cpumask: convert RCU implementations
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / profile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
7 *
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 * Red Hat, July 2004
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14 */
15
1da177e4
LT
16#include <linux/module.h>
17#include <linux/profile.h>
18#include <linux/bootmem.h>
19#include <linux/notifier.h>
20#include <linux/mm.h>
21#include <linux/cpumask.h>
22#include <linux/cpu.h>
1da177e4 23#include <linux/highmem.h>
97d1f15b 24#include <linux/mutex.h>
22b8ce94
DH
25#include <linux/slab.h>
26#include <linux/vmalloc.h>
1da177e4 27#include <asm/sections.h>
7d12e780 28#include <asm/irq_regs.h>
e8edc6e0 29#include <asm/ptrace.h>
1da177e4
LT
30
31struct profile_hit {
32 u32 pc, hits;
33};
34#define PROFILE_GRPSHIFT 3
35#define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
36#define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
37#define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
38
39/* Oprofile timer tick hook */
b012d346 40static int (*timer_hook)(struct pt_regs *) __read_mostly;
1da177e4
LT
41
42static atomic_t *prof_buffer;
43static unsigned long prof_len, prof_shift;
07031e14 44
ece8a684 45int prof_on __read_mostly;
07031e14
IM
46EXPORT_SYMBOL_GPL(prof_on);
47
1da177e4
LT
48static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
49#ifdef CONFIG_SMP
50static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51static DEFINE_PER_CPU(int, cpu_profile_flip);
97d1f15b 52static DEFINE_MUTEX(profile_flip_mutex);
1da177e4
LT
53#endif /* CONFIG_SMP */
54
22b8ce94 55int profile_setup(char *str)
1da177e4 56{
22b8ce94
DH
57 static char schedstr[] = "schedule";
58 static char sleepstr[] = "sleep";
59 static char kvmstr[] = "kvm";
1da177e4
LT
60 int par;
61
ece8a684 62 if (!strncmp(str, sleepstr, strlen(sleepstr))) {
b3da2a73 63#ifdef CONFIG_SCHEDSTATS
ece8a684
IM
64 prof_on = SLEEP_PROFILING;
65 if (str[strlen(sleepstr)] == ',')
66 str += strlen(sleepstr) + 1;
67 if (get_option(&str, &par))
68 prof_shift = par;
69 printk(KERN_INFO
70 "kernel sleep profiling enabled (shift: %ld)\n",
71 prof_shift);
b3da2a73
MG
72#else
73 printk(KERN_WARNING
74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75#endif /* CONFIG_SCHEDSTATS */
a75acf85 76 } else if (!strncmp(str, schedstr, strlen(schedstr))) {
1da177e4 77 prof_on = SCHED_PROFILING;
dfaa9c94
WLII
78 if (str[strlen(schedstr)] == ',')
79 str += strlen(schedstr) + 1;
80 if (get_option(&str, &par))
81 prof_shift = par;
82 printk(KERN_INFO
83 "kernel schedule profiling enabled (shift: %ld)\n",
84 prof_shift);
07031e14
IM
85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 prof_on = KVM_PROFILING;
87 if (str[strlen(kvmstr)] == ',')
88 str += strlen(kvmstr) + 1;
89 if (get_option(&str, &par))
90 prof_shift = par;
91 printk(KERN_INFO
92 "kernel KVM profiling enabled (shift: %ld)\n",
93 prof_shift);
dfaa9c94 94 } else if (get_option(&str, &par)) {
1da177e4
LT
95 prof_shift = par;
96 prof_on = CPU_PROFILING;
97 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 prof_shift);
99 }
100 return 1;
101}
102__setup("profile=", profile_setup);
103
104
ce05fcc3 105int __ref profile_init(void)
1da177e4 106{
22b8ce94 107 int buffer_bytes;
1ad82fd5 108 if (!prof_on)
22b8ce94 109 return 0;
1ad82fd5 110
1da177e4
LT
111 /* only text is profiled */
112 prof_len = (_etext - _stext) >> prof_shift;
22b8ce94
DH
113 buffer_bytes = prof_len*sizeof(atomic_t);
114 if (!slab_is_available()) {
115 prof_buffer = alloc_bootmem(buffer_bytes);
116 return 0;
117 }
118
119 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL);
120 if (prof_buffer)
121 return 0;
122
123 prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO);
124 if (prof_buffer)
125 return 0;
126
127 prof_buffer = vmalloc(buffer_bytes);
128 if (prof_buffer)
129 return 0;
130
131 return -ENOMEM;
1da177e4
LT
132}
133
134/* Profile event notifications */
1ad82fd5 135
e041c683
AS
136static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
137static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
138static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
1ad82fd5
PC
139
140void profile_task_exit(struct task_struct *task)
1da177e4 141{
e041c683 142 blocking_notifier_call_chain(&task_exit_notifier, 0, task);
1da177e4 143}
1ad82fd5
PC
144
145int profile_handoff_task(struct task_struct *task)
1da177e4
LT
146{
147 int ret;
e041c683 148 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
1da177e4
LT
149 return (ret == NOTIFY_OK) ? 1 : 0;
150}
151
152void profile_munmap(unsigned long addr)
153{
e041c683 154 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
1da177e4
LT
155}
156
1ad82fd5 157int task_handoff_register(struct notifier_block *n)
1da177e4 158{
e041c683 159 return atomic_notifier_chain_register(&task_free_notifier, n);
1da177e4 160}
1ad82fd5 161EXPORT_SYMBOL_GPL(task_handoff_register);
1da177e4 162
1ad82fd5 163int task_handoff_unregister(struct notifier_block *n)
1da177e4 164{
e041c683 165 return atomic_notifier_chain_unregister(&task_free_notifier, n);
1da177e4 166}
1ad82fd5 167EXPORT_SYMBOL_GPL(task_handoff_unregister);
1da177e4 168
1ad82fd5 169int profile_event_register(enum profile_type type, struct notifier_block *n)
1da177e4
LT
170{
171 int err = -EINVAL;
1ad82fd5 172
1da177e4 173 switch (type) {
1ad82fd5
PC
174 case PROFILE_TASK_EXIT:
175 err = blocking_notifier_chain_register(
176 &task_exit_notifier, n);
177 break;
178 case PROFILE_MUNMAP:
179 err = blocking_notifier_chain_register(
180 &munmap_notifier, n);
181 break;
1da177e4 182 }
1ad82fd5 183
1da177e4
LT
184 return err;
185}
1ad82fd5 186EXPORT_SYMBOL_GPL(profile_event_register);
1da177e4 187
1ad82fd5 188int profile_event_unregister(enum profile_type type, struct notifier_block *n)
1da177e4
LT
189{
190 int err = -EINVAL;
1ad82fd5 191
1da177e4 192 switch (type) {
1ad82fd5
PC
193 case PROFILE_TASK_EXIT:
194 err = blocking_notifier_chain_unregister(
195 &task_exit_notifier, n);
196 break;
197 case PROFILE_MUNMAP:
198 err = blocking_notifier_chain_unregister(
199 &munmap_notifier, n);
200 break;
1da177e4
LT
201 }
202
1da177e4
LT
203 return err;
204}
1ad82fd5 205EXPORT_SYMBOL_GPL(profile_event_unregister);
1da177e4
LT
206
207int register_timer_hook(int (*hook)(struct pt_regs *))
208{
209 if (timer_hook)
210 return -EBUSY;
211 timer_hook = hook;
212 return 0;
213}
1ad82fd5 214EXPORT_SYMBOL_GPL(register_timer_hook);
1da177e4
LT
215
216void unregister_timer_hook(int (*hook)(struct pt_regs *))
217{
218 WARN_ON(hook != timer_hook);
219 timer_hook = NULL;
220 /* make sure all CPUs see the NULL hook */
fbd568a3 221 synchronize_sched(); /* Allow ongoing interrupts to complete. */
1da177e4 222}
1da177e4 223EXPORT_SYMBOL_GPL(unregister_timer_hook);
1da177e4 224
1da177e4
LT
225
226#ifdef CONFIG_SMP
227/*
228 * Each cpu has a pair of open-addressed hashtables for pending
229 * profile hits. read_profile() IPI's all cpus to request them
230 * to flip buffers and flushes their contents to prof_buffer itself.
231 * Flip requests are serialized by the profile_flip_mutex. The sole
232 * use of having a second hashtable is for avoiding cacheline
233 * contention that would otherwise happen during flushes of pending
234 * profile hits required for the accuracy of reported profile hits
235 * and so resurrect the interrupt livelock issue.
236 *
237 * The open-addressed hashtables are indexed by profile buffer slot
238 * and hold the number of pending hits to that profile buffer slot on
239 * a cpu in an entry. When the hashtable overflows, all pending hits
240 * are accounted to their corresponding profile buffer slots with
241 * atomic_add() and the hashtable emptied. As numerous pending hits
242 * may be accounted to a profile buffer slot in a hashtable entry,
243 * this amortizes a number of atomic profile buffer increments likely
244 * to be far larger than the number of entries in the hashtable,
245 * particularly given that the number of distinct profile buffer
246 * positions to which hits are accounted during short intervals (e.g.
247 * several seconds) is usually very small. Exclusion from buffer
248 * flipping is provided by interrupt disablement (note that for
ece8a684
IM
249 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
250 * process context).
1da177e4
LT
251 * The hash function is meant to be lightweight as opposed to strong,
252 * and was vaguely inspired by ppc64 firmware-supported inverted
253 * pagetable hash functions, but uses a full hashtable full of finite
254 * collision chains, not just pairs of them.
255 *
256 * -- wli
257 */
258static void __profile_flip_buffers(void *unused)
259{
260 int cpu = smp_processor_id();
261
262 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
263}
264
265static void profile_flip_buffers(void)
266{
267 int i, j, cpu;
268
97d1f15b 269 mutex_lock(&profile_flip_mutex);
1da177e4
LT
270 j = per_cpu(cpu_profile_flip, get_cpu());
271 put_cpu();
15c8b6c1 272 on_each_cpu(__profile_flip_buffers, NULL, 1);
1da177e4
LT
273 for_each_online_cpu(cpu) {
274 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
275 for (i = 0; i < NR_PROFILE_HIT; ++i) {
276 if (!hits[i].hits) {
277 if (hits[i].pc)
278 hits[i].pc = 0;
279 continue;
280 }
281 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
282 hits[i].hits = hits[i].pc = 0;
283 }
284 }
97d1f15b 285 mutex_unlock(&profile_flip_mutex);
1da177e4
LT
286}
287
288static void profile_discard_flip_buffers(void)
289{
290 int i, cpu;
291
97d1f15b 292 mutex_lock(&profile_flip_mutex);
1da177e4
LT
293 i = per_cpu(cpu_profile_flip, get_cpu());
294 put_cpu();
15c8b6c1 295 on_each_cpu(__profile_flip_buffers, NULL, 1);
1da177e4
LT
296 for_each_online_cpu(cpu) {
297 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
298 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
299 }
97d1f15b 300 mutex_unlock(&profile_flip_mutex);
1da177e4
LT
301}
302
ece8a684 303void profile_hits(int type, void *__pc, unsigned int nr_hits)
1da177e4
LT
304{
305 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
306 int i, j, cpu;
307 struct profile_hit *hits;
308
309 if (prof_on != type || !prof_buffer)
310 return;
311 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
312 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
313 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
314 cpu = get_cpu();
315 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
316 if (!hits) {
317 put_cpu();
318 return;
319 }
ece8a684
IM
320 /*
321 * We buffer the global profiler buffer into a per-CPU
322 * queue and thus reduce the number of global (and possibly
323 * NUMA-alien) accesses. The write-queue is self-coalescing:
324 */
1da177e4
LT
325 local_irq_save(flags);
326 do {
327 for (j = 0; j < PROFILE_GRPSZ; ++j) {
328 if (hits[i + j].pc == pc) {
ece8a684 329 hits[i + j].hits += nr_hits;
1da177e4
LT
330 goto out;
331 } else if (!hits[i + j].hits) {
332 hits[i + j].pc = pc;
ece8a684 333 hits[i + j].hits = nr_hits;
1da177e4
LT
334 goto out;
335 }
336 }
337 i = (i + secondary) & (NR_PROFILE_HIT - 1);
338 } while (i != primary);
ece8a684
IM
339
340 /*
341 * Add the current hit(s) and flush the write-queue out
342 * to the global buffer:
343 */
344 atomic_add(nr_hits, &prof_buffer[pc]);
1da177e4
LT
345 for (i = 0; i < NR_PROFILE_HIT; ++i) {
346 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
347 hits[i].pc = hits[i].hits = 0;
348 }
349out:
350 local_irq_restore(flags);
351 put_cpu();
352}
353
84196414 354static int __cpuinit profile_cpu_callback(struct notifier_block *info,
1da177e4
LT
355 unsigned long action, void *__cpu)
356{
357 int node, cpu = (unsigned long)__cpu;
358 struct page *page;
359
360 switch (action) {
361 case CPU_UP_PREPARE:
8bb78442 362 case CPU_UP_PREPARE_FROZEN:
1da177e4
LT
363 node = cpu_to_node(cpu);
364 per_cpu(cpu_profile_flip, cpu) = 0;
365 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
fbd98167 366 page = alloc_pages_node(node,
4199cfa0 367 GFP_KERNEL | __GFP_ZERO,
fbd98167 368 0);
1da177e4
LT
369 if (!page)
370 return NOTIFY_BAD;
371 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
372 }
373 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
fbd98167 374 page = alloc_pages_node(node,
4199cfa0 375 GFP_KERNEL | __GFP_ZERO,
fbd98167 376 0);
1da177e4
LT
377 if (!page)
378 goto out_free;
379 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
380 }
381 break;
1ad82fd5 382out_free:
1da177e4
LT
383 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
384 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
385 __free_page(page);
386 return NOTIFY_BAD;
387 case CPU_ONLINE:
8bb78442 388 case CPU_ONLINE_FROZEN:
1da177e4
LT
389 cpu_set(cpu, prof_cpu_mask);
390 break;
391 case CPU_UP_CANCELED:
8bb78442 392 case CPU_UP_CANCELED_FROZEN:
1da177e4 393 case CPU_DEAD:
8bb78442 394 case CPU_DEAD_FROZEN:
1da177e4
LT
395 cpu_clear(cpu, prof_cpu_mask);
396 if (per_cpu(cpu_profile_hits, cpu)[0]) {
397 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
398 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
399 __free_page(page);
400 }
401 if (per_cpu(cpu_profile_hits, cpu)[1]) {
402 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
403 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
404 __free_page(page);
405 }
406 break;
407 }
408 return NOTIFY_OK;
409}
1da177e4
LT
410#else /* !CONFIG_SMP */
411#define profile_flip_buffers() do { } while (0)
412#define profile_discard_flip_buffers() do { } while (0)
02316067 413#define profile_cpu_callback NULL
1da177e4 414
ece8a684 415void profile_hits(int type, void *__pc, unsigned int nr_hits)
1da177e4
LT
416{
417 unsigned long pc;
418
419 if (prof_on != type || !prof_buffer)
420 return;
421 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
ece8a684 422 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
1da177e4
LT
423}
424#endif /* !CONFIG_SMP */
bbe1a59b
AM
425EXPORT_SYMBOL_GPL(profile_hits);
426
7d12e780 427void profile_tick(int type)
1da177e4 428{
7d12e780
DH
429 struct pt_regs *regs = get_irq_regs();
430
1da177e4
LT
431 if (type == CPU_PROFILING && timer_hook)
432 timer_hook(regs);
433 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
434 profile_hit(type, (void *)profile_pc(regs));
435}
436
437#ifdef CONFIG_PROC_FS
438#include <linux/proc_fs.h>
439#include <asm/uaccess.h>
440#include <asm/ptrace.h>
441
1ad82fd5 442static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
1da177e4
LT
443 int count, int *eof, void *data)
444{
29c0177e 445 int len = cpumask_scnprintf(page, count, (cpumask_t *)data);
1da177e4
LT
446 if (count - len < 2)
447 return -EINVAL;
448 len += sprintf(page + len, "\n");
449 return len;
450}
451
1ad82fd5
PC
452static int prof_cpu_mask_write_proc(struct file *file,
453 const char __user *buffer, unsigned long count, void *data)
1da177e4
LT
454{
455 cpumask_t *mask = (cpumask_t *)data;
456 unsigned long full_count = count, err;
457 cpumask_t new_value;
458
29c0177e 459 err = cpumask_parse_user(buffer, count, &new_value);
1da177e4
LT
460 if (err)
461 return err;
462
463 *mask = new_value;
464 return full_count;
465}
466
467void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
468{
469 struct proc_dir_entry *entry;
470
471 /* create /proc/irq/prof_cpu_mask */
1ad82fd5
PC
472 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
473 if (!entry)
1da177e4 474 return;
1da177e4
LT
475 entry->data = (void *)&prof_cpu_mask;
476 entry->read_proc = prof_cpu_mask_read_proc;
477 entry->write_proc = prof_cpu_mask_write_proc;
478}
479
480/*
481 * This function accesses profiling information. The returned data is
482 * binary: the sampling step and the actual contents of the profile
483 * buffer. Use of the program readprofile is recommended in order to
484 * get meaningful info out of these data.
485 */
486static ssize_t
487read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
488{
489 unsigned long p = *ppos;
490 ssize_t read;
1ad82fd5 491 char *pnt;
1da177e4
LT
492 unsigned int sample_step = 1 << prof_shift;
493
494 profile_flip_buffers();
495 if (p >= (prof_len+1)*sizeof(unsigned int))
496 return 0;
497 if (count > (prof_len+1)*sizeof(unsigned int) - p)
498 count = (prof_len+1)*sizeof(unsigned int) - p;
499 read = 0;
500
501 while (p < sizeof(unsigned int) && count > 0) {
1ad82fd5 502 if (put_user(*((char *)(&sample_step)+p), buf))
064b022c 503 return -EFAULT;
1da177e4
LT
504 buf++; p++; count--; read++;
505 }
506 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
1ad82fd5 507 if (copy_to_user(buf, (void *)pnt, count))
1da177e4
LT
508 return -EFAULT;
509 read += count;
510 *ppos += read;
511 return read;
512}
513
514/*
515 * Writing to /proc/profile resets the counters
516 *
517 * Writing a 'profiling multiplier' value into it also re-sets the profiling
518 * interrupt frequency, on architectures that support this.
519 */
520static ssize_t write_profile(struct file *file, const char __user *buf,
521 size_t count, loff_t *ppos)
522{
523#ifdef CONFIG_SMP
1ad82fd5 524 extern int setup_profiling_timer(unsigned int multiplier);
1da177e4
LT
525
526 if (count == sizeof(int)) {
527 unsigned int multiplier;
528
529 if (copy_from_user(&multiplier, buf, sizeof(int)))
530 return -EFAULT;
531
532 if (setup_profiling_timer(multiplier))
533 return -EINVAL;
534 }
535#endif
536 profile_discard_flip_buffers();
537 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
538 return count;
539}
540
15ad7cdc 541static const struct file_operations proc_profile_operations = {
1da177e4
LT
542 .read = read_profile,
543 .write = write_profile,
544};
545
546#ifdef CONFIG_SMP
60a51513 547static void profile_nop(void *unused)
1da177e4
LT
548{
549}
550
22b8ce94 551static int create_hash_tables(void)
1da177e4
LT
552{
553 int cpu;
554
555 for_each_online_cpu(cpu) {
556 int node = cpu_to_node(cpu);
557 struct page *page;
558
fbd98167
CL
559 page = alloc_pages_node(node,
560 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
561 0);
1da177e4
LT
562 if (!page)
563 goto out_cleanup;
564 per_cpu(cpu_profile_hits, cpu)[1]
565 = (struct profile_hit *)page_address(page);
fbd98167
CL
566 page = alloc_pages_node(node,
567 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
568 0);
1da177e4
LT
569 if (!page)
570 goto out_cleanup;
571 per_cpu(cpu_profile_hits, cpu)[0]
572 = (struct profile_hit *)page_address(page);
573 }
574 return 0;
575out_cleanup:
576 prof_on = 0;
d59dd462 577 smp_mb();
15c8b6c1 578 on_each_cpu(profile_nop, NULL, 1);
1da177e4
LT
579 for_each_online_cpu(cpu) {
580 struct page *page;
581
582 if (per_cpu(cpu_profile_hits, cpu)[0]) {
583 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
584 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
585 __free_page(page);
586 }
587 if (per_cpu(cpu_profile_hits, cpu)[1]) {
588 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
589 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
590 __free_page(page);
591 }
592 }
593 return -1;
594}
595#else
596#define create_hash_tables() ({ 0; })
597#endif
598
84196414 599int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
1da177e4
LT
600{
601 struct proc_dir_entry *entry;
602
603 if (!prof_on)
604 return 0;
605 if (create_hash_tables())
22b8ce94 606 return -ENOMEM;
c33fff0a
DL
607 entry = proc_create("profile", S_IWUSR | S_IRUGO,
608 NULL, &proc_profile_operations);
1ad82fd5 609 if (!entry)
1da177e4 610 return 0;
1da177e4
LT
611 entry->size = (1+prof_len) * sizeof(atomic_t);
612 hotcpu_notifier(profile_cpu_callback, 0);
613 return 0;
614}
615module_init(create_proc_profile);
616#endif /* CONFIG_PROC_FS */