timer.c: cleanup recently introduced whitespace damage
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
97a41e26 36#include <linux/delay.h>
79bf2bb3 37#include <linux/tick.h>
82f67cd9 38#include <linux/kallsyms.h>
1da177e4
LT
39
40#include <asm/uaccess.h>
41#include <asm/unistd.h>
42#include <asm/div64.h>
43#include <asm/timex.h>
44#include <asm/io.h>
45
ecea8d19
TG
46u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
47
48EXPORT_SYMBOL(jiffies_64);
49
1da177e4
LT
50/*
51 * per-CPU timer vector definitions:
52 */
1da177e4
LT
53#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55#define TVN_SIZE (1 << TVN_BITS)
56#define TVR_SIZE (1 << TVR_BITS)
57#define TVN_MASK (TVN_SIZE - 1)
58#define TVR_MASK (TVR_SIZE - 1)
59
60typedef struct tvec_s {
61 struct list_head vec[TVN_SIZE];
62} tvec_t;
63
64typedef struct tvec_root_s {
65 struct list_head vec[TVR_SIZE];
66} tvec_root_t;
67
68struct tvec_t_base_s {
3691c519
ON
69 spinlock_t lock;
70 struct timer_list *running_timer;
1da177e4 71 unsigned long timer_jiffies;
1da177e4
LT
72 tvec_root_t tv1;
73 tvec_t tv2;
74 tvec_t tv3;
75 tvec_t tv4;
76 tvec_t tv5;
6e453a67 77} ____cacheline_aligned;
1da177e4
LT
78
79typedef struct tvec_t_base_s tvec_base_t;
ba6edfcd 80
3691c519
ON
81tvec_base_t boot_tvec_bases;
82EXPORT_SYMBOL(boot_tvec_bases);
51d8c5ed 83static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
1da177e4 84
6e453a67
VP
85/*
86 * Note that all tvec_bases is 2 byte aligned and lower bit of
87 * base in timer_list is guaranteed to be zero. Use the LSB for
88 * the new flag to indicate whether the timer is deferrable
89 */
90#define TBASE_DEFERRABLE_FLAG (0x1)
91
92/* Functions below help us manage 'deferrable' flag */
93static inline unsigned int tbase_get_deferrable(tvec_base_t *base)
94{
e9910846 95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
96}
97
98static inline tvec_base_t *tbase_get_base(tvec_base_t *base)
99{
e9910846 100 return ((tvec_base_t *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
101}
102
103static inline void timer_set_deferrable(struct timer_list *timer)
104{
e9910846 105 timer->base = ((tvec_base_t *)((unsigned long)(timer->base) |
6819457d 106 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
107}
108
109static inline void
110timer_set_base(struct timer_list *timer, tvec_base_t *new_base)
111{
e9910846 112 timer->base = (tvec_base_t *)((unsigned long)(new_base) |
6819457d 113 tbase_get_deferrable(timer->base));
6e453a67
VP
114}
115
4c36a5de
AV
116/**
117 * __round_jiffies - function to round jiffies to a full second
118 * @j: the time in (absolute) jiffies that should be rounded
119 * @cpu: the processor number on which the timeout will happen
120 *
72fd4a35 121 * __round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
122 * up or down to (approximately) full seconds. This is useful for timers
123 * for which the exact time they fire does not matter too much, as long as
124 * they fire approximately every X seconds.
125 *
126 * By rounding these timers to whole seconds, all such timers will fire
127 * at the same time, rather than at various times spread out. The goal
128 * of this is to have the CPU wake up less, which saves power.
129 *
130 * The exact rounding is skewed for each processor to avoid all
131 * processors firing at the exact same time, which could lead
132 * to lock contention or spurious cache line bouncing.
133 *
72fd4a35 134 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
135 */
136unsigned long __round_jiffies(unsigned long j, int cpu)
137{
138 int rem;
139 unsigned long original = j;
140
141 /*
142 * We don't want all cpus firing their timers at once hitting the
143 * same lock or cachelines, so we skew each extra cpu with an extra
144 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
145 * already did this.
146 * The skew is done by adding 3*cpunr, then round, then subtract this
147 * extra offset again.
148 */
149 j += cpu * 3;
150
151 rem = j % HZ;
152
153 /*
154 * If the target jiffie is just after a whole second (which can happen
155 * due to delays of the timer irq, long irq off times etc etc) then
156 * we should round down to the whole second, not up. Use 1/4th second
157 * as cutoff for this rounding as an extreme upper bound for this.
158 */
159 if (rem < HZ/4) /* round down */
160 j = j - rem;
161 else /* round up */
162 j = j - rem + HZ;
163
164 /* now that we have rounded, subtract the extra skew again */
165 j -= cpu * 3;
166
167 if (j <= jiffies) /* rounding ate our timeout entirely; */
168 return original;
169 return j;
170}
171EXPORT_SYMBOL_GPL(__round_jiffies);
172
173/**
174 * __round_jiffies_relative - function to round jiffies to a full second
175 * @j: the time in (relative) jiffies that should be rounded
176 * @cpu: the processor number on which the timeout will happen
177 *
72fd4a35 178 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
179 * up or down to (approximately) full seconds. This is useful for timers
180 * for which the exact time they fire does not matter too much, as long as
181 * they fire approximately every X seconds.
182 *
183 * By rounding these timers to whole seconds, all such timers will fire
184 * at the same time, rather than at various times spread out. The goal
185 * of this is to have the CPU wake up less, which saves power.
186 *
187 * The exact rounding is skewed for each processor to avoid all
188 * processors firing at the exact same time, which could lead
189 * to lock contention or spurious cache line bouncing.
190 *
72fd4a35 191 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
192 */
193unsigned long __round_jiffies_relative(unsigned long j, int cpu)
194{
195 /*
196 * In theory the following code can skip a jiffy in case jiffies
197 * increments right between the addition and the later subtraction.
198 * However since the entire point of this function is to use approximate
199 * timeouts, it's entirely ok to not handle that.
200 */
201 return __round_jiffies(j + jiffies, cpu) - jiffies;
202}
203EXPORT_SYMBOL_GPL(__round_jiffies_relative);
204
205/**
206 * round_jiffies - function to round jiffies to a full second
207 * @j: the time in (absolute) jiffies that should be rounded
208 *
72fd4a35 209 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
210 * up or down to (approximately) full seconds. This is useful for timers
211 * for which the exact time they fire does not matter too much, as long as
212 * they fire approximately every X seconds.
213 *
214 * By rounding these timers to whole seconds, all such timers will fire
215 * at the same time, rather than at various times spread out. The goal
216 * of this is to have the CPU wake up less, which saves power.
217 *
72fd4a35 218 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
219 */
220unsigned long round_jiffies(unsigned long j)
221{
222 return __round_jiffies(j, raw_smp_processor_id());
223}
224EXPORT_SYMBOL_GPL(round_jiffies);
225
226/**
227 * round_jiffies_relative - function to round jiffies to a full second
228 * @j: the time in (relative) jiffies that should be rounded
229 *
72fd4a35 230 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
231 * up or down to (approximately) full seconds. This is useful for timers
232 * for which the exact time they fire does not matter too much, as long as
233 * they fire approximately every X seconds.
234 *
235 * By rounding these timers to whole seconds, all such timers will fire
236 * at the same time, rather than at various times spread out. The goal
237 * of this is to have the CPU wake up less, which saves power.
238 *
72fd4a35 239 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
240 */
241unsigned long round_jiffies_relative(unsigned long j)
242{
243 return __round_jiffies_relative(j, raw_smp_processor_id());
244}
245EXPORT_SYMBOL_GPL(round_jiffies_relative);
246
247
1da177e4
LT
248static inline void set_running_timer(tvec_base_t *base,
249 struct timer_list *timer)
250{
251#ifdef CONFIG_SMP
3691c519 252 base->running_timer = timer;
1da177e4
LT
253#endif
254}
255
1da177e4
LT
256static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
257{
258 unsigned long expires = timer->expires;
259 unsigned long idx = expires - base->timer_jiffies;
260 struct list_head *vec;
261
262 if (idx < TVR_SIZE) {
263 int i = expires & TVR_MASK;
264 vec = base->tv1.vec + i;
265 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
266 int i = (expires >> TVR_BITS) & TVN_MASK;
267 vec = base->tv2.vec + i;
268 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
269 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
270 vec = base->tv3.vec + i;
271 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
272 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
273 vec = base->tv4.vec + i;
274 } else if ((signed long) idx < 0) {
275 /*
276 * Can happen if you add a timer with expires == jiffies,
277 * or you set a timer to go off in the past
278 */
279 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
280 } else {
281 int i;
282 /* If the timeout is larger than 0xffffffff on 64-bit
283 * architectures then we use the maximum timeout:
284 */
285 if (idx > 0xffffffffUL) {
286 idx = 0xffffffffUL;
287 expires = idx + base->timer_jiffies;
288 }
289 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
290 vec = base->tv5.vec + i;
291 }
292 /*
293 * Timers are FIFO:
294 */
295 list_add_tail(&timer->entry, vec);
296}
297
82f67cd9
IM
298#ifdef CONFIG_TIMER_STATS
299void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
300{
301 if (timer->start_site)
302 return;
303
304 timer->start_site = addr;
305 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
306 timer->start_pid = current->pid;
307}
c5c061b8
VP
308
309static void timer_stats_account_timer(struct timer_list *timer)
310{
311 unsigned int flag = 0;
312
313 if (unlikely(tbase_get_deferrable(timer->base)))
314 flag |= TIMER_STATS_FLAG_DEFERRABLE;
315
316 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
317 timer->function, timer->start_comm, flag);
318}
319
320#else
321static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
322#endif
323
2aae4a10 324/**
55c888d6
ON
325 * init_timer - initialize a timer.
326 * @timer: the timer to be initialized
327 *
328 * init_timer() must be done to a timer prior calling *any* of the
329 * other timer functions.
330 */
331void fastcall init_timer(struct timer_list *timer)
332{
333 timer->entry.next = NULL;
bfe5d834 334 timer->base = __raw_get_cpu_var(tvec_bases);
82f67cd9
IM
335#ifdef CONFIG_TIMER_STATS
336 timer->start_site = NULL;
337 timer->start_pid = -1;
338 memset(timer->start_comm, 0, TASK_COMM_LEN);
339#endif
55c888d6
ON
340}
341EXPORT_SYMBOL(init_timer);
342
6e453a67
VP
343void fastcall init_timer_deferrable(struct timer_list *timer)
344{
345 init_timer(timer);
346 timer_set_deferrable(timer);
347}
348EXPORT_SYMBOL(init_timer_deferrable);
349
55c888d6 350static inline void detach_timer(struct timer_list *timer,
82f67cd9 351 int clear_pending)
55c888d6
ON
352{
353 struct list_head *entry = &timer->entry;
354
355 __list_del(entry->prev, entry->next);
356 if (clear_pending)
357 entry->next = NULL;
358 entry->prev = LIST_POISON2;
359}
360
361/*
3691c519 362 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
363 * means that all timers which are tied to this base via timer->base are
364 * locked, and the base itself is locked too.
365 *
366 * So __run_timers/migrate_timers can safely modify all timers which could
367 * be found on ->tvX lists.
368 *
369 * When the timer's base is locked, and the timer removed from list, it is
370 * possible to set timer->base = NULL and drop the lock: the timer remains
371 * locked.
372 */
3691c519 373static tvec_base_t *lock_timer_base(struct timer_list *timer,
55c888d6 374 unsigned long *flags)
89e7e374 375 __acquires(timer->base->lock)
55c888d6 376{
3691c519 377 tvec_base_t *base;
55c888d6
ON
378
379 for (;;) {
6e453a67
VP
380 tvec_base_t *prelock_base = timer->base;
381 base = tbase_get_base(prelock_base);
55c888d6
ON
382 if (likely(base != NULL)) {
383 spin_lock_irqsave(&base->lock, *flags);
6e453a67 384 if (likely(prelock_base == timer->base))
55c888d6
ON
385 return base;
386 /* The timer has migrated to another CPU */
387 spin_unlock_irqrestore(&base->lock, *flags);
388 }
389 cpu_relax();
390 }
391}
392
1da177e4
LT
393int __mod_timer(struct timer_list *timer, unsigned long expires)
394{
3691c519 395 tvec_base_t *base, *new_base;
1da177e4
LT
396 unsigned long flags;
397 int ret = 0;
398
82f67cd9 399 timer_stats_timer_set_start_info(timer);
1da177e4 400 BUG_ON(!timer->function);
1da177e4 401
55c888d6
ON
402 base = lock_timer_base(timer, &flags);
403
404 if (timer_pending(timer)) {
405 detach_timer(timer, 0);
406 ret = 1;
407 }
408
a4a6198b 409 new_base = __get_cpu_var(tvec_bases);
1da177e4 410
3691c519 411 if (base != new_base) {
1da177e4 412 /*
55c888d6
ON
413 * We are trying to schedule the timer on the local CPU.
414 * However we can't change timer's base while it is running,
415 * otherwise del_timer_sync() can't detect that the timer's
416 * handler yet has not finished. This also guarantees that
417 * the timer is serialized wrt itself.
1da177e4 418 */
a2c348fe 419 if (likely(base->running_timer != timer)) {
55c888d6 420 /* See the comment in lock_timer_base() */
6e453a67 421 timer_set_base(timer, NULL);
55c888d6 422 spin_unlock(&base->lock);
a2c348fe
ON
423 base = new_base;
424 spin_lock(&base->lock);
6e453a67 425 timer_set_base(timer, base);
1da177e4
LT
426 }
427 }
428
1da177e4 429 timer->expires = expires;
a2c348fe
ON
430 internal_add_timer(base, timer);
431 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
432
433 return ret;
434}
435
436EXPORT_SYMBOL(__mod_timer);
437
2aae4a10 438/**
1da177e4
LT
439 * add_timer_on - start a timer on a particular CPU
440 * @timer: the timer to be added
441 * @cpu: the CPU to start it on
442 *
443 * This is not very scalable on SMP. Double adds are not possible.
444 */
445void add_timer_on(struct timer_list *timer, int cpu)
446{
a4a6198b 447 tvec_base_t *base = per_cpu(tvec_bases, cpu);
6819457d 448 unsigned long flags;
55c888d6 449
82f67cd9 450 timer_stats_timer_set_start_info(timer);
6819457d 451 BUG_ON(timer_pending(timer) || !timer->function);
3691c519 452 spin_lock_irqsave(&base->lock, flags);
6e453a67 453 timer_set_base(timer, base);
1da177e4 454 internal_add_timer(base, timer);
3691c519 455 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
456}
457
458
2aae4a10 459/**
1da177e4
LT
460 * mod_timer - modify a timer's timeout
461 * @timer: the timer to be modified
2aae4a10 462 * @expires: new timeout in jiffies
1da177e4 463 *
72fd4a35 464 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
465 * active timer (if the timer is inactive it will be activated)
466 *
467 * mod_timer(timer, expires) is equivalent to:
468 *
469 * del_timer(timer); timer->expires = expires; add_timer(timer);
470 *
471 * Note that if there are multiple unserialized concurrent users of the
472 * same timer, then mod_timer() is the only safe way to modify the timeout,
473 * since add_timer() cannot modify an already running timer.
474 *
475 * The function returns whether it has modified a pending timer or not.
476 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
477 * active timer returns 1.)
478 */
479int mod_timer(struct timer_list *timer, unsigned long expires)
480{
481 BUG_ON(!timer->function);
482
82f67cd9 483 timer_stats_timer_set_start_info(timer);
1da177e4
LT
484 /*
485 * This is a common optimization triggered by the
486 * networking code - if the timer is re-modified
487 * to be the same thing then just return:
488 */
489 if (timer->expires == expires && timer_pending(timer))
490 return 1;
491
492 return __mod_timer(timer, expires);
493}
494
495EXPORT_SYMBOL(mod_timer);
496
2aae4a10 497/**
1da177e4
LT
498 * del_timer - deactive a timer.
499 * @timer: the timer to be deactivated
500 *
501 * del_timer() deactivates a timer - this works on both active and inactive
502 * timers.
503 *
504 * The function returns whether it has deactivated a pending timer or not.
505 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
506 * active timer returns 1.)
507 */
508int del_timer(struct timer_list *timer)
509{
3691c519 510 tvec_base_t *base;
1da177e4 511 unsigned long flags;
55c888d6 512 int ret = 0;
1da177e4 513
82f67cd9 514 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
515 if (timer_pending(timer)) {
516 base = lock_timer_base(timer, &flags);
517 if (timer_pending(timer)) {
518 detach_timer(timer, 1);
519 ret = 1;
520 }
1da177e4 521 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 522 }
1da177e4 523
55c888d6 524 return ret;
1da177e4
LT
525}
526
527EXPORT_SYMBOL(del_timer);
528
529#ifdef CONFIG_SMP
2aae4a10
REB
530/**
531 * try_to_del_timer_sync - Try to deactivate a timer
532 * @timer: timer do del
533 *
fd450b73
ON
534 * This function tries to deactivate a timer. Upon successful (ret >= 0)
535 * exit the timer is not queued and the handler is not running on any CPU.
536 *
537 * It must not be called from interrupt contexts.
538 */
539int try_to_del_timer_sync(struct timer_list *timer)
540{
3691c519 541 tvec_base_t *base;
fd450b73
ON
542 unsigned long flags;
543 int ret = -1;
544
545 base = lock_timer_base(timer, &flags);
546
547 if (base->running_timer == timer)
548 goto out;
549
550 ret = 0;
551 if (timer_pending(timer)) {
552 detach_timer(timer, 1);
553 ret = 1;
554 }
555out:
556 spin_unlock_irqrestore(&base->lock, flags);
557
558 return ret;
559}
560
e19dff1f
DH
561EXPORT_SYMBOL(try_to_del_timer_sync);
562
2aae4a10 563/**
1da177e4
LT
564 * del_timer_sync - deactivate a timer and wait for the handler to finish.
565 * @timer: the timer to be deactivated
566 *
567 * This function only differs from del_timer() on SMP: besides deactivating
568 * the timer it also makes sure the handler has finished executing on other
569 * CPUs.
570 *
72fd4a35 571 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
572 * otherwise this function is meaningless. It must not be called from
573 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
574 * completion of the timer's handler. The timer's handler must not call
575 * add_timer_on(). Upon exit the timer is not queued and the handler is
576 * not running on any CPU.
1da177e4
LT
577 *
578 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
579 */
580int del_timer_sync(struct timer_list *timer)
581{
fd450b73
ON
582 for (;;) {
583 int ret = try_to_del_timer_sync(timer);
584 if (ret >= 0)
585 return ret;
a0009652 586 cpu_relax();
fd450b73 587 }
1da177e4 588}
1da177e4 589
55c888d6 590EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
591#endif
592
593static int cascade(tvec_base_t *base, tvec_t *tv, int index)
594{
595 /* cascade all the timers from tv up one level */
3439dd86
P
596 struct timer_list *timer, *tmp;
597 struct list_head tv_list;
598
599 list_replace_init(tv->vec + index, &tv_list);
1da177e4 600
1da177e4 601 /*
3439dd86
P
602 * We are removing _all_ timers from the list, so we
603 * don't have to detach them individually.
1da177e4 604 */
3439dd86 605 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 606 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 607 internal_add_timer(base, timer);
1da177e4 608 }
1da177e4
LT
609
610 return index;
611}
612
2aae4a10
REB
613#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
614
615/**
1da177e4
LT
616 * __run_timers - run all expired timers (if any) on this CPU.
617 * @base: the timer vector to be processed.
618 *
619 * This function cascades all vectors and executes all expired timer
620 * vectors.
621 */
1da177e4
LT
622static inline void __run_timers(tvec_base_t *base)
623{
624 struct timer_list *timer;
625
3691c519 626 spin_lock_irq(&base->lock);
1da177e4 627 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 628 struct list_head work_list;
1da177e4 629 struct list_head *head = &work_list;
6819457d 630 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 631
1da177e4
LT
632 /*
633 * Cascade timers:
634 */
635 if (!index &&
636 (!cascade(base, &base->tv2, INDEX(0))) &&
637 (!cascade(base, &base->tv3, INDEX(1))) &&
638 !cascade(base, &base->tv4, INDEX(2)))
639 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
640 ++base->timer_jiffies;
641 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 642 while (!list_empty(head)) {
1da177e4
LT
643 void (*fn)(unsigned long);
644 unsigned long data;
645
b5e61818 646 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
647 fn = timer->function;
648 data = timer->data;
1da177e4 649
82f67cd9
IM
650 timer_stats_account_timer(timer);
651
1da177e4 652 set_running_timer(base, timer);
55c888d6 653 detach_timer(timer, 1);
3691c519 654 spin_unlock_irq(&base->lock);
1da177e4 655 {
be5b4fbd 656 int preempt_count = preempt_count();
1da177e4
LT
657 fn(data);
658 if (preempt_count != preempt_count()) {
be5b4fbd
JJ
659 printk(KERN_WARNING "huh, entered %p "
660 "with preempt_count %08x, exited"
661 " with %08x?\n",
662 fn, preempt_count,
663 preempt_count());
1da177e4
LT
664 BUG();
665 }
666 }
3691c519 667 spin_lock_irq(&base->lock);
1da177e4
LT
668 }
669 }
670 set_running_timer(base, NULL);
3691c519 671 spin_unlock_irq(&base->lock);
1da177e4
LT
672}
673
fd064b9b 674#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
1da177e4
LT
675/*
676 * Find out when the next timer event is due to happen. This
677 * is used on S/390 to stop all activity when a cpus is idle.
678 * This functions needs to be called disabled.
679 */
1cfd6849 680static unsigned long __next_timer_interrupt(tvec_base_t *base)
1da177e4 681{
1cfd6849 682 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 683 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 684 int index, slot, array, found = 0;
1da177e4 685 struct timer_list *nte;
1da177e4 686 tvec_t *varray[4];
1da177e4
LT
687
688 /* Look for timer events in tv1. */
1cfd6849 689 index = slot = timer_jiffies & TVR_MASK;
1da177e4 690 do {
1cfd6849 691 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
692 if (tbase_get_deferrable(nte->base))
693 continue;
6e453a67 694
1cfd6849 695 found = 1;
1da177e4 696 expires = nte->expires;
1cfd6849
TG
697 /* Look at the cascade bucket(s)? */
698 if (!index || slot < index)
699 goto cascade;
700 return expires;
1da177e4 701 }
1cfd6849
TG
702 slot = (slot + 1) & TVR_MASK;
703 } while (slot != index);
704
705cascade:
706 /* Calculate the next cascade event */
707 if (index)
708 timer_jiffies += TVR_SIZE - index;
709 timer_jiffies >>= TVR_BITS;
1da177e4
LT
710
711 /* Check tv2-tv5. */
712 varray[0] = &base->tv2;
713 varray[1] = &base->tv3;
714 varray[2] = &base->tv4;
715 varray[3] = &base->tv5;
1cfd6849
TG
716
717 for (array = 0; array < 4; array++) {
718 tvec_t *varp = varray[array];
719
720 index = slot = timer_jiffies & TVN_MASK;
1da177e4 721 do {
1cfd6849
TG
722 list_for_each_entry(nte, varp->vec + slot, entry) {
723 found = 1;
1da177e4
LT
724 if (time_before(nte->expires, expires))
725 expires = nte->expires;
1cfd6849
TG
726 }
727 /*
728 * Do we still search for the first timer or are
729 * we looking up the cascade buckets ?
730 */
731 if (found) {
732 /* Look at the cascade bucket(s)? */
733 if (!index || slot < index)
734 break;
735 return expires;
736 }
737 slot = (slot + 1) & TVN_MASK;
738 } while (slot != index);
739
740 if (index)
741 timer_jiffies += TVN_SIZE - index;
742 timer_jiffies >>= TVN_BITS;
1da177e4 743 }
1cfd6849
TG
744 return expires;
745}
69239749 746
1cfd6849
TG
747/*
748 * Check, if the next hrtimer event is before the next timer wheel
749 * event:
750 */
751static unsigned long cmp_next_hrtimer_event(unsigned long now,
752 unsigned long expires)
753{
754 ktime_t hr_delta = hrtimer_get_next_event();
755 struct timespec tsdelta;
9501b6cf 756 unsigned long delta;
1cfd6849
TG
757
758 if (hr_delta.tv64 == KTIME_MAX)
759 return expires;
0662b713 760
9501b6cf
TG
761 /*
762 * Expired timer available, let it expire in the next tick
763 */
764 if (hr_delta.tv64 <= 0)
765 return now + 1;
69239749 766
1cfd6849 767 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 768 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
769
770 /*
771 * Limit the delta to the max value, which is checked in
772 * tick_nohz_stop_sched_tick():
773 */
774 if (delta > NEXT_TIMER_MAX_DELTA)
775 delta = NEXT_TIMER_MAX_DELTA;
776
9501b6cf
TG
777 /*
778 * Take rounding errors in to account and make sure, that it
779 * expires in the next tick. Otherwise we go into an endless
780 * ping pong due to tick_nohz_stop_sched_tick() retriggering
781 * the timer softirq
782 */
783 if (delta < 1)
784 delta = 1;
785 now += delta;
1cfd6849
TG
786 if (time_before(now, expires))
787 return now;
1da177e4
LT
788 return expires;
789}
1cfd6849
TG
790
791/**
792 * next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 793 * @now: current time (in jiffies)
1cfd6849 794 */
fd064b9b 795unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849
TG
796{
797 tvec_base_t *base = __get_cpu_var(tvec_bases);
fd064b9b 798 unsigned long expires;
1cfd6849
TG
799
800 spin_lock(&base->lock);
801 expires = __next_timer_interrupt(base);
802 spin_unlock(&base->lock);
803
804 if (time_before_eq(expires, now))
805 return now;
806
807 return cmp_next_hrtimer_event(now, expires);
808}
fd064b9b
TG
809
810#ifdef CONFIG_NO_IDLE_HZ
811unsigned long next_timer_interrupt(void)
812{
813 return get_next_timer_interrupt(jiffies);
814}
815#endif
816
1da177e4
LT
817#endif
818
1da177e4
LT
819/*
820 * Called from the timer interrupt handler to charge one tick to the current
821 * process. user_tick is 1 if the tick is user time, 0 for system.
822 */
823void update_process_times(int user_tick)
824{
825 struct task_struct *p = current;
826 int cpu = smp_processor_id();
827
828 /* Note: this timer irq context must be accounted for as well. */
829 if (user_tick)
830 account_user_time(p, jiffies_to_cputime(1));
831 else
832 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
833 run_local_timers();
834 if (rcu_pending(cpu))
835 rcu_check_callbacks(cpu, user_tick);
836 scheduler_tick();
6819457d 837 run_posix_cpu_timers(p);
1da177e4
LT
838}
839
840/*
841 * Nr of active tasks - counted in fixed-point numbers
842 */
843static unsigned long count_active_tasks(void)
844{
db1b1fef 845 return nr_active() * FIXED_1;
1da177e4
LT
846}
847
848/*
849 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
850 * imply that avenrun[] is the standard name for this kind of thing.
851 * Nothing else seems to be standardized: the fractional size etc
852 * all seem to differ on different machines.
853 *
854 * Requires xtime_lock to access.
855 */
856unsigned long avenrun[3];
857
858EXPORT_SYMBOL(avenrun);
859
860/*
861 * calc_load - given tick count, update the avenrun load estimates.
862 * This is called while holding a write_lock on xtime_lock.
863 */
864static inline void calc_load(unsigned long ticks)
865{
866 unsigned long active_tasks; /* fixed-point */
867 static int count = LOAD_FREQ;
868
cd7175ed
ED
869 count -= ticks;
870 if (unlikely(count < 0)) {
871 active_tasks = count_active_tasks();
872 do {
873 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
874 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
875 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
876 count += LOAD_FREQ;
877 } while (count < 0);
1da177e4
LT
878 }
879}
880
1da177e4
LT
881/*
882 * This function runs timers and the timer-tq in bottom half context.
883 */
884static void run_timer_softirq(struct softirq_action *h)
885{
a4a6198b 886 tvec_base_t *base = __get_cpu_var(tvec_bases);
1da177e4 887
82f67cd9
IM
888 hrtimer_run_queues();
889
1da177e4
LT
890 if (time_after_eq(jiffies, base->timer_jiffies))
891 __run_timers(base);
892}
893
894/*
895 * Called by the local, per-CPU timer interrupt on SMP.
896 */
897void run_local_timers(void)
898{
899 raise_softirq(TIMER_SOFTIRQ);
6687a97d 900 softlockup_tick();
1da177e4
LT
901}
902
903/*
904 * Called by the timer interrupt. xtime_lock must already be taken
905 * by the timer IRQ!
906 */
3171a030 907static inline void update_times(unsigned long ticks)
1da177e4 908{
ad596171 909 update_wall_time();
1da177e4
LT
910 calc_load(ticks);
911}
6819457d 912
1da177e4
LT
913/*
914 * The 64-bit jiffies value is not atomic - you MUST NOT read it
915 * without sampling the sequence number in xtime_lock.
916 * jiffies is defined in the linker script...
917 */
918
3171a030 919void do_timer(unsigned long ticks)
1da177e4 920{
3171a030
AN
921 jiffies_64 += ticks;
922 update_times(ticks);
1da177e4
LT
923}
924
925#ifdef __ARCH_WANT_SYS_ALARM
926
927/*
928 * For backwards compatibility? This can be done in libc so Alpha
929 * and all newer ports shouldn't need it.
930 */
931asmlinkage unsigned long sys_alarm(unsigned int seconds)
932{
c08b8a49 933 return alarm_setitimer(seconds);
1da177e4
LT
934}
935
936#endif
937
938#ifndef __alpha__
939
940/*
941 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
942 * should be moved into arch/i386 instead?
943 */
944
945/**
946 * sys_getpid - return the thread group id of the current process
947 *
948 * Note, despite the name, this returns the tgid not the pid. The tgid and
949 * the pid are identical unless CLONE_THREAD was specified on clone() in
950 * which case the tgid is the same in all threads of the same group.
951 *
952 * This is SMP safe as current->tgid does not change.
953 */
954asmlinkage long sys_getpid(void)
955{
956 return current->tgid;
957}
958
959/*
6997a6fa
KK
960 * Accessing ->real_parent is not SMP-safe, it could
961 * change from under us. However, we can use a stale
962 * value of ->real_parent under rcu_read_lock(), see
963 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4
LT
964 */
965asmlinkage long sys_getppid(void)
966{
967 int pid;
1da177e4 968
6997a6fa
KK
969 rcu_read_lock();
970 pid = rcu_dereference(current->real_parent)->tgid;
971 rcu_read_unlock();
1da177e4 972
1da177e4
LT
973 return pid;
974}
975
976asmlinkage long sys_getuid(void)
977{
978 /* Only we change this so SMP safe */
979 return current->uid;
980}
981
982asmlinkage long sys_geteuid(void)
983{
984 /* Only we change this so SMP safe */
985 return current->euid;
986}
987
988asmlinkage long sys_getgid(void)
989{
990 /* Only we change this so SMP safe */
991 return current->gid;
992}
993
994asmlinkage long sys_getegid(void)
995{
996 /* Only we change this so SMP safe */
997 return current->egid;
998}
999
1000#endif
1001
1002static void process_timeout(unsigned long __data)
1003{
36c8b586 1004 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1005}
1006
1007/**
1008 * schedule_timeout - sleep until timeout
1009 * @timeout: timeout value in jiffies
1010 *
1011 * Make the current task sleep until @timeout jiffies have
1012 * elapsed. The routine will return immediately unless
1013 * the current task state has been set (see set_current_state()).
1014 *
1015 * You can set the task state as follows -
1016 *
1017 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1018 * pass before the routine returns. The routine will return 0
1019 *
1020 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1021 * delivered to the current task. In this case the remaining time
1022 * in jiffies will be returned, or 0 if the timer expired in time
1023 *
1024 * The current task state is guaranteed to be TASK_RUNNING when this
1025 * routine returns.
1026 *
1027 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1028 * the CPU away without a bound on the timeout. In this case the return
1029 * value will be %MAX_SCHEDULE_TIMEOUT.
1030 *
1031 * In all cases the return value is guaranteed to be non-negative.
1032 */
1033fastcall signed long __sched schedule_timeout(signed long timeout)
1034{
1035 struct timer_list timer;
1036 unsigned long expire;
1037
1038 switch (timeout)
1039 {
1040 case MAX_SCHEDULE_TIMEOUT:
1041 /*
1042 * These two special cases are useful to be comfortable
1043 * in the caller. Nothing more. We could take
1044 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1045 * but I' d like to return a valid offset (>=0) to allow
1046 * the caller to do everything it want with the retval.
1047 */
1048 schedule();
1049 goto out;
1050 default:
1051 /*
1052 * Another bit of PARANOID. Note that the retval will be
1053 * 0 since no piece of kernel is supposed to do a check
1054 * for a negative retval of schedule_timeout() (since it
1055 * should never happens anyway). You just have the printk()
1056 * that will tell you if something is gone wrong and where.
1057 */
5b149bcc 1058 if (timeout < 0) {
1da177e4 1059 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1060 "value %lx\n", timeout);
1061 dump_stack();
1da177e4
LT
1062 current->state = TASK_RUNNING;
1063 goto out;
1064 }
1065 }
1066
1067 expire = timeout + jiffies;
1068
a8db2db1
ON
1069 setup_timer(&timer, process_timeout, (unsigned long)current);
1070 __mod_timer(&timer, expire);
1da177e4
LT
1071 schedule();
1072 del_singleshot_timer_sync(&timer);
1073
1074 timeout = expire - jiffies;
1075
1076 out:
1077 return timeout < 0 ? 0 : timeout;
1078}
1da177e4
LT
1079EXPORT_SYMBOL(schedule_timeout);
1080
8a1c1757
AM
1081/*
1082 * We can use __set_current_state() here because schedule_timeout() calls
1083 * schedule() unconditionally.
1084 */
64ed93a2
NA
1085signed long __sched schedule_timeout_interruptible(signed long timeout)
1086{
a5a0d52c
AM
1087 __set_current_state(TASK_INTERRUPTIBLE);
1088 return schedule_timeout(timeout);
64ed93a2
NA
1089}
1090EXPORT_SYMBOL(schedule_timeout_interruptible);
1091
1092signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1093{
a5a0d52c
AM
1094 __set_current_state(TASK_UNINTERRUPTIBLE);
1095 return schedule_timeout(timeout);
64ed93a2
NA
1096}
1097EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1098
1da177e4
LT
1099/* Thread ID - the internal kernel "pid" */
1100asmlinkage long sys_gettid(void)
1101{
1102 return current->pid;
1103}
1104
2aae4a10 1105/**
d4d23add 1106 * do_sysinfo - fill in sysinfo struct
2aae4a10 1107 * @info: pointer to buffer to fill
6819457d 1108 */
d4d23add 1109int do_sysinfo(struct sysinfo *info)
1da177e4 1110{
1da177e4
LT
1111 unsigned long mem_total, sav_total;
1112 unsigned int mem_unit, bitcount;
1113 unsigned long seq;
1114
d4d23add 1115 memset(info, 0, sizeof(struct sysinfo));
1da177e4
LT
1116
1117 do {
1118 struct timespec tp;
1119 seq = read_seqbegin(&xtime_lock);
1120
1121 /*
1122 * This is annoying. The below is the same thing
1123 * posix_get_clock_monotonic() does, but it wants to
1124 * take the lock which we want to cover the loads stuff
1125 * too.
1126 */
1127
1128 getnstimeofday(&tp);
1129 tp.tv_sec += wall_to_monotonic.tv_sec;
1130 tp.tv_nsec += wall_to_monotonic.tv_nsec;
d6214141 1131 monotonic_to_bootbased(&tp);
1da177e4
LT
1132 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1133 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1134 tp.tv_sec++;
1135 }
d4d23add 1136 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1137
d4d23add
KM
1138 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1139 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1140 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1da177e4 1141
d4d23add 1142 info->procs = nr_threads;
1da177e4
LT
1143 } while (read_seqretry(&xtime_lock, seq));
1144
d4d23add
KM
1145 si_meminfo(info);
1146 si_swapinfo(info);
1da177e4
LT
1147
1148 /*
1149 * If the sum of all the available memory (i.e. ram + swap)
1150 * is less than can be stored in a 32 bit unsigned long then
1151 * we can be binary compatible with 2.2.x kernels. If not,
1152 * well, in that case 2.2.x was broken anyways...
1153 *
1154 * -Erik Andersen <andersee@debian.org>
1155 */
1156
d4d23add
KM
1157 mem_total = info->totalram + info->totalswap;
1158 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1159 goto out;
1160 bitcount = 0;
d4d23add 1161 mem_unit = info->mem_unit;
1da177e4
LT
1162 while (mem_unit > 1) {
1163 bitcount++;
1164 mem_unit >>= 1;
1165 sav_total = mem_total;
1166 mem_total <<= 1;
1167 if (mem_total < sav_total)
1168 goto out;
1169 }
1170
1171 /*
1172 * If mem_total did not overflow, multiply all memory values by
d4d23add 1173 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1174 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1175 * kernels...
1176 */
1177
d4d23add
KM
1178 info->mem_unit = 1;
1179 info->totalram <<= bitcount;
1180 info->freeram <<= bitcount;
1181 info->sharedram <<= bitcount;
1182 info->bufferram <<= bitcount;
1183 info->totalswap <<= bitcount;
1184 info->freeswap <<= bitcount;
1185 info->totalhigh <<= bitcount;
1186 info->freehigh <<= bitcount;
1187
1188out:
1189 return 0;
1190}
1191
1192asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1193{
1194 struct sysinfo val;
1195
1196 do_sysinfo(&val);
1da177e4 1197
1da177e4
LT
1198 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1199 return -EFAULT;
1200
1201 return 0;
1202}
1203
d730e882
IM
1204/*
1205 * lockdep: we want to track each per-CPU base as a separate lock-class,
1206 * but timer-bases are kmalloc()-ed, so we need to attach separate
1207 * keys to them:
1208 */
1209static struct lock_class_key base_lock_keys[NR_CPUS];
1210
a4a6198b 1211static int __devinit init_timers_cpu(int cpu)
1da177e4
LT
1212{
1213 int j;
1214 tvec_base_t *base;
ba6edfcd 1215 static char __devinitdata tvec_base_done[NR_CPUS];
55c888d6 1216
ba6edfcd 1217 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1218 static char boot_done;
1219
a4a6198b 1220 if (boot_done) {
ba6edfcd
AM
1221 /*
1222 * The APs use this path later in boot
1223 */
94f6030c
CL
1224 base = kmalloc_node(sizeof(*base),
1225 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1226 cpu_to_node(cpu));
1227 if (!base)
1228 return -ENOMEM;
6e453a67
VP
1229
1230 /* Make sure that tvec_base is 2 byte aligned */
1231 if (tbase_get_deferrable(base)) {
1232 WARN_ON(1);
1233 kfree(base);
1234 return -ENOMEM;
1235 }
ba6edfcd 1236 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1237 } else {
ba6edfcd
AM
1238 /*
1239 * This is for the boot CPU - we use compile-time
1240 * static initialisation because per-cpu memory isn't
1241 * ready yet and because the memory allocators are not
1242 * initialised either.
1243 */
a4a6198b 1244 boot_done = 1;
ba6edfcd 1245 base = &boot_tvec_bases;
a4a6198b 1246 }
ba6edfcd
AM
1247 tvec_base_done[cpu] = 1;
1248 } else {
1249 base = per_cpu(tvec_bases, cpu);
a4a6198b 1250 }
ba6edfcd 1251
3691c519 1252 spin_lock_init(&base->lock);
d730e882
IM
1253 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1254
1da177e4
LT
1255 for (j = 0; j < TVN_SIZE; j++) {
1256 INIT_LIST_HEAD(base->tv5.vec + j);
1257 INIT_LIST_HEAD(base->tv4.vec + j);
1258 INIT_LIST_HEAD(base->tv3.vec + j);
1259 INIT_LIST_HEAD(base->tv2.vec + j);
1260 }
1261 for (j = 0; j < TVR_SIZE; j++)
1262 INIT_LIST_HEAD(base->tv1.vec + j);
1263
1264 base->timer_jiffies = jiffies;
a4a6198b 1265 return 0;
1da177e4
LT
1266}
1267
1268#ifdef CONFIG_HOTPLUG_CPU
55c888d6 1269static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1da177e4
LT
1270{
1271 struct timer_list *timer;
1272
1273 while (!list_empty(head)) {
b5e61818 1274 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1275 detach_timer(timer, 0);
6e453a67 1276 timer_set_base(timer, new_base);
1da177e4 1277 internal_add_timer(new_base, timer);
1da177e4 1278 }
1da177e4
LT
1279}
1280
1281static void __devinit migrate_timers(int cpu)
1282{
1283 tvec_base_t *old_base;
1284 tvec_base_t *new_base;
1285 int i;
1286
1287 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1288 old_base = per_cpu(tvec_bases, cpu);
1289 new_base = get_cpu_var(tvec_bases);
1da177e4
LT
1290
1291 local_irq_disable();
e81ce1f7
HC
1292 double_spin_lock(&new_base->lock, &old_base->lock,
1293 smp_processor_id() < cpu);
3691c519
ON
1294
1295 BUG_ON(old_base->running_timer);
1da177e4 1296
1da177e4 1297 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1298 migrate_timer_list(new_base, old_base->tv1.vec + i);
1299 for (i = 0; i < TVN_SIZE; i++) {
1300 migrate_timer_list(new_base, old_base->tv2.vec + i);
1301 migrate_timer_list(new_base, old_base->tv3.vec + i);
1302 migrate_timer_list(new_base, old_base->tv4.vec + i);
1303 migrate_timer_list(new_base, old_base->tv5.vec + i);
1304 }
1305
e81ce1f7
HC
1306 double_spin_unlock(&new_base->lock, &old_base->lock,
1307 smp_processor_id() < cpu);
1da177e4
LT
1308 local_irq_enable();
1309 put_cpu_var(tvec_bases);
1da177e4
LT
1310}
1311#endif /* CONFIG_HOTPLUG_CPU */
1312
8c78f307 1313static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1314 unsigned long action, void *hcpu)
1315{
1316 long cpu = (long)hcpu;
1317 switch(action) {
1318 case CPU_UP_PREPARE:
8bb78442 1319 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1320 if (init_timers_cpu(cpu) < 0)
1321 return NOTIFY_BAD;
1da177e4
LT
1322 break;
1323#ifdef CONFIG_HOTPLUG_CPU
1324 case CPU_DEAD:
8bb78442 1325 case CPU_DEAD_FROZEN:
1da177e4
LT
1326 migrate_timers(cpu);
1327 break;
1328#endif
1329 default:
1330 break;
1331 }
1332 return NOTIFY_OK;
1333}
1334
8c78f307 1335static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1336 .notifier_call = timer_cpu_notify,
1337};
1338
1339
1340void __init init_timers(void)
1341{
07dccf33 1342 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1343 (void *)(long)smp_processor_id());
07dccf33 1344
82f67cd9
IM
1345 init_timer_stats();
1346
07dccf33 1347 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
1348 register_cpu_notifier(&timers_nb);
1349 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1350}
1351
1352#ifdef CONFIG_TIME_INTERPOLATION
1353
67890d70
CL
1354struct time_interpolator *time_interpolator __read_mostly;
1355static struct time_interpolator *time_interpolator_list __read_mostly;
1da177e4
LT
1356static DEFINE_SPINLOCK(time_interpolator_lock);
1357
3db5db4f 1358static inline cycles_t time_interpolator_get_cycles(unsigned int src)
1da177e4
LT
1359{
1360 unsigned long (*x)(void);
1361
1362 switch (src)
1363 {
1364 case TIME_SOURCE_FUNCTION:
1365 x = time_interpolator->addr;
1366 return x();
1367
1368 case TIME_SOURCE_MMIO64 :
685db65e 1369 return readq_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1370
1371 case TIME_SOURCE_MMIO32 :
685db65e 1372 return readl_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1373
1374 default: return get_cycles();
1375 }
1376}
1377
486d46ae 1378static inline u64 time_interpolator_get_counter(int writelock)
1da177e4
LT
1379{
1380 unsigned int src = time_interpolator->source;
1381
1382 if (time_interpolator->jitter)
1383 {
3db5db4f
HD
1384 cycles_t lcycle;
1385 cycles_t now;
1da177e4
LT
1386
1387 do {
1388 lcycle = time_interpolator->last_cycle;
1389 now = time_interpolator_get_cycles(src);
1390 if (lcycle && time_after(lcycle, now))
1391 return lcycle;
486d46ae
AW
1392
1393 /* When holding the xtime write lock, there's no need
1394 * to add the overhead of the cmpxchg. Readers are
1395 * force to retry until the write lock is released.
1396 */
1397 if (writelock) {
1398 time_interpolator->last_cycle = now;
1399 return now;
1400 }
1da177e4
LT
1401 /* Keep track of the last timer value returned. The use of cmpxchg here
1402 * will cause contention in an SMP environment.
1403 */
1404 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1405 return now;
1406 }
1407 else
1408 return time_interpolator_get_cycles(src);
1409}
1410
1411void time_interpolator_reset(void)
1412{
1413 time_interpolator->offset = 0;
486d46ae 1414 time_interpolator->last_counter = time_interpolator_get_counter(1);
1da177e4
LT
1415}
1416
1417#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1418
1419unsigned long time_interpolator_get_offset(void)
1420{
1421 /* If we do not have a time interpolator set up then just return zero */
1422 if (!time_interpolator)
1423 return 0;
1424
1425 return time_interpolator->offset +
486d46ae 1426 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1da177e4
LT
1427}
1428
1429#define INTERPOLATOR_ADJUST 65536
1430#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1431
4c7ee8de 1432void time_interpolator_update(long delta_nsec)
1da177e4
LT
1433{
1434 u64 counter;
1435 unsigned long offset;
1436
1437 /* If there is no time interpolator set up then do nothing */
1438 if (!time_interpolator)
1439 return;
1440
a5a0d52c
AM
1441 /*
1442 * The interpolator compensates for late ticks by accumulating the late
1443 * time in time_interpolator->offset. A tick earlier than expected will
1444 * lead to a reset of the offset and a corresponding jump of the clock
1445 * forward. Again this only works if the interpolator clock is running
1446 * slightly slower than the regular clock and the tuning logic insures
1447 * that.
1448 */
1da177e4 1449
486d46ae 1450 counter = time_interpolator_get_counter(1);
a5a0d52c
AM
1451 offset = time_interpolator->offset +
1452 GET_TI_NSECS(counter, time_interpolator);
1da177e4
LT
1453
1454 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1455 time_interpolator->offset = offset - delta_nsec;
1456 else {
1457 time_interpolator->skips++;
1458 time_interpolator->ns_skipped += delta_nsec - offset;
1459 time_interpolator->offset = 0;
1460 }
1461 time_interpolator->last_counter = counter;
1462
1463 /* Tuning logic for time interpolator invoked every minute or so.
1464 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1465 * Increase interpolator clock speed if we skip too much time.
1466 */
1467 if (jiffies % INTERPOLATOR_ADJUST == 0)
1468 {
b20367a6 1469 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1da177e4
LT
1470 time_interpolator->nsec_per_cyc--;
1471 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1472 time_interpolator->nsec_per_cyc++;
1473 time_interpolator->skips = 0;
1474 time_interpolator->ns_skipped = 0;
1475 }
1476}
1477
1478static inline int
1479is_better_time_interpolator(struct time_interpolator *new)
1480{
1481 if (!time_interpolator)
1482 return 1;
1483 return new->frequency > 2*time_interpolator->frequency ||
1484 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1485}
1486
1487void
1488register_time_interpolator(struct time_interpolator *ti)
1489{
1490 unsigned long flags;
1491
1492 /* Sanity check */
9f31252c 1493 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1da177e4
LT
1494
1495 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1496 spin_lock(&time_interpolator_lock);
1497 write_seqlock_irqsave(&xtime_lock, flags);
1498 if (is_better_time_interpolator(ti)) {
1499 time_interpolator = ti;
1500 time_interpolator_reset();
1501 }
1502 write_sequnlock_irqrestore(&xtime_lock, flags);
1503
1504 ti->next = time_interpolator_list;
1505 time_interpolator_list = ti;
1506 spin_unlock(&time_interpolator_lock);
1507}
1508
1509void
1510unregister_time_interpolator(struct time_interpolator *ti)
1511{
1512 struct time_interpolator *curr, **prev;
1513 unsigned long flags;
1514
1515 spin_lock(&time_interpolator_lock);
1516 prev = &time_interpolator_list;
1517 for (curr = *prev; curr; curr = curr->next) {
1518 if (curr == ti) {
1519 *prev = curr->next;
1520 break;
1521 }
1522 prev = &curr->next;
1523 }
1524
1525 write_seqlock_irqsave(&xtime_lock, flags);
1526 if (ti == time_interpolator) {
1527 /* we lost the best time-interpolator: */
1528 time_interpolator = NULL;
1529 /* find the next-best interpolator */
1530 for (curr = time_interpolator_list; curr; curr = curr->next)
1531 if (is_better_time_interpolator(curr))
1532 time_interpolator = curr;
1533 time_interpolator_reset();
1534 }
1535 write_sequnlock_irqrestore(&xtime_lock, flags);
1536 spin_unlock(&time_interpolator_lock);
1537}
1538#endif /* CONFIG_TIME_INTERPOLATION */
1539
1540/**
1541 * msleep - sleep safely even with waitqueue interruptions
1542 * @msecs: Time in milliseconds to sleep for
1543 */
1544void msleep(unsigned int msecs)
1545{
1546 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1547
75bcc8c5
NA
1548 while (timeout)
1549 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1550}
1551
1552EXPORT_SYMBOL(msleep);
1553
1554/**
96ec3efd 1555 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1556 * @msecs: Time in milliseconds to sleep for
1557 */
1558unsigned long msleep_interruptible(unsigned int msecs)
1559{
1560 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1561
75bcc8c5
NA
1562 while (timeout && !signal_pending(current))
1563 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1564 return jiffies_to_msecs(timeout);
1565}
1566
1567EXPORT_SYMBOL(msleep_interruptible);