd8 236 restart:
1da177e4
LT
237 p = idp->top;
238 l = idp->layers;
239 pa[l--] = NULL;
240 while (1) {
241 /*
242 * We run around this while until we reach the leaf node...
243 */
244 n = (id >> (IDR_BITS*l)) & IDR_MASK;
1d9b2e1e 245 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
1da177e4
LT
246 if (m == IDR_SIZE) {
247 /* no space available go back to previous layer. */
248 l++;
7aae6dd8 249 oid = id;
e15ae2dd 250 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
7aae6dd8
TH
251
252 /* if already at the top layer, we need to grow */
2ada32b0 253 if (id > idr_max(idp->layers)) {
1da177e4 254 *starting_id = id;
12d1b439 255 return -EAGAIN;
1da177e4 256 }
d2e7276b
TH
257 p = pa[l];
258 BUG_ON(!p);
7aae6dd8
TH
259
260 /* If we need to go up one layer, continue the
261 * loop; otherwise, restart from the top.
262 */
263 sh = IDR_BITS * (l + 1);
264 if (oid >> sh == id >> sh)
265 continue;
266 else
267 goto restart;
1da177e4
LT
268 }
269 if (m != n) {
270 sh = IDR_BITS*l;
271 id = ((id >> sh) ^ n ^ m) << sh;
272 }
125c4c70 273 if ((id >= MAX_IDR_BIT) || (id < 0))
12d1b439 274 return -ENOSPC;
1da177e4
LT
275 if (l == 0)
276 break;
277 /*
278 * Create the layer below if it is missing.
279 */
280 if (!p->ary[m]) {
d5c7409f 281 new = idr_layer_alloc(gfp_mask, layer_idr);
4ae53789 282 if (!new)
12d1b439 283 return -ENOMEM;
6ff2d39b 284 new->layer = l-1;
54616283 285 new->prefix = id & idr_layer_prefix_mask(new->layer);
3219b3b7 286 rcu_assign_pointer(p->ary[m], new);
1da177e4
LT
287 p->count++;
288 }
289 pa[l--] = p;
290 p = p->ary[m];
291 }
e33ac8bd
TH
292
293 pa[l] = p;
294 return id;
1da177e4
LT
295}
296
e33ac8bd 297static int idr_get_empty_slot(struct idr *idp, int starting_id,
d5c7409f
TH
298 struct idr_layer **pa, gfp_t gfp_mask,
299 struct idr *layer_idr)
1da177e4
LT
300{
301 struct idr_layer *p, *new;
302 int layers, v, id;
c259cc28 303 unsigned long flags;
e15ae2dd 304
1da177e4
LT
305 id = starting_id;
306build_up:
307 p = idp->top;
308 layers = idp->layers;
309 if (unlikely(!p)) {
d5c7409f 310 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
12d1b439 311 return -ENOMEM;
6ff2d39b 312 p->layer = 0;
1da177e4
LT
313 layers = 1;
314 }
315 /*
316 * Add a new layer to the top of the tree if the requested
317 * id is larger than the currently allocated space.
318 */
326cf0f0 319 while (id > idr_max(layers)) {
1da177e4 320 layers++;
711a49a0
MS
321 if (!p->count) {
322 /* special case: if the tree is currently empty,
323 * then we grow the tree by moving the top node
324 * upwards.
325 */
326 p->layer++;
54616283 327 WARN_ON_ONCE(p->prefix);
1da177e4 328 continue;
711a49a0 329 }
d5c7409f 330 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
1da177e4
LT
331 /*
332 * The allocation failed. If we built part of
333 * the structure tear it down.
334 */
c259cc28 335 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
336 for (new = p; p && p != idp->top; new = p) {
337 p = p->ary[0];
338 new->ary[0] = NULL;
1d9b2e1e
TH
339 new->count = 0;
340 bitmap_clear(new->bitmap, 0, IDR_SIZE);
4ae53789 341 __move_to_free_list(idp, new);
1da177e4 342 }
c259cc28 343 spin_unlock_irqrestore(&idp->lock, flags);
12d1b439 344 return -ENOMEM;
1da177e4
LT
345 }
346 new->ary[0] = p;
347 new->count = 1;
6ff2d39b 348 new->layer = layers-1;
54616283 349 new->prefix = id & idr_layer_prefix_mask(new->layer);
1d9b2e1e
TH
350 if (bitmap_full(p->bitmap, IDR_SIZE))
351 __set_bit(0, new->bitmap);
1da177e4
LT
352 p = new;
353 }
3219b3b7 354 rcu_assign_pointer(idp->top, p);
1da177e4 355 idp->layers = layers;
d5c7409f 356 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
12d1b439 357 if (v == -EAGAIN)
1da177e4
LT
358 goto build_up;
359 return(v);
360}
361
3594eb28
TH
362/*
363 * @id and @pa are from a successful allocation from idr_get_empty_slot().
364 * Install the user pointer @ptr and mark the slot full.
365 */
0ffc2a9c
TH
366static void idr_fill_slot(struct idr *idr, void *ptr, int id,
367 struct idr_layer **pa)
e33ac8bd 368{
0ffc2a9c
TH
369 /* update hint used for lookup, cleared from free_layer() */
370 rcu_assign_pointer(idr->hint, pa[0]);
371
3594eb28
TH
372 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
373 pa[0]->count++;
374 idr_mark_full(pa, id);
e33ac8bd
TH
375}
376
c8615d37 377int __idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
1da177e4 378{
326cf0f0 379 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
1da177e4 380 int rv;
e15ae2dd 381
d5c7409f 382 rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
944ca05c 383 if (rv < 0)
12d1b439 384 return rv == -ENOMEM ? -EAGAIN : rv;
3594eb28 385
0ffc2a9c 386 idr_fill_slot(idp, ptr, rv, pa);
1da177e4
LT
387 *id = rv;
388 return 0;
389}
c8615d37 390EXPORT_SYMBOL(__idr_get_new_above);
1da177e4 391
d5c7409f
TH
392/**
393 * idr_preload - preload for idr_alloc()
394 * @gfp_mask: allocation mask to use for preloading
395 *
396 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
397 * process context and each idr_preload() invocation should be matched with
398 * idr_preload_end(). Note that preemption is disabled while preloaded.
399 *
400 * The first idr_alloc() in the preloaded section can be treated as if it
401 * were invoked with @gfp_mask used for preloading. This allows using more
402 * permissive allocation masks for idrs protected by spinlocks.
403 *
404 * For example, if idr_alloc() below fails, the failure can be treated as
405 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
406 *
407 * idr_preload(GFP_KERNEL);
408 * spin_lock(lock);
409 *
410 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
411 *
412 * spin_unlock(lock);
413 * idr_preload_end();
414 * if (id < 0)
415 * error;
416 */
417void idr_preload(gfp_t gfp_mask)
418{
419 /*
420 * Consuming preload buffer from non-process context breaks preload
421 * allocation guarantee. Disallow usage from those contexts.
422 */
423 WARN_ON_ONCE(in_interrupt());
424 might_sleep_if(gfp_mask & __GFP_WAIT);
425
426 preempt_disable();
427
428 /*
429 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
430 * return value from idr_alloc() needs to be checked for failure
431 * anyway. Silently give up if allocation fails. The caller can
432 * treat failures from idr_alloc() as if idr_alloc() were called
433 * with @gfp_mask which should be enough.
434 */
435 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
436 struct idr_layer *new;
437
438 preempt_enable();
439 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
440 preempt_disable();
441 if (!new)
442 break;
443
444 /* link the new one to per-cpu preload list */
445 new->ary[0] = __this_cpu_read(idr_preload_head);
446 __this_cpu_write(idr_preload_head, new);
447 __this_cpu_inc(idr_preload_cnt);
448 }
449}
450EXPORT_SYMBOL(idr_preload);
451
452/**
453 * idr_alloc - allocate new idr entry
454 * @idr: the (initialized) idr
455 * @ptr: pointer to be associated with the new id
456 * @start: the minimum id (inclusive)
457 * @end: the maximum id (exclusive, <= 0 for max)
458 * @gfp_mask: memory allocation flags
459 *
460 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
461 * available in the specified range, returns -ENOSPC. On memory allocation
462 * failure, returns -ENOMEM.
463 *
464 * Note that @end is treated as max when <= 0. This is to always allow
465 * using @start + N as @end as long as N is inside integer range.
466 *
467 * The user is responsible for exclusively synchronizing all operations
468 * which may modify @idr. However, read-only accesses such as idr_find()
469 * or iteration can be performed under RCU read lock provided the user
470 * destroys @ptr in RCU-safe way after removal from idr.
471 */
472int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
473{
474 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
326cf0f0 475 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
d5c7409f
TH
476 int id;
477
478 might_sleep_if(gfp_mask & __GFP_WAIT);
479
480 /* sanity checks */
481 if (WARN_ON_ONCE(start < 0))
482 return -EINVAL;
483 if (unlikely(max < start))
484 return -ENOSPC;
485
486 /* allocate id */
487 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
488 if (unlikely(id < 0))
489 return id;
490 if (unlikely(id > max))
491 return -ENOSPC;
492
0ffc2a9c 493 idr_fill_slot(idr, ptr, id, pa);
d5c7409f
TH
494 return id;
495}
496EXPORT_SYMBOL_GPL(idr_alloc);
497
3e6628c4
JL
498/**
499 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
500 * @idr: the (initialized) idr
501 * @ptr: pointer to be associated with the new id
502 * @start: the minimum id (inclusive)
503 * @end: the maximum id (exclusive, <= 0 for max)
504 * @gfp_mask: memory allocation flags
505 *
506 * Essentially the same as idr_alloc, but prefers to allocate progressively
507 * higher ids if it can. If the "cur" counter wraps, then it will start again
508 * at the "start" end of the range and allocate one that has already been used.
509 */
510int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
511 gfp_t gfp_mask)
512{
513 int id;
514
515 id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
516 if (id == -ENOSPC)
517 id = idr_alloc(idr, ptr, start, end, gfp_mask);
518
519 if (likely(id >= 0))
520 idr->cur = id + 1;
521 return id;
522}
523EXPORT_SYMBOL(idr_alloc_cyclic);
524
1da177e4
LT
525static void idr_remove_warning(int id)
526{
f098ad65
ND
527 printk(KERN_WARNING
528 "idr_remove called for id=%d which is not allocated.\n", id);
1da177e4
LT
529 dump_stack();
530}
531
532static void sub_remove(struct idr *idp, int shift, int id)
533{
534 struct idr_layer *p = idp->top;
326cf0f0 535 struct idr_layer **pa[MAX_IDR_LEVEL + 1];
1da177e4 536 struct idr_layer ***paa = &pa[0];
cf481c20 537 struct idr_layer *to_free;
1da177e4
LT
538 int n;
539
540 *paa = NULL;
541 *++paa = &idp->top;
542
543 while ((shift > 0) && p) {
544 n = (id >> shift) & IDR_MASK;
1d9b2e1e 545 __clear_bit(n, p->bitmap);
1da177e4
LT
546 *++paa = &p->ary[n];
547 p = p->ary[n];
548 shift -= IDR_BITS;
549 }
550 n = id & IDR_MASK;
1d9b2e1e
TH
551 if (likely(p != NULL && test_bit(n, p->bitmap))) {
552 __clear_bit(n, p->bitmap);
cf481c20
ND
553 rcu_assign_pointer(p->ary[n], NULL);
554 to_free = NULL;
1da177e4 555 while(*paa && ! --((**paa)->count)){
cf481c20 556 if (to_free)
0ffc2a9c 557 free_layer(idp, to_free);
cf481c20 558 to_free = **paa;
1da177e4
LT
559 **paa-- = NULL;
560 }
e15ae2dd 561 if (!*paa)
1da177e4 562 idp->layers = 0;
cf481c20 563 if (to_free)
0ffc2a9c 564 free_layer(idp, to_free);
e15ae2dd 565 } else
1da177e4 566 idr_remove_warning(id);
1da177e4
LT
567}
568
569/**
56083ab1 570 * idr_remove - remove the given id and free its slot
72fd4a35
RD
571 * @idp: idr handle
572 * @id: unique key
1da177e4
LT
573 */
574void idr_remove(struct idr *idp, int id)
575{
576 struct idr_layer *p;
cf481c20 577 struct idr_layer *to_free;
1da177e4 578
2e1c9b28 579 if (id < 0)
e8c8d1bc 580 return;
1da177e4
LT
581
582 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
e15ae2dd 583 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
cf481c20
ND
584 idp->top->ary[0]) {
585 /*
586 * Single child at leftmost slot: we can shrink the tree.
587 * This level is not needed anymore since when layers are
588 * inserted, they are inserted at the top of the existing
589 * tree.
590 */
591 to_free = idp->top;
1da177e4 592 p = idp->top->ary[0];
cf481c20 593 rcu_assign_pointer(idp->top, p);
1da177e4 594 --idp->layers;
1d9b2e1e
TH
595 to_free->count = 0;
596 bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
0ffc2a9c 597 free_layer(idp, to_free);
1da177e4 598 }
125c4c70 599 while (idp->id_free_cnt >= MAX_IDR_FREE) {
4ae53789 600 p = get_from_free_list(idp);
cf481c20
ND
601 /*
602 * Note: we don't call the rcu callback here, since the only
603 * layers that fall into the freelist are those that have been
604 * preallocated.
605 */
1da177e4 606 kmem_cache_free(idr_layer_cache, p);
1da177e4 607 }
af8e2a4c 608 return;
1da177e4
LT
609}
610EXPORT_SYMBOL(idr_remove);
611
fe6e24ec 612void __idr_remove_all(struct idr *idp)
23936cc0 613{
6ace06dc 614 int n, id, max;
2dcb22b3 615 int bt_mask;
23936cc0 616 struct idr_layer *p;
326cf0f0 617 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
23936cc0
KH
618 struct idr_layer **paa = &pa[0];
619
620 n = idp->layers * IDR_BITS;
621 p = idp->top;
1b23336a 622 rcu_assign_pointer(idp->top, NULL);
326cf0f0 623 max = idr_max(idp->layers);
23936cc0
KH
624
625 id = 0;
326cf0f0 626 while (id >= 0 && id <= max) {
23936cc0
KH
627 while (n > IDR_BITS && p) {
628 n -= IDR_BITS;
629 *paa++ = p;
630 p = p->ary[(id >> n) & IDR_MASK];
631 }
632
2dcb22b3 633 bt_mask = id;
23936cc0 634 id += 1 << n;
2dcb22b3
ID
635 /* Get the highest bit that the above add changed from 0->1. */
636 while (n < fls(id ^ bt_mask)) {
cf481c20 637 if (p)
0ffc2a9c 638 free_layer(idp, p);
23936cc0
KH
639 n += IDR_BITS;
640 p = *--paa;
641 }
642 }
23936cc0
KH
643 idp->layers = 0;
644}
fe6e24ec 645EXPORT_SYMBOL(__idr_remove_all);
23936cc0 646
8d3b3591
AM
647/**
648 * idr_destroy - release all cached layers within an idr tree
ea24ea85 649 * @idp: idr handle
9bb26bc1
TH
650 *
651 * Free all id mappings and all idp_layers. After this function, @idp is
652 * completely unused and can be freed / recycled. The caller is
653 * responsible for ensuring that no one else accesses @idp during or after
654 * idr_destroy().
655 *
656 * A typical clean-up sequence for objects stored in an idr tree will use
657 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
658 * free up the id mappings and cached idr_layers.
8d3b3591
AM
659 */
660void idr_destroy(struct idr *idp)
661{
fe6e24ec 662 __idr_remove_all(idp);
9bb26bc1 663
8d3b3591 664 while (idp->id_free_cnt) {
4ae53789 665 struct idr_layer *p = get_from_free_list(idp);
8d3b3591
AM
666 kmem_cache_free(idr_layer_cache, p);
667 }
668}
669EXPORT_SYMBOL(idr_destroy);
670
0ffc2a9c 671void *idr_find_slowpath(struct idr *idp, int id)
1da177e4
LT
672{
673 int n;
674 struct idr_layer *p;
675
2e1c9b28 676 if (id < 0)
e8c8d1bc
TH
677 return NULL;
678
96be753a 679 p = rcu_dereference_raw(idp->top);
6ff2d39b
MS
680 if (!p)
681 return NULL;
682 n = (p->layer+1) * IDR_BITS;
1da177e4 683
326cf0f0 684 if (id > idr_max(p->layer + 1))
1da177e4 685 return NULL;
6ff2d39b 686 BUG_ON(n == 0);
1da177e4
LT
687
688 while (n > 0 && p) {
689 n -= IDR_BITS;
6ff2d39b 690 BUG_ON(n != p->layer*IDR_BITS);
96be753a 691 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
1da177e4
LT
692 }
693 return((void *)p);
694}
0ffc2a9c 695EXPORT_SYMBOL(idr_find_slowpath);
1da177e4 696
96d7fa42
KH
697/**
698 * idr_for_each - iterate through all stored pointers
699 * @idp: idr handle
700 * @fn: function to be called for each pointer
701 * @data: data passed back to callback function
702 *
703 * Iterate over the pointers registered with the given idr. The
704 * callback function will be called for each pointer currently
705 * registered, passing the id, the pointer and the data pointer passed
706 * to this function. It is not safe to modify the idr tree while in
707 * the callback, so functions such as idr_get_new and idr_remove are
708 * not allowed.
709 *
710 * We check the return of @fn each time. If it returns anything other
56083ab1 711 * than %0, we break out and return that value.
96d7fa42
KH
712 *
713 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
714 */
715int idr_for_each(struct idr *idp,
716 int (*fn)(int id, void *p, void *data), void *data)
717{
718 int n, id, max, error = 0;
719 struct idr_layer *p;
326cf0f0 720 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
96d7fa42
KH
721 struct idr_layer **paa = &pa[0];
722
723 n = idp->layers * IDR_BITS;
96be753a 724 p = rcu_dereference_raw(idp->top);
326cf0f0 725 max = idr_max(idp->layers);
96d7fa42
KH
726
727 id = 0;
326cf0f0 728 while (id >= 0 && id <= max) {
96d7fa42
KH
729 while (n > 0 && p) {
730 n -= IDR_BITS;
731 *paa++ = p;
96be753a 732 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
96d7fa42
KH
733 }
734
735 if (p) {
736 error = fn(id, (void *)p, data);
737 if (error)
738 break;
739 }
740
741 id += 1 << n;
742 while (n < fls(id)) {
743 n += IDR_BITS;
744 p = *--paa;
745 }
746 }
747
748 return error;
749}
750EXPORT_SYMBOL(idr_for_each);
751
38460b48
KH
752/**
753 * idr_get_next - lookup next object of id to given id.
754 * @idp: idr handle
ea24ea85 755 * @nextidp: pointer to lookup key
38460b48
KH
756 *
757 * Returns pointer to registered object with id, which is next number to
1458ce16
NA
758 * given id. After being looked up, *@nextidp will be updated for the next
759 * iteration.
9f7de827
HD
760 *
761 * This function can be called under rcu_read_lock(), given that the leaf
762 * pointers lifetimes are correctly managed.
38460b48 763 */
38460b48
KH
764void *idr_get_next(struct idr *idp, int *nextidp)
765{
326cf0f0 766 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
38460b48
KH
767 struct idr_layer **paa = &pa[0];
768 int id = *nextidp;
769 int n, max;
770
771 /* find first ent */
94bfa3b6 772 p = rcu_dereference_raw(idp->top);
38460b48
KH
773 if (!p)
774 return NULL;
9f7de827 775 n = (p->layer + 1) * IDR_BITS;
326cf0f0 776 max = idr_max(p->layer + 1);
38460b48 777
326cf0f0 778 while (id >= 0 && id <= max) {
38460b48
KH
779 while (n > 0 && p) {
780 n -= IDR_BITS;
781 *paa++ = p;
94bfa3b6 782 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
38460b48
KH
783 }
784
785 if (p) {
786 *nextidp = id;
787 return p;
788 }
789
6cdae741
TH
790 /*
791 * Proceed to the next layer at the current level. Unlike
792 * idr_for_each(), @id isn't guaranteed to be aligned to
793 * layer boundary at this point and adding 1 << n may
794 * incorrectly skip IDs. Make sure we jump to the
795 * beginning of the next layer using round_up().
796 */
797 id = round_up(id + 1, 1 << n);
38460b48
KH
798 while (n < fls(id)) {
799 n += IDR_BITS;
800 p = *--paa;
801 }
802 }
803 return NULL;
804}
4d1ee80f 805EXPORT_SYMBOL(idr_get_next);
38460b48
KH
806
807
5806f07c
JM
808/**
809 * idr_replace - replace pointer for given id
810 * @idp: idr handle
811 * @ptr: pointer you want associated with the id
812 * @id: lookup key
813 *
814 * Replace the pointer registered with an id and return the old value.
56083ab1
RD
815 * A %-ENOENT return indicates that @id was not found.
816 * A %-EINVAL return indicates that @id was not within valid constraints.
5806f07c 817 *
cf481c20 818 * The caller must serialize with writers.
5806f07c
JM
819 */
820void *idr_replace(struct idr *idp, void *ptr, int id)
821{
822 int n;
823 struct idr_layer *p, *old_p;
824
2e1c9b28 825 if (id < 0)
e8c8d1bc
TH
826 return ERR_PTR(-EINVAL);
827
5806f07c 828 p = idp->top;
6ff2d39b
MS
829 if (!p)
830 return ERR_PTR(-EINVAL);
831
2ada32b0 832 if (id > idr_max(p->layer + 1))
5806f07c
JM
833 return ERR_PTR(-EINVAL);
834
2ada32b0 835 n = p->layer * IDR_BITS;
5806f07c
JM
836 while ((n > 0) && p) {
837 p = p->ary[(id >> n) & IDR_MASK];
838 n -= IDR_BITS;
839 }
840
841 n = id & IDR_MASK;
1d9b2e1e 842 if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
5806f07c
JM
843 return ERR_PTR(-ENOENT);
844
845 old_p = p->ary[n];
cf481c20 846 rcu_assign_pointer(p->ary[n], ptr);
5806f07c
JM
847
848 return old_p;
849}
850EXPORT_SYMBOL(idr_replace);
851
199f0ca5 852void __init idr_init_cache(void)
1da177e4 853{
199f0ca5 854 idr_layer_cache = kmem_cache_create("idr_layer_cache",
5b019e99 855 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
1da177e4
LT
856}
857
858/**
859 * idr_init - initialize idr handle
860 * @idp: idr handle
861 *
862 * This function is use to set up the handle (@idp) that you will pass
863 * to the rest of the functions.
864 */
865void idr_init(struct idr *idp)
866{
1da177e4
LT
867 memset(idp, 0, sizeof(struct idr));
868 spin_lock_init(&idp->lock);
869}
870EXPORT_SYMBOL(idr_init);
72dba584
TH
871
872
56083ab1
RD
873/**
874 * DOC: IDA description
72dba584
TH
875 * IDA - IDR based ID allocator
876 *
56083ab1 877 * This is id allocator without id -> pointer translation. Memory
72dba584
TH
878 * usage is much lower than full blown idr because each id only
879 * occupies a bit. ida uses a custom leaf node which contains
880 * IDA_BITMAP_BITS slots.
881 *
882 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
883 */
884
885static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
886{
887 unsigned long flags;
888
889 if (!ida->free_bitmap) {
890 spin_lock_irqsave(&ida->idr.lock, flags);
891 if (!ida->free_bitmap) {
892 ida->free_bitmap = bitmap;
893 bitmap = NULL;
894 }
895 spin_unlock_irqrestore(&ida->idr.lock, flags);
896 }
897
898 kfree(bitmap);
899}
900
901/**
902 * ida_pre_get - reserve resources for ida allocation
903 * @ida: ida handle
904 * @gfp_mask: memory allocation flag
905 *
906 * This function should be called prior to locking and calling the
907 * following function. It preallocates enough memory to satisfy the
908 * worst possible allocation.
909 *
56083ab1
RD
910 * If the system is REALLY out of memory this function returns %0,
911 * otherwise %1.
72dba584
TH
912 */
913int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
914{
915 /* allocate idr_layers */
c8615d37 916 if (!__idr_pre_get(&ida->idr, gfp_mask))
72dba584
TH
917 return 0;
918
919 /* allocate free_bitmap */
920 if (!ida->free_bitmap) {
921 struct ida_bitmap *bitmap;
922
923 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
924 if (!bitmap)
925 return 0;
926
927 free_bitmap(ida, bitmap);
928 }
929
930 return 1;
931}
932EXPORT_SYMBOL(ida_pre_get);
933
934/**
935 * ida_get_new_above - allocate new ID above or equal to a start id
936 * @ida: ida handle
ea24ea85 937 * @starting_id: id to start search at
72dba584
TH
938 * @p_id: pointer to the allocated handle
939 *
e3816c54
WSH
940 * Allocate new ID above or equal to @starting_id. It should be called
941 * with any required locks.
72dba584 942 *
56083ab1 943 * If memory is required, it will return %-EAGAIN, you should unlock
72dba584 944 * and go back to the ida_pre_get() call. If the ida is full, it will
56083ab1 945 * return %-ENOSPC.
72dba584 946 *
56083ab1 947 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
72dba584
TH
948 */
949int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
950{
326cf0f0 951 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
72dba584
TH
952 struct ida_bitmap *bitmap;
953 unsigned long flags;
954 int idr_id = starting_id / IDA_BITMAP_BITS;
955 int offset = starting_id % IDA_BITMAP_BITS;
956 int t, id;
957
958 restart:
959 /* get vacant slot */
d5c7409f 960 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
944ca05c 961 if (t < 0)
12d1b439 962 return t == -ENOMEM ? -EAGAIN : t;
72dba584 963
125c4c70 964 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
72dba584
TH
965 return -ENOSPC;
966
967 if (t != idr_id)
968 offset = 0;
969 idr_id = t;
970
971 /* if bitmap isn't there, create a new one */
972 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
973 if (!bitmap) {
974 spin_lock_irqsave(&ida->idr.lock, flags);
975 bitmap = ida->free_bitmap;
976 ida->free_bitmap = NULL;
977 spin_unlock_irqrestore(&ida->idr.lock, flags);
978
979 if (!bitmap)
980 return -EAGAIN;
981
982 memset(bitmap, 0, sizeof(struct ida_bitmap));
3219b3b7
ND
983 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
984 (void *)bitmap);
72dba584
TH
985 pa[0]->count++;
986 }
987
988 /* lookup for empty slot */
989 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
990 if (t == IDA_BITMAP_BITS) {
991 /* no empty slot after offset, continue to the next chunk */
992 idr_id++;
993 offset = 0;
994 goto restart;
995 }
996
997 id = idr_id * IDA_BITMAP_BITS + t;
125c4c70 998 if (id >= MAX_IDR_BIT)
72dba584
TH
999 return -ENOSPC;
1000
1001 __set_bit(t, bitmap->bitmap);
1002 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
1003 idr_mark_full(pa, idr_id);
1004
1005 *p_id = id;
1006
1007 /* Each leaf node can handle nearly a thousand slots and the
1008 * whole idea of ida is to have small memory foot print.
1009 * Throw away extra resources one by one after each successful
1010 * allocation.
1011 */
1012 if (ida->idr.id_free_cnt || ida->free_bitmap) {
4ae53789 1013 struct idr_layer *p = get_from_free_list(&ida->idr);
72dba584
TH
1014 if (p)
1015 kmem_cache_free(idr_layer_cache, p);
1016 }
1017
1018 return 0;
1019}
1020EXPORT_SYMBOL(ida_get_new_above);
1021
72dba584
TH
1022/**
1023 * ida_remove - remove the given ID
1024 * @ida: ida handle
1025 * @id: ID to free
1026 */
1027void ida_remove(struct ida *ida, int id)
1028{
1029 struct idr_layer *p = ida->idr.top;
1030 int shift = (ida->idr.layers - 1) * IDR_BITS;
1031 int idr_id = id / IDA_BITMAP_BITS;
1032 int offset = id % IDA_BITMAP_BITS;
1033 int n;
1034 struct ida_bitmap *bitmap;
1035
1036 /* clear full bits while looking up the leaf idr_layer */
1037 while ((shift > 0) && p) {
1038 n = (idr_id >> shift) & IDR_MASK;
1d9b2e1e 1039 __clear_bit(n, p->bitmap);
72dba584
TH
1040 p = p->ary[n];
1041 shift -= IDR_BITS;
1042 }
1043
1044 if (p == NULL)
1045 goto err;
1046
1047 n = idr_id & IDR_MASK;
1d9b2e1e 1048 __clear_bit(n, p->bitmap);
72dba584
TH
1049
1050 bitmap = (void *)p->ary[n];
1051 if (!test_bit(offset, bitmap->bitmap))
1052 goto err;
1053
1054 /* update bitmap and remove it if empty */
1055 __clear_bit(offset, bitmap->bitmap);
1056 if (--bitmap->nr_busy == 0) {
1d9b2e1e 1057 __set_bit(n, p->bitmap); /* to please idr_remove() */
72dba584
TH
1058 idr_remove(&ida->idr, idr_id);
1059 free_bitmap(ida, bitmap);
1060 }
1061
1062 return;
1063
1064 err:
1065 printk(KERN_WARNING
1066 "ida_remove called for id=%d which is not allocated.\n", id);
1067}
1068EXPORT_SYMBOL(ida_remove);
1069
1070/**
1071 * ida_destroy - release all cached layers within an ida tree
ea24ea85 1072 * @ida: ida handle
72dba584
TH
1073 */
1074void ida_destroy(struct ida *ida)
1075{
1076 idr_destroy(&ida->idr);
1077 kfree(ida->free_bitmap);
1078}
1079EXPORT_SYMBOL(ida_destroy);
1080
88eca020
RR
1081/**
1082 * ida_simple_get - get a new id.
1083 * @ida: the (initialized) ida.
1084 * @start: the minimum id (inclusive, < 0x8000000)
1085 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1086 * @gfp_mask: memory allocation flags
1087 *
1088 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1089 * On memory allocation failure, returns -ENOMEM.
1090 *
1091 * Use ida_simple_remove() to get rid of an id.
1092 */
1093int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1094 gfp_t gfp_mask)
1095{
1096 int ret, id;
1097 unsigned int max;
46cbc1d3 1098 unsigned long flags;
88eca020
RR
1099
1100 BUG_ON((int)start < 0);
1101 BUG_ON((int)end < 0);
1102
1103 if (end == 0)
1104 max = 0x80000000;
1105 else {
1106 BUG_ON(end < start);
1107 max = end - 1;
1108 }
1109
1110again:
1111 if (!ida_pre_get(ida, gfp_mask))
1112 return -ENOMEM;
1113
46cbc1d3 1114 spin_lock_irqsave(&simple_ida_lock, flags);
88eca020
RR
1115 ret = ida_get_new_above(ida, start, &id);
1116 if (!ret) {
1117 if (id > max) {
1118 ida_remove(ida, id);
1119 ret = -ENOSPC;
1120 } else {
1121 ret = id;
1122 }
1123 }
46cbc1d3 1124 spin_unlock_irqrestore(&simple_ida_lock, flags);
88eca020
RR
1125
1126 if (unlikely(ret == -EAGAIN))
1127 goto again;
1128
1129 return ret;
1130}
1131EXPORT_SYMBOL(ida_simple_get);
1132
1133/**
1134 * ida_simple_remove - remove an allocated id.
1135 * @ida: the (initialized) ida.
1136 * @id: the id returned by ida_simple_get.
1137 */
1138void ida_simple_remove(struct ida *ida, unsigned int id)
1139{
46cbc1d3
TH
1140 unsigned long flags;
1141
88eca020 1142 BUG_ON((int)id < 0);
46cbc1d3 1143 spin_lock_irqsave(&simple_ida_lock, flags);
88eca020 1144 ida_remove(ida, id);
46cbc1d3 1145 spin_unlock_irqrestore(&simple_ida_lock, flags);
88eca020
RR
1146}
1147EXPORT_SYMBOL(ida_simple_remove);
1148
72dba584
TH
1149/**
1150 * ida_init - initialize ida handle
1151 * @ida: ida handle
1152 *
1153 * This function is use to set up the handle (@ida) that you will pass
1154 * to the rest of the functions.
1155 */
1156void ida_init(struct ida *ida)
1157{
1158 memset(ida, 0, sizeof(struct ida));
1159 idr_init(&ida->idr);
1160
1161}
1162EXPORT_SYMBOL(ida_init);