Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
6fa6c3b1 14 * Created file with time related functions from sched.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
9984de1a 30#include <linux/export.h>
1da177e4 31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
189374ae 33#include <linux/timekeeper_internal.h>
1da177e4 34#include <linux/errno.h>
1da177e4
LT
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
71abb3af 38#include <linux/math64.h>
e3d5a27d 39#include <linux/ptrace.h>
1da177e4
LT
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43
bdc80787
PA
44#include "timeconst.h"
45
6fa6c3b1 46/*
1da177e4
LT
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50struct timezone sys_tz;
51
52EXPORT_SYMBOL(sys_tz);
53
54#ifdef __ARCH_WANT_SYS_TIME
55
56/*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
58fd3aa2 62SYSCALL_DEFINE1(time, time_t __user *, tloc)
1da177e4 63{
f20bf612 64 time_t i = get_seconds();
1da177e4
LT
65
66 if (tloc) {
20082208 67 if (put_user(i,tloc))
e3d5a27d 68 return -EFAULT;
1da177e4 69 }
e3d5a27d 70 force_successful_syscall_return();
1da177e4
LT
71 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
6fa6c3b1 80
58fd3aa2 81SYSCALL_DEFINE1(stime, time_t __user *, tptr)
1da177e4
LT
82{
83 struct timespec tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday(&tv);
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
58fd3aa2
HC
101SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102 struct timezone __user *, tz)
1da177e4
LT
103{
104 if (likely(tv != NULL)) {
105 struct timeval ktv;
106 do_gettimeofday(&ktv);
107 if (copy_to_user(tv, &ktv, sizeof(ktv)))
108 return -EFAULT;
109 }
110 if (unlikely(tz != NULL)) {
111 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112 return -EFAULT;
113 }
114 return 0;
115}
116
84e345e4
PB
117/*
118 * Indicates if there is an offset between the system clock and the hardware
119 * clock/persistent clock/rtc.
120 */
121int persistent_clock_is_local;
122
1da177e4
LT
123/*
124 * Adjust the time obtained from the CMOS to be UTC time instead of
125 * local time.
6fa6c3b1 126 *
1da177e4
LT
127 * This is ugly, but preferable to the alternatives. Otherwise we
128 * would either need to write a program to do it in /etc/rc (and risk
6fa6c3b1 129 * confusion if the program gets run more than once; it would also be
1da177e4
LT
130 * hard to make the program warp the clock precisely n hours) or
131 * compile in the timezone information into the kernel. Bad, bad....
132 *
bdc80787 133 * - TYT, 1992-01-01
1da177e4
LT
134 *
135 * The best thing to do is to keep the CMOS clock in universal time (UTC)
136 * as real UNIX machines always do it. This avoids all headaches about
137 * daylight saving times and warping kernel clocks.
138 */
77933d72 139static inline void warp_clock(void)
1da177e4 140{
c30bd099
DZ
141 if (sys_tz.tz_minuteswest != 0) {
142 struct timespec adjust;
bd45b7a3 143
84e345e4 144 persistent_clock_is_local = 1;
7859e404
JS
145 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
146 adjust.tv_nsec = 0;
147 timekeeping_inject_offset(&adjust);
c30bd099 148 }
1da177e4
LT
149}
150
151/*
152 * In case for some reason the CMOS clock has not already been running
153 * in UTC, but in some local time: The first time we set the timezone,
154 * we will warp the clock so that it is ticking UTC time instead of
155 * local time. Presumably, if someone is setting the timezone then we
156 * are running in an environment where the programs understand about
157 * timezones. This should be done at boot time in the /etc/rc script,
158 * as soon as possible, so that the clock can be set right. Otherwise,
159 * various programs will get confused when the clock gets warped.
160 */
161
1e6d7679 162int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
1da177e4
LT
163{
164 static int firsttime = 1;
165 int error = 0;
166
951069e3 167 if (tv && !timespec_valid(tv))
718bcceb
TG
168 return -EINVAL;
169
1da177e4
LT
170 error = security_settime(tv, tz);
171 if (error)
172 return error;
173
174 if (tz) {
1da177e4 175 sys_tz = *tz;
2c622148 176 update_vsyscall_tz();
1da177e4
LT
177 if (firsttime) {
178 firsttime = 0;
179 if (!tv)
180 warp_clock();
181 }
182 }
183 if (tv)
1da177e4 184 return do_settimeofday(tv);
1da177e4
LT
185 return 0;
186}
187
58fd3aa2
HC
188SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
189 struct timezone __user *, tz)
1da177e4
LT
190{
191 struct timeval user_tv;
192 struct timespec new_ts;
193 struct timezone new_tz;
194
195 if (tv) {
196 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
197 return -EFAULT;
7336dcc2
SL
198
199 if (!timeval_valid(&user_tv))
200 return -EINVAL;
201
1da177e4
LT
202 new_ts.tv_sec = user_tv.tv_sec;
203 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
204 }
205 if (tz) {
206 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
207 return -EFAULT;
208 }
209
210 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
211}
212
58fd3aa2 213SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
1da177e4
LT
214{
215 struct timex txc; /* Local copy of parameter */
216 int ret;
217
218 /* Copy the user data space into the kernel copy
219 * structure. But bear in mind that the structures
220 * may change
221 */
222 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
223 return -EFAULT;
224 ret = do_adjtimex(&txc);
225 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
226}
227
1da177e4
LT
228/**
229 * current_fs_time - Return FS time
230 * @sb: Superblock.
231 *
8ba8e95e 232 * Return the current time truncated to the time granularity supported by
1da177e4
LT
233 * the fs.
234 */
235struct timespec current_fs_time(struct super_block *sb)
236{
237 struct timespec now = current_kernel_time();
238 return timespec_trunc(now, sb->s_time_gran);
239}
240EXPORT_SYMBOL(current_fs_time);
241
753e9c5c
ED
242/*
243 * Convert jiffies to milliseconds and back.
244 *
245 * Avoid unnecessary multiplications/divisions in the
246 * two most common HZ cases:
247 */
af3b5628 248unsigned int jiffies_to_msecs(const unsigned long j)
753e9c5c
ED
249{
250#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
251 return (MSEC_PER_SEC / HZ) * j;
252#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
253 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
254#else
bdc80787 255# if BITS_PER_LONG == 32
b9095fd8 256 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
bdc80787
PA
257# else
258 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
259# endif
753e9c5c
ED
260#endif
261}
262EXPORT_SYMBOL(jiffies_to_msecs);
263
af3b5628 264unsigned int jiffies_to_usecs(const unsigned long j)
753e9c5c
ED
265{
266#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
267 return (USEC_PER_SEC / HZ) * j;
268#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
269 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
270#else
bdc80787 271# if BITS_PER_LONG == 32
b9095fd8 272 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
273# else
274 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
275# endif
753e9c5c
ED
276#endif
277}
278EXPORT_SYMBOL(jiffies_to_usecs);
279
1da177e4 280/**
8ba8e95e 281 * timespec_trunc - Truncate timespec to a granularity
1da177e4 282 * @t: Timespec
8ba8e95e 283 * @gran: Granularity in ns.
1da177e4 284 *
8ba8e95e 285 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
286 * Always rounds down.
287 *
288 * This function should be only used for timestamps returned by
289 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
3eb05676 290 * it doesn't handle the better resolution of the latter.
1da177e4
LT
291 */
292struct timespec timespec_trunc(struct timespec t, unsigned gran)
293{
294 /*
295 * Division is pretty slow so avoid it for common cases.
296 * Currently current_kernel_time() never returns better than
297 * jiffies resolution. Exploit that.
298 */
299 if (gran <= jiffies_to_usecs(1) * 1000) {
300 /* nothing */
301 } else if (gran == 1000000000) {
302 t.tv_nsec = 0;
303 } else {
304 t.tv_nsec -= t.tv_nsec % gran;
305 }
306 return t;
307}
308EXPORT_SYMBOL(timespec_trunc);
309
753be622
TG
310/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
311 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
312 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
313 *
314 * [For the Julian calendar (which was used in Russia before 1917,
315 * Britain & colonies before 1752, anywhere else before 1582,
316 * and is still in use by some communities) leave out the
317 * -year/100+year/400 terms, and add 10.]
318 *
319 * This algorithm was first published by Gauss (I think).
320 *
321 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
3eb05676 322 * machines where long is 32-bit! (However, as time_t is signed, we
753be622
TG
323 * will already get problems at other places on 2038-01-19 03:14:08)
324 */
325unsigned long
f4818900
IM
326mktime(const unsigned int year0, const unsigned int mon0,
327 const unsigned int day, const unsigned int hour,
328 const unsigned int min, const unsigned int sec)
753be622 329{
f4818900
IM
330 unsigned int mon = mon0, year = year0;
331
332 /* 1..12 -> 11,12,1..10 */
333 if (0 >= (int) (mon -= 2)) {
334 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
335 year -= 1;
336 }
337
338 return ((((unsigned long)
339 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
340 year*365 - 719499
341 )*24 + hour /* now have hours */
342 )*60 + min /* now have minutes */
343 )*60 + sec; /* finally seconds */
344}
345
199e7056
AM
346EXPORT_SYMBOL(mktime);
347
753be622
TG
348/**
349 * set_normalized_timespec - set timespec sec and nsec parts and normalize
350 *
351 * @ts: pointer to timespec variable to be set
352 * @sec: seconds to set
353 * @nsec: nanoseconds to set
354 *
355 * Set seconds and nanoseconds field of a timespec variable and
356 * normalize to the timespec storage format
357 *
358 * Note: The tv_nsec part is always in the range of
bdc80787 359 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
360 * For negative values only the tv_sec field is negative !
361 */
12e09337 362void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
753be622
TG
363{
364 while (nsec >= NSEC_PER_SEC) {
12e09337
TG
365 /*
366 * The following asm() prevents the compiler from
367 * optimising this loop into a modulo operation. See
368 * also __iter_div_u64_rem() in include/linux/time.h
369 */
370 asm("" : "+rm"(nsec));
753be622
TG
371 nsec -= NSEC_PER_SEC;
372 ++sec;
373 }
374 while (nsec < 0) {
12e09337 375 asm("" : "+rm"(nsec));
753be622
TG
376 nsec += NSEC_PER_SEC;
377 --sec;
378 }
379 ts->tv_sec = sec;
380 ts->tv_nsec = nsec;
381}
7c3f944e 382EXPORT_SYMBOL(set_normalized_timespec);
753be622 383
f8f46da3
TG
384/**
385 * ns_to_timespec - Convert nanoseconds to timespec
386 * @nsec: the nanoseconds value to be converted
387 *
388 * Returns the timespec representation of the nsec parameter.
389 */
df869b63 390struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
391{
392 struct timespec ts;
f8bd2258 393 s32 rem;
f8f46da3 394
88fc3897
GA
395 if (!nsec)
396 return (struct timespec) {0, 0};
397
f8bd2258
RZ
398 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
399 if (unlikely(rem < 0)) {
400 ts.tv_sec--;
401 rem += NSEC_PER_SEC;
402 }
403 ts.tv_nsec = rem;
f8f46da3
TG
404
405 return ts;
406}
85795d64 407EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
408
409/**
410 * ns_to_timeval - Convert nanoseconds to timeval
411 * @nsec: the nanoseconds value to be converted
412 *
413 * Returns the timeval representation of the nsec parameter.
414 */
df869b63 415struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
416{
417 struct timespec ts = ns_to_timespec(nsec);
418 struct timeval tv;
419
420 tv.tv_sec = ts.tv_sec;
421 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
422
423 return tv;
424}
b7aa0bf7 425EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 426
41cf5445
IM
427/*
428 * When we convert to jiffies then we interpret incoming values
429 * the following way:
430 *
431 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
432 *
433 * - 'too large' values [that would result in larger than
434 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
435 *
436 * - all other values are converted to jiffies by either multiplying
437 * the input value by a factor or dividing it with a factor
438 *
439 * We must also be careful about 32-bit overflows.
440 */
8b9365d7
IM
441unsigned long msecs_to_jiffies(const unsigned int m)
442{
41cf5445
IM
443 /*
444 * Negative value, means infinite timeout:
445 */
446 if ((int)m < 0)
8b9365d7 447 return MAX_JIFFY_OFFSET;
41cf5445 448
8b9365d7 449#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
450 /*
451 * HZ is equal to or smaller than 1000, and 1000 is a nice
452 * round multiple of HZ, divide with the factor between them,
453 * but round upwards:
454 */
8b9365d7
IM
455 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
456#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
457 /*
458 * HZ is larger than 1000, and HZ is a nice round multiple of
459 * 1000 - simply multiply with the factor between them.
460 *
461 * But first make sure the multiplication result cannot
462 * overflow:
463 */
464 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
465 return MAX_JIFFY_OFFSET;
466
8b9365d7
IM
467 return m * (HZ / MSEC_PER_SEC);
468#else
41cf5445
IM
469 /*
470 * Generic case - multiply, round and divide. But first
471 * check that if we are doing a net multiplication, that
bdc80787 472 * we wouldn't overflow:
41cf5445
IM
473 */
474 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
475 return MAX_JIFFY_OFFSET;
476
b9095fd8 477 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
bdc80787 478 >> MSEC_TO_HZ_SHR32;
8b9365d7
IM
479#endif
480}
481EXPORT_SYMBOL(msecs_to_jiffies);
482
483unsigned long usecs_to_jiffies(const unsigned int u)
484{
485 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
486 return MAX_JIFFY_OFFSET;
487#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
488 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
489#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
490 return u * (HZ / USEC_PER_SEC);
491#else
b9095fd8 492 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
bdc80787 493 >> USEC_TO_HZ_SHR32;
8b9365d7
IM
494#endif
495}
496EXPORT_SYMBOL(usecs_to_jiffies);
497
498/*
499 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
500 * that a remainder subtract here would not do the right thing as the
501 * resolution values don't fall on second boundries. I.e. the line:
502 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
00790d45
AH
503 * Note that due to the small error in the multiplier here, this
504 * rounding is incorrect for sufficiently large values of tv_nsec, but
505 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
506 * OK.
8b9365d7
IM
507 *
508 * Rather, we just shift the bits off the right.
509 *
510 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
511 * value to a scaled second value.
512 */
00790d45
AH
513static unsigned long
514__timespec_to_jiffies(unsigned long sec, long nsec)
8b9365d7 515{
00790d45 516 nsec = nsec + TICK_NSEC - 1;
8b9365d7
IM
517
518 if (sec >= MAX_SEC_IN_JIFFIES){
519 sec = MAX_SEC_IN_JIFFIES;
520 nsec = 0;
521 }
522 return (((u64)sec * SEC_CONVERSION) +
523 (((u64)nsec * NSEC_CONVERSION) >>
524 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
525
526}
00790d45
AH
527
528unsigned long
529timespec_to_jiffies(const struct timespec *value)
530{
531 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
532}
533
8b9365d7
IM
534EXPORT_SYMBOL(timespec_to_jiffies);
535
536void
537jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
538{
539 /*
540 * Convert jiffies to nanoseconds and separate with
541 * one divide.
542 */
f8bd2258
RZ
543 u32 rem;
544 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
545 NSEC_PER_SEC, &rem);
546 value->tv_nsec = rem;
8b9365d7
IM
547}
548EXPORT_SYMBOL(jiffies_to_timespec);
549
00790d45
AH
550/*
551 * We could use a similar algorithm to timespec_to_jiffies (with a
552 * different multiplier for usec instead of nsec). But this has a
553 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
554 * usec value, since it's not necessarily integral.
555 *
556 * We could instead round in the intermediate scaled representation
557 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
558 * perilous: the scaling introduces a small positive error, which
559 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
560 * units to the intermediate before shifting) leads to accidental
561 * overflow and overestimates.
8b9365d7 562 *
00790d45
AH
563 * At the cost of one additional multiplication by a constant, just
564 * use the timespec implementation.
8b9365d7
IM
565 */
566unsigned long
567timeval_to_jiffies(const struct timeval *value)
568{
00790d45
AH
569 return __timespec_to_jiffies(value->tv_sec,
570 value->tv_usec * NSEC_PER_USEC);
8b9365d7 571}
456a09dc 572EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
573
574void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
575{
576 /*
577 * Convert jiffies to nanoseconds and separate with
578 * one divide.
579 */
f8bd2258 580 u32 rem;
8b9365d7 581
f8bd2258
RZ
582 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
583 NSEC_PER_SEC, &rem);
584 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 585}
456a09dc 586EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
587
588/*
589 * Convert jiffies/jiffies_64 to clock_t and back.
590 */
cbbc719f 591clock_t jiffies_to_clock_t(unsigned long x)
8b9365d7
IM
592{
593#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
594# if HZ < USER_HZ
595 return x * (USER_HZ / HZ);
596# else
8b9365d7 597 return x / (HZ / USER_HZ);
6ffc787a 598# endif
8b9365d7 599#else
71abb3af 600 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
601#endif
602}
603EXPORT_SYMBOL(jiffies_to_clock_t);
604
605unsigned long clock_t_to_jiffies(unsigned long x)
606{
607#if (HZ % USER_HZ)==0
608 if (x >= ~0UL / (HZ / USER_HZ))
609 return ~0UL;
610 return x * (HZ / USER_HZ);
611#else
8b9365d7
IM
612 /* Don't worry about loss of precision here .. */
613 if (x >= ~0UL / HZ * USER_HZ)
614 return ~0UL;
615
616 /* .. but do try to contain it here */
71abb3af 617 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
618#endif
619}
620EXPORT_SYMBOL(clock_t_to_jiffies);
621
622u64 jiffies_64_to_clock_t(u64 x)
623{
624#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 625# if HZ < USER_HZ
71abb3af 626 x = div_u64(x * USER_HZ, HZ);
ec03d707 627# elif HZ > USER_HZ
71abb3af 628 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
629# else
630 /* Nothing to do */
6ffc787a 631# endif
8b9365d7
IM
632#else
633 /*
634 * There are better ways that don't overflow early,
635 * but even this doesn't overflow in hundreds of years
636 * in 64 bits, so..
637 */
71abb3af 638 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
639#endif
640 return x;
641}
8b9365d7
IM
642EXPORT_SYMBOL(jiffies_64_to_clock_t);
643
644u64 nsec_to_clock_t(u64 x)
645{
646#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 647 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 648#elif (USER_HZ % 512) == 0
71abb3af 649 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
650#else
651 /*
652 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
653 * overflow after 64.99 years.
654 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
655 */
71abb3af 656 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 657#endif
8b9365d7
IM
658}
659
b7b20df9 660/**
a1dabb6b 661 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
b7b20df9
HS
662 *
663 * @n: nsecs in u64
664 *
665 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
666 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
667 * for scheduler, not for use in device drivers to calculate timeout value.
668 *
669 * note:
670 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
671 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
672 */
a1dabb6b 673u64 nsecs_to_jiffies64(u64 n)
b7b20df9
HS
674{
675#if (NSEC_PER_SEC % HZ) == 0
676 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
677 return div_u64(n, NSEC_PER_SEC / HZ);
678#elif (HZ % 512) == 0
679 /* overflow after 292 years if HZ = 1024 */
680 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
681#else
682 /*
683 * Generic case - optimized for cases where HZ is a multiple of 3.
684 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
685 */
686 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
687#endif
688}
689
a1dabb6b
VP
690/**
691 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
692 *
693 * @n: nsecs in u64
694 *
695 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
696 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
697 * for scheduler, not for use in device drivers to calculate timeout value.
698 *
699 * note:
700 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
701 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
702 */
703unsigned long nsecs_to_jiffies(u64 n)
704{
705 return (unsigned long)nsecs_to_jiffies64(n);
706}
707
df0cc053
TG
708/*
709 * Add two timespec values and do a safety check for overflow.
710 * It's assumed that both values are valid (>= 0)
711 */
712struct timespec timespec_add_safe(const struct timespec lhs,
713 const struct timespec rhs)
714{
715 struct timespec res;
716
717 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
718 lhs.tv_nsec + rhs.tv_nsec);
719
720 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
721 res.tv_sec = TIME_T_MAX;
722
723 return res;
724}