drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / clock.c
CommitLineData
3e51f33f
PZ
1/*
2 * sched_clock for unstable cpu clocks
3 *
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
5 *
c300ba25
SR
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
3e51f33f
PZ
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
c676329a
PZ
13 *
14 * What:
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI)
30 * local_clock() -- is cpu_clock() on the current cpu.
31 *
32 * How:
33 *
34 * The implementation either uses sched_clock() when
35 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
36 * sched_clock() is assumed to provide these properties (mostly it means
37 * the architecture provides a globally synchronized highres time source).
38 *
39 * Otherwise it tries to create a semi stable clock from a mixture of other
40 * clocks, including:
41 *
42 * - GTOD (clock monotomic)
3e51f33f
PZ
43 * - sched_clock()
44 * - explicit idle events
45 *
c676329a
PZ
46 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
47 * deltas are filtered to provide monotonicity and keeping it within an
48 * expected window.
3e51f33f
PZ
49 *
50 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
51 * that is otherwise invisible (TSC gets stopped).
52 *
c676329a
PZ
53 *
54 * Notes:
55 *
56 * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things
57 * like cpufreq interrupts that can change the base clock (TSC) multiplier
58 * and cause funny jumps in time -- although the filtering provided by
59 * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it
60 * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on
61 * sched_clock().
3e51f33f 62 */
3e51f33f 63#include <linux/spinlock.h>
6409c4da 64#include <linux/hardirq.h>
9984de1a 65#include <linux/export.h>
b342501c
IM
66#include <linux/percpu.h>
67#include <linux/ktime.h>
68#include <linux/sched.h>
3e51f33f 69
2c3d103b
HD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
92d23f70
R
77 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
78 * (NSEC_PER_SEC / HZ);
2c3d103b 79}
b6ac23af 80EXPORT_SYMBOL_GPL(sched_clock);
3e51f33f 81
5bb6b1ea 82__read_mostly int sched_clock_running;
c1955a3d 83
3e51f33f 84#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
b342501c 85__read_mostly int sched_clock_stable;
3e51f33f
PZ
86
87struct sched_clock_data {
3e51f33f
PZ
88 u64 tick_raw;
89 u64 tick_gtod;
90 u64 clock;
91};
92
93static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
94
95static inline struct sched_clock_data *this_scd(void)
96{
97 return &__get_cpu_var(sched_clock_data);
98}
99
100static inline struct sched_clock_data *cpu_sdc(int cpu)
101{
102 return &per_cpu(sched_clock_data, cpu);
103}
104
105void sched_clock_init(void)
106{
107 u64 ktime_now = ktime_to_ns(ktime_get());
3e51f33f
PZ
108 int cpu;
109
110 for_each_possible_cpu(cpu) {
111 struct sched_clock_data *scd = cpu_sdc(cpu);
112
a381759d 113 scd->tick_raw = 0;
3e51f33f
PZ
114 scd->tick_gtod = ktime_now;
115 scd->clock = ktime_now;
116 }
a381759d
PZ
117
118 sched_clock_running = 1;
3e51f33f
PZ
119}
120
354879bb 121/*
b342501c 122 * min, max except they take wrapping into account
354879bb
PZ
123 */
124
125static inline u64 wrap_min(u64 x, u64 y)
126{
127 return (s64)(x - y) < 0 ? x : y;
128}
129
130static inline u64 wrap_max(u64 x, u64 y)
131{
132 return (s64)(x - y) > 0 ? x : y;
133}
134
3e51f33f
PZ
135/*
136 * update the percpu scd from the raw @now value
137 *
138 * - filter out backward motion
354879bb 139 * - use the GTOD tick value to create a window to filter crazy TSC values
3e51f33f 140 */
def0a9b2 141static u64 sched_clock_local(struct sched_clock_data *scd)
3e51f33f 142{
def0a9b2
PZ
143 u64 now, clock, old_clock, min_clock, max_clock;
144 s64 delta;
3e51f33f 145
def0a9b2
PZ
146again:
147 now = sched_clock();
148 delta = now - scd->tick_raw;
354879bb
PZ
149 if (unlikely(delta < 0))
150 delta = 0;
3e51f33f 151
def0a9b2
PZ
152 old_clock = scd->clock;
153
354879bb
PZ
154 /*
155 * scd->clock = clamp(scd->tick_gtod + delta,
b342501c
IM
156 * max(scd->tick_gtod, scd->clock),
157 * scd->tick_gtod + TICK_NSEC);
354879bb 158 */
3e51f33f 159
354879bb 160 clock = scd->tick_gtod + delta;
def0a9b2
PZ
161 min_clock = wrap_max(scd->tick_gtod, old_clock);
162 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
3e51f33f 163
354879bb
PZ
164 clock = wrap_max(clock, min_clock);
165 clock = wrap_min(clock, max_clock);
3e51f33f 166
152f9d07 167 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
def0a9b2 168 goto again;
56b90612 169
def0a9b2 170 return clock;
3e51f33f
PZ
171}
172
def0a9b2 173static u64 sched_clock_remote(struct sched_clock_data *scd)
3e51f33f 174{
def0a9b2
PZ
175 struct sched_clock_data *my_scd = this_scd();
176 u64 this_clock, remote_clock;
177 u64 *ptr, old_val, val;
178
a1cbcaa9
TG
179#if BITS_PER_LONG != 64
180again:
181 /*
182 * Careful here: The local and the remote clock values need to
183 * be read out atomic as we need to compare the values and
184 * then update either the local or the remote side. So the
185 * cmpxchg64 below only protects one readout.
186 *
187 * We must reread via sched_clock_local() in the retry case on
188 * 32bit as an NMI could use sched_clock_local() via the
189 * tracer and hit between the readout of
190 * the low32bit and the high 32bit portion.
191 */
192 this_clock = sched_clock_local(my_scd);
193 /*
194 * We must enforce atomic readout on 32bit, otherwise the
195 * update on the remote cpu can hit inbetween the readout of
196 * the low32bit and the high 32bit portion.
197 */
198 remote_clock = cmpxchg64(&scd->clock, 0, 0);
199#else
200 /*
201 * On 64bit the read of [my]scd->clock is atomic versus the
202 * update, so we can avoid the above 32bit dance.
203 */
def0a9b2
PZ
204 sched_clock_local(my_scd);
205again:
206 this_clock = my_scd->clock;
207 remote_clock = scd->clock;
a1cbcaa9 208#endif
def0a9b2
PZ
209
210 /*
211 * Use the opportunity that we have both locks
212 * taken to couple the two clocks: we take the
213 * larger time as the latest time for both
214 * runqueues. (this creates monotonic movement)
215 */
216 if (likely((s64)(remote_clock - this_clock) < 0)) {
217 ptr = &scd->clock;
218 old_val = remote_clock;
219 val = this_clock;
3e51f33f 220 } else {
def0a9b2
PZ
221 /*
222 * Should be rare, but possible:
223 */
224 ptr = &my_scd->clock;
225 old_val = this_clock;
226 val = remote_clock;
3e51f33f 227 }
def0a9b2 228
152f9d07 229 if (cmpxchg64(ptr, old_val, val) != old_val)
def0a9b2
PZ
230 goto again;
231
232 return val;
3e51f33f
PZ
233}
234
c676329a
PZ
235/*
236 * Similar to cpu_clock(), but requires local IRQs to be disabled.
237 *
238 * See cpu_clock().
239 */
3e51f33f
PZ
240u64 sched_clock_cpu(int cpu)
241{
b342501c 242 struct sched_clock_data *scd;
def0a9b2
PZ
243 u64 clock;
244
245 WARN_ON_ONCE(!irqs_disabled());
3e51f33f 246
b342501c
IM
247 if (sched_clock_stable)
248 return sched_clock();
a381759d 249
a381759d
PZ
250 if (unlikely(!sched_clock_running))
251 return 0ull;
252
def0a9b2 253 scd = cpu_sdc(cpu);
3e51f33f 254
def0a9b2
PZ
255 if (cpu != smp_processor_id())
256 clock = sched_clock_remote(scd);
257 else
258 clock = sched_clock_local(scd);
e4e4e534 259
3e51f33f
PZ
260 return clock;
261}
262
263void sched_clock_tick(void)
264{
8325d9c0 265 struct sched_clock_data *scd;
3e51f33f
PZ
266 u64 now, now_gtod;
267
8325d9c0
PZ
268 if (sched_clock_stable)
269 return;
270
a381759d
PZ
271 if (unlikely(!sched_clock_running))
272 return;
273
3e51f33f
PZ
274 WARN_ON_ONCE(!irqs_disabled());
275
8325d9c0 276 scd = this_scd();
3e51f33f 277 now_gtod = ktime_to_ns(ktime_get());
a83bc47c 278 now = sched_clock();
3e51f33f 279
3e51f33f
PZ
280 scd->tick_raw = now;
281 scd->tick_gtod = now_gtod;
def0a9b2 282 sched_clock_local(scd);
3e51f33f
PZ
283}
284
285/*
286 * We are going deep-idle (irqs are disabled):
287 */
288void sched_clock_idle_sleep_event(void)
289{
290 sched_clock_cpu(smp_processor_id());
291}
292EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
293
294/*
295 * We just idled delta nanoseconds (called with irqs disabled):
296 */
297void sched_clock_idle_wakeup_event(u64 delta_ns)
298{
1c5745aa
TG
299 if (timekeeping_suspended)
300 return;
301
354879bb 302 sched_clock_tick();
3e51f33f
PZ
303 touch_softlockup_watchdog();
304}
305EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
306
c676329a
PZ
307/*
308 * As outlined at the top, provides a fast, high resolution, nanosecond
309 * time source that is monotonic per cpu argument and has bounded drift
310 * between cpus.
311 *
312 * ######################### BIG FAT WARNING ##########################
313 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
314 * # go backwards !! #
315 * ####################################################################
316 */
317u64 cpu_clock(int cpu)
b9f8fcd5 318{
c676329a 319 u64 clock;
b9f8fcd5
DM
320 unsigned long flags;
321
322 local_irq_save(flags);
323 clock = sched_clock_cpu(cpu);
324 local_irq_restore(flags);
325
326 return clock;
327}
328
c676329a
PZ
329/*
330 * Similar to cpu_clock() for the current cpu. Time will only be observed
331 * to be monotonic if care is taken to only compare timestampt taken on the
332 * same CPU.
333 *
334 * See cpu_clock().
335 */
336u64 local_clock(void)
337{
338 u64 clock;
339 unsigned long flags;
340
341 local_irq_save(flags);
342 clock = sched_clock_cpu(smp_processor_id());
343 local_irq_restore(flags);
344
345 return clock;
346}
347
8325d9c0
PZ
348#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
349
350void sched_clock_init(void)
351{
352 sched_clock_running = 1;
353}
354
355u64 sched_clock_cpu(int cpu)
356{
357 if (unlikely(!sched_clock_running))
358 return 0;
359
360 return sched_clock();
361}
362
c676329a 363u64 cpu_clock(int cpu)
76a2a6ee 364{
b9f8fcd5
DM
365 return sched_clock_cpu(cpu);
366}
76a2a6ee 367
c676329a
PZ
368u64 local_clock(void)
369{
370 return sched_clock_cpu(0);
371}
372
b9f8fcd5 373#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
76a2a6ee 374
4c9fe8ad 375EXPORT_SYMBOL_GPL(cpu_clock);
c676329a 376EXPORT_SYMBOL_GPL(local_clock);