Merge tag 'usb-3.10-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / ntp.c
CommitLineData
4c7ee8de 1/*
4c7ee8de
JS
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
aa0ac365 8#include <linux/capability.h>
7dffa3c6 9#include <linux/clocksource.h>
eb3f938f 10#include <linux/workqueue.h>
53bbfa9e
IM
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
025b40ab 17#include <linux/module.h>
023f333a 18#include <linux/rtc.h>
4c7ee8de 19
e2830b5c 20#include "tick-internal.h"
aa6f9c59 21#include "ntp_internal.h"
e2830b5c 22
b0ee7556 23/*
53bbfa9e 24 * NTP timekeeping variables:
a076b214
JS
25 *
26 * Note: All of the NTP state is protected by the timekeeping locks.
b0ee7556 27 */
b0ee7556 28
bd331268 29
53bbfa9e
IM
30/* USER_HZ period (usecs): */
31unsigned long tick_usec = TICK_USEC;
32
02ab20ae 33/* SHIFTED_HZ period (nsecs): */
53bbfa9e 34unsigned long tick_nsec;
7dffa3c6 35
ea7cf49a 36static u64 tick_length;
53bbfa9e
IM
37static u64 tick_length_base;
38
bbd12676 39#define MAX_TICKADJ 500LL /* usecs */
53bbfa9e 40#define MAX_TICKADJ_SCALED \
bbd12676 41 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
4c7ee8de
JS
42
43/*
44 * phase-lock loop variables
45 */
53bbfa9e
IM
46
47/*
48 * clock synchronization status
49 *
50 * (TIME_ERROR prevents overwriting the CMOS clock)
51 */
52static int time_state = TIME_OK;
53
54/* clock status bits: */
8357929e 55static int time_status = STA_UNSYNC;
53bbfa9e 56
53bbfa9e
IM
57/* time adjustment (nsecs): */
58static s64 time_offset;
59
60/* pll time constant: */
61static long time_constant = 2;
62
63/* maximum error (usecs): */
1f5b8f8a 64static long time_maxerror = NTP_PHASE_LIMIT;
53bbfa9e
IM
65
66/* estimated error (usecs): */
1f5b8f8a 67static long time_esterror = NTP_PHASE_LIMIT;
53bbfa9e
IM
68
69/* frequency offset (scaled nsecs/secs): */
70static s64 time_freq;
71
72/* time at last adjustment (secs): */
73static long time_reftime;
74
e1292ba1 75static long time_adjust;
53bbfa9e 76
069569e0
IM
77/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78static s64 ntp_tick_adj;
53bbfa9e 79
025b40ab
AG
80#ifdef CONFIG_NTP_PPS
81
82/*
83 * The following variables are used when a pulse-per-second (PPS) signal
84 * is available. They establish the engineering parameters of the clock
85 * discipline loop when controlled by the PPS signal.
86 */
87#define PPS_VALID 10 /* PPS signal watchdog max (s) */
88#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
89#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
90#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
91#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
92 increase pps_shift or consecutive bad
93 intervals to decrease it */
94#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
95
96static int pps_valid; /* signal watchdog counter */
97static long pps_tf[3]; /* phase median filter */
98static long pps_jitter; /* current jitter (ns) */
99static struct timespec pps_fbase; /* beginning of the last freq interval */
100static int pps_shift; /* current interval duration (s) (shift) */
101static int pps_intcnt; /* interval counter */
102static s64 pps_freq; /* frequency offset (scaled ns/s) */
103static long pps_stabil; /* current stability (scaled ns/s) */
104
105/*
106 * PPS signal quality monitors
107 */
108static long pps_calcnt; /* calibration intervals */
109static long pps_jitcnt; /* jitter limit exceeded */
110static long pps_stbcnt; /* stability limit exceeded */
111static long pps_errcnt; /* calibration errors */
112
113
114/* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 */
117static inline s64 ntp_offset_chunk(s64 offset)
118{
119 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120 return offset;
121 else
122 return shift_right(offset, SHIFT_PLL + time_constant);
123}
124
125static inline void pps_reset_freq_interval(void)
126{
127 /* the PPS calibration interval may end
128 surprisingly early */
129 pps_shift = PPS_INTMIN;
130 pps_intcnt = 0;
131}
132
133/**
134 * pps_clear - Clears the PPS state variables
025b40ab
AG
135 */
136static inline void pps_clear(void)
137{
138 pps_reset_freq_interval();
139 pps_tf[0] = 0;
140 pps_tf[1] = 0;
141 pps_tf[2] = 0;
142 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
143 pps_freq = 0;
144}
145
146/* Decrease pps_valid to indicate that another second has passed since
147 * the last PPS signal. When it reaches 0, indicate that PPS signal is
148 * missing.
025b40ab
AG
149 */
150static inline void pps_dec_valid(void)
151{
152 if (pps_valid > 0)
153 pps_valid--;
154 else {
155 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
156 STA_PPSWANDER | STA_PPSERROR);
157 pps_clear();
158 }
159}
160
161static inline void pps_set_freq(s64 freq)
162{
163 pps_freq = freq;
164}
165
166static inline int is_error_status(int status)
167{
168 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
169 /* PPS signal lost when either PPS time or
170 * PPS frequency synchronization requested
171 */
172 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
173 && !(time_status & STA_PPSSIGNAL))
174 /* PPS jitter exceeded when
175 * PPS time synchronization requested */
176 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
177 == (STA_PPSTIME|STA_PPSJITTER))
178 /* PPS wander exceeded or calibration error when
179 * PPS frequency synchronization requested
180 */
181 || ((time_status & STA_PPSFREQ)
182 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
183}
184
185static inline void pps_fill_timex(struct timex *txc)
186{
187 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
188 PPM_SCALE_INV, NTP_SCALE_SHIFT);
189 txc->jitter = pps_jitter;
190 if (!(time_status & STA_NANO))
191 txc->jitter /= NSEC_PER_USEC;
192 txc->shift = pps_shift;
193 txc->stabil = pps_stabil;
194 txc->jitcnt = pps_jitcnt;
195 txc->calcnt = pps_calcnt;
196 txc->errcnt = pps_errcnt;
197 txc->stbcnt = pps_stbcnt;
198}
199
200#else /* !CONFIG_NTP_PPS */
201
202static inline s64 ntp_offset_chunk(s64 offset)
203{
204 return shift_right(offset, SHIFT_PLL + time_constant);
205}
206
207static inline void pps_reset_freq_interval(void) {}
208static inline void pps_clear(void) {}
209static inline void pps_dec_valid(void) {}
210static inline void pps_set_freq(s64 freq) {}
211
212static inline int is_error_status(int status)
213{
214 return status & (STA_UNSYNC|STA_CLOCKERR);
215}
216
217static inline void pps_fill_timex(struct timex *txc)
218{
219 /* PPS is not implemented, so these are zero */
220 txc->ppsfreq = 0;
221 txc->jitter = 0;
222 txc->shift = 0;
223 txc->stabil = 0;
224 txc->jitcnt = 0;
225 txc->calcnt = 0;
226 txc->errcnt = 0;
227 txc->stbcnt = 0;
228}
229
230#endif /* CONFIG_NTP_PPS */
231
8357929e
JS
232
233/**
234 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
235 *
236 */
237static inline int ntp_synced(void)
238{
239 return !(time_status & STA_UNSYNC);
240}
241
242
53bbfa9e
IM
243/*
244 * NTP methods:
245 */
4c7ee8de 246
9ce616aa
IM
247/*
248 * Update (tick_length, tick_length_base, tick_nsec), based
249 * on (tick_usec, ntp_tick_adj, time_freq):
250 */
70bc42f9
AB
251static void ntp_update_frequency(void)
252{
9ce616aa 253 u64 second_length;
bc26c31d 254 u64 new_base;
9ce616aa
IM
255
256 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
257 << NTP_SCALE_SHIFT;
258
069569e0 259 second_length += ntp_tick_adj;
9ce616aa 260 second_length += time_freq;
70bc42f9 261
9ce616aa 262 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
bc26c31d 263 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
fdcedf7b
JS
264
265 /*
266 * Don't wait for the next second_overflow, apply
bc26c31d 267 * the change to the tick length immediately:
fdcedf7b 268 */
bc26c31d
IM
269 tick_length += new_base - tick_length_base;
270 tick_length_base = new_base;
70bc42f9
AB
271}
272
478b7aab 273static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
f939890b
IM
274{
275 time_status &= ~STA_MODE;
276
277 if (secs < MINSEC)
478b7aab 278 return 0;
f939890b
IM
279
280 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
478b7aab 281 return 0;
f939890b 282
f939890b
IM
283 time_status |= STA_MODE;
284
a078c6d0 285 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
f939890b
IM
286}
287
ee9851b2
RZ
288static void ntp_update_offset(long offset)
289{
ee9851b2 290 s64 freq_adj;
f939890b
IM
291 s64 offset64;
292 long secs;
ee9851b2
RZ
293
294 if (!(time_status & STA_PLL))
295 return;
296
eea83d89 297 if (!(time_status & STA_NANO))
9f14f669 298 offset *= NSEC_PER_USEC;
ee9851b2
RZ
299
300 /*
301 * Scale the phase adjustment and
302 * clamp to the operating range.
303 */
9f14f669
RZ
304 offset = min(offset, MAXPHASE);
305 offset = max(offset, -MAXPHASE);
ee9851b2
RZ
306
307 /*
308 * Select how the frequency is to be controlled
309 * and in which mode (PLL or FLL).
310 */
7e1b5847 311 secs = get_seconds() - time_reftime;
10dd31a7 312 if (unlikely(time_status & STA_FREQHOLD))
c7986acb
IM
313 secs = 0;
314
7e1b5847 315 time_reftime = get_seconds();
ee9851b2 316
f939890b 317 offset64 = offset;
8af3c153 318 freq_adj = ntp_update_offset_fll(offset64, secs);
f939890b 319
8af3c153
ML
320 /*
321 * Clamp update interval to reduce PLL gain with low
322 * sampling rate (e.g. intermittent network connection)
323 * to avoid instability.
324 */
325 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
326 secs = 1 << (SHIFT_PLL + 1 + time_constant);
327
328 freq_adj += (offset64 * secs) <<
329 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
f939890b
IM
330
331 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
332
333 time_freq = max(freq_adj, -MAXFREQ_SCALED);
334
335 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
ee9851b2
RZ
336}
337
b0ee7556
RZ
338/**
339 * ntp_clear - Clears the NTP state variables
b0ee7556
RZ
340 */
341void ntp_clear(void)
342{
53bbfa9e
IM
343 time_adjust = 0; /* stop active adjtime() */
344 time_status |= STA_UNSYNC;
345 time_maxerror = NTP_PHASE_LIMIT;
346 time_esterror = NTP_PHASE_LIMIT;
b0ee7556
RZ
347
348 ntp_update_frequency();
349
53bbfa9e
IM
350 tick_length = tick_length_base;
351 time_offset = 0;
025b40ab
AG
352
353 /* Clear PPS state variables */
354 pps_clear();
b0ee7556
RZ
355}
356
ea7cf49a
JS
357
358u64 ntp_tick_length(void)
359{
a076b214 360 return tick_length;
ea7cf49a
JS
361}
362
363
4c7ee8de 364/*
6b43ae8a
JS
365 * this routine handles the overflow of the microsecond field
366 *
367 * The tricky bits of code to handle the accurate clock support
368 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
369 * They were originally developed for SUN and DEC kernels.
370 * All the kudos should go to Dave for this stuff.
371 *
372 * Also handles leap second processing, and returns leap offset
4c7ee8de 373 */
6b43ae8a 374int second_overflow(unsigned long secs)
4c7ee8de 375{
6b43ae8a 376 s64 delta;
bd331268 377 int leap = 0;
6b43ae8a
JS
378
379 /*
380 * Leap second processing. If in leap-insert state at the end of the
381 * day, the system clock is set back one second; if in leap-delete
382 * state, the system clock is set ahead one second.
383 */
4c7ee8de
JS
384 switch (time_state) {
385 case TIME_OK:
6b43ae8a
JS
386 if (time_status & STA_INS)
387 time_state = TIME_INS;
388 else if (time_status & STA_DEL)
389 time_state = TIME_DEL;
4c7ee8de
JS
390 break;
391 case TIME_INS:
6b1859db
JS
392 if (!(time_status & STA_INS))
393 time_state = TIME_OK;
394 else if (secs % 86400 == 0) {
6b43ae8a
JS
395 leap = -1;
396 time_state = TIME_OOP;
397 printk(KERN_NOTICE
398 "Clock: inserting leap second 23:59:60 UTC\n");
399 }
4c7ee8de
JS
400 break;
401 case TIME_DEL:
6b1859db
JS
402 if (!(time_status & STA_DEL))
403 time_state = TIME_OK;
404 else if ((secs + 1) % 86400 == 0) {
6b43ae8a 405 leap = 1;
6b43ae8a
JS
406 time_state = TIME_WAIT;
407 printk(KERN_NOTICE
408 "Clock: deleting leap second 23:59:59 UTC\n");
409 }
4c7ee8de
JS
410 break;
411 case TIME_OOP:
412 time_state = TIME_WAIT;
6b43ae8a
JS
413 break;
414
4c7ee8de
JS
415 case TIME_WAIT:
416 if (!(time_status & (STA_INS | STA_DEL)))
ee9851b2 417 time_state = TIME_OK;
7dffa3c6
RZ
418 break;
419 }
bd331268 420
7dffa3c6
RZ
421
422 /* Bump the maxerror field */
423 time_maxerror += MAXFREQ / NSEC_PER_USEC;
424 if (time_maxerror > NTP_PHASE_LIMIT) {
425 time_maxerror = NTP_PHASE_LIMIT;
426 time_status |= STA_UNSYNC;
4c7ee8de
JS
427 }
428
025b40ab 429 /* Compute the phase adjustment for the next second */
39854fe8
IM
430 tick_length = tick_length_base;
431
025b40ab 432 delta = ntp_offset_chunk(time_offset);
39854fe8
IM
433 time_offset -= delta;
434 tick_length += delta;
4c7ee8de 435
025b40ab
AG
436 /* Check PPS signal */
437 pps_dec_valid();
438
3c972c24 439 if (!time_adjust)
bd331268 440 goto out;
3c972c24
IM
441
442 if (time_adjust > MAX_TICKADJ) {
443 time_adjust -= MAX_TICKADJ;
444 tick_length += MAX_TICKADJ_SCALED;
bd331268 445 goto out;
4c7ee8de 446 }
3c972c24
IM
447
448 if (time_adjust < -MAX_TICKADJ) {
449 time_adjust += MAX_TICKADJ;
450 tick_length -= MAX_TICKADJ_SCALED;
bd331268 451 goto out;
3c972c24
IM
452 }
453
454 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
455 << NTP_SCALE_SHIFT;
456 time_adjust = 0;
6b43ae8a 457
bd331268 458out:
6b43ae8a 459 return leap;
4c7ee8de
JS
460}
461
023f333a 462#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
eb3f938f 463static void sync_cmos_clock(struct work_struct *work);
82644459 464
eb3f938f 465static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
82644459 466
eb3f938f 467static void sync_cmos_clock(struct work_struct *work)
82644459
TG
468{
469 struct timespec now, next;
470 int fail = 1;
471
472 /*
473 * If we have an externally synchronized Linux clock, then update
474 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
475 * called as close as possible to 500 ms before the new second starts.
476 * This code is run on a timer. If the clock is set, that timer
477 * may not expire at the correct time. Thus, we adjust...
478 */
53bbfa9e 479 if (!ntp_synced()) {
82644459
TG
480 /*
481 * Not synced, exit, do not restart a timer (if one is
482 * running, let it run out).
483 */
484 return;
53bbfa9e 485 }
82644459
TG
486
487 getnstimeofday(&now);
023f333a 488 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) {
84e345e4
PB
489 struct timespec adjust = now;
490
023f333a 491 fail = -ENODEV;
84e345e4
PB
492 if (persistent_clock_is_local)
493 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
023f333a 494#ifdef CONFIG_GENERIC_CMOS_UPDATE
84e345e4 495 fail = update_persistent_clock(adjust);
023f333a
JG
496#endif
497#ifdef CONFIG_RTC_SYSTOHC
498 if (fail == -ENODEV)
84e345e4 499 fail = rtc_set_ntp_time(adjust);
023f333a
JG
500#endif
501 }
82644459 502
4ff4b9e1 503 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
82644459
TG
504 if (next.tv_nsec <= 0)
505 next.tv_nsec += NSEC_PER_SEC;
506
023f333a 507 if (!fail || fail == -ENODEV)
82644459
TG
508 next.tv_sec = 659;
509 else
510 next.tv_sec = 0;
511
512 if (next.tv_nsec >= NSEC_PER_SEC) {
513 next.tv_sec++;
514 next.tv_nsec -= NSEC_PER_SEC;
515 }
eb3f938f 516 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
82644459
TG
517}
518
519static void notify_cmos_timer(void)
4c7ee8de 520{
335dd858 521 schedule_delayed_work(&sync_cmos_work, 0);
4c7ee8de
JS
522}
523
82644459
TG
524#else
525static inline void notify_cmos_timer(void) { }
526#endif
527
80f22571
IM
528
529/*
530 * Propagate a new txc->status value into the NTP state:
531 */
532static inline void process_adj_status(struct timex *txc, struct timespec *ts)
533{
80f22571
IM
534 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
535 time_state = TIME_OK;
536 time_status = STA_UNSYNC;
025b40ab
AG
537 /* restart PPS frequency calibration */
538 pps_reset_freq_interval();
80f22571 539 }
80f22571
IM
540
541 /*
542 * If we turn on PLL adjustments then reset the
543 * reference time to current time.
544 */
545 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
7e1b5847 546 time_reftime = get_seconds();
80f22571 547
a2a5ac86
JS
548 /* only set allowed bits */
549 time_status &= STA_RONLY;
80f22571 550 time_status |= txc->status & ~STA_RONLY;
80f22571 551}
cd5398be 552
a076b214 553
cc244dda
JS
554static inline void process_adjtimex_modes(struct timex *txc,
555 struct timespec *ts,
556 s32 *time_tai)
80f22571
IM
557{
558 if (txc->modes & ADJ_STATUS)
559 process_adj_status(txc, ts);
560
561 if (txc->modes & ADJ_NANO)
562 time_status |= STA_NANO;
e9629165 563
80f22571
IM
564 if (txc->modes & ADJ_MICRO)
565 time_status &= ~STA_NANO;
566
567 if (txc->modes & ADJ_FREQUENCY) {
2b9d1496 568 time_freq = txc->freq * PPM_SCALE;
80f22571
IM
569 time_freq = min(time_freq, MAXFREQ_SCALED);
570 time_freq = max(time_freq, -MAXFREQ_SCALED);
025b40ab
AG
571 /* update pps_freq */
572 pps_set_freq(time_freq);
80f22571
IM
573 }
574
575 if (txc->modes & ADJ_MAXERROR)
576 time_maxerror = txc->maxerror;
e9629165 577
80f22571
IM
578 if (txc->modes & ADJ_ESTERROR)
579 time_esterror = txc->esterror;
580
581 if (txc->modes & ADJ_TIMECONST) {
582 time_constant = txc->constant;
583 if (!(time_status & STA_NANO))
584 time_constant += 4;
585 time_constant = min(time_constant, (long)MAXTC);
586 time_constant = max(time_constant, 0l);
587 }
588
589 if (txc->modes & ADJ_TAI && txc->constant > 0)
cc244dda 590 *time_tai = txc->constant;
80f22571
IM
591
592 if (txc->modes & ADJ_OFFSET)
593 ntp_update_offset(txc->offset);
e9629165 594
80f22571
IM
595 if (txc->modes & ADJ_TICK)
596 tick_usec = txc->tick;
597
598 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
599 ntp_update_frequency();
600}
601
ad460967
JS
602
603
604/**
605 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
4c7ee8de 606 */
ad460967 607int ntp_validate_timex(struct timex *txc)
4c7ee8de 608{
916c7a85 609 if (txc->modes & ADJ_ADJTIME) {
eea83d89 610 /* singleshot must not be used with any other mode bits */
916c7a85 611 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
4c7ee8de 612 return -EINVAL;
916c7a85
RZ
613 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
614 !capable(CAP_SYS_TIME))
615 return -EPERM;
616 } else {
617 /* In order to modify anything, you gotta be super-user! */
618 if (txc->modes && !capable(CAP_SYS_TIME))
619 return -EPERM;
53bbfa9e
IM
620 /*
621 * if the quartz is off by more than 10% then
622 * something is VERY wrong!
623 */
916c7a85
RZ
624 if (txc->modes & ADJ_TICK &&
625 (txc->tick < 900000/USER_HZ ||
626 txc->tick > 1100000/USER_HZ))
e9629165 627 return -EINVAL;
52bfb360 628 }
4c7ee8de 629
ad460967
JS
630 if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
631 return -EPERM;
632
633 return 0;
634}
635
636
637/*
638 * adjtimex mainly allows reading (and writing, if superuser) of
639 * kernel time-keeping variables. used by xntpd.
640 */
87ace39b 641int __do_adjtimex(struct timex *txc, struct timespec *ts, s32 *time_tai)
ad460967 642{
ad460967
JS
643 int result;
644
916c7a85
RZ
645 if (txc->modes & ADJ_ADJTIME) {
646 long save_adjust = time_adjust;
647
648 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
649 /* adjtime() is independent from ntp_adjtime() */
650 time_adjust = txc->offset;
651 ntp_update_frequency();
652 }
653 txc->offset = save_adjust;
e9629165 654 } else {
ee9851b2 655
e9629165
IM
656 /* If there are input parameters, then process them: */
657 if (txc->modes)
87ace39b 658 process_adjtimex_modes(txc, ts, time_tai);
eea83d89 659
e9629165 660 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
916c7a85 661 NTP_SCALE_SHIFT);
e9629165
IM
662 if (!(time_status & STA_NANO))
663 txc->offset /= NSEC_PER_USEC;
664 }
916c7a85 665
eea83d89 666 result = time_state; /* mostly `TIME_OK' */
025b40ab
AG
667 /* check for errors */
668 if (is_error_status(time_status))
4c7ee8de
JS
669 result = TIME_ERROR;
670
d40e944c 671 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
2b9d1496 672 PPM_SCALE_INV, NTP_SCALE_SHIFT);
4c7ee8de
JS
673 txc->maxerror = time_maxerror;
674 txc->esterror = time_esterror;
675 txc->status = time_status;
676 txc->constant = time_constant;
70bc42f9 677 txc->precision = 1;
074b3b87 678 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
4c7ee8de 679 txc->tick = tick_usec;
87ace39b 680 txc->tai = *time_tai;
4c7ee8de 681
025b40ab
AG
682 /* fill PPS status fields */
683 pps_fill_timex(txc);
e9629165 684
87ace39b
JS
685 txc->time.tv_sec = ts->tv_sec;
686 txc->time.tv_usec = ts->tv_nsec;
eea83d89
RZ
687 if (!(time_status & STA_NANO))
688 txc->time.tv_usec /= NSEC_PER_USEC;
ee9851b2 689
82644459 690 notify_cmos_timer();
ee9851b2
RZ
691
692 return result;
4c7ee8de 693}
10a398d0 694
025b40ab
AG
695#ifdef CONFIG_NTP_PPS
696
697/* actually struct pps_normtime is good old struct timespec, but it is
698 * semantically different (and it is the reason why it was invented):
699 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
700 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
701struct pps_normtime {
702 __kernel_time_t sec; /* seconds */
703 long nsec; /* nanoseconds */
704};
705
706/* normalize the timestamp so that nsec is in the
707 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
708static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
709{
710 struct pps_normtime norm = {
711 .sec = ts.tv_sec,
712 .nsec = ts.tv_nsec
713 };
714
715 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
716 norm.nsec -= NSEC_PER_SEC;
717 norm.sec++;
718 }
719
720 return norm;
721}
722
723/* get current phase correction and jitter */
724static inline long pps_phase_filter_get(long *jitter)
725{
726 *jitter = pps_tf[0] - pps_tf[1];
727 if (*jitter < 0)
728 *jitter = -*jitter;
729
730 /* TODO: test various filters */
731 return pps_tf[0];
732}
733
734/* add the sample to the phase filter */
735static inline void pps_phase_filter_add(long err)
736{
737 pps_tf[2] = pps_tf[1];
738 pps_tf[1] = pps_tf[0];
739 pps_tf[0] = err;
740}
741
742/* decrease frequency calibration interval length.
743 * It is halved after four consecutive unstable intervals.
744 */
745static inline void pps_dec_freq_interval(void)
746{
747 if (--pps_intcnt <= -PPS_INTCOUNT) {
748 pps_intcnt = -PPS_INTCOUNT;
749 if (pps_shift > PPS_INTMIN) {
750 pps_shift--;
751 pps_intcnt = 0;
752 }
753 }
754}
755
756/* increase frequency calibration interval length.
757 * It is doubled after four consecutive stable intervals.
758 */
759static inline void pps_inc_freq_interval(void)
760{
761 if (++pps_intcnt >= PPS_INTCOUNT) {
762 pps_intcnt = PPS_INTCOUNT;
763 if (pps_shift < PPS_INTMAX) {
764 pps_shift++;
765 pps_intcnt = 0;
766 }
767 }
768}
769
770/* update clock frequency based on MONOTONIC_RAW clock PPS signal
771 * timestamps
772 *
773 * At the end of the calibration interval the difference between the
774 * first and last MONOTONIC_RAW clock timestamps divided by the length
775 * of the interval becomes the frequency update. If the interval was
776 * too long, the data are discarded.
777 * Returns the difference between old and new frequency values.
778 */
779static long hardpps_update_freq(struct pps_normtime freq_norm)
780{
781 long delta, delta_mod;
782 s64 ftemp;
783
784 /* check if the frequency interval was too long */
785 if (freq_norm.sec > (2 << pps_shift)) {
786 time_status |= STA_PPSERROR;
787 pps_errcnt++;
788 pps_dec_freq_interval();
789 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
790 freq_norm.sec);
791 return 0;
792 }
793
794 /* here the raw frequency offset and wander (stability) is
795 * calculated. If the wander is less than the wander threshold
796 * the interval is increased; otherwise it is decreased.
797 */
798 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
799 freq_norm.sec);
800 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
801 pps_freq = ftemp;
802 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
803 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
804 time_status |= STA_PPSWANDER;
805 pps_stbcnt++;
806 pps_dec_freq_interval();
807 } else { /* good sample */
808 pps_inc_freq_interval();
809 }
810
811 /* the stability metric is calculated as the average of recent
812 * frequency changes, but is used only for performance
813 * monitoring
814 */
815 delta_mod = delta;
816 if (delta_mod < 0)
817 delta_mod = -delta_mod;
818 pps_stabil += (div_s64(((s64)delta_mod) <<
819 (NTP_SCALE_SHIFT - SHIFT_USEC),
820 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
821
822 /* if enabled, the system clock frequency is updated */
823 if ((time_status & STA_PPSFREQ) != 0 &&
824 (time_status & STA_FREQHOLD) == 0) {
825 time_freq = pps_freq;
826 ntp_update_frequency();
827 }
828
829 return delta;
830}
831
832/* correct REALTIME clock phase error against PPS signal */
833static void hardpps_update_phase(long error)
834{
835 long correction = -error;
836 long jitter;
837
838 /* add the sample to the median filter */
839 pps_phase_filter_add(correction);
840 correction = pps_phase_filter_get(&jitter);
841
842 /* Nominal jitter is due to PPS signal noise. If it exceeds the
843 * threshold, the sample is discarded; otherwise, if so enabled,
844 * the time offset is updated.
845 */
846 if (jitter > (pps_jitter << PPS_POPCORN)) {
847 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
848 jitter, (pps_jitter << PPS_POPCORN));
849 time_status |= STA_PPSJITTER;
850 pps_jitcnt++;
851 } else if (time_status & STA_PPSTIME) {
852 /* correct the time using the phase offset */
853 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
854 NTP_INTERVAL_FREQ);
855 /* cancel running adjtime() */
856 time_adjust = 0;
857 }
858 /* update jitter */
859 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
860}
861
862/*
aa6f9c59 863 * __hardpps() - discipline CPU clock oscillator to external PPS signal
025b40ab
AG
864 *
865 * This routine is called at each PPS signal arrival in order to
866 * discipline the CPU clock oscillator to the PPS signal. It takes two
867 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
868 * is used to correct clock phase error and the latter is used to
869 * correct the frequency.
870 *
871 * This code is based on David Mills's reference nanokernel
872 * implementation. It was mostly rewritten but keeps the same idea.
873 */
aa6f9c59 874void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
025b40ab
AG
875{
876 struct pps_normtime pts_norm, freq_norm;
025b40ab
AG
877
878 pts_norm = pps_normalize_ts(*phase_ts);
879
025b40ab
AG
880 /* clear the error bits, they will be set again if needed */
881 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
882
883 /* indicate signal presence */
884 time_status |= STA_PPSSIGNAL;
885 pps_valid = PPS_VALID;
886
887 /* when called for the first time,
888 * just start the frequency interval */
889 if (unlikely(pps_fbase.tv_sec == 0)) {
890 pps_fbase = *raw_ts;
025b40ab
AG
891 return;
892 }
893
894 /* ok, now we have a base for frequency calculation */
895 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
896
897 /* check that the signal is in the range
898 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
899 if ((freq_norm.sec == 0) ||
900 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
901 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
902 time_status |= STA_PPSJITTER;
903 /* restart the frequency calibration interval */
904 pps_fbase = *raw_ts;
025b40ab
AG
905 pr_err("hardpps: PPSJITTER: bad pulse\n");
906 return;
907 }
908
909 /* signal is ok */
910
911 /* check if the current frequency interval is finished */
912 if (freq_norm.sec >= (1 << pps_shift)) {
913 pps_calcnt++;
914 /* restart the frequency calibration interval */
915 pps_fbase = *raw_ts;
916 hardpps_update_freq(freq_norm);
917 }
918
919 hardpps_update_phase(pts_norm.nsec);
920
025b40ab 921}
025b40ab
AG
922#endif /* CONFIG_NTP_PPS */
923
10a398d0
RZ
924static int __init ntp_tick_adj_setup(char *str)
925{
926 ntp_tick_adj = simple_strtol(str, NULL, 0);
069569e0
IM
927 ntp_tick_adj <<= NTP_SCALE_SHIFT;
928
10a398d0
RZ
929 return 1;
930}
931
932__setup("ntp_tick_adj=", ntp_tick_adj_setup);
7dffa3c6
RZ
933
934void __init ntp_init(void)
935{
936 ntp_clear();
7dffa3c6 937}