drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / lib / flex_array.c
CommitLineData
534acc05
DH
1/*
2 * Flexible array managed in PAGE_SIZE parts
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2009
19 *
20 * Author: Dave Hansen <dave@linux.vnet.ibm.com>
21 */
22
23#include <linux/flex_array.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
8bc3bcc9 26#include <linux/export.h>
704f15dd 27#include <linux/reciprocal_div.h>
534acc05
DH
28
29struct flex_array_part {
30 char elements[FLEX_ARRAY_PART_SIZE];
31};
32
534acc05
DH
33/*
34 * If a user requests an allocation which is small
35 * enough, we may simply use the space in the
36 * flex_array->parts[] array to store the user
37 * data.
38 */
39static inline int elements_fit_in_base(struct flex_array *fa)
40{
41 int data_size = fa->element_size * fa->total_nr_elements;
45b588d6 42 if (data_size <= FLEX_ARRAY_BASE_BYTES_LEFT)
534acc05
DH
43 return 1;
44 return 0;
45}
46
47/**
48 * flex_array_alloc - allocate a new flexible array
49 * @element_size: the size of individual elements in the array
50 * @total: total number of elements that this should hold
fc0d8d94 51 * @flags: page allocation flags to use for base array
534acc05
DH
52 *
53 * Note: all locking must be provided by the caller.
54 *
55 * @total is used to size internal structures. If the user ever
56 * accesses any array indexes >=@total, it will produce errors.
57 *
58 * The maximum number of elements is defined as: the number of
59 * elements that can be stored in a page times the number of
60 * page pointers that we can fit in the base structure or (using
61 * integer math):
62 *
63 * (PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *)
64 *
65 * Here's a table showing example capacities. Note that the maximum
66 * index that the get/put() functions is just nr_objects-1. This
67 * basically means that you get 4MB of storage on 32-bit and 2MB on
68 * 64-bit.
69 *
70 *
71 * Element size | Objects | Objects |
72 * PAGE_SIZE=4k | 32-bit | 64-bit |
73 * ---------------------------------|
704f15dd
JG
74 * 1 bytes | 4177920 | 2088960 |
75 * 2 bytes | 2088960 | 1044480 |
76 * 3 bytes | 1392300 | 696150 |
77 * 4 bytes | 1044480 | 522240 |
78 * 32 bytes | 130560 | 65408 |
79 * 33 bytes | 126480 | 63240 |
80 * 2048 bytes | 2040 | 1020 |
81 * 2049 bytes | 1020 | 510 |
82 * void * | 1044480 | 261120 |
534acc05
DH
83 *
84 * Since 64-bit pointers are twice the size, we lose half the
85 * capacity in the base structure. Also note that no effort is made
86 * to efficiently pack objects across page boundaries.
87 */
b62e408c
DR
88struct flex_array *flex_array_alloc(int element_size, unsigned int total,
89 gfp_t flags)
534acc05
DH
90{
91 struct flex_array *ret;
704f15dd
JG
92 int elems_per_part = 0;
93 int reciprocal_elems = 0;
a8d05c81
EP
94 int max_size = 0;
95
704f15dd
JG
96 if (element_size) {
97 elems_per_part = FLEX_ARRAY_ELEMENTS_PER_PART(element_size);
98 reciprocal_elems = reciprocal_value(elems_per_part);
99 max_size = FLEX_ARRAY_NR_BASE_PTRS * elems_per_part;
100 }
534acc05
DH
101
102 /* max_size will end up 0 if element_size > PAGE_SIZE */
103 if (total > max_size)
104 return NULL;
105 ret = kzalloc(sizeof(struct flex_array), flags);
106 if (!ret)
107 return NULL;
108 ret->element_size = element_size;
109 ret->total_nr_elements = total;
704f15dd
JG
110 ret->elems_per_part = elems_per_part;
111 ret->reciprocal_elems = reciprocal_elems;
19da3dd1 112 if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO))
e59464c7 113 memset(&ret->parts[0], FLEX_ARRAY_FREE,
45b588d6 114 FLEX_ARRAY_BASE_BYTES_LEFT);
534acc05
DH
115 return ret;
116}
78c377d1 117EXPORT_SYMBOL(flex_array_alloc);
534acc05 118
b62e408c
DR
119static int fa_element_to_part_nr(struct flex_array *fa,
120 unsigned int element_nr)
534acc05 121{
704f15dd 122 return reciprocal_divide(element_nr, fa->reciprocal_elems);
534acc05
DH
123}
124
125/**
126 * flex_array_free_parts - just free the second-level pages
fc0d8d94 127 * @fa: the flex array from which to free parts
534acc05
DH
128 *
129 * This is to be used in cases where the base 'struct flex_array'
130 * has been statically allocated and should not be free.
131 */
132void flex_array_free_parts(struct flex_array *fa)
133{
134 int part_nr;
534acc05
DH
135
136 if (elements_fit_in_base(fa))
137 return;
45b588d6 138 for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++)
534acc05
DH
139 kfree(fa->parts[part_nr]);
140}
78c377d1 141EXPORT_SYMBOL(flex_array_free_parts);
534acc05
DH
142
143void flex_array_free(struct flex_array *fa)
144{
145 flex_array_free_parts(fa);
146 kfree(fa);
147}
78c377d1 148EXPORT_SYMBOL(flex_array_free);
534acc05 149
b62e408c 150static unsigned int index_inside_part(struct flex_array *fa,
704f15dd
JG
151 unsigned int element_nr,
152 unsigned int part_nr)
534acc05 153{
b62e408c 154 unsigned int part_offset;
534acc05 155
704f15dd 156 part_offset = element_nr - part_nr * fa->elems_per_part;
534acc05
DH
157 return part_offset * fa->element_size;
158}
159
160static struct flex_array_part *
161__fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags)
162{
163 struct flex_array_part *part = fa->parts[part_nr];
164 if (!part) {
19da3dd1 165 part = kmalloc(sizeof(struct flex_array_part), flags);
534acc05
DH
166 if (!part)
167 return NULL;
19da3dd1
DR
168 if (!(flags & __GFP_ZERO))
169 memset(part, FLEX_ARRAY_FREE,
170 sizeof(struct flex_array_part));
534acc05
DH
171 fa->parts[part_nr] = part;
172 }
173 return part;
174}
175
176/**
177 * flex_array_put - copy data into the array at @element_nr
fc0d8d94 178 * @fa: the flex array to copy data into
534acc05
DH
179 * @element_nr: index of the position in which to insert
180 * the new element.
fc0d8d94
DR
181 * @src: address of data to copy into the array
182 * @flags: page allocation flags to use for array expansion
183 *
534acc05
DH
184 *
185 * Note that this *copies* the contents of @src into
186 * the array. If you are trying to store an array of
187 * pointers, make sure to pass in &ptr instead of ptr.
ea98eed9
EP
188 * You may instead wish to use the flex_array_put_ptr()
189 * helper function.
534acc05
DH
190 *
191 * Locking must be provided by the caller.
192 */
b62e408c
DR
193int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
194 gfp_t flags)
534acc05 195{
704f15dd 196 int part_nr = 0;
534acc05
DH
197 struct flex_array_part *part;
198 void *dst;
199
200 if (element_nr >= fa->total_nr_elements)
201 return -ENOSPC;
a8d05c81
EP
202 if (!fa->element_size)
203 return 0;
534acc05
DH
204 if (elements_fit_in_base(fa))
205 part = (struct flex_array_part *)&fa->parts[0];
a30b595d 206 else {
a8d05c81 207 part_nr = fa_element_to_part_nr(fa, element_nr);
534acc05 208 part = __fa_get_part(fa, part_nr, flags);
a30b595d
DR
209 if (!part)
210 return -ENOMEM;
211 }
704f15dd 212 dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
534acc05
DH
213 memcpy(dst, src, fa->element_size);
214 return 0;
215}
78c377d1 216EXPORT_SYMBOL(flex_array_put);
534acc05 217
e6de3988
DR
218/**
219 * flex_array_clear - clear element in array at @element_nr
fc0d8d94 220 * @fa: the flex array of the element.
e6de3988
DR
221 * @element_nr: index of the position to clear.
222 *
223 * Locking must be provided by the caller.
224 */
225int flex_array_clear(struct flex_array *fa, unsigned int element_nr)
226{
704f15dd 227 int part_nr = 0;
e6de3988
DR
228 struct flex_array_part *part;
229 void *dst;
230
231 if (element_nr >= fa->total_nr_elements)
232 return -ENOSPC;
a8d05c81
EP
233 if (!fa->element_size)
234 return 0;
e6de3988
DR
235 if (elements_fit_in_base(fa))
236 part = (struct flex_array_part *)&fa->parts[0];
237 else {
a8d05c81 238 part_nr = fa_element_to_part_nr(fa, element_nr);
e6de3988
DR
239 part = fa->parts[part_nr];
240 if (!part)
241 return -EINVAL;
242 }
704f15dd 243 dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
19da3dd1 244 memset(dst, FLEX_ARRAY_FREE, fa->element_size);
e6de3988
DR
245 return 0;
246}
78c377d1 247EXPORT_SYMBOL(flex_array_clear);
e6de3988 248
534acc05
DH
249/**
250 * flex_array_prealloc - guarantee that array space exists
5a3ea878
EP
251 * @fa: the flex array for which to preallocate parts
252 * @start: index of first array element for which space is allocated
253 * @nr_elements: number of elements for which space is allocated
254 * @flags: page allocation flags
534acc05
DH
255 *
256 * This will guarantee that no future calls to flex_array_put()
257 * will allocate memory. It can be used if you are expecting to
258 * be holding a lock or in some atomic context while writing
259 * data into the array.
260 *
261 * Locking must be provided by the caller.
262 */
b62e408c 263int flex_array_prealloc(struct flex_array *fa, unsigned int start,
5a3ea878 264 unsigned int nr_elements, gfp_t flags)
534acc05
DH
265{
266 int start_part;
267 int end_part;
268 int part_nr;
5a3ea878 269 unsigned int end;
534acc05
DH
270 struct flex_array_part *part;
271
150cdf6e
EP
272 if (!start && !nr_elements)
273 return 0;
274 if (start >= fa->total_nr_elements)
275 return -ENOSPC;
276 if (!nr_elements)
277 return 0;
278
5a3ea878
EP
279 end = start + nr_elements - 1;
280
150cdf6e 281 if (end >= fa->total_nr_elements)
534acc05 282 return -ENOSPC;
a8d05c81
EP
283 if (!fa->element_size)
284 return 0;
534acc05
DH
285 if (elements_fit_in_base(fa))
286 return 0;
287 start_part = fa_element_to_part_nr(fa, start);
288 end_part = fa_element_to_part_nr(fa, end);
289 for (part_nr = start_part; part_nr <= end_part; part_nr++) {
290 part = __fa_get_part(fa, part_nr, flags);
291 if (!part)
292 return -ENOMEM;
293 }
294 return 0;
295}
78c377d1 296EXPORT_SYMBOL(flex_array_prealloc);
534acc05
DH
297
298/**
299 * flex_array_get - pull data back out of the array
fc0d8d94 300 * @fa: the flex array from which to extract data
534acc05
DH
301 * @element_nr: index of the element to fetch from the array
302 *
303 * Returns a pointer to the data at index @element_nr. Note
304 * that this is a copy of the data that was passed in. If you
ea98eed9
EP
305 * are using this to store pointers, you'll get back &ptr. You
306 * may instead wish to use the flex_array_get_ptr helper.
534acc05
DH
307 *
308 * Locking must be provided by the caller.
309 */
b62e408c 310void *flex_array_get(struct flex_array *fa, unsigned int element_nr)
534acc05 311{
704f15dd 312 int part_nr = 0;
534acc05 313 struct flex_array_part *part;
534acc05 314
a8d05c81
EP
315 if (!fa->element_size)
316 return NULL;
534acc05
DH
317 if (element_nr >= fa->total_nr_elements)
318 return NULL;
534acc05
DH
319 if (elements_fit_in_base(fa))
320 part = (struct flex_array_part *)&fa->parts[0];
a30b595d 321 else {
a8d05c81 322 part_nr = fa_element_to_part_nr(fa, element_nr);
534acc05 323 part = fa->parts[part_nr];
a30b595d
DR
324 if (!part)
325 return NULL;
326 }
704f15dd 327 return &part->elements[index_inside_part(fa, element_nr, part_nr)];
534acc05 328}
78c377d1 329EXPORT_SYMBOL(flex_array_get);
4af5a2f7 330
ea98eed9
EP
331/**
332 * flex_array_get_ptr - pull a ptr back out of the array
333 * @fa: the flex array from which to extract data
334 * @element_nr: index of the element to fetch from the array
335 *
336 * Returns the pointer placed in the flex array at element_nr using
337 * flex_array_put_ptr(). This function should not be called if the
338 * element in question was not set using the _put_ptr() helper.
339 */
340void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr)
341{
342 void **tmp;
343
344 tmp = flex_array_get(fa, element_nr);
345 if (!tmp)
346 return NULL;
347
348 return *tmp;
349}
78c377d1 350EXPORT_SYMBOL(flex_array_get_ptr);
ea98eed9 351
4af5a2f7
DR
352static int part_is_free(struct flex_array_part *part)
353{
354 int i;
355
356 for (i = 0; i < sizeof(struct flex_array_part); i++)
357 if (part->elements[i] != FLEX_ARRAY_FREE)
358 return 0;
359 return 1;
360}
361
362/**
363 * flex_array_shrink - free unused second-level pages
fc0d8d94 364 * @fa: the flex array to shrink
4af5a2f7
DR
365 *
366 * Frees all second-level pages that consist solely of unused
367 * elements. Returns the number of pages freed.
368 *
369 * Locking must be provided by the caller.
370 */
371int flex_array_shrink(struct flex_array *fa)
372{
373 struct flex_array_part *part;
4af5a2f7
DR
374 int part_nr;
375 int ret = 0;
376
a8d05c81 377 if (!fa->total_nr_elements || !fa->element_size)
150cdf6e 378 return 0;
4af5a2f7
DR
379 if (elements_fit_in_base(fa))
380 return ret;
45b588d6 381 for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) {
4af5a2f7
DR
382 part = fa->parts[part_nr];
383 if (!part)
384 continue;
385 if (part_is_free(part)) {
386 fa->parts[part_nr] = NULL;
387 kfree(part);
388 ret++;
389 }
390 }
391 return ret;
392}
78c377d1 393EXPORT_SYMBOL(flex_array_shrink);