drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / lib / bitmap.c
CommitLineData
1da177e4
LT
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8bc3bcc9
PG
8#include <linux/export.h>
9#include <linux/thread_info.h>
1da177e4
LT
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
50af5ead 14#include <linux/bug.h>
1da177e4
LT
15#include <asm/uaccess.h>
16
17/*
18 * bitmaps provide an array of bits, implemented using an an
19 * array of unsigned longs. The number of valid bits in a
20 * given bitmap does _not_ need to be an exact multiple of
21 * BITS_PER_LONG.
22 *
23 * The possible unused bits in the last, partially used word
24 * of a bitmap are 'don't care'. The implementation makes
25 * no particular effort to keep them zero. It ensures that
26 * their value will not affect the results of any operation.
27 * The bitmap operations that return Boolean (bitmap_empty,
28 * for example) or scalar (bitmap_weight, for example) results
29 * carefully filter out these unused bits from impacting their
30 * results.
31 *
32 * These operations actually hold to a slightly stronger rule:
33 * if you don't input any bitmaps to these ops that have some
34 * unused bits set, then they won't output any set unused bits
35 * in output bitmaps.
36 *
37 * The byte ordering of bitmaps is more natural on little
38 * endian architectures. See the big-endian headers
39 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
40 * for the best explanations of this ordering.
41 */
42
43int __bitmap_empty(const unsigned long *bitmap, int bits)
44{
45 int k, lim = bits/BITS_PER_LONG;
46 for (k = 0; k < lim; ++k)
47 if (bitmap[k])
48 return 0;
49
50 if (bits % BITS_PER_LONG)
51 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
52 return 0;
53
54 return 1;
55}
56EXPORT_SYMBOL(__bitmap_empty);
57
58int __bitmap_full(const unsigned long *bitmap, int bits)
59{
60 int k, lim = bits/BITS_PER_LONG;
61 for (k = 0; k < lim; ++k)
62 if (~bitmap[k])
63 return 0;
64
65 if (bits % BITS_PER_LONG)
66 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
67 return 0;
68
69 return 1;
70}
71EXPORT_SYMBOL(__bitmap_full);
72
73int __bitmap_equal(const unsigned long *bitmap1,
74 const unsigned long *bitmap2, int bits)
75{
76 int k, lim = bits/BITS_PER_LONG;
77 for (k = 0; k < lim; ++k)
78 if (bitmap1[k] != bitmap2[k])
79 return 0;
80
81 if (bits % BITS_PER_LONG)
82 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
83 return 0;
84
85 return 1;
86}
87EXPORT_SYMBOL(__bitmap_equal);
88
89void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
90{
91 int k, lim = bits/BITS_PER_LONG;
92 for (k = 0; k < lim; ++k)
93 dst[k] = ~src[k];
94
95 if (bits % BITS_PER_LONG)
96 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
97}
98EXPORT_SYMBOL(__bitmap_complement);
99
72fd4a35 100/**
1da177e4 101 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
102 * @dst : destination bitmap
103 * @src : source bitmap
104 * @shift : shift by this many bits
105 * @bits : bitmap size, in bits
1da177e4
LT
106 *
107 * Shifting right (dividing) means moving bits in the MS -> LS bit
108 * direction. Zeros are fed into the vacated MS positions and the
109 * LS bits shifted off the bottom are lost.
110 */
111void __bitmap_shift_right(unsigned long *dst,
112 const unsigned long *src, int shift, int bits)
113{
114 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
115 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
116 unsigned long mask = (1UL << left) - 1;
117 for (k = 0; off + k < lim; ++k) {
118 unsigned long upper, lower;
119
120 /*
121 * If shift is not word aligned, take lower rem bits of
122 * word above and make them the top rem bits of result.
123 */
124 if (!rem || off + k + 1 >= lim)
125 upper = 0;
126 else {
127 upper = src[off + k + 1];
128 if (off + k + 1 == lim - 1 && left)
129 upper &= mask;
130 }
131 lower = src[off + k];
132 if (left && off + k == lim - 1)
133 lower &= mask;
8b080e34
JK
134 dst[k] = lower >> rem;
135 if (rem)
136 dst[k] |= upper << (BITS_PER_LONG - rem);
1da177e4
LT
137 if (left && k == lim - 1)
138 dst[k] &= mask;
139 }
140 if (off)
141 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
142}
143EXPORT_SYMBOL(__bitmap_shift_right);
144
145
72fd4a35 146/**
1da177e4 147 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
148 * @dst : destination bitmap
149 * @src : source bitmap
150 * @shift : shift by this many bits
151 * @bits : bitmap size, in bits
1da177e4
LT
152 *
153 * Shifting left (multiplying) means moving bits in the LS -> MS
154 * direction. Zeros are fed into the vacated LS bit positions
155 * and those MS bits shifted off the top are lost.
156 */
157
158void __bitmap_shift_left(unsigned long *dst,
159 const unsigned long *src, int shift, int bits)
160{
161 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
162 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
163 for (k = lim - off - 1; k >= 0; --k) {
164 unsigned long upper, lower;
165
166 /*
167 * If shift is not word aligned, take upper rem bits of
168 * word below and make them the bottom rem bits of result.
169 */
170 if (rem && k > 0)
171 lower = src[k - 1];
172 else
173 lower = 0;
174 upper = src[k];
175 if (left && k == lim - 1)
176 upper &= (1UL << left) - 1;
8b080e34
JK
177 dst[k + off] = upper << rem;
178 if (rem)
179 dst[k + off] |= lower >> (BITS_PER_LONG - rem);
1da177e4
LT
180 if (left && k + off == lim - 1)
181 dst[k + off] &= (1UL << left) - 1;
182 }
183 if (off)
184 memset(dst, 0, off*sizeof(unsigned long));
185}
186EXPORT_SYMBOL(__bitmap_shift_left);
187
f4b0373b 188int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
1da177e4
LT
189 const unsigned long *bitmap2, int bits)
190{
191 int k;
192 int nr = BITS_TO_LONGS(bits);
f4b0373b 193 unsigned long result = 0;
1da177e4
LT
194
195 for (k = 0; k < nr; k++)
f4b0373b
LT
196 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
197 return result != 0;
1da177e4
LT
198}
199EXPORT_SYMBOL(__bitmap_and);
200
201void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
202 const unsigned long *bitmap2, int bits)
203{
204 int k;
205 int nr = BITS_TO_LONGS(bits);
206
207 for (k = 0; k < nr; k++)
208 dst[k] = bitmap1[k] | bitmap2[k];
209}
210EXPORT_SYMBOL(__bitmap_or);
211
212void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
213 const unsigned long *bitmap2, int bits)
214{
215 int k;
216 int nr = BITS_TO_LONGS(bits);
217
218 for (k = 0; k < nr; k++)
219 dst[k] = bitmap1[k] ^ bitmap2[k];
220}
221EXPORT_SYMBOL(__bitmap_xor);
222
f4b0373b 223int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
1da177e4
LT
224 const unsigned long *bitmap2, int bits)
225{
226 int k;
227 int nr = BITS_TO_LONGS(bits);
f4b0373b 228 unsigned long result = 0;
1da177e4
LT
229
230 for (k = 0; k < nr; k++)
f4b0373b
LT
231 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
232 return result != 0;
1da177e4
LT
233}
234EXPORT_SYMBOL(__bitmap_andnot);
235
236int __bitmap_intersects(const unsigned long *bitmap1,
237 const unsigned long *bitmap2, int bits)
238{
239 int k, lim = bits/BITS_PER_LONG;
240 for (k = 0; k < lim; ++k)
241 if (bitmap1[k] & bitmap2[k])
242 return 1;
243
244 if (bits % BITS_PER_LONG)
245 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
246 return 1;
247 return 0;
248}
249EXPORT_SYMBOL(__bitmap_intersects);
250
251int __bitmap_subset(const unsigned long *bitmap1,
252 const unsigned long *bitmap2, int bits)
253{
254 int k, lim = bits/BITS_PER_LONG;
255 for (k = 0; k < lim; ++k)
256 if (bitmap1[k] & ~bitmap2[k])
257 return 0;
258
259 if (bits % BITS_PER_LONG)
260 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
261 return 0;
262 return 1;
263}
264EXPORT_SYMBOL(__bitmap_subset);
265
1da177e4
LT
266int __bitmap_weight(const unsigned long *bitmap, int bits)
267{
268 int k, w = 0, lim = bits/BITS_PER_LONG;
269
270 for (k = 0; k < lim; k++)
37d54111 271 w += hweight_long(bitmap[k]);
1da177e4
LT
272
273 if (bits % BITS_PER_LONG)
37d54111 274 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
275
276 return w;
277}
1da177e4
LT
278EXPORT_SYMBOL(__bitmap_weight);
279
c1a2a962
AM
280void bitmap_set(unsigned long *map, int start, int nr)
281{
282 unsigned long *p = map + BIT_WORD(start);
283 const int size = start + nr;
284 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
285 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
286
287 while (nr - bits_to_set >= 0) {
288 *p |= mask_to_set;
289 nr -= bits_to_set;
290 bits_to_set = BITS_PER_LONG;
291 mask_to_set = ~0UL;
292 p++;
293 }
294 if (nr) {
295 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
296 *p |= mask_to_set;
297 }
298}
299EXPORT_SYMBOL(bitmap_set);
300
301void bitmap_clear(unsigned long *map, int start, int nr)
302{
303 unsigned long *p = map + BIT_WORD(start);
304 const int size = start + nr;
305 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
306 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
307
308 while (nr - bits_to_clear >= 0) {
309 *p &= ~mask_to_clear;
310 nr -= bits_to_clear;
311 bits_to_clear = BITS_PER_LONG;
312 mask_to_clear = ~0UL;
313 p++;
314 }
315 if (nr) {
316 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
317 *p &= ~mask_to_clear;
318 }
319}
320EXPORT_SYMBOL(bitmap_clear);
321
322/*
323 * bitmap_find_next_zero_area - find a contiguous aligned zero area
324 * @map: The address to base the search on
325 * @size: The bitmap size in bits
326 * @start: The bitnumber to start searching at
327 * @nr: The number of zeroed bits we're looking for
328 * @align_mask: Alignment mask for zero area
329 *
330 * The @align_mask should be one less than a power of 2; the effect is that
331 * the bit offset of all zero areas this function finds is multiples of that
332 * power of 2. A @align_mask of 0 means no alignment is required.
333 */
334unsigned long bitmap_find_next_zero_area(unsigned long *map,
335 unsigned long size,
336 unsigned long start,
337 unsigned int nr,
338 unsigned long align_mask)
339{
340 unsigned long index, end, i;
341again:
342 index = find_next_zero_bit(map, size, start);
343
344 /* Align allocation */
345 index = __ALIGN_MASK(index, align_mask);
346
347 end = index + nr;
348 if (end > size)
349 return end;
350 i = find_next_bit(map, end, index);
351 if (i < end) {
352 start = i + 1;
353 goto again;
354 }
355 return index;
356}
357EXPORT_SYMBOL(bitmap_find_next_zero_area);
358
1da177e4 359/*
6d49e352 360 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
361 * second version by Paul Jackson, third by Joe Korty.
362 */
363
364#define CHUNKSZ 32
365#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
366#define BASEDEC 10 /* fancier cpuset lists input in decimal */
367
368/**
369 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
370 * @buf: byte buffer into which string is placed
371 * @buflen: reserved size of @buf, in bytes
372 * @maskp: pointer to bitmap to convert
373 * @nmaskbits: size of bitmap, in bits
374 *
375 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
05a6c8a9
AM
376 * comma-separated sets of eight digits per set. Returns the number of
377 * characters which were written to *buf, excluding the trailing \0.
1da177e4
LT
378 */
379int bitmap_scnprintf(char *buf, unsigned int buflen,
380 const unsigned long *maskp, int nmaskbits)
381{
382 int i, word, bit, len = 0;
383 unsigned long val;
384 const char *sep = "";
385 int chunksz;
386 u32 chunkmask;
387
388 chunksz = nmaskbits & (CHUNKSZ - 1);
389 if (chunksz == 0)
390 chunksz = CHUNKSZ;
391
8c0e33c1 392 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
1da177e4
LT
393 for (; i >= 0; i -= CHUNKSZ) {
394 chunkmask = ((1ULL << chunksz) - 1);
395 word = i / BITS_PER_LONG;
396 bit = i % BITS_PER_LONG;
397 val = (maskp[word] >> bit) & chunkmask;
398 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
399 (chunksz+3)/4, val);
400 chunksz = CHUNKSZ;
401 sep = ",";
402 }
403 return len;
404}
405EXPORT_SYMBOL(bitmap_scnprintf);
406
407/**
01a3ee2b
RC
408 * __bitmap_parse - convert an ASCII hex string into a bitmap.
409 * @buf: pointer to buffer containing string.
410 * @buflen: buffer size in bytes. If string is smaller than this
1da177e4 411 * then it must be terminated with a \0.
01a3ee2b 412 * @is_user: location of buffer, 0 indicates kernel space
1da177e4
LT
413 * @maskp: pointer to bitmap array that will contain result.
414 * @nmaskbits: size of bitmap, in bits.
415 *
416 * Commas group hex digits into chunks. Each chunk defines exactly 32
417 * bits of the resultant bitmask. No chunk may specify a value larger
6e1907ff
RD
418 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
419 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
1da177e4
LT
420 * characters and for grouping errors such as "1,,5", ",44", "," and "".
421 * Leading and trailing whitespace accepted, but not embedded whitespace.
422 */
01a3ee2b
RC
423int __bitmap_parse(const char *buf, unsigned int buflen,
424 int is_user, unsigned long *maskp,
425 int nmaskbits)
1da177e4
LT
426{
427 int c, old_c, totaldigits, ndigits, nchunks, nbits;
428 u32 chunk;
b9c321fd 429 const char __user __force *ubuf = (const char __user __force *)buf;
1da177e4
LT
430
431 bitmap_zero(maskp, nmaskbits);
432
433 nchunks = nbits = totaldigits = c = 0;
434 do {
435 chunk = ndigits = 0;
436
437 /* Get the next chunk of the bitmap */
01a3ee2b 438 while (buflen) {
1da177e4 439 old_c = c;
01a3ee2b
RC
440 if (is_user) {
441 if (__get_user(c, ubuf++))
442 return -EFAULT;
443 }
444 else
445 c = *buf++;
446 buflen--;
1da177e4
LT
447 if (isspace(c))
448 continue;
449
450 /*
451 * If the last character was a space and the current
452 * character isn't '\0', we've got embedded whitespace.
453 * This is a no-no, so throw an error.
454 */
455 if (totaldigits && c && isspace(old_c))
456 return -EINVAL;
457
458 /* A '\0' or a ',' signal the end of the chunk */
459 if (c == '\0' || c == ',')
460 break;
461
462 if (!isxdigit(c))
463 return -EINVAL;
464
465 /*
466 * Make sure there are at least 4 free bits in 'chunk'.
467 * If not, this hexdigit will overflow 'chunk', so
468 * throw an error.
469 */
470 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
471 return -EOVERFLOW;
472
66f1991b 473 chunk = (chunk << 4) | hex_to_bin(c);
1da177e4
LT
474 ndigits++; totaldigits++;
475 }
476 if (ndigits == 0)
477 return -EINVAL;
478 if (nchunks == 0 && chunk == 0)
479 continue;
480
481 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
482 *maskp |= chunk;
483 nchunks++;
484 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
485 if (nbits > nmaskbits)
486 return -EOVERFLOW;
01a3ee2b 487 } while (buflen && c == ',');
1da177e4
LT
488
489 return 0;
490}
01a3ee2b
RC
491EXPORT_SYMBOL(__bitmap_parse);
492
493/**
9a86e2ba 494 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
495 *
496 * @ubuf: pointer to user buffer containing string.
497 * @ulen: buffer size in bytes. If string is smaller than this
498 * then it must be terminated with a \0.
499 * @maskp: pointer to bitmap array that will contain result.
500 * @nmaskbits: size of bitmap, in bits.
501 *
502 * Wrapper for __bitmap_parse(), providing it with user buffer.
503 *
504 * We cannot have this as an inline function in bitmap.h because it needs
505 * linux/uaccess.h to get the access_ok() declaration and this causes
506 * cyclic dependencies.
507 */
508int bitmap_parse_user(const char __user *ubuf,
509 unsigned int ulen, unsigned long *maskp,
510 int nmaskbits)
511{
512 if (!access_ok(VERIFY_READ, ubuf, ulen))
513 return -EFAULT;
b9c321fd
HS
514 return __bitmap_parse((const char __force *)ubuf,
515 ulen, 1, maskp, nmaskbits);
516
01a3ee2b
RC
517}
518EXPORT_SYMBOL(bitmap_parse_user);
1da177e4
LT
519
520/*
521 * bscnl_emit(buf, buflen, rbot, rtop, bp)
522 *
523 * Helper routine for bitmap_scnlistprintf(). Write decimal number
524 * or range to buf, suppressing output past buf+buflen, with optional
05a6c8a9
AM
525 * comma-prefix. Return len of what was written to *buf, excluding the
526 * trailing \0.
1da177e4
LT
527 */
528static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
529{
530 if (len > 0)
531 len += scnprintf(buf + len, buflen - len, ",");
532 if (rbot == rtop)
533 len += scnprintf(buf + len, buflen - len, "%d", rbot);
534 else
535 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
536 return len;
537}
538
539/**
540 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
541 * @buf: byte buffer into which string is placed
542 * @buflen: reserved size of @buf, in bytes
543 * @maskp: pointer to bitmap to convert
544 * @nmaskbits: size of bitmap, in bits
545 *
546 * Output format is a comma-separated list of decimal numbers and
547 * ranges. Consecutively set bits are shown as two hyphen-separated
548 * decimal numbers, the smallest and largest bit numbers set in
549 * the range. Output format is compatible with the format
550 * accepted as input by bitmap_parselist().
551 *
05a6c8a9
AM
552 * The return value is the number of characters which were written to *buf
553 * excluding the trailing '\0', as per ISO C99's scnprintf.
1da177e4
LT
554 */
555int bitmap_scnlistprintf(char *buf, unsigned int buflen,
556 const unsigned long *maskp, int nmaskbits)
557{
558 int len = 0;
559 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
560 int cur, rbot, rtop;
561
0b030c2c
AK
562 if (buflen == 0)
563 return 0;
564 buf[0] = 0;
565
1da177e4
LT
566 rbot = cur = find_first_bit(maskp, nmaskbits);
567 while (cur < nmaskbits) {
568 rtop = cur;
569 cur = find_next_bit(maskp, nmaskbits, cur+1);
570 if (cur >= nmaskbits || cur > rtop + 1) {
571 len = bscnl_emit(buf, buflen, rbot, rtop, len);
572 rbot = cur;
573 }
574 }
575 return len;
576}
577EXPORT_SYMBOL(bitmap_scnlistprintf);
578
579/**
4b060420 580 * __bitmap_parselist - convert list format ASCII string to bitmap
b0825ee3 581 * @buf: read nul-terminated user string from this buffer
4b060420
MT
582 * @buflen: buffer size in bytes. If string is smaller than this
583 * then it must be terminated with a \0.
584 * @is_user: location of buffer, 0 indicates kernel space
6e1907ff 585 * @maskp: write resulting mask here
1da177e4
LT
586 * @nmaskbits: number of bits in mask to be written
587 *
588 * Input format is a comma-separated list of decimal numbers and
589 * ranges. Consecutively set bits are shown as two hyphen-separated
590 * decimal numbers, the smallest and largest bit numbers set in
591 * the range.
592 *
6e1907ff
RD
593 * Returns 0 on success, -errno on invalid input strings.
594 * Error values:
595 * %-EINVAL: second number in range smaller than first
596 * %-EINVAL: invalid character in string
597 * %-ERANGE: bit number specified too large for mask
1da177e4 598 */
4b060420
MT
599static int __bitmap_parselist(const char *buf, unsigned int buflen,
600 int is_user, unsigned long *maskp,
601 int nmaskbits)
1da177e4
LT
602{
603 unsigned a, b;
4b060420 604 int c, old_c, totaldigits;
b9c321fd 605 const char __user __force *ubuf = (const char __user __force *)buf;
bf95f46c 606 int at_start, in_range;
1da177e4 607
4b060420 608 totaldigits = c = 0;
1da177e4
LT
609 bitmap_zero(maskp, nmaskbits);
610 do {
bf95f46c 611 at_start = 1;
4b060420
MT
612 in_range = 0;
613 a = b = 0;
614
615 /* Get the next cpu# or a range of cpu#'s */
616 while (buflen) {
617 old_c = c;
618 if (is_user) {
619 if (__get_user(c, ubuf++))
620 return -EFAULT;
621 } else
622 c = *buf++;
623 buflen--;
624 if (isspace(c))
625 continue;
626
627 /*
628 * If the last character was a space and the current
629 * character isn't '\0', we've got embedded whitespace.
630 * This is a no-no, so throw an error.
631 */
632 if (totaldigits && c && isspace(old_c))
633 return -EINVAL;
634
635 /* A '\0' or a ',' signal the end of a cpu# or range */
636 if (c == '\0' || c == ',')
637 break;
638
639 if (c == '-') {
bf95f46c 640 if (at_start || in_range)
4b060420
MT
641 return -EINVAL;
642 b = 0;
643 in_range = 1;
4b060420
MT
644 continue;
645 }
646
647 if (!isdigit(c))
1da177e4 648 return -EINVAL;
4b060420
MT
649
650 b = b * 10 + (c - '0');
651 if (!in_range)
652 a = b;
bf95f46c 653 at_start = 0;
4b060420 654 totaldigits++;
1da177e4
LT
655 }
656 if (!(a <= b))
657 return -EINVAL;
658 if (b >= nmaskbits)
659 return -ERANGE;
bf95f46c
CM
660 if (!at_start) {
661 while (a <= b) {
662 set_bit(a, maskp);
663 a++;
664 }
1da177e4 665 }
4b060420 666 } while (buflen && c == ',');
1da177e4
LT
667 return 0;
668}
4b060420
MT
669
670int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
671{
672 char *nl = strchr(bp, '\n');
673 int len;
674
675 if (nl)
676 len = nl - bp;
677 else
678 len = strlen(bp);
679
680 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
681}
1da177e4
LT
682EXPORT_SYMBOL(bitmap_parselist);
683
4b060420
MT
684
685/**
686 * bitmap_parselist_user()
687 *
688 * @ubuf: pointer to user buffer containing string.
689 * @ulen: buffer size in bytes. If string is smaller than this
690 * then it must be terminated with a \0.
691 * @maskp: pointer to bitmap array that will contain result.
692 * @nmaskbits: size of bitmap, in bits.
693 *
694 * Wrapper for bitmap_parselist(), providing it with user buffer.
695 *
696 * We cannot have this as an inline function in bitmap.h because it needs
697 * linux/uaccess.h to get the access_ok() declaration and this causes
698 * cyclic dependencies.
699 */
700int bitmap_parselist_user(const char __user *ubuf,
701 unsigned int ulen, unsigned long *maskp,
702 int nmaskbits)
703{
704 if (!access_ok(VERIFY_READ, ubuf, ulen))
705 return -EFAULT;
b9c321fd 706 return __bitmap_parselist((const char __force *)ubuf,
4b060420
MT
707 ulen, 1, maskp, nmaskbits);
708}
709EXPORT_SYMBOL(bitmap_parselist_user);
710
711
72fd4a35 712/**
9a86e2ba 713 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee
PJ
714 * @buf: pointer to a bitmap
715 * @pos: a bit position in @buf (0 <= @pos < @bits)
716 * @bits: number of valid bit positions in @buf
717 *
718 * Map the bit at position @pos in @buf (of length @bits) to the
719 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 720 * is not a valid bit position, map to -1.
fb5eeeee
PJ
721 *
722 * If for example, just bits 4 through 7 are set in @buf, then @pos
723 * values 4 through 7 will get mapped to 0 through 3, respectively,
724 * and other @pos values will get mapped to 0. When @pos value 7
725 * gets mapped to (returns) @ord value 3 in this example, that means
726 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
727 *
728 * The bit positions 0 through @bits are valid positions in @buf.
729 */
730static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
731{
96b7f341 732 int i, ord;
fb5eeeee 733
96b7f341
PJ
734 if (pos < 0 || pos >= bits || !test_bit(pos, buf))
735 return -1;
fb5eeeee 736
96b7f341
PJ
737 i = find_first_bit(buf, bits);
738 ord = 0;
739 while (i < pos) {
740 i = find_next_bit(buf, bits, i + 1);
741 ord++;
fb5eeeee 742 }
96b7f341
PJ
743 BUG_ON(i != pos);
744
fb5eeeee
PJ
745 return ord;
746}
747
748/**
9a86e2ba 749 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
750 * @buf: pointer to bitmap
751 * @ord: ordinal bit position (n-th set bit, n >= 0)
752 * @bits: number of valid bit positions in @buf
753 *
754 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
96b7f341
PJ
755 * Value of @ord should be in range 0 <= @ord < weight(buf), else
756 * results are undefined.
fb5eeeee
PJ
757 *
758 * If for example, just bits 4 through 7 are set in @buf, then @ord
759 * values 0 through 3 will get mapped to 4 through 7, respectively,
96b7f341 760 * and all other @ord values return undefined values. When @ord value 3
fb5eeeee
PJ
761 * gets mapped to (returns) @pos value 7 in this example, that means
762 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
763 *
764 * The bit positions 0 through @bits are valid positions in @buf.
765 */
778d3b0f 766int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
fb5eeeee
PJ
767{
768 int pos = 0;
769
770 if (ord >= 0 && ord < bits) {
771 int i;
772
773 for (i = find_first_bit(buf, bits);
774 i < bits && ord > 0;
775 i = find_next_bit(buf, bits, i + 1))
776 ord--;
777 if (i < bits && ord == 0)
778 pos = i;
779 }
780
781 return pos;
782}
783
784/**
785 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 786 * @dst: remapped result
96b7f341 787 * @src: subset to be remapped
fb5eeeee
PJ
788 * @old: defines domain of map
789 * @new: defines range of map
790 * @bits: number of bits in each of these bitmaps
791 *
792 * Let @old and @new define a mapping of bit positions, such that
793 * whatever position is held by the n-th set bit in @old is mapped
794 * to the n-th set bit in @new. In the more general case, allowing
795 * for the possibility that the weight 'w' of @new is less than the
796 * weight of @old, map the position of the n-th set bit in @old to
797 * the position of the m-th set bit in @new, where m == n % w.
798 *
96b7f341
PJ
799 * If either of the @old and @new bitmaps are empty, or if @src and
800 * @dst point to the same location, then this routine copies @src
801 * to @dst.
fb5eeeee 802 *
96b7f341
PJ
803 * The positions of unset bits in @old are mapped to themselves
804 * (the identify map).
fb5eeeee
PJ
805 *
806 * Apply the above specified mapping to @src, placing the result in
807 * @dst, clearing any bits previously set in @dst.
808 *
fb5eeeee
PJ
809 * For example, lets say that @old has bits 4 through 7 set, and
810 * @new has bits 12 through 15 set. This defines the mapping of bit
811 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
812 * bit positions unchanged. So if say @src comes into this routine
813 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
814 * 13 and 15 set.
fb5eeeee
PJ
815 */
816void bitmap_remap(unsigned long *dst, const unsigned long *src,
817 const unsigned long *old, const unsigned long *new,
818 int bits)
819{
96b7f341 820 int oldbit, w;
fb5eeeee 821
fb5eeeee
PJ
822 if (dst == src) /* following doesn't handle inplace remaps */
823 return;
fb5eeeee 824 bitmap_zero(dst, bits);
96b7f341
PJ
825
826 w = bitmap_weight(new, bits);
08564fb7 827 for_each_set_bit(oldbit, src, bits) {
96b7f341 828 int n = bitmap_pos_to_ord(old, oldbit, bits);
08564fb7 829
96b7f341
PJ
830 if (n < 0 || w == 0)
831 set_bit(oldbit, dst); /* identity map */
832 else
833 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
fb5eeeee
PJ
834 }
835}
836EXPORT_SYMBOL(bitmap_remap);
837
838/**
839 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
840 * @oldbit: bit position to be mapped
841 * @old: defines domain of map
842 * @new: defines range of map
843 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
844 *
845 * Let @old and @new define a mapping of bit positions, such that
846 * whatever position is held by the n-th set bit in @old is mapped
847 * to the n-th set bit in @new. In the more general case, allowing
848 * for the possibility that the weight 'w' of @new is less than the
849 * weight of @old, map the position of the n-th set bit in @old to
850 * the position of the m-th set bit in @new, where m == n % w.
851 *
96b7f341
PJ
852 * The positions of unset bits in @old are mapped to themselves
853 * (the identify map).
fb5eeeee
PJ
854 *
855 * Apply the above specified mapping to bit position @oldbit, returning
856 * the new bit position.
857 *
858 * For example, lets say that @old has bits 4 through 7 set, and
859 * @new has bits 12 through 15 set. This defines the mapping of bit
860 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
861 * bit positions unchanged. So if say @oldbit is 5, then this routine
862 * returns 13.
fb5eeeee
PJ
863 */
864int bitmap_bitremap(int oldbit, const unsigned long *old,
865 const unsigned long *new, int bits)
866{
96b7f341
PJ
867 int w = bitmap_weight(new, bits);
868 int n = bitmap_pos_to_ord(old, oldbit, bits);
869 if (n < 0 || w == 0)
870 return oldbit;
871 else
872 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee
PJ
873}
874EXPORT_SYMBOL(bitmap_bitremap);
875
7ea931c9
PJ
876/**
877 * bitmap_onto - translate one bitmap relative to another
878 * @dst: resulting translated bitmap
879 * @orig: original untranslated bitmap
880 * @relmap: bitmap relative to which translated
881 * @bits: number of bits in each of these bitmaps
882 *
883 * Set the n-th bit of @dst iff there exists some m such that the
884 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
885 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
886 * (If you understood the previous sentence the first time your
887 * read it, you're overqualified for your current job.)
888 *
889 * In other words, @orig is mapped onto (surjectively) @dst,
890 * using the the map { <n, m> | the n-th bit of @relmap is the
891 * m-th set bit of @relmap }.
892 *
893 * Any set bits in @orig above bit number W, where W is the
894 * weight of (number of set bits in) @relmap are mapped nowhere.
895 * In particular, if for all bits m set in @orig, m >= W, then
896 * @dst will end up empty. In situations where the possibility
897 * of such an empty result is not desired, one way to avoid it is
898 * to use the bitmap_fold() operator, below, to first fold the
899 * @orig bitmap over itself so that all its set bits x are in the
900 * range 0 <= x < W. The bitmap_fold() operator does this by
901 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
902 *
903 * Example [1] for bitmap_onto():
904 * Let's say @relmap has bits 30-39 set, and @orig has bits
905 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
906 * @dst will have bits 31, 33, 35, 37 and 39 set.
907 *
908 * When bit 0 is set in @orig, it means turn on the bit in
909 * @dst corresponding to whatever is the first bit (if any)
910 * that is turned on in @relmap. Since bit 0 was off in the
911 * above example, we leave off that bit (bit 30) in @dst.
912 *
913 * When bit 1 is set in @orig (as in the above example), it
914 * means turn on the bit in @dst corresponding to whatever
915 * is the second bit that is turned on in @relmap. The second
916 * bit in @relmap that was turned on in the above example was
917 * bit 31, so we turned on bit 31 in @dst.
918 *
919 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
920 * because they were the 4th, 6th, 8th and 10th set bits
921 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
922 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
923 *
924 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 925 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
926 * turned on in @relmap. In the above example, there were
927 * only ten bits turned on in @relmap (30..39), so that bit
928 * 11 was set in @orig had no affect on @dst.
929 *
930 * Example [2] for bitmap_fold() + bitmap_onto():
931 * Let's say @relmap has these ten bits set:
932 * 40 41 42 43 45 48 53 61 74 95
933 * (for the curious, that's 40 plus the first ten terms of the
934 * Fibonacci sequence.)
935 *
936 * Further lets say we use the following code, invoking
937 * bitmap_fold() then bitmap_onto, as suggested above to
938 * avoid the possitility of an empty @dst result:
939 *
940 * unsigned long *tmp; // a temporary bitmap's bits
941 *
942 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
943 * bitmap_onto(dst, tmp, relmap, bits);
944 *
945 * Then this table shows what various values of @dst would be, for
946 * various @orig's. I list the zero-based positions of each set bit.
947 * The tmp column shows the intermediate result, as computed by
948 * using bitmap_fold() to fold the @orig bitmap modulo ten
949 * (the weight of @relmap).
950 *
951 * @orig tmp @dst
952 * 0 0 40
953 * 1 1 41
954 * 9 9 95
955 * 10 0 40 (*)
956 * 1 3 5 7 1 3 5 7 41 43 48 61
957 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
958 * 0 9 18 27 0 9 8 7 40 61 74 95
959 * 0 10 20 30 0 40
960 * 0 11 22 33 0 1 2 3 40 41 42 43
961 * 0 12 24 36 0 2 4 6 40 42 45 53
962 * 78 102 211 1 2 8 41 42 74 (*)
963 *
964 * (*) For these marked lines, if we hadn't first done bitmap_fold()
965 * into tmp, then the @dst result would have been empty.
966 *
967 * If either of @orig or @relmap is empty (no set bits), then @dst
968 * will be returned empty.
969 *
970 * If (as explained above) the only set bits in @orig are in positions
971 * m where m >= W, (where W is the weight of @relmap) then @dst will
972 * once again be returned empty.
973 *
974 * All bits in @dst not set by the above rule are cleared.
975 */
976void bitmap_onto(unsigned long *dst, const unsigned long *orig,
977 const unsigned long *relmap, int bits)
978{
979 int n, m; /* same meaning as in above comment */
980
981 if (dst == orig) /* following doesn't handle inplace mappings */
982 return;
983 bitmap_zero(dst, bits);
984
985 /*
986 * The following code is a more efficient, but less
987 * obvious, equivalent to the loop:
988 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
989 * n = bitmap_ord_to_pos(orig, m, bits);
990 * if (test_bit(m, orig))
991 * set_bit(n, dst);
992 * }
993 */
994
995 m = 0;
08564fb7 996 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
997 /* m == bitmap_pos_to_ord(relmap, n, bits) */
998 if (test_bit(m, orig))
999 set_bit(n, dst);
1000 m++;
1001 }
1002}
1003EXPORT_SYMBOL(bitmap_onto);
1004
1005/**
1006 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1007 * @dst: resulting smaller bitmap
1008 * @orig: original larger bitmap
1009 * @sz: specified size
1010 * @bits: number of bits in each of these bitmaps
1011 *
1012 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1013 * Clear all other bits in @dst. See further the comment and
1014 * Example [2] for bitmap_onto() for why and how to use this.
1015 */
1016void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1017 int sz, int bits)
1018{
1019 int oldbit;
1020
1021 if (dst == orig) /* following doesn't handle inplace mappings */
1022 return;
1023 bitmap_zero(dst, bits);
1024
08564fb7 1025 for_each_set_bit(oldbit, orig, bits)
7ea931c9
PJ
1026 set_bit(oldbit % sz, dst);
1027}
1028EXPORT_SYMBOL(bitmap_fold);
1029
3cf64b93
PJ
1030/*
1031 * Common code for bitmap_*_region() routines.
1032 * bitmap: array of unsigned longs corresponding to the bitmap
1033 * pos: the beginning of the region
1034 * order: region size (log base 2 of number of bits)
1035 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 1036 *
3cf64b93
PJ
1037 * Can set, verify and/or release a region of bits in a bitmap,
1038 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 1039 *
3cf64b93
PJ
1040 * A region of a bitmap is a sequence of bits in the bitmap, of
1041 * some size '1 << order' (a power of two), aligned to that same
1042 * '1 << order' power of two.
1043 *
1044 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1045 * Returns 0 in all other cases and reg_ops.
1da177e4 1046 */
3cf64b93
PJ
1047
1048enum {
1049 REG_OP_ISFREE, /* true if region is all zero bits */
1050 REG_OP_ALLOC, /* set all bits in region */
1051 REG_OP_RELEASE, /* clear all bits in region */
1052};
1053
1054static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1da177e4 1055{
3cf64b93
PJ
1056 int nbits_reg; /* number of bits in region */
1057 int index; /* index first long of region in bitmap */
1058 int offset; /* bit offset region in bitmap[index] */
1059 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 1060 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 1061 unsigned long mask; /* bitmask for one long of region */
74373c6a 1062 int i; /* scans bitmap by longs */
3cf64b93 1063 int ret = 0; /* return value */
74373c6a 1064
3cf64b93
PJ
1065 /*
1066 * Either nlongs_reg == 1 (for small orders that fit in one long)
1067 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1068 */
1069 nbits_reg = 1 << order;
1070 index = pos / BITS_PER_LONG;
1071 offset = pos - (index * BITS_PER_LONG);
1072 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1073 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1074
3cf64b93
PJ
1075 /*
1076 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1077 * overflows if nbitsinlong == BITS_PER_LONG.
1078 */
74373c6a 1079 mask = (1UL << (nbitsinlong - 1));
1da177e4 1080 mask += mask - 1;
3cf64b93 1081 mask <<= offset;
1da177e4 1082
3cf64b93
PJ
1083 switch (reg_op) {
1084 case REG_OP_ISFREE:
1085 for (i = 0; i < nlongs_reg; i++) {
1086 if (bitmap[index + i] & mask)
1087 goto done;
1088 }
1089 ret = 1; /* all bits in region free (zero) */
1090 break;
1091
1092 case REG_OP_ALLOC:
1093 for (i = 0; i < nlongs_reg; i++)
1094 bitmap[index + i] |= mask;
1095 break;
1096
1097 case REG_OP_RELEASE:
1098 for (i = 0; i < nlongs_reg; i++)
1099 bitmap[index + i] &= ~mask;
1100 break;
1da177e4 1101 }
3cf64b93
PJ
1102done:
1103 return ret;
1104}
1105
1106/**
1107 * bitmap_find_free_region - find a contiguous aligned mem region
1108 * @bitmap: array of unsigned longs corresponding to the bitmap
1109 * @bits: number of bits in the bitmap
1110 * @order: region size (log base 2 of number of bits) to find
1111 *
1112 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1113 * allocate them (set them to one). Only consider regions of length
1114 * a power (@order) of two, aligned to that power of two, which
1115 * makes the search algorithm much faster.
1116 *
1117 * Return the bit offset in bitmap of the allocated region,
1118 * or -errno on failure.
1119 */
1120int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1121{
aa8e4fc6
LT
1122 int pos, end; /* scans bitmap by regions of size order */
1123
1124 for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1125 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1126 continue;
1127 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1128 return pos;
1129 }
1130 return -ENOMEM;
1da177e4
LT
1131}
1132EXPORT_SYMBOL(bitmap_find_free_region);
1133
1134/**
87e24802 1135 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1136 * @bitmap: array of unsigned longs corresponding to the bitmap
1137 * @pos: beginning of bit region to release
1138 * @order: region size (log base 2 of number of bits) to release
1da177e4 1139 *
72fd4a35 1140 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1141 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1142 *
1143 * No return value.
1da177e4
LT
1144 */
1145void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1146{
3cf64b93 1147 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1148}
1149EXPORT_SYMBOL(bitmap_release_region);
1150
87e24802
PJ
1151/**
1152 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1153 * @bitmap: array of unsigned longs corresponding to the bitmap
1154 * @pos: beginning of bit region to allocate
1155 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1156 *
1157 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1158 *
6e1907ff 1159 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1160 * free (not all bits were zero).
1161 */
1da177e4
LT
1162int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1163{
3cf64b93
PJ
1164 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1165 return -EBUSY;
1166 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1167 return 0;
1168}
1169EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1170
1171/**
1172 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1173 * @dst: destination buffer
1174 * @src: bitmap to copy
1175 * @nbits: number of bits in the bitmap
1176 *
1177 * Require nbits % BITS_PER_LONG == 0.
1178 */
1179void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1180{
1181 unsigned long *d = dst;
1182 int i;
1183
1184 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1185 if (BITS_PER_LONG == 64)
1186 d[i] = cpu_to_le64(src[i]);
1187 else
1188 d[i] = cpu_to_le32(src[i]);
1189 }
1190}
1191EXPORT_SYMBOL(bitmap_copy_le);