include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / lib / crc32.c
CommitLineData
1da177e4
LT
1/*
2 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
3 * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
4 * Code was from the public domain, copyright abandoned. Code was
5 * subsequently included in the kernel, thus was re-licensed under the
6 * GNU GPL v2.
7 *
8 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
9 * Same crc32 function was used in 5 other places in the kernel.
10 * I made one version, and deleted the others.
11 * There are various incantations of crc32(). Some use a seed of 0 or ~0.
12 * Some xor at the end with ~0. The generic crc32() function takes
13 * seed as an argument, and doesn't xor at the end. Then individual
14 * users can do whatever they need.
15 * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
16 * fs/jffs2 uses seed 0, doesn't xor with ~0.
17 * fs/partitions/efi.c uses seed ~0, xor's with ~0.
18 *
19 * This source code is licensed under the GNU General Public License,
20 * Version 2. See the file COPYING for more details.
21 */
22
23#include <linux/crc32.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/compiler.h>
27#include <linux/types.h>
1da177e4
LT
28#include <linux/init.h>
29#include <asm/atomic.h>
30#include "crc32defs.h"
31#if CRC_LE_BITS == 8
4f2a9463 32# define tole(x) __constant_cpu_to_le32(x)
1da177e4 33#else
4f2a9463
JT
34# define tole(x) (x)
35#endif
36
37#if CRC_BE_BITS == 8
38# define tobe(x) __constant_cpu_to_be32(x)
39#else
40# define tobe(x) (x)
1da177e4
LT
41#endif
42#include "crc32table.h"
43
44MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
45MODULE_DESCRIPTION("Ethernet CRC32 calculations");
46MODULE_LICENSE("GPL");
47
ddcaccbc
JT
48#if CRC_LE_BITS == 8 || CRC_BE_BITS == 8
49
50static inline u32
51crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 *tab)
52{
53# ifdef __LITTLE_ENDIAN
54# define DO_CRC(x) crc = tab[(crc ^ (x)) & 255 ] ^ (crc >> 8)
55# else
56# define DO_CRC(x) crc = tab[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
57# endif
4f2a9463 58 const u32 *b;
ddcaccbc
JT
59 size_t rem_len;
60
61 /* Align it */
4f2a9463 62 if (unlikely((long)buf & 3 && len)) {
ddcaccbc 63 do {
4f2a9463
JT
64 DO_CRC(*buf++);
65 } while ((--len) && ((long)buf)&3);
ddcaccbc
JT
66 }
67 rem_len = len & 3;
68 /* load data 32 bits wide, xor data 32 bits wide. */
69 len = len >> 2;
4f2a9463 70 b = (const u32 *)buf;
ddcaccbc
JT
71 for (--b; len; --len) {
72 crc ^= *++b; /* use pre increment for speed */
73 DO_CRC(0);
74 DO_CRC(0);
75 DO_CRC(0);
76 DO_CRC(0);
77 }
78 len = rem_len;
79 /* And the last few bytes */
80 if (len) {
81 u8 *p = (u8 *)(b + 1) - 1;
82 do {
83 DO_CRC(*++p); /* use pre increment for speed */
84 } while (--len);
85 }
86 return crc;
4f2a9463 87#undef DO_CRC
ddcaccbc
JT
88}
89#endif
2f72100c
RD
90/**
91 * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
92 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
93 * other uses, or the previous crc32 value if computing incrementally.
94 * @p: pointer to buffer over which CRC is run
95 * @len: length of buffer @p
96 */
e8c44319 97u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len);
2f72100c 98
1da177e4
LT
99#if CRC_LE_BITS == 1
100/*
101 * In fact, the table-based code will work in this case, but it can be
102 * simplified by inlining the table in ?: form.
103 */
104
e8c44319 105u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
1da177e4
LT
106{
107 int i;
108 while (len--) {
109 crc ^= *p++;
110 for (i = 0; i < 8; i++)
111 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
112 }
113 return crc;
114}
115#else /* Table-based approach */
116
e8c44319 117u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
1da177e4
LT
118{
119# if CRC_LE_BITS == 8
1da177e4
LT
120 const u32 *tab = crc32table_le;
121
1da177e4 122 crc = __cpu_to_le32(crc);
ddcaccbc 123 crc = crc32_body(crc, p, len, tab);
1da177e4 124 return __le32_to_cpu(crc);
1da177e4
LT
125# elif CRC_LE_BITS == 4
126 while (len--) {
127 crc ^= *p++;
128 crc = (crc >> 4) ^ crc32table_le[crc & 15];
129 crc = (crc >> 4) ^ crc32table_le[crc & 15];
130 }
131 return crc;
132# elif CRC_LE_BITS == 2
133 while (len--) {
134 crc ^= *p++;
135 crc = (crc >> 2) ^ crc32table_le[crc & 3];
136 crc = (crc >> 2) ^ crc32table_le[crc & 3];
137 crc = (crc >> 2) ^ crc32table_le[crc & 3];
138 crc = (crc >> 2) ^ crc32table_le[crc & 3];
139 }
140 return crc;
141# endif
142}
143#endif
144
2f72100c
RD
145/**
146 * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
147 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
148 * other uses, or the previous crc32 value if computing incrementally.
149 * @p: pointer to buffer over which CRC is run
150 * @len: length of buffer @p
151 */
e8c44319 152u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len);
2f72100c 153
1da177e4
LT
154#if CRC_BE_BITS == 1
155/*
156 * In fact, the table-based code will work in this case, but it can be
157 * simplified by inlining the table in ?: form.
158 */
159
e8c44319 160u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
1da177e4
LT
161{
162 int i;
163 while (len--) {
164 crc ^= *p++ << 24;
165 for (i = 0; i < 8; i++)
166 crc =
167 (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
168 0);
169 }
170 return crc;
171}
172
173#else /* Table-based approach */
e8c44319 174u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
1da177e4
LT
175{
176# if CRC_BE_BITS == 8
1da177e4
LT
177 const u32 *tab = crc32table_be;
178
1da177e4 179 crc = __cpu_to_be32(crc);
ddcaccbc 180 crc = crc32_body(crc, p, len, tab);
1da177e4 181 return __be32_to_cpu(crc);
1da177e4
LT
182# elif CRC_BE_BITS == 4
183 while (len--) {
184 crc ^= *p++ << 24;
185 crc = (crc << 4) ^ crc32table_be[crc >> 28];
186 crc = (crc << 4) ^ crc32table_be[crc >> 28];
187 }
188 return crc;
189# elif CRC_BE_BITS == 2
190 while (len--) {
191 crc ^= *p++ << 24;
192 crc = (crc << 2) ^ crc32table_be[crc >> 30];
193 crc = (crc << 2) ^ crc32table_be[crc >> 30];
194 crc = (crc << 2) ^ crc32table_be[crc >> 30];
195 crc = (crc << 2) ^ crc32table_be[crc >> 30];
196 }
197 return crc;
198# endif
199}
200#endif
201
1da177e4
LT
202EXPORT_SYMBOL(crc32_le);
203EXPORT_SYMBOL(crc32_be);
1da177e4
LT
204
205/*
206 * A brief CRC tutorial.
207 *
208 * A CRC is a long-division remainder. You add the CRC to the message,
209 * and the whole thing (message+CRC) is a multiple of the given
210 * CRC polynomial. To check the CRC, you can either check that the
211 * CRC matches the recomputed value, *or* you can check that the
212 * remainder computed on the message+CRC is 0. This latter approach
213 * is used by a lot of hardware implementations, and is why so many
214 * protocols put the end-of-frame flag after the CRC.
215 *
216 * It's actually the same long division you learned in school, except that
217 * - We're working in binary, so the digits are only 0 and 1, and
218 * - When dividing polynomials, there are no carries. Rather than add and
219 * subtract, we just xor. Thus, we tend to get a bit sloppy about
220 * the difference between adding and subtracting.
221 *
222 * A 32-bit CRC polynomial is actually 33 bits long. But since it's
223 * 33 bits long, bit 32 is always going to be set, so usually the CRC
224 * is written in hex with the most significant bit omitted. (If you're
225 * familiar with the IEEE 754 floating-point format, it's the same idea.)
226 *
227 * Note that a CRC is computed over a string of *bits*, so you have
228 * to decide on the endianness of the bits within each byte. To get
229 * the best error-detecting properties, this should correspond to the
230 * order they're actually sent. For example, standard RS-232 serial is
231 * little-endian; the most significant bit (sometimes used for parity)
232 * is sent last. And when appending a CRC word to a message, you should
233 * do it in the right order, matching the endianness.
234 *
235 * Just like with ordinary division, the remainder is always smaller than
236 * the divisor (the CRC polynomial) you're dividing by. Each step of the
237 * division, you take one more digit (bit) of the dividend and append it
238 * to the current remainder. Then you figure out the appropriate multiple
239 * of the divisor to subtract to being the remainder back into range.
240 * In binary, it's easy - it has to be either 0 or 1, and to make the
241 * XOR cancel, it's just a copy of bit 32 of the remainder.
242 *
243 * When computing a CRC, we don't care about the quotient, so we can
244 * throw the quotient bit away, but subtract the appropriate multiple of
245 * the polynomial from the remainder and we're back to where we started,
246 * ready to process the next bit.
247 *
248 * A big-endian CRC written this way would be coded like:
249 * for (i = 0; i < input_bits; i++) {
250 * multiple = remainder & 0x80000000 ? CRCPOLY : 0;
251 * remainder = (remainder << 1 | next_input_bit()) ^ multiple;
252 * }
253 * Notice how, to get at bit 32 of the shifted remainder, we look
254 * at bit 31 of the remainder *before* shifting it.
255 *
256 * But also notice how the next_input_bit() bits we're shifting into
257 * the remainder don't actually affect any decision-making until
258 * 32 bits later. Thus, the first 32 cycles of this are pretty boring.
259 * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
260 * the end, so we have to add 32 extra cycles shifting in zeros at the
261 * end of every message,
262 *
263 * So the standard trick is to rearrage merging in the next_input_bit()
264 * until the moment it's needed. Then the first 32 cycles can be precomputed,
265 * and merging in the final 32 zero bits to make room for the CRC can be
266 * skipped entirely.
267 * This changes the code to:
268 * for (i = 0; i < input_bits; i++) {
269 * remainder ^= next_input_bit() << 31;
270 * multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
271 * remainder = (remainder << 1) ^ multiple;
272 * }
273 * With this optimization, the little-endian code is simpler:
274 * for (i = 0; i < input_bits; i++) {
275 * remainder ^= next_input_bit();
276 * multiple = (remainder & 1) ? CRCPOLY : 0;
277 * remainder = (remainder >> 1) ^ multiple;
278 * }
279 *
280 * Note that the other details of endianness have been hidden in CRCPOLY
281 * (which must be bit-reversed) and next_input_bit().
282 *
283 * However, as long as next_input_bit is returning the bits in a sensible
284 * order, we can actually do the merging 8 or more bits at a time rather
285 * than one bit at a time:
286 * for (i = 0; i < input_bytes; i++) {
287 * remainder ^= next_input_byte() << 24;
288 * for (j = 0; j < 8; j++) {
289 * multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
290 * remainder = (remainder << 1) ^ multiple;
291 * }
292 * }
293 * Or in little-endian:
294 * for (i = 0; i < input_bytes; i++) {
295 * remainder ^= next_input_byte();
296 * for (j = 0; j < 8; j++) {
297 * multiple = (remainder & 1) ? CRCPOLY : 0;
298 * remainder = (remainder << 1) ^ multiple;
299 * }
300 * }
301 * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
302 * word at a time and increase the inner loop count to 32.
303 *
304 * You can also mix and match the two loop styles, for example doing the
305 * bulk of a message byte-at-a-time and adding bit-at-a-time processing
306 * for any fractional bytes at the end.
307 *
308 * The only remaining optimization is to the byte-at-a-time table method.
309 * Here, rather than just shifting one bit of the remainder to decide
310 * in the correct multiple to subtract, we can shift a byte at a time.
311 * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
312 * but again the multiple of the polynomial to subtract depends only on
313 * the high bits, the high 8 bits in this case.
314 *
643d1f7f 315 * The multiple we need in that case is the low 32 bits of a 40-bit
1da177e4
LT
316 * value whose high 8 bits are given, and which is a multiple of the
317 * generator polynomial. This is simply the CRC-32 of the given
318 * one-byte message.
319 *
320 * Two more details: normally, appending zero bits to a message which
321 * is already a multiple of a polynomial produces a larger multiple of that
322 * polynomial. To enable a CRC to detect this condition, it's common to
323 * invert the CRC before appending it. This makes the remainder of the
324 * message+crc come out not as zero, but some fixed non-zero value.
325 *
326 * The same problem applies to zero bits prepended to the message, and
327 * a similar solution is used. Instead of starting with a remainder of
328 * 0, an initial remainder of all ones is used. As long as you start
329 * the same way on decoding, it doesn't make a difference.
330 */
331
332#ifdef UNITTEST
333
334#include <stdlib.h>
335#include <stdio.h>
336
337#if 0 /*Not used at present */
338static void
339buf_dump(char const *prefix, unsigned char const *buf, size_t len)
340{
341 fputs(prefix, stdout);
342 while (len--)
343 printf(" %02x", *buf++);
344 putchar('\n');
345
346}
347#endif
348
349static void bytereverse(unsigned char *buf, size_t len)
350{
351 while (len--) {
906d66df 352 unsigned char x = bitrev8(*buf);
1da177e4
LT
353 *buf++ = x;
354 }
355}
356
357static void random_garbage(unsigned char *buf, size_t len)
358{
359 while (len--)
360 *buf++ = (unsigned char) random();
361}
362
363#if 0 /* Not used at present */
364static void store_le(u32 x, unsigned char *buf)
365{
366 buf[0] = (unsigned char) x;
367 buf[1] = (unsigned char) (x >> 8);
368 buf[2] = (unsigned char) (x >> 16);
369 buf[3] = (unsigned char) (x >> 24);
370}
371#endif
372
373static void store_be(u32 x, unsigned char *buf)
374{
375 buf[0] = (unsigned char) (x >> 24);
376 buf[1] = (unsigned char) (x >> 16);
377 buf[2] = (unsigned char) (x >> 8);
378 buf[3] = (unsigned char) x;
379}
380
381/*
382 * This checks that CRC(buf + CRC(buf)) = 0, and that
383 * CRC commutes with bit-reversal. This has the side effect
384 * of bytewise bit-reversing the input buffer, and returns
385 * the CRC of the reversed buffer.
386 */
387static u32 test_step(u32 init, unsigned char *buf, size_t len)
388{
389 u32 crc1, crc2;
390 size_t i;
391
392 crc1 = crc32_be(init, buf, len);
393 store_be(crc1, buf + len);
394 crc2 = crc32_be(init, buf, len + 4);
395 if (crc2)
396 printf("\nCRC cancellation fail: 0x%08x should be 0\n",
397 crc2);
398
399 for (i = 0; i <= len + 4; i++) {
400 crc2 = crc32_be(init, buf, i);
401 crc2 = crc32_be(crc2, buf + i, len + 4 - i);
402 if (crc2)
403 printf("\nCRC split fail: 0x%08x\n", crc2);
404 }
405
406 /* Now swap it around for the other test */
407
408 bytereverse(buf, len + 4);
906d66df
AM
409 init = bitrev32(init);
410 crc2 = bitrev32(crc1);
411 if (crc1 != bitrev32(crc2))
cfc646fa 412 printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
906d66df 413 crc1, crc2, bitrev32(crc2));
1da177e4
LT
414 crc1 = crc32_le(init, buf, len);
415 if (crc1 != crc2)
416 printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
417 crc2);
418 crc2 = crc32_le(init, buf, len + 4);
419 if (crc2)
420 printf("\nCRC cancellation fail: 0x%08x should be 0\n",
421 crc2);
422
423 for (i = 0; i <= len + 4; i++) {
424 crc2 = crc32_le(init, buf, i);
425 crc2 = crc32_le(crc2, buf + i, len + 4 - i);
426 if (crc2)
427 printf("\nCRC split fail: 0x%08x\n", crc2);
428 }
429
430 return crc1;
431}
432
433#define SIZE 64
434#define INIT1 0
435#define INIT2 0
436
437int main(void)
438{
439 unsigned char buf1[SIZE + 4];
440 unsigned char buf2[SIZE + 4];
441 unsigned char buf3[SIZE + 4];
442 int i, j;
443 u32 crc1, crc2, crc3;
444
445 for (i = 0; i <= SIZE; i++) {
446 printf("\rTesting length %d...", i);
447 fflush(stdout);
448 random_garbage(buf1, i);
449 random_garbage(buf2, i);
450 for (j = 0; j < i; j++)
451 buf3[j] = buf1[j] ^ buf2[j];
452
453 crc1 = test_step(INIT1, buf1, i);
454 crc2 = test_step(INIT2, buf2, i);
455 /* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
456 crc3 = test_step(INIT1 ^ INIT2, buf3, i);
457 if (crc3 != (crc1 ^ crc2))
458 printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
459 crc3, crc1, crc2);
460 }
461 printf("\nAll test complete. No failures expected.\n");
462 return 0;
463}
464
465#endif /* UNITTEST */