taskstats: remove initialization of static per-cpu variable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
bf0f6f24
IM
76/**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
b758149c
PZ
80static inline struct task_struct *task_of(struct sched_entity *se)
81{
82 return container_of(se, struct task_struct, se);
83}
84
62160e3f 85#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 86
62160e3f 87/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
88static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89{
62160e3f 90 return cfs_rq->rq;
bf0f6f24
IM
91}
92
62160e3f
IM
93/* An entity is a task if it doesn't "own" a runqueue */
94#define entity_is_task(se) (!se->my_q)
bf0f6f24 95
b758149c
PZ
96/* Walk up scheduling entities hierarchy */
97#define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101{
102 return p->se.cfs_rq;
103}
104
105/* runqueue on which this entity is (to be) queued */
106static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107{
108 return se->cfs_rq;
109}
110
111/* runqueue "owned" by this group */
112static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113{
114 return grp->my_q;
115}
116
117/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121{
122 return cfs_rq->tg->cfs_rq[this_cpu];
123}
124
125/* Iterate thr' all leaf cfs_rq's on a runqueue */
126#define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129/* Do the two (enqueued) entities belong to the same group ? */
130static inline int
131is_same_group(struct sched_entity *se, struct sched_entity *pse)
132{
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137}
138
139static inline struct sched_entity *parent_entity(struct sched_entity *se)
140{
141 return se->parent;
142}
143
62160e3f 144#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 145
62160e3f
IM
146static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147{
148 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
149}
150
151#define entity_is_task(se) 1
152
b758149c
PZ
153#define for_each_sched_entity(se) \
154 for (; se; se = NULL)
bf0f6f24 155
b758149c 156static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 157{
b758149c 158 return &task_rq(p)->cfs;
bf0f6f24
IM
159}
160
b758149c
PZ
161static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162{
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167}
168
169/* runqueue "owned" by this group */
170static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171{
172 return NULL;
173}
174
175static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176{
177 return &cpu_rq(this_cpu)->cfs;
178}
179
180#define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183static inline int
184is_same_group(struct sched_entity *se, struct sched_entity *pse)
185{
186 return 1;
187}
188
189static inline struct sched_entity *parent_entity(struct sched_entity *se)
190{
191 return NULL;
192}
193
194#endif /* CONFIG_FAIR_GROUP_SCHED */
195
bf0f6f24
IM
196
197/**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
0702e3eb 201static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 202{
368059a9
PZ
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
02e0431a
PZ
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208}
209
0702e3eb 210static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
211{
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217}
218
0702e3eb 219static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 220{
30cfdcfc 221 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
222}
223
bf0f6f24
IM
224/*
225 * Enqueue an entity into the rb-tree:
226 */
0702e3eb 227static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
228{
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
9014623c 232 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
9014623c 245 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
3fe69747 257 if (leftmost) {
57cb499d 258 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
bf0f6f24
IM
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
269}
270
0702e3eb 271static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 272{
3fe69747
PZ
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
e9acbff6 288
aa2ac252
PZ
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
bf0f6f24 292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
293}
294
295static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296{
297 return cfs_rq->rb_leftmost;
298}
299
300static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301{
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303}
304
aeb73b04
PZ
305static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306{
7eee3e67 307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 308
70eee74b
BS
309 if (!last)
310 return NULL;
7eee3e67
IM
311
312 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
313}
314
bf0f6f24
IM
315/**************************************************************
316 * Scheduling class statistics methods:
317 */
318
b2be5e96
PZ
319#ifdef CONFIG_SCHED_DEBUG
320int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323{
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333}
334#endif
647e7cac 335
a7be37ac
PZ
336/*
337 * delta *= w / rw
338 */
339static inline unsigned long
340calc_delta_weight(unsigned long delta, struct sched_entity *se)
341{
342 for_each_sched_entity(se) {
343 delta = calc_delta_mine(delta,
344 se->load.weight, &cfs_rq_of(se)->load);
345 }
346
347 return delta;
348}
349
350/*
351 * delta *= rw / w
352 */
353static inline unsigned long
354calc_delta_fair(unsigned long delta, struct sched_entity *se)
355{
356 for_each_sched_entity(se) {
357 delta = calc_delta_mine(delta,
358 cfs_rq_of(se)->load.weight, &se->load);
359 }
360
361 return delta;
362}
363
647e7cac
IM
364/*
365 * The idea is to set a period in which each task runs once.
366 *
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
369 *
370 * p = (nr <= nl) ? l : l*nr/nl
371 */
4d78e7b6
PZ
372static u64 __sched_period(unsigned long nr_running)
373{
374 u64 period = sysctl_sched_latency;
b2be5e96 375 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
376
377 if (unlikely(nr_running > nr_latency)) {
4bf0b771 378 period = sysctl_sched_min_granularity;
4d78e7b6 379 period *= nr_running;
4d78e7b6
PZ
380 }
381
382 return period;
383}
384
647e7cac
IM
385/*
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
388 *
389 * s = p*w/rw
390 */
6d0f0ebd 391static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 392{
a7be37ac 393 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
bf0f6f24
IM
394}
395
647e7cac 396/*
ac884dec 397 * We calculate the vruntime slice of a to be inserted task
647e7cac 398 *
a7be37ac 399 * vs = s*rw/w = p
647e7cac 400 */
ac884dec 401static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 402{
ac884dec 403 unsigned long nr_running = cfs_rq->nr_running;
67e9fb2a 404
ac884dec
PZ
405 if (!se->on_rq)
406 nr_running++;
67e9fb2a 407
a7be37ac
PZ
408 return __sched_period(nr_running);
409}
410
411/*
412 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
413 * that it favours >=0 over <0.
414 *
415 * -20 |
416 * |
417 * 0 --------+-------
418 * .'
419 * 19 .'
420 *
421 */
422static unsigned long
423calc_delta_asym(unsigned long delta, struct sched_entity *se)
424{
425 struct load_weight lw = {
426 .weight = NICE_0_LOAD,
427 .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
428 };
5f6d858e 429
ac884dec 430 for_each_sched_entity(se) {
a7be37ac 431 struct load_weight *se_lw = &se->load;
ced8aa16 432 unsigned long rw = cfs_rq_of(se)->load.weight;
ac884dec 433
c9c294a6
PZ
434#ifdef CONFIG_FAIR_SCHED_GROUP
435 struct cfs_rq *cfs_rq = se->my_q;
436 struct task_group *tg = NULL
437
438 if (cfs_rq)
439 tg = cfs_rq->tg;
440
441 if (tg && tg->shares < NICE_0_LOAD) {
442 /*
443 * scale shares to what it would have been had
444 * tg->weight been NICE_0_LOAD:
445 *
446 * weight = 1024 * shares / tg->weight
447 */
448 lw.weight *= se->load.weight;
449 lw.weight /= tg->shares;
450
451 lw.inv_weight = 0;
452
453 se_lw = &lw;
ced8aa16 454 rw += lw.weight - se->load.weight;
c9c294a6
PZ
455 } else
456#endif
ac884dec 457
ced8aa16 458 if (se->load.weight < NICE_0_LOAD) {
a7be37ac 459 se_lw = &lw;
ced8aa16
PZ
460 rw += NICE_0_LOAD - se->load.weight;
461 }
ac884dec 462
ced8aa16 463 delta = calc_delta_mine(delta, rw, se_lw);
ac884dec
PZ
464 }
465
a7be37ac 466 return delta;
67e9fb2a
PZ
467}
468
bf0f6f24
IM
469/*
470 * Update the current task's runtime statistics. Skip current tasks that
471 * are not in our scheduling class.
472 */
473static inline void
8ebc91d9
IM
474__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
475 unsigned long delta_exec)
bf0f6f24 476{
bbdba7c0 477 unsigned long delta_exec_weighted;
bf0f6f24 478
8179ca23 479 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
480
481 curr->sum_exec_runtime += delta_exec;
7a62eabc 482 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 483 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 484 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
485}
486
b7cc0896 487static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 488{
429d43bc 489 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 490 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
491 unsigned long delta_exec;
492
493 if (unlikely(!curr))
494 return;
495
496 /*
497 * Get the amount of time the current task was running
498 * since the last time we changed load (this cannot
499 * overflow on 32 bits):
500 */
8ebc91d9 501 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 502
8ebc91d9
IM
503 __update_curr(cfs_rq, curr, delta_exec);
504 curr->exec_start = now;
d842de87
SV
505
506 if (entity_is_task(curr)) {
507 struct task_struct *curtask = task_of(curr);
508
509 cpuacct_charge(curtask, delta_exec);
510 }
bf0f6f24
IM
511}
512
513static inline void
5870db5b 514update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
d281918d 516 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
517}
518
bf0f6f24
IM
519/*
520 * Task is being enqueued - update stats:
521 */
d2417e5a 522static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
bf0f6f24
IM
524 /*
525 * Are we enqueueing a waiting task? (for current tasks
526 * a dequeue/enqueue event is a NOP)
527 */
429d43bc 528 if (se != cfs_rq->curr)
5870db5b 529 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
530}
531
bf0f6f24 532static void
9ef0a961 533update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 534{
bbdba7c0
IM
535 schedstat_set(se->wait_max, max(se->wait_max,
536 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
537 schedstat_set(se->wait_count, se->wait_count + 1);
538 schedstat_set(se->wait_sum, se->wait_sum +
539 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 540 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
541}
542
543static inline void
19b6a2e3 544update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 545{
bf0f6f24
IM
546 /*
547 * Mark the end of the wait period if dequeueing a
548 * waiting task:
549 */
429d43bc 550 if (se != cfs_rq->curr)
9ef0a961 551 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
552}
553
554/*
555 * We are picking a new current task - update its stats:
556 */
557static inline void
79303e9e 558update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
559{
560 /*
561 * We are starting a new run period:
562 */
d281918d 563 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
564}
565
bf0f6f24
IM
566/**************************************************
567 * Scheduling class queueing methods:
568 */
569
c09595f6
PZ
570#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
571static void
572add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
573{
574 cfs_rq->task_weight += weight;
575}
576#else
577static inline void
578add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
579{
580}
581#endif
582
30cfdcfc
DA
583static void
584account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
585{
586 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
587 if (!parent_entity(se))
588 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
589 if (entity_is_task(se))
590 add_cfs_task_weight(cfs_rq, se->load.weight);
30cfdcfc
DA
591 cfs_rq->nr_running++;
592 se->on_rq = 1;
4a55bd5e 593 list_add(&se->group_node, &cfs_rq->tasks);
30cfdcfc
DA
594}
595
596static void
597account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
598{
599 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
600 if (!parent_entity(se))
601 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
602 if (entity_is_task(se))
603 add_cfs_task_weight(cfs_rq, -se->load.weight);
30cfdcfc
DA
604 cfs_rq->nr_running--;
605 se->on_rq = 0;
4a55bd5e 606 list_del_init(&se->group_node);
30cfdcfc
DA
607}
608
2396af69 609static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 610{
bf0f6f24
IM
611#ifdef CONFIG_SCHEDSTATS
612 if (se->sleep_start) {
d281918d 613 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 614 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
615
616 if ((s64)delta < 0)
617 delta = 0;
618
619 if (unlikely(delta > se->sleep_max))
620 se->sleep_max = delta;
621
622 se->sleep_start = 0;
623 se->sum_sleep_runtime += delta;
9745512c
AV
624
625 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
626 }
627 if (se->block_start) {
d281918d 628 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 629 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
630
631 if ((s64)delta < 0)
632 delta = 0;
633
634 if (unlikely(delta > se->block_max))
635 se->block_max = delta;
636
637 se->block_start = 0;
638 se->sum_sleep_runtime += delta;
30084fbd
IM
639
640 /*
641 * Blocking time is in units of nanosecs, so shift by 20 to
642 * get a milliseconds-range estimation of the amount of
643 * time that the task spent sleeping:
644 */
645 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 646
30084fbd
IM
647 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
648 delta >> 20);
649 }
9745512c 650 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
651 }
652#endif
653}
654
ddc97297
PZ
655static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
656{
657#ifdef CONFIG_SCHED_DEBUG
658 s64 d = se->vruntime - cfs_rq->min_vruntime;
659
660 if (d < 0)
661 d = -d;
662
663 if (d > 3*sysctl_sched_latency)
664 schedstat_inc(cfs_rq, nr_spread_over);
665#endif
666}
667
aeb73b04
PZ
668static void
669place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
670{
67e9fb2a 671 u64 vruntime;
aeb73b04 672
3fe69747
PZ
673 if (first_fair(cfs_rq)) {
674 vruntime = min_vruntime(cfs_rq->min_vruntime,
675 __pick_next_entity(cfs_rq)->vruntime);
676 } else
677 vruntime = cfs_rq->min_vruntime;
94dfb5e7 678
2cb8600e
PZ
679 /*
680 * The 'current' period is already promised to the current tasks,
681 * however the extra weight of the new task will slow them down a
682 * little, place the new task so that it fits in the slot that
683 * stays open at the end.
684 */
94dfb5e7 685 if (initial && sched_feat(START_DEBIT))
647e7cac 686 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 687
8465e792 688 if (!initial) {
2cb8600e 689 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
690 if (sched_feat(NEW_FAIR_SLEEPERS)) {
691 unsigned long thresh = sysctl_sched_latency;
692
693 /*
694 * convert the sleeper threshold into virtual time
695 */
696 if (sched_feat(NORMALIZED_SLEEPER))
697 thresh = calc_delta_fair(thresh, se);
698
699 vruntime -= thresh;
700 }
94359f05 701
2cb8600e
PZ
702 /* ensure we never gain time by being placed backwards. */
703 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
704 }
705
67e9fb2a 706 se->vruntime = vruntime;
aeb73b04
PZ
707}
708
bf0f6f24 709static void
83b699ed 710enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
711{
712 /*
a2a2d680 713 * Update run-time statistics of the 'current'.
bf0f6f24 714 */
b7cc0896 715 update_curr(cfs_rq);
a992241d 716 account_entity_enqueue(cfs_rq, se);
bf0f6f24 717
e9acbff6 718 if (wakeup) {
aeb73b04 719 place_entity(cfs_rq, se, 0);
2396af69 720 enqueue_sleeper(cfs_rq, se);
e9acbff6 721 }
bf0f6f24 722
d2417e5a 723 update_stats_enqueue(cfs_rq, se);
ddc97297 724 check_spread(cfs_rq, se);
83b699ed
SV
725 if (se != cfs_rq->curr)
726 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
727}
728
729static void
525c2716 730dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 731{
a2a2d680
DA
732 /*
733 * Update run-time statistics of the 'current'.
734 */
735 update_curr(cfs_rq);
736
19b6a2e3 737 update_stats_dequeue(cfs_rq, se);
db36cc7d 738 if (sleep) {
67e9fb2a 739#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
740 if (entity_is_task(se)) {
741 struct task_struct *tsk = task_of(se);
742
743 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 744 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 745 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 746 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 747 }
db36cc7d 748#endif
67e9fb2a
PZ
749 }
750
83b699ed 751 if (se != cfs_rq->curr)
30cfdcfc
DA
752 __dequeue_entity(cfs_rq, se);
753 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
754}
755
756/*
757 * Preempt the current task with a newly woken task if needed:
758 */
7c92e54f 759static void
2e09bf55 760check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 761{
11697830
PZ
762 unsigned long ideal_runtime, delta_exec;
763
6d0f0ebd 764 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 765 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 766 if (delta_exec > ideal_runtime)
bf0f6f24
IM
767 resched_task(rq_of(cfs_rq)->curr);
768}
769
83b699ed 770static void
8494f412 771set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 772{
83b699ed
SV
773 /* 'current' is not kept within the tree. */
774 if (se->on_rq) {
775 /*
776 * Any task has to be enqueued before it get to execute on
777 * a CPU. So account for the time it spent waiting on the
778 * runqueue.
779 */
780 update_stats_wait_end(cfs_rq, se);
781 __dequeue_entity(cfs_rq, se);
782 }
783
79303e9e 784 update_stats_curr_start(cfs_rq, se);
429d43bc 785 cfs_rq->curr = se;
eba1ed4b
IM
786#ifdef CONFIG_SCHEDSTATS
787 /*
788 * Track our maximum slice length, if the CPU's load is at
789 * least twice that of our own weight (i.e. dont track it
790 * when there are only lesser-weight tasks around):
791 */
495eca49 792 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
793 se->slice_max = max(se->slice_max,
794 se->sum_exec_runtime - se->prev_sum_exec_runtime);
795 }
796#endif
4a55b450 797 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
798}
799
aa2ac252
PZ
800static struct sched_entity *
801pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
802{
103638d9
PZ
803 struct rq *rq = rq_of(cfs_rq);
804 u64 pair_slice = rq->clock - cfs_rq->pair_start;
aa2ac252 805
103638d9
PZ
806 if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
807 cfs_rq->pair_start = rq->clock;
aa2ac252 808 return se;
103638d9 809 }
aa2ac252
PZ
810
811 return cfs_rq->next;
812}
813
9948f4b2 814static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 815{
08ec3df5 816 struct sched_entity *se = NULL;
bf0f6f24 817
08ec3df5
DA
818 if (first_fair(cfs_rq)) {
819 se = __pick_next_entity(cfs_rq);
aa2ac252 820 se = pick_next(cfs_rq, se);
08ec3df5
DA
821 set_next_entity(cfs_rq, se);
822 }
bf0f6f24
IM
823
824 return se;
825}
826
ab6cde26 827static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
828{
829 /*
830 * If still on the runqueue then deactivate_task()
831 * was not called and update_curr() has to be done:
832 */
833 if (prev->on_rq)
b7cc0896 834 update_curr(cfs_rq);
bf0f6f24 835
ddc97297 836 check_spread(cfs_rq, prev);
30cfdcfc 837 if (prev->on_rq) {
5870db5b 838 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
839 /* Put 'current' back into the tree. */
840 __enqueue_entity(cfs_rq, prev);
841 }
429d43bc 842 cfs_rq->curr = NULL;
bf0f6f24
IM
843}
844
8f4d37ec
PZ
845static void
846entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 847{
bf0f6f24 848 /*
30cfdcfc 849 * Update run-time statistics of the 'current'.
bf0f6f24 850 */
30cfdcfc 851 update_curr(cfs_rq);
bf0f6f24 852
8f4d37ec
PZ
853#ifdef CONFIG_SCHED_HRTICK
854 /*
855 * queued ticks are scheduled to match the slice, so don't bother
856 * validating it and just reschedule.
857 */
983ed7a6
HH
858 if (queued) {
859 resched_task(rq_of(cfs_rq)->curr);
860 return;
861 }
8f4d37ec
PZ
862 /*
863 * don't let the period tick interfere with the hrtick preemption
864 */
865 if (!sched_feat(DOUBLE_TICK) &&
866 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
867 return;
868#endif
869
ce6c1311 870 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 871 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
872}
873
874/**************************************************
875 * CFS operations on tasks:
876 */
877
8f4d37ec
PZ
878#ifdef CONFIG_SCHED_HRTICK
879static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
880{
8f4d37ec
PZ
881 struct sched_entity *se = &p->se;
882 struct cfs_rq *cfs_rq = cfs_rq_of(se);
883
884 WARN_ON(task_rq(p) != rq);
885
886 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
887 u64 slice = sched_slice(cfs_rq, se);
888 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
889 s64 delta = slice - ran;
890
891 if (delta < 0) {
892 if (rq->curr == p)
893 resched_task(p);
894 return;
895 }
896
897 /*
898 * Don't schedule slices shorter than 10000ns, that just
899 * doesn't make sense. Rely on vruntime for fairness.
900 */
31656519 901 if (rq->curr != p)
8f4d37ec
PZ
902 delta = max(10000LL, delta);
903
31656519 904 hrtick_start(rq, delta);
8f4d37ec
PZ
905 }
906}
55e12e5e 907#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
908static inline void
909hrtick_start_fair(struct rq *rq, struct task_struct *p)
910{
911}
912#endif
913
bf0f6f24
IM
914/*
915 * The enqueue_task method is called before nr_running is
916 * increased. Here we update the fair scheduling stats and
917 * then put the task into the rbtree:
918 */
fd390f6a 919static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
920{
921 struct cfs_rq *cfs_rq;
62fb1851 922 struct sched_entity *se = &p->se;
bf0f6f24
IM
923
924 for_each_sched_entity(se) {
62fb1851 925 if (se->on_rq)
bf0f6f24
IM
926 break;
927 cfs_rq = cfs_rq_of(se);
83b699ed 928 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 929 wakeup = 1;
bf0f6f24 930 }
8f4d37ec
PZ
931
932 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
933}
934
935/*
936 * The dequeue_task method is called before nr_running is
937 * decreased. We remove the task from the rbtree and
938 * update the fair scheduling stats:
939 */
f02231e5 940static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
941{
942 struct cfs_rq *cfs_rq;
62fb1851 943 struct sched_entity *se = &p->se;
bf0f6f24
IM
944
945 for_each_sched_entity(se) {
946 cfs_rq = cfs_rq_of(se);
525c2716 947 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 948 /* Don't dequeue parent if it has other entities besides us */
62fb1851 949 if (cfs_rq->load.weight)
bf0f6f24 950 break;
b9fa3df3 951 sleep = 1;
bf0f6f24 952 }
8f4d37ec
PZ
953
954 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
955}
956
957/*
1799e35d
IM
958 * sched_yield() support is very simple - we dequeue and enqueue.
959 *
960 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 961 */
4530d7ab 962static void yield_task_fair(struct rq *rq)
bf0f6f24 963{
db292ca3
IM
964 struct task_struct *curr = rq->curr;
965 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
966 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
967
968 /*
1799e35d
IM
969 * Are we the only task in the tree?
970 */
971 if (unlikely(cfs_rq->nr_running == 1))
972 return;
973
db292ca3 974 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 975 update_rq_clock(rq);
1799e35d 976 /*
a2a2d680 977 * Update run-time statistics of the 'current'.
1799e35d 978 */
2b1e315d 979 update_curr(cfs_rq);
1799e35d
IM
980
981 return;
982 }
983 /*
984 * Find the rightmost entry in the rbtree:
bf0f6f24 985 */
2b1e315d 986 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
987 /*
988 * Already in the rightmost position?
989 */
79b3feff 990 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
991 return;
992
993 /*
994 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
995 * Upon rescheduling, sched_class::put_prev_task() will place
996 * 'current' within the tree based on its new key value.
1799e35d 997 */
30cfdcfc 998 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
999}
1000
e7693a36
GH
1001/*
1002 * wake_idle() will wake a task on an idle cpu if task->cpu is
1003 * not idle and an idle cpu is available. The span of cpus to
1004 * search starts with cpus closest then further out as needed,
1005 * so we always favor a closer, idle cpu.
e761b772
MK
1006 * Domains may include CPUs that are not usable for migration,
1007 * hence we need to mask them out (cpu_active_map)
e7693a36
GH
1008 *
1009 * Returns the CPU we should wake onto.
1010 */
1011#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1012static int wake_idle(int cpu, struct task_struct *p)
1013{
1014 cpumask_t tmp;
1015 struct sched_domain *sd;
1016 int i;
1017
1018 /*
1019 * If it is idle, then it is the best cpu to run this task.
1020 *
1021 * This cpu is also the best, if it has more than one task already.
1022 * Siblings must be also busy(in most cases) as they didn't already
1023 * pickup the extra load from this cpu and hence we need not check
1024 * sibling runqueue info. This will avoid the checks and cache miss
1025 * penalities associated with that.
1026 */
104f6454 1027 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1028 return cpu;
1029
1030 for_each_domain(cpu, sd) {
1d3504fc
HS
1031 if ((sd->flags & SD_WAKE_IDLE)
1032 || ((sd->flags & SD_WAKE_IDLE_FAR)
1033 && !task_hot(p, task_rq(p)->clock, sd))) {
e7693a36 1034 cpus_and(tmp, sd->span, p->cpus_allowed);
e761b772 1035 cpus_and(tmp, tmp, cpu_active_map);
363ab6f1 1036 for_each_cpu_mask_nr(i, tmp) {
e7693a36
GH
1037 if (idle_cpu(i)) {
1038 if (i != task_cpu(p)) {
1039 schedstat_inc(p,
1040 se.nr_wakeups_idle);
1041 }
1042 return i;
1043 }
1044 }
1045 } else {
1046 break;
1047 }
1048 }
1049 return cpu;
1050}
55e12e5e 1051#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1052static inline int wake_idle(int cpu, struct task_struct *p)
1053{
1054 return cpu;
1055}
1056#endif
1057
1058#ifdef CONFIG_SMP
098fb9db 1059
4ae7d5ce
IM
1060static const struct sched_class fair_sched_class;
1061
bb3469ac 1062#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1063/*
1064 * effective_load() calculates the load change as seen from the root_task_group
1065 *
1066 * Adding load to a group doesn't make a group heavier, but can cause movement
1067 * of group shares between cpus. Assuming the shares were perfectly aligned one
1068 * can calculate the shift in shares.
1069 *
1070 * The problem is that perfectly aligning the shares is rather expensive, hence
1071 * we try to avoid doing that too often - see update_shares(), which ratelimits
1072 * this change.
1073 *
1074 * We compensate this by not only taking the current delta into account, but
1075 * also considering the delta between when the shares were last adjusted and
1076 * now.
1077 *
1078 * We still saw a performance dip, some tracing learned us that between
1079 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1080 * significantly. Therefore try to bias the error in direction of failing
1081 * the affine wakeup.
1082 *
1083 */
f1d239f7
PZ
1084static long effective_load(struct task_group *tg, int cpu,
1085 long wl, long wg)
bb3469ac 1086{
4be9daaa 1087 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1088 long more_w;
1089
1090 if (!tg->parent)
1091 return wl;
1092
f5bfb7d9
PZ
1093 /*
1094 * By not taking the decrease of shares on the other cpu into
1095 * account our error leans towards reducing the affine wakeups.
1096 */
1097 if (!wl && sched_feat(ASYM_EFF_LOAD))
1098 return wl;
1099
f1d239f7
PZ
1100 /*
1101 * Instead of using this increment, also add the difference
1102 * between when the shares were last updated and now.
1103 */
1104 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1105 wl += more_w;
1106 wg += more_w;
bb3469ac 1107
4be9daaa
PZ
1108 for_each_sched_entity(se) {
1109#define D(n) (likely(n) ? (n) : 1)
1110
cb5ef42a 1111 long S, rw, s, a, b;
4be9daaa
PZ
1112
1113 S = se->my_q->tg->shares;
1114 s = se->my_q->shares;
f1d239f7 1115 rw = se->my_q->rq_weight;
bb3469ac 1116
cb5ef42a
PZ
1117 a = S*(rw + wl);
1118 b = S*rw + s*wg;
4be9daaa 1119
cb5ef42a 1120 wl = s*(a-b)/D(b);
83378269
PZ
1121 /*
1122 * Assume the group is already running and will
1123 * thus already be accounted for in the weight.
1124 *
1125 * That is, moving shares between CPUs, does not
1126 * alter the group weight.
1127 */
4be9daaa
PZ
1128 wg = 0;
1129#undef D
1130 }
bb3469ac 1131
4be9daaa 1132 return wl;
bb3469ac 1133}
4be9daaa 1134
bb3469ac 1135#else
4be9daaa 1136
83378269
PZ
1137static inline unsigned long effective_load(struct task_group *tg, int cpu,
1138 unsigned long wl, unsigned long wg)
4be9daaa 1139{
83378269 1140 return wl;
bb3469ac 1141}
4be9daaa 1142
bb3469ac
PZ
1143#endif
1144
098fb9db 1145static int
4ae7d5ce
IM
1146wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1147 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1148 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1149 unsigned int imbalance)
1150{
4ae7d5ce 1151 struct task_struct *curr = this_rq->curr;
83378269 1152 struct task_group *tg;
098fb9db
IM
1153 unsigned long tl = this_load;
1154 unsigned long tl_per_task;
83378269 1155 unsigned long weight;
b3137bc8 1156 int balanced;
098fb9db 1157
b3137bc8 1158 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1159 return 0;
1160
b3137bc8
MG
1161 /*
1162 * If sync wakeup then subtract the (maximum possible)
1163 * effect of the currently running task from the load
1164 * of the current CPU:
1165 */
83378269
PZ
1166 if (sync) {
1167 tg = task_group(current);
1168 weight = current->se.load.weight;
1169
1170 tl += effective_load(tg, this_cpu, -weight, -weight);
1171 load += effective_load(tg, prev_cpu, 0, -weight);
1172 }
b3137bc8 1173
83378269
PZ
1174 tg = task_group(p);
1175 weight = p->se.load.weight;
b3137bc8 1176
83378269
PZ
1177 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1178 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1179
098fb9db 1180 /*
4ae7d5ce
IM
1181 * If the currently running task will sleep within
1182 * a reasonable amount of time then attract this newly
1183 * woken task:
098fb9db 1184 */
2087a1ad 1185 if (sync && balanced) {
4ae7d5ce 1186 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
2087a1ad 1187 p->se.avg_overlap < sysctl_sched_migration_cost)
4ae7d5ce
IM
1188 return 1;
1189 }
098fb9db
IM
1190
1191 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1192 tl_per_task = cpu_avg_load_per_task(this_cpu);
1193
ac192d39 1194 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
b3137bc8 1195 balanced) {
098fb9db
IM
1196 /*
1197 * This domain has SD_WAKE_AFFINE and
1198 * p is cache cold in this domain, and
1199 * there is no bad imbalance.
1200 */
1201 schedstat_inc(this_sd, ttwu_move_affine);
1202 schedstat_inc(p, se.nr_wakeups_affine);
1203
1204 return 1;
1205 }
1206 return 0;
1207}
1208
e7693a36
GH
1209static int select_task_rq_fair(struct task_struct *p, int sync)
1210{
e7693a36 1211 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1212 int prev_cpu, this_cpu, new_cpu;
098fb9db 1213 unsigned long load, this_load;
4ae7d5ce 1214 struct rq *rq, *this_rq;
098fb9db 1215 unsigned int imbalance;
098fb9db 1216 int idx;
e7693a36 1217
ac192d39
IM
1218 prev_cpu = task_cpu(p);
1219 rq = task_rq(p);
1220 this_cpu = smp_processor_id();
4ae7d5ce 1221 this_rq = cpu_rq(this_cpu);
ac192d39 1222 new_cpu = prev_cpu;
e7693a36 1223
ac192d39
IM
1224 /*
1225 * 'this_sd' is the first domain that both
1226 * this_cpu and prev_cpu are present in:
1227 */
e7693a36 1228 for_each_domain(this_cpu, sd) {
ac192d39 1229 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1230 this_sd = sd;
1231 break;
1232 }
1233 }
1234
1235 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1236 goto out;
e7693a36
GH
1237
1238 /*
1239 * Check for affine wakeup and passive balancing possibilities.
1240 */
098fb9db 1241 if (!this_sd)
f4827386 1242 goto out;
e7693a36 1243
098fb9db
IM
1244 idx = this_sd->wake_idx;
1245
1246 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1247
ac192d39 1248 load = source_load(prev_cpu, idx);
098fb9db
IM
1249 this_load = target_load(this_cpu, idx);
1250
4ae7d5ce
IM
1251 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1252 load, this_load, imbalance))
1253 return this_cpu;
1254
1255 if (prev_cpu == this_cpu)
f4827386 1256 goto out;
098fb9db
IM
1257
1258 /*
1259 * Start passive balancing when half the imbalance_pct
1260 * limit is reached.
1261 */
1262 if (this_sd->flags & SD_WAKE_BALANCE) {
1263 if (imbalance*this_load <= 100*load) {
1264 schedstat_inc(this_sd, ttwu_move_balance);
1265 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1266 return this_cpu;
e7693a36
GH
1267 }
1268 }
1269
f4827386 1270out:
e7693a36
GH
1271 return wake_idle(new_cpu, p);
1272}
1273#endif /* CONFIG_SMP */
1274
0bbd3336
PZ
1275static unsigned long wakeup_gran(struct sched_entity *se)
1276{
1277 unsigned long gran = sysctl_sched_wakeup_granularity;
1278
1279 /*
a7be37ac
PZ
1280 * More easily preempt - nice tasks, while not making it harder for
1281 * + nice tasks.
0bbd3336 1282 */
c9c294a6
PZ
1283 if (sched_feat(ASYM_GRAN))
1284 gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
1285 else
1286 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
0bbd3336
PZ
1287
1288 return gran;
1289}
1290
1291/*
1292 * Should 'se' preempt 'curr'.
1293 *
1294 * |s1
1295 * |s2
1296 * |s3
1297 * g
1298 * |<--->|c
1299 *
1300 * w(c, s1) = -1
1301 * w(c, s2) = 0
1302 * w(c, s3) = 1
1303 *
1304 */
1305static int
1306wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1307{
1308 s64 gran, vdiff = curr->vruntime - se->vruntime;
1309
1310 if (vdiff < 0)
1311 return -1;
1312
1313 gran = wakeup_gran(curr);
1314 if (vdiff > gran)
1315 return 1;
1316
1317 return 0;
1318}
e7693a36 1319
354d60c2
DG
1320/* return depth at which a sched entity is present in the hierarchy */
1321static inline int depth_se(struct sched_entity *se)
1322{
1323 int depth = 0;
1324
1325 for_each_sched_entity(se)
1326 depth++;
1327
1328 return depth;
1329}
1330
bf0f6f24
IM
1331/*
1332 * Preempt the current task with a newly woken task if needed:
1333 */
2e09bf55 1334static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1335{
1336 struct task_struct *curr = rq->curr;
fad095a7 1337 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1338 struct sched_entity *se = &curr->se, *pse = &p->se;
354d60c2 1339 int se_depth, pse_depth;
bf0f6f24
IM
1340
1341 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1342 update_rq_clock(rq);
b7cc0896 1343 update_curr(cfs_rq);
bf0f6f24
IM
1344 resched_task(curr);
1345 return;
1346 }
aa2ac252 1347
4ae7d5ce
IM
1348 if (unlikely(se == pse))
1349 return;
1350
aa2ac252
PZ
1351 cfs_rq_of(pse)->next = pse;
1352
91c234b4
IM
1353 /*
1354 * Batch tasks do not preempt (their preemption is driven by
1355 * the tick):
1356 */
1357 if (unlikely(p->policy == SCHED_BATCH))
1358 return;
bf0f6f24 1359
77d9cc44
IM
1360 if (!sched_feat(WAKEUP_PREEMPT))
1361 return;
8651a86c 1362
354d60c2
DG
1363 /*
1364 * preemption test can be made between sibling entities who are in the
1365 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1366 * both tasks until we find their ancestors who are siblings of common
1367 * parent.
1368 */
1369
1370 /* First walk up until both entities are at same depth */
1371 se_depth = depth_se(se);
1372 pse_depth = depth_se(pse);
1373
1374 while (se_depth > pse_depth) {
1375 se_depth--;
1376 se = parent_entity(se);
1377 }
1378
1379 while (pse_depth > se_depth) {
1380 pse_depth--;
1381 pse = parent_entity(pse);
1382 }
1383
77d9cc44
IM
1384 while (!is_same_group(se, pse)) {
1385 se = parent_entity(se);
1386 pse = parent_entity(pse);
ce6c1311 1387 }
77d9cc44 1388
0bbd3336 1389 if (wakeup_preempt_entity(se, pse) == 1)
77d9cc44 1390 resched_task(curr);
bf0f6f24
IM
1391}
1392
fb8d4724 1393static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1394{
8f4d37ec 1395 struct task_struct *p;
bf0f6f24
IM
1396 struct cfs_rq *cfs_rq = &rq->cfs;
1397 struct sched_entity *se;
1398
1399 if (unlikely(!cfs_rq->nr_running))
1400 return NULL;
1401
1402 do {
9948f4b2 1403 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1404 cfs_rq = group_cfs_rq(se);
1405 } while (cfs_rq);
1406
8f4d37ec
PZ
1407 p = task_of(se);
1408 hrtick_start_fair(rq, p);
1409
1410 return p;
bf0f6f24
IM
1411}
1412
1413/*
1414 * Account for a descheduled task:
1415 */
31ee529c 1416static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1417{
1418 struct sched_entity *se = &prev->se;
1419 struct cfs_rq *cfs_rq;
1420
1421 for_each_sched_entity(se) {
1422 cfs_rq = cfs_rq_of(se);
ab6cde26 1423 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1424 }
1425}
1426
681f3e68 1427#ifdef CONFIG_SMP
bf0f6f24
IM
1428/**************************************************
1429 * Fair scheduling class load-balancing methods:
1430 */
1431
1432/*
1433 * Load-balancing iterator. Note: while the runqueue stays locked
1434 * during the whole iteration, the current task might be
1435 * dequeued so the iterator has to be dequeue-safe. Here we
1436 * achieve that by always pre-iterating before returning
1437 * the current task:
1438 */
a9957449 1439static struct task_struct *
4a55bd5e 1440__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1441{
354d60c2
DG
1442 struct task_struct *p = NULL;
1443 struct sched_entity *se;
bf0f6f24 1444
6d299f1b 1445 while (next != &cfs_rq->tasks) {
4a55bd5e
PZ
1446 se = list_entry(next, struct sched_entity, group_node);
1447 next = next->next;
354d60c2 1448
6d299f1b
GH
1449 /* Skip over entities that are not tasks */
1450 if (entity_is_task(se)) {
1451 p = task_of(se);
1452 break;
1453 }
1454 }
4a55bd5e
PZ
1455
1456 cfs_rq->balance_iterator = next;
bf0f6f24
IM
1457 return p;
1458}
1459
1460static struct task_struct *load_balance_start_fair(void *arg)
1461{
1462 struct cfs_rq *cfs_rq = arg;
1463
4a55bd5e 1464 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1465}
1466
1467static struct task_struct *load_balance_next_fair(void *arg)
1468{
1469 struct cfs_rq *cfs_rq = arg;
1470
4a55bd5e 1471 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1472}
1473
c09595f6
PZ
1474static unsigned long
1475__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1476 unsigned long max_load_move, struct sched_domain *sd,
1477 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1478 struct cfs_rq *cfs_rq)
62fb1851 1479{
c09595f6 1480 struct rq_iterator cfs_rq_iterator;
62fb1851 1481
c09595f6
PZ
1482 cfs_rq_iterator.start = load_balance_start_fair;
1483 cfs_rq_iterator.next = load_balance_next_fair;
1484 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1485
c09595f6
PZ
1486 return balance_tasks(this_rq, this_cpu, busiest,
1487 max_load_move, sd, idle, all_pinned,
1488 this_best_prio, &cfs_rq_iterator);
62fb1851 1489}
62fb1851 1490
c09595f6 1491#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1492static unsigned long
bf0f6f24 1493load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1494 unsigned long max_load_move,
a4ac01c3
PW
1495 struct sched_domain *sd, enum cpu_idle_type idle,
1496 int *all_pinned, int *this_best_prio)
bf0f6f24 1497{
bf0f6f24 1498 long rem_load_move = max_load_move;
c09595f6
PZ
1499 int busiest_cpu = cpu_of(busiest);
1500 struct task_group *tg;
18d95a28 1501
c09595f6 1502 rcu_read_lock();
c8cba857 1503 update_h_load(busiest_cpu);
18d95a28 1504
c09595f6 1505 list_for_each_entry(tg, &task_groups, list) {
c8cba857 1506 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1507 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1508 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1509 u64 rem_load, moved_load;
18d95a28 1510
c09595f6
PZ
1511 /*
1512 * empty group
1513 */
c8cba857 1514 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1515 continue;
1516
243e0e7b
SV
1517 rem_load = (u64)rem_load_move * busiest_weight;
1518 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1519
c09595f6 1520 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1521 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1522 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1523
c09595f6 1524 if (!moved_load)
bf0f6f24
IM
1525 continue;
1526
42a3ac7d 1527 moved_load *= busiest_h_load;
243e0e7b 1528 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1529
c09595f6
PZ
1530 rem_load_move -= moved_load;
1531 if (rem_load_move < 0)
bf0f6f24
IM
1532 break;
1533 }
c09595f6 1534 rcu_read_unlock();
bf0f6f24 1535
43010659 1536 return max_load_move - rem_load_move;
bf0f6f24 1537}
c09595f6
PZ
1538#else
1539static unsigned long
1540load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1541 unsigned long max_load_move,
1542 struct sched_domain *sd, enum cpu_idle_type idle,
1543 int *all_pinned, int *this_best_prio)
1544{
1545 return __load_balance_fair(this_rq, this_cpu, busiest,
1546 max_load_move, sd, idle, all_pinned,
1547 this_best_prio, &busiest->cfs);
1548}
1549#endif
bf0f6f24 1550
e1d1484f
PW
1551static int
1552move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1553 struct sched_domain *sd, enum cpu_idle_type idle)
1554{
1555 struct cfs_rq *busy_cfs_rq;
1556 struct rq_iterator cfs_rq_iterator;
1557
1558 cfs_rq_iterator.start = load_balance_start_fair;
1559 cfs_rq_iterator.next = load_balance_next_fair;
1560
1561 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1562 /*
1563 * pass busy_cfs_rq argument into
1564 * load_balance_[start|next]_fair iterators
1565 */
1566 cfs_rq_iterator.arg = busy_cfs_rq;
1567 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1568 &cfs_rq_iterator))
1569 return 1;
1570 }
1571
1572 return 0;
1573}
55e12e5e 1574#endif /* CONFIG_SMP */
e1d1484f 1575
bf0f6f24
IM
1576/*
1577 * scheduler tick hitting a task of our scheduling class:
1578 */
8f4d37ec 1579static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1580{
1581 struct cfs_rq *cfs_rq;
1582 struct sched_entity *se = &curr->se;
1583
1584 for_each_sched_entity(se) {
1585 cfs_rq = cfs_rq_of(se);
8f4d37ec 1586 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1587 }
1588}
1589
8eb172d9 1590#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1591
bf0f6f24
IM
1592/*
1593 * Share the fairness runtime between parent and child, thus the
1594 * total amount of pressure for CPU stays equal - new tasks
1595 * get a chance to run but frequent forkers are not allowed to
1596 * monopolize the CPU. Note: the parent runqueue is locked,
1597 * the child is not running yet.
1598 */
ee0827d8 1599static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1600{
1601 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1602 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1603 int this_cpu = smp_processor_id();
bf0f6f24
IM
1604
1605 sched_info_queued(p);
1606
7109c442 1607 update_curr(cfs_rq);
aeb73b04 1608 place_entity(cfs_rq, se, 1);
4d78e7b6 1609
3c90e6e9 1610 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1611 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1612 curr && curr->vruntime < se->vruntime) {
87fefa38 1613 /*
edcb60a3
IM
1614 * Upon rescheduling, sched_class::put_prev_task() will place
1615 * 'current' within the tree based on its new key value.
1616 */
4d78e7b6 1617 swap(curr->vruntime, se->vruntime);
4d78e7b6 1618 }
bf0f6f24 1619
b9dca1e0 1620 enqueue_task_fair(rq, p, 0);
bb61c210 1621 resched_task(rq->curr);
bf0f6f24
IM
1622}
1623
cb469845
SR
1624/*
1625 * Priority of the task has changed. Check to see if we preempt
1626 * the current task.
1627 */
1628static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1629 int oldprio, int running)
1630{
1631 /*
1632 * Reschedule if we are currently running on this runqueue and
1633 * our priority decreased, or if we are not currently running on
1634 * this runqueue and our priority is higher than the current's
1635 */
1636 if (running) {
1637 if (p->prio > oldprio)
1638 resched_task(rq->curr);
1639 } else
1640 check_preempt_curr(rq, p);
1641}
1642
1643/*
1644 * We switched to the sched_fair class.
1645 */
1646static void switched_to_fair(struct rq *rq, struct task_struct *p,
1647 int running)
1648{
1649 /*
1650 * We were most likely switched from sched_rt, so
1651 * kick off the schedule if running, otherwise just see
1652 * if we can still preempt the current task.
1653 */
1654 if (running)
1655 resched_task(rq->curr);
1656 else
1657 check_preempt_curr(rq, p);
1658}
1659
83b699ed
SV
1660/* Account for a task changing its policy or group.
1661 *
1662 * This routine is mostly called to set cfs_rq->curr field when a task
1663 * migrates between groups/classes.
1664 */
1665static void set_curr_task_fair(struct rq *rq)
1666{
1667 struct sched_entity *se = &rq->curr->se;
1668
1669 for_each_sched_entity(se)
1670 set_next_entity(cfs_rq_of(se), se);
1671}
1672
810b3817
PZ
1673#ifdef CONFIG_FAIR_GROUP_SCHED
1674static void moved_group_fair(struct task_struct *p)
1675{
1676 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1677
1678 update_curr(cfs_rq);
1679 place_entity(cfs_rq, &p->se, 1);
1680}
1681#endif
1682
bf0f6f24
IM
1683/*
1684 * All the scheduling class methods:
1685 */
5522d5d5
IM
1686static const struct sched_class fair_sched_class = {
1687 .next = &idle_sched_class,
bf0f6f24
IM
1688 .enqueue_task = enqueue_task_fair,
1689 .dequeue_task = dequeue_task_fair,
1690 .yield_task = yield_task_fair,
e7693a36
GH
1691#ifdef CONFIG_SMP
1692 .select_task_rq = select_task_rq_fair,
1693#endif /* CONFIG_SMP */
bf0f6f24 1694
2e09bf55 1695 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1696
1697 .pick_next_task = pick_next_task_fair,
1698 .put_prev_task = put_prev_task_fair,
1699
681f3e68 1700#ifdef CONFIG_SMP
bf0f6f24 1701 .load_balance = load_balance_fair,
e1d1484f 1702 .move_one_task = move_one_task_fair,
681f3e68 1703#endif
bf0f6f24 1704
83b699ed 1705 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1706 .task_tick = task_tick_fair,
1707 .task_new = task_new_fair,
cb469845
SR
1708
1709 .prio_changed = prio_changed_fair,
1710 .switched_to = switched_to_fair,
810b3817
PZ
1711
1712#ifdef CONFIG_FAIR_GROUP_SCHED
1713 .moved_group = moved_group_fair,
1714#endif
bf0f6f24
IM
1715};
1716
1717#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1718static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1719{
bf0f6f24
IM
1720 struct cfs_rq *cfs_rq;
1721
5973e5b9 1722 rcu_read_lock();
c3b64f1e 1723 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1724 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1725 rcu_read_unlock();
bf0f6f24
IM
1726}
1727#endif